22.12.2013 Views

Characterization of the human cornea proteome with reference to ...

Characterization of the human cornea proteome with reference to ...

Characterization of the human cornea proteome with reference to ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Characterization</strong> <strong>of</strong> <strong>the</strong> <strong>human</strong><br />

<strong>cornea</strong> <strong>proteome</strong> <strong>with</strong> <strong>reference</strong> <strong>to</strong><br />

ocular transparency<br />

by<br />

Henrik Karring<br />

Department <strong>of</strong> Molecular Biology, Aarhus


The eye<br />

Lens<br />

Retina<br />

Pupil<br />

Cornea<br />

Optic nerve<br />

Iris<br />

Sclera<br />

Vitreous humor


The <strong>cornea</strong><br />

Pupil<br />

Cornea<br />

Iris<br />

Cornea<br />

Sclera


The <strong>cornea</strong>l stroma<br />

epi<strong>the</strong>lium<br />

Collagen<br />

lamellae<br />

Quiescent and<br />

transparent<br />

kera<strong>to</strong>cytes<br />

stroma<br />

~ 450 μm<br />

endo<strong>the</strong>lium


Transparency <strong>of</strong> <strong>the</strong> extracellular matrix<br />

Collagen lamellae<br />

kera<strong>to</strong>cyte<br />

Collagen fibers<br />

Hexagonal oriented array<br />

~30 nm diameter<br />

~60 nm regular spacing


Proteome analysis <strong>of</strong> <strong>the</strong><br />

<strong>human</strong> <strong>cornea</strong>


Materials<br />

• 16 normal <strong>human</strong> donor <strong>cornea</strong>s<br />

• Age 22-86 years<br />

• Containing all cell-layers<br />

• Lyophilized and homogenized in N 2<br />

• Fine <strong>cornea</strong>l powder


Extraction pro<strong>to</strong>cols 1 and 2<br />

• Proteins were extracted in urea or 100 mM NaCl<br />

• Separated by 2D gel electrophoresis<br />

• Proteins identified by MALDI-TOF MS


Peptide mass fingerprinting by<br />

MALDI-MS<br />

Trypsin<br />

digestion<br />

Abundance<br />

p5<br />

p3<br />

p1<br />

p4<br />

p2<br />

MALDI-MS<br />

Peptide<br />

extraction<br />

and matrix<br />

MALDI target<br />

m/z


Extraction pro<strong>to</strong>col 3<br />

• The <strong>cornea</strong>l powder was solubilized using<br />

CNBr and trypsin<br />

• The peptides were separated by <strong>of</strong>f-line strong<br />

cation exchange and identified using LC-<br />

MS/MS


Corneal<br />

powder<br />

CNBr and<br />

trypsin<br />

Abundance<br />

LC-MS/MS<br />

m/z<br />

Strong cation<br />

exchange<br />

App. 30 pools


Extraction pro<strong>to</strong>col 4<br />

• Proteins were extracted in SDS sample buffer<br />

and separated by SDS-PAGE<br />

• The gel lane was sliced in ~2-mm strips and<br />

digested <strong>with</strong> trypsin<br />

• The extracted peptides were identified by LC-<br />

MS/MS


Mw<br />

(kDa)<br />

200<br />

116<br />

97<br />

66<br />

45<br />

31<br />

22<br />

14<br />

6<br />

35 slices<br />

trypsin<br />

Abundance<br />

LC-MS/MS<br />

m/z


Results<br />

• Urea, 2D-gels, MALDI-TOF MS:<br />

• CNBr-trypsin, SCX, LC-MS/MS: 31<br />

• SDS-PAGE slices, LC-MS/MS: 103<br />

Identified<br />

proteins<br />

67 (165 spots)<br />

Total number <strong>of</strong> different proteins: 141<br />

Karring H. et al., MCP, 2005


Tissue distribution<br />

38%<br />

60%<br />

Karring H. et al., MCP, 2005


Functional groups<br />

Extracellular<br />

Intracellular<br />

39%<br />

27% 24% 28%<br />

17%<br />

Karring H. et al., MCP, 2005


Comparison <strong>of</strong> protein and gene<br />

expression in <strong>the</strong> <strong>cornea</strong><br />

61% <strong>of</strong> <strong>the</strong> identified proteins were recognized<br />

in <strong>the</strong> NEIBank gene expression libraries<br />

Structural proteins: 64%<br />

Blood/plasma proteins: 14%<br />

Metabolic proteins: 75%<br />

Immune defence proteins: 40%<br />

Redox proteins: 100%<br />

Folding and degradation: 100%<br />

O<strong>the</strong>r functions: 62%


Conclusions<br />

• 99 (70%) <strong>of</strong> <strong>the</strong> 141 identified proteins have<br />

not previously been identified in <strong>the</strong> <strong>cornea</strong>.<br />

• A significant number <strong>of</strong> protein is<strong>of</strong>orms were<br />

identified (albumin, Ig-kappa chain, TGFBIp).<br />

• Only 14% <strong>of</strong> <strong>the</strong> plasma proteins were<br />

recognized in gene expression libraries.<br />

• First part <strong>of</strong> a protein <strong>reference</strong> library for<br />

targeted studies <strong>of</strong> <strong>cornea</strong>l diseases.


Corneal TGFBIp dystrophy<br />

Normal<br />

Dystrophy


2D gels and proteomics<br />

Normal<br />

Dystrophy<br />

Hedegaard C. et al., MolVis, 2003


Proteomic analysis <strong>of</strong> <strong>the</strong><br />

soluble fraction from cultured<br />

<strong>human</strong> <strong>cornea</strong>l fibroblasts


Corneal wound-healing<br />

Hazy <strong>cornea</strong>l<br />

fibroblasts<br />

Apop<strong>to</strong>sis<br />

Proliferation<br />

and migration


Near-sightedness (Myopia)


Excimer laser<br />

2<br />

keratec<strong>to</strong>my<br />

(LASIK)<br />

Flap<br />

1<br />

3


Cellular haze after eximer laser<br />

keratec<strong>to</strong>my<br />

Normal<br />

Hazy<br />

Møller-Pedersen T. 2004


Cellular transparency<br />

• Abundant cy<strong>to</strong>plasmic water-soluble proteins (5-40%)<br />

• Normally metabolic enzymes – enzyme-crystallins<br />

• Taxon-specific in vertebrates and invertebrates<br />

(E.g. aldehyde dehydrogenase 3 or 1, and transke<strong>to</strong>lase)<br />

• May regulate <strong>the</strong> refractive index <strong>of</strong> <strong>the</strong> cy<strong>to</strong>plasm ?<br />

backscattering<br />

Knockout mice<br />

have normal<br />

<strong>cornea</strong>s


Cell culturing (Explant)<br />

10 % FBS<br />

Proteomics <strong>of</strong><br />

soluble fraction<br />

Isolate and<br />

lyse cells


No enzyme-crystallins in<br />

<strong>cornea</strong>l fibroblasts<br />

Vimentin (51 kDa is<strong>of</strong>orm) 1.1 +/-0.1%<br />

Vimentin (59 kDa is<strong>of</strong>orm) 1.5 +/-0.1%<br />

Actin 2.1 +/-0.2%<br />

Annexin A2 1.0 +/-0.2%<br />

All < 5%<br />

No enzyme-crystallins<br />

Karring H. et al., MCP, 2004


M r /kDa<br />

pH<br />

4.5 5.5<br />

64<br />

41<br />

78<br />

90<br />

5<br />

13<br />

77<br />

52<br />

72<br />

110<br />

111<br />

5.0 5.25<br />

60<br />

39<br />

134<br />

133<br />

58<br />

130<br />

127<br />

128<br />

51<br />

123<br />

122<br />

34<br />

48<br />

22<br />

21<br />

24<br />

120<br />

108<br />

119<br />

26<br />

35<br />

36<br />

135<br />

136<br />

137<br />

141<br />

142<br />

102<br />

146<br />

147<br />

149 150 151<br />

152<br />

153<br />

154<br />

155<br />

66<br />

157<br />

158<br />

159<br />

9-11<br />

8<br />

162<br />

7<br />

163 164 4<br />

166<br />

83<br />

176<br />

96<br />

29<br />

62<br />

99<br />

182 171<br />

170<br />

76<br />

14<br />

15<br />

16<br />

17<br />

174<br />

183<br />

184<br />

185<br />

186<br />

187<br />

173<br />

189<br />

192<br />

193<br />

194<br />

195<br />

196<br />

50<br />

198<br />

199<br />

201<br />

202<br />

204<br />

88<br />

31.0<br />

21.0<br />

14.4<br />

45.0<br />

66.2<br />

94.4<br />

4.75


Peptide mass fingerprinting or<br />

MALDI-MS/MS<br />

Protein Acc. # Function and FL aa /M th /pI th Gel ID. Spot ID. Covered fragment<br />

localization<br />

Actin, beta or gamma<br />

P02570 or<br />

P02571<br />

C/c 375/41.7/5.3 A/C<br />

A/C<br />

A/C<br />

A/C<br />

A<br />

A<br />

A<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

14<br />

15<br />

16<br />

17<br />

25<br />

83<br />

114<br />

152<br />

153<br />

176<br />

186<br />

198<br />

199<br />

A19-K373<br />

A29-K373<br />

A19-K373<br />

A29-K373<br />

A19-K373<br />

V96-R372<br />

A29-K373<br />

A19-K336<br />

A19-K336<br />

G63-K373<br />

V96-R372<br />

I85-K336<br />

I85-K336<br />

Acyl-CoA-binding protein P07108 M/c/n 87/9.9/6.1 D 216 S2-K67<br />

Alcohol dehydrogenase [NADP + ] (Aldo-ke<strong>to</strong> reductase P14550 M/c 325/36.8/6.3 D 145 M14-K308<br />

1A1)<br />

Alpha-actinin 1 P12814 C/c 892/103.5/5.2 A 66 I656-R863<br />

Annexin A1 P04083 P/L/T/c/a/n 346/38.8/6.6 A<br />

A<br />

B<br />

Annexin A2 P07355 P/L/T/c/a 339/38.7/7.6 A<br />

A<br />

D<br />

C<br />

34<br />

48<br />

218<br />

53<br />

95<br />

121<br />

141<br />

Q10-R228<br />

G30-R228<br />

Q10-R228<br />

L11-R168<br />

A29-R205<br />

L11-R245<br />

L11-R168<br />

Annexin V P08758 P/L/T/c/a 320/35.8/5.0 A 75 G7-R285<br />

ATP synthase alpha chain, mi<strong>to</strong>chondrial precursor P25705 M/m 553/59.8/9.2 C 157 T46-K194<br />

ATP synthase beta chain, mi<strong>to</strong>chondrial precursor P06576 M/m 529/56.5/5.3 A/C 4 L95-K480<br />

ATP synthase D chain, mi<strong>to</strong>chondrial precursor O75947 M/m 161/18.5/5.2 C 120 T10-K121<br />

Beta-2-microglobulin, precursor P01884 I/s 119/13.8/6.1 D 230 V102-K111<br />

Calcyclin (S100A6) P06703 P/F/L/r/n 90/10.2/5.3 C<br />

C<br />

133<br />

134<br />

E41-R55<br />

E41-R55<br />

Calgizzarin (S100A14 or S100A11p) NP_066369 U/u 102/11.4/7.8 A 61 I4-K78<br />

Calmodulin P02593 L/S/P/c 149/16.8/4.1 A 49 E15-K149<br />

Calreticulin, precursor P27797 F/S/e 417/48.3/4.3 A 74 E25-K286<br />

Karring H. et al., MCP, 2004


Proteomic data<br />

• 254 spots identified by MALDI-MS or MS/MS<br />

• 118 distinct proteins<br />

• 1 hypo<strong>the</strong>tical protein<br />

“bone marrow stroma-derived growth fac<strong>to</strong>r”<br />

• 5 proteins classified as enzyme-crystallins in various species<br />

α-enolase<br />

non-filamen<strong>to</strong>us actin<br />

isocitrate dehydrogenase<br />

glutathione-S-transferase<br />

peptidyl prolyl cis-trans isomerase A


Protein folding and degradation: 32<br />

Cell proliferation, differentiation, and apop<strong>to</strong>sis: 24<br />

Metabolism: 23<br />

Cy<strong>to</strong>skele<strong>to</strong>n organisation and cell motility: 21<br />

Redox regulation and oxidative stress defence: 17<br />

Signal transduction: 13<br />

Secre<strong>to</strong>ry pathway: 11<br />

Indicate that oxidative stress and protein misfolding<br />

may participate in <strong>the</strong> backscattering <strong>of</strong> light from<br />

<strong>cornea</strong>l fibroblasts


Protein denaturation<br />

Fried egg<br />

Cataract<br />

Denaturation and precipitation <strong>of</strong> proteins means<br />

scatter <strong>of</strong> light and loss <strong>of</strong> transparency.


Model <strong>of</strong> <strong>cornea</strong>l cellular haze<br />

Irreversible oxidation<br />

Unfolding<br />

Reactive oxygen species (ROS)<br />

High molecular<br />

weight aggregates<br />

Protein degradation


Acknowledgements<br />

Department <strong>of</strong> Molecular Biology<br />

Aarhus University<br />

Jan J. Enghild, PhD, Associate Pr<strong>of</strong>essor<br />

Ida B. Thøgersen, Technician<br />

Department <strong>of</strong> Ophthalmology<br />

Aarhus University Hospital<br />

Torben Møller-Pedersen, MD, DMSc<br />

Foundations<br />

Danish Medical Research Council<br />

The Danish Association for Prevention<br />

<strong>of</strong> Eye Diseases and Blindness<br />

The Novo Nordic Foundation<br />

The Synoptik Foundation<br />

National Institute <strong>of</strong> Health<br />

Duke University Medical Center,<br />

North Carolina<br />

Gordon K. Klintworth, Pr<strong>of</strong>essor

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!