22.12.2013 Views

slides, in English - Faculty of Physics

slides, in English - Faculty of Physics

slides, in English - Faculty of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Aerosol process<strong>in</strong>g by drizzl<strong>in</strong>g stratocumulus:<br />

a modell<strong>in</strong>g study us<strong>in</strong>g a novel particle-based approach<br />

Sylwester Arabas<br />

Anna Jaruga<br />

Hanna Pawłowska<br />

University <strong>of</strong> Warsaw<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Physics</strong><br />

Institute <strong>of</strong> Geophysics<br />

8 th International Conference on Cloud and Precipitation<br />

Leipzig, August 1 st 2012


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/<br />

super-droplet conc. [1/dx/dy/dz]<br />

cloud droplet conc. [1/cm 3 ]<br />

aerosol concentration [1/cm 3 ]<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 12 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 24 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 36 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 48 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 60 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 72 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 84 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 96 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 108 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 120 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 132 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 144 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 156 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 168 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 180 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 192 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 204 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 216 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 228 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 240 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 252 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 264 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 276 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 288 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 300 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 312 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 324 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 336 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


0.4<br />

3D LES with super-droplets (Arabas & Shima 2012)<br />

height [m]<br />

1.2<br />

sdm-middle-32<br />

1.0 • 24h LES us<strong>in</strong>g the ”RICO” set-up (van Zanten et al. 2011)<br />

0.8 • Nagoya Univ. CReSS model (Tsuboki 2008)<br />

0.6<br />

• comparison with aircraft measurements (OAP-2DS, Fast-FSSP)<br />

0.4<br />

sdm-middle-128<br />

1.2<br />

height [m]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

-1 0 1 2<br />

w [m/s]<br />

-1 0 1<br />

S = RH - 1 [%]<br />

20 60 100<br />

CDNC [cm-3]<br />

5 10 15 20<br />

r eff [µm]<br />

0 0.5 1<br />

LWC [g/m 3 ]<br />

0.6 0.8 1<br />

k [1]<br />

0 2 4 6<br />

σ r [µm]<br />

More:<br />

• ICCP poster no. P.8.16<br />

• arXiv:1205.3313


Thanks for your attention!<br />

Acknowledgements:<br />

Sh<strong>in</strong>-ichiro Shima (Hyogo Univ.)<br />

Piotr Smolarkiewicz & Wojciech Grabowski (NCAR)<br />

Implementation <strong>of</strong> the super-droplet µ-physics <strong>in</strong> icicle is supported by<br />

Polish National Science Centre grant no. DEC-2011/01/N/ST10/01483<br />

Thanks are due authors <strong>of</strong> open-source s<strong>of</strong>tware used <strong>in</strong> icicle, <strong>in</strong>cl.:<br />

Blitz++, Thrust, Boost.units, gnuplot-iostream, . . .


Super-Droplet concentration<br />

number <strong>of</strong> ”b<strong>in</strong>s” (exchanged among ”parcels”)<br />

number <strong>of</strong> ”parcels” (each carry<strong>in</strong>g a s<strong>in</strong>gle ”b<strong>in</strong>”)<br />

16 SD / cell<br />

32 SD / cell<br />

64 SD / cell<br />

256 SD / cell<br />

t = 336 s<br />

t = 336 s<br />

t = 336 s<br />

t = 336 s<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

X [km]<br />

X [km]<br />

X [km]<br />

X [km]<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

1.4<br />

1.4<br />

1.4<br />

1.4<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

0.4<br />

0.4<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.2<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

X [km]<br />

X [km]<br />

X [km]<br />

X [km]<br />

”multiple collisions” needed for low SD conc. (cf. Shima et al. 2009)<br />

not implemented yet <strong>in</strong> icicle!


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

up- & downdraft<br />

needed<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

up- & downdraft<br />

needed<br />

2D<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!