24.12.2013 Views

Didactics of mathematics: more than mathematics and school! - CIMM

Didactics of mathematics: more than mathematics and school! - CIMM

Didactics of mathematics: more than mathematics and school! - CIMM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

170 R. Straesser<br />

3 Utilitarian <strong>mathematics</strong> <strong>and</strong> ‘‘Bildung’’<br />

In Sect. 2, the consequences <strong>of</strong> looking into vocational<br />

<strong>mathematics</strong> education <strong>and</strong> some results <strong>of</strong> research<br />

into this type <strong>of</strong> teaching <strong>and</strong> learning <strong>and</strong> on research<br />

into <strong>mathematics</strong> at the workplace have been described.<br />

One could see how this field <strong>of</strong> research throws<br />

a new light onto the human struggle with <strong>mathematics</strong>,<br />

how this breaking out <strong>of</strong> the narrow confines <strong>of</strong> the<br />

institution classroom/<strong>school</strong> can add to didactics <strong>of</strong><br />

<strong>mathematics</strong>. Looking into <strong>mathematics</strong> in the workplace<br />

<strong>and</strong> in vocational education obviously has<br />

something to <strong>of</strong>fer to didactics <strong>of</strong> <strong>mathematics</strong> as a<br />

scientific discipline. One could also see that current<br />

research in this field is still mainly concerned with the<br />

subject matter <strong>mathematics</strong> <strong>and</strong> its role in the workplace<br />

<strong>and</strong> vocational education. The role <strong>and</strong> problems<br />

<strong>of</strong> the human learner are still somehow neglected in<br />

<strong>mathematics</strong> in vocational education.<br />

The typical German concept <strong>of</strong> ‘‘Bildung’’ may be<br />

an appropriate way to overcome this limitation. Even if<br />

the German word cannot be easily translated into<br />

English without loosing its distinct meaning, it may be<br />

a way to conceptually bridge the divide between the<br />

subject matter (to be) taught <strong>and</strong> the human being<br />

struggling with this subject matter. Steiner simply cited<br />

the well-known formula defining ‘‘Bildung’’ as what is<br />

left when everything that has been learned is forgotten<br />

(‘‘Wenn Bildung ... das ist, was übrig bleibt, wenn man<br />

vergessen hat, was man gelernt hat’’; Steiner 1972, p.<br />

334f). The afore-mentioned German educationalist<br />

Herwig Blankertz especially looked into Bildung from<br />

the perspective <strong>of</strong> vocational education (see Blankertz<br />

1969). In this paper, it is simply impossible to present<br />

the long-st<strong>and</strong>ing debate on ‘‘Bildung’’ <strong>and</strong> its implications<br />

for <strong>mathematics</strong> education in general. But it<br />

was the concept <strong>of</strong> ‘‘Bildung’’, which made Steiner<br />

aware <strong>of</strong> the fundamental role <strong>of</strong> the learner (see the<br />

citation in Sect. 1) <strong>and</strong> opened the way to his activities<br />

in vocational education, implying that Steiner inserted<br />

the question <strong>of</strong> ‘‘Bildung’’ into the vocational project<br />

he took part in. Mathematics education in <strong>and</strong> for the<br />

workplace can pr<strong>of</strong>it from taking into account the human<br />

side <strong>of</strong> the teaching/learning process—possibly<br />

with the help <strong>of</strong> the concept <strong>of</strong> ‘‘Bildung’’.<br />

There is also a lesson to be learnt for general<br />

<strong>mathematics</strong> education. Some ten years later in the<br />

1980s, the human part <strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong> is so<br />

evident, that Steiner makes ‘‘Bildung’’ a point <strong>of</strong> defence<br />

<strong>of</strong> the reform <strong>of</strong> the upper secondary <strong>mathematics</strong><br />

education bound for academic studies (the<br />

‘‘neugestaltete gymnasiale Oberstufe’’). According to<br />

Steiner, the pre-defined curriculum for everybody<br />

(with academic aspirations) should be substituted by an<br />

individually defined ‘‘diet’’ <strong>of</strong> learning objects <strong>and</strong><br />

experiences in order to have an adequate upper secondary<br />

education including <strong>mathematics</strong> (‘‘... die Beratungen<br />

und ... Betreuungen der Schüler ... unter dem<br />

Aspekt der Wahl eines individuellen Bildungsganges<br />

und damit unter bestimmte mit dem Bildungsgang<br />

verbundene Kompetenzentwicklungen zu stellen’’, see<br />

Steiner 1984, p. 21—explicitly referring to Blankertz<br />

<strong>and</strong> his reform work). Here again—<strong>and</strong> for general<br />

education, ‘‘Bildung’’ is the keyword to fight a utilitarian<br />

reduction <strong>of</strong> teaching <strong>and</strong> learning <strong>mathematics</strong><br />

in favour <strong>of</strong> a <strong>mathematics</strong> created for the individual<br />

learner.<br />

References<br />

Appelrath, K.-H. (1985). Zur Verwendung von Mathematik und<br />

zur Situation des Fachrechnens im Berufsfeld Metalltechnik<br />

(dargestellt an zwei Unterrichtsbeispielen). In P. Bardy, W.<br />

Blum, & H. G. Braun (Eds.), Mathematik in der Berufsschule<br />

- Analysen und Vorschläge zum Fachrechenunterricht.<br />

(pp. 127–139). Essen: Girardet.<br />

Bessot, A., & Ridgway, J. (2000). Education for <strong>mathematics</strong> in<br />

the workplace (Vol. 24). Dordrecht: Kluwer.<br />

Blankertz, H. (1969). Bildung im Zeitalter der grossen Industrie.<br />

Pädagogik, Schule und Berufsbildung im 19. Jahrhundert.<br />

Berlin: Hermann Schroedel.<br />

Blum, W., & Straesser, R. (1992). Mathematikunterricht in<br />

beruflichen Schulen zwischen Berufskunde und Allgemeinbildung.<br />

Zentralblatt für Didaktik der Mathematik 24(7),<br />

242–247.<br />

Brousseau, G. (1986). Forschungstendenzen der Mathematikdidaktik<br />

in Frankreich. Journal für Mathematikdidaktik 7(2/3),<br />

95–120.<br />

Brousseau, G. (1994). Perspectives pour la didactique des<br />

mathématiques. In M. Artigue (Eds.), Vingt Ans de Didactique<br />

des Mathématiques en France - Hommage à Guy<br />

Brousseau et Gerard Vergnaud (pp. 51–66). Grenoble: La<br />

Pensée Sauvage.<br />

Buchberger, B. (1989). Should students learn integration rules?<br />

(RISC-Linz-Series No. 89-07.0). Linz: RISC.<br />

Chevallard, Y. (1985/1991). La transposition didactique. Grenoble:<br />

Pensées sauvages.<br />

Griesel, H. (1971). Die Neue Mathematik für Lehrer und<br />

Studenten - B<strong>and</strong> 1: Mengen, Zahlen, Relationen, Topologie<br />

(Vol. 1). Hannover: Schroedel.<br />

Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik<br />

als Wissenschaft. Zentralblatt für Didaktik der Mathematik<br />

6(3), 115–119.<br />

Heintz, B. (2000). Die Innenwelt der Mathematik. Zur Kultur<br />

und Praxis einer beweisenden Disziplin. Heidelberg: Springer.<br />

Howson, A. G., Kahane, J. P., Lauginie, P. & Turckheim, E.<br />

(Eds.). (1988). Mathematics as a service subject. Cambridge:<br />

Cambridge University Press (additional selected papers<br />

published by Springer (1988): Clements, R. B., Lauginie, P.<br />

& Turckheim, E. (Eds.) as CISM Courses <strong>and</strong> Lectures No.<br />

305).<br />

Hoyles, C. & Noss, R. (2004). Abstraction in workplace expertise.<br />

Copenhagen: ICME 10 conference website (paper from<br />

TSG 7 at www.ICME10.dk).<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!