22.12.2013 Views

Fine Pitch Flip Chip with Cu Pillar

Fine Pitch Flip Chip with Cu Pillar

Fine Pitch Flip Chip with Cu Pillar

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IME Proprietary<br />

EPRC – 11<br />

Project Proposal<br />

<strong>Fine</strong> <strong>Pitch</strong> <strong>Flip</strong> <strong>Chip</strong><br />

<strong>with</strong> <strong>Cu</strong> <strong>Pillar</strong><br />

9 th November 2010<br />

Slide 1


IME Proprietary<br />

Motivation<br />

• Increasing adoption of <strong>Flip</strong> <strong>Chip</strong> for<br />

mobile application<br />

‣Electrical performance<br />

‣High I/O interconnect<br />

‣Thinner package<br />

‣Cost effective for high pin count<br />

pkg<br />

• <strong>Cu</strong> pillar emerged as solution for fine<br />

pitch flip chip application<br />

‣ Standoff between chip &<br />

substrate<br />

(Source: private communication <strong>with</strong> a wafer foundry )<br />

‣ Avoid solder short<br />

‣ Thermal performance<br />

(Source: Infineon)<br />

Slide 2


Technology Trends<br />

IME Proprietary<br />

(Source: Prismark)<br />

<strong>Cu</strong> pillar bump on commercial microprocessor<br />

<strong>Fine</strong> pitch <strong>Cu</strong> pillar bump on lead substrate<br />

Effect of UF properties<br />

(Source : Amkor)<br />

Slide 3<br />

(Source: <strong>Chip</strong>works)<br />

(Source : Amkor)


Challenges to be Addressed<br />

IME Proprietary<br />

Interconnection<br />

induced<br />

stress on <strong>Cu</strong> low K<br />

structure<br />

• UBM & pillar design<br />

• Low CTE substrate<br />

• UF material<br />

• Reflow process<br />

Reliable joining method and<br />

process issue for fine pitch<br />

<strong>Cu</strong> pillar<br />

• <strong>Pillar</strong> & lead design<br />

• Joining material<br />

• Reflow process<br />

• UF material<br />

Effect of <strong>Cu</strong> pillar Sizes for<br />

different <strong>Pitch</strong><br />

• Routing design rule<br />

• <strong>Pillar</strong> fabrication<br />

• Assembly processibility<br />

• Substrate layout<br />

Electromigration issues<br />

for different <strong>Cu</strong> pillar and joining<br />

material<br />

• <strong>Cu</strong>rrent density distribution<br />

modeling for different pillar size<br />

and joining<br />

• Characterization verification<br />

<strong>Fine</strong> pitch<br />

substrate<br />

• BU (130 -100um)<br />

• 2 layer (50-40um)<br />

Si<br />

Underfilling material,<br />

process and reliability for<br />

fine pitch <strong>Cu</strong> pillar<br />

• Underfill material type<br />

• Underfill process<br />

• Fluxing process<br />

Substrate<br />

Substrate<br />

Challenge<br />

Approach<br />

Test vehicle 1 *<br />

Test vehicle 2 *<br />

Slide 4<br />

• Larger chip**, full array bump<br />

• BU substrate <strong>with</strong> SOP<br />

• <strong>Fine</strong> pitch bump (130um – 100um)<br />

• Low CTE substrate<br />

• Capillary underfill<br />

**Remark: <strong>Cu</strong> low K chip – subject to availability<br />

* To be finalized <strong>with</strong> members input<br />

• Smaller chip**, periphery array bump<br />

• Low cost 2 layer substrate<br />

• <strong>Fine</strong> pitch bump (50um - 40um)<br />

• MUF, WL-UF, NF-UF**<br />

**Remark: To be finalized <strong>with</strong> member’s input and subject<br />

to availability


Project Proposal<br />

Objective:<br />

Development and characterization of fine pitch <strong>Cu</strong> pillar interconnect for next generation devices,<br />

including the following:<br />

IME Proprietary<br />

Structural design and failure mechanism analysis of fine pitch <strong>Cu</strong> pillar for <strong>Cu</strong> low K application<br />

Parasitic extraction, EM modeling and characterization for fine pitch <strong>Cu</strong> pillar<br />

Structural and electrical design rule for fine pitch <strong>Cu</strong> pillar (130um – 40um)<br />

Development of <strong>Cu</strong> pillar <strong>with</strong> different joining method including solder cap, solder bump and <strong>Cu</strong>-<strong>Cu</strong><br />

Material characterization including fine pitch substrate <strong>with</strong> low CTE material and underfill<br />

Assembly, reliability testing and failure analysis<br />

Test vehicle 1 *<br />

Test vehicle 2 *<br />

• Larger chip**, full array bump<br />

• BU substrate <strong>with</strong> SOP<br />

• <strong>Fine</strong> pitch bump (130um – 100um)<br />

• Low CTE substrate<br />

• Capillary underfill<br />

**Remark: <strong>Cu</strong> low K chip – subject to availability<br />

• Smaller chip**, periphery array bump<br />

• Low cost 2 layer substrate<br />

• <strong>Fine</strong> pitch bump (50um /40um )<br />

• Solder cap (SnAg, <strong>Cu</strong>Sn)<br />

• Lead finish (OSP, NiPdAu)<br />

• MUF, WL-UF, NF-UF**<br />

**Remark: To be finalized <strong>with</strong> member’s input and subject<br />

to availability<br />

Slide 5<br />

* To be finalized <strong>with</strong> members input


Improving <strong>Cu</strong> <strong>Pillar</strong> Design for <strong>Fine</strong> <strong>Pitch</strong> Application<br />

IME Proprietary<br />

<br />

Structural modeling and failure mechanism of the<br />

fine-pitch <strong>Cu</strong>-pillar FC package<br />

– <strong>Cu</strong> pillar geometry (e.g. UBM, pillar and landing pad/lead<br />

geometry, etc)<br />

– Packaging materials (e.g. properties of underfill material,<br />

substrate material)<br />

– Bump failure characterization and correlation <strong>with</strong><br />

modeling<br />

– Understanding of failure mechanism / low K delamination<br />

analysis<br />

<strong>Cu</strong> pillar for mechanical/electrical<br />

and routing requirements<br />

<br />

Method for stress reduction for advanced <strong>Cu</strong> low<br />

K device<br />

– Compliant-rigid interconnect structures, including<br />

variable <strong>Cu</strong> pillar e.g. rectangular pillar<br />

– UBM and stress buffering design<br />

– Substrate CTE, landing pad / lead<br />

– Underfill material properties<br />

– Reflow process effect<br />

Slide 6<br />

(Source: IME)


Effect of <strong>Cu</strong> <strong>Pillar</strong> Geometry on<br />

Interconnect Parasitic and <strong>Cu</strong>rrent Distribution<br />

Parasitic extraction<br />

• 3D modeling and experimental characterization the “RLGC” electrical parasitic of the fine<br />

pitch <strong>Cu</strong> pillar (150um 40um) for up to 10 GHz<br />

IME Proprietary<br />

<br />

Electromigration modeling and characterization<br />

• <strong>Cu</strong>rrent density distribution modeling for different pillar size and joining<br />

• Experiment characterization and verification<br />

<br />

<br />

Experimental characterization<br />

• Characterization of RLGC parameters overtime under stressed environmental condition e.g.<br />

temperature and humidity<br />

Design guidelines for fine pitch routing<br />

• <strong>Cu</strong> pillar height, pitch, line width & spacing<br />

• Crosstalk (< -30 dB) , return loss (>10 dB), insertion loss (


Development of Joining Method and Characterization<br />

<strong>with</strong> <strong>Fine</strong> <strong>Pitch</strong> Substrate<br />

<strong>Cu</strong> pillar + solder cap<br />

/ metallic + UF<br />

interconnect<br />

Process development and characterization of different<br />

joining methods<br />

•Comparison of solder cap <strong>with</strong> SnAg, <strong>Cu</strong>Sn, and micro<br />

SnAg bump<br />

•Exploration of <strong>Cu</strong>-<strong>Cu</strong> for fine pitch <strong>Cu</strong> pillar application<br />

• Bonding method (TC, TS, or US)<br />

• Effect of surface finish: SAM coating, NiAu<br />

IME Proprietary<br />

Fabrication for fine pitch <strong>Cu</strong> pillar and substrate<br />

•<strong>Cu</strong> pillar of 130um - 40um bump pitch and AR of >1:1<br />

•<strong>Fine</strong> pitch substrate<br />

• BU substrate (130 -100um pitch)<br />

• 2 layer substrate (50 um - 40um pitch)<br />

• Landing pad / lead sizes, shapes, surface finish<br />

• Low CTE substrate<br />

(Source: JCI)<br />

Slide 8


Assembly Process and Material Characterization,<br />

Reliability Test and Failure Analysis<br />

IME Proprietary<br />

Assembly / process development and characterization<br />

‣ <strong>Fine</strong> pitch <strong>Cu</strong> pillar assembly<br />

‣ Solder cap coplanarity and solder wetting<br />

‣ Selection of flux and solder wetting<br />

‣ Flux dipping process and solder shorting<br />

‣ <strong>Fine</strong> pitch substrate finish (OSP, NiPdAu)<br />

‣ Underfill process characterization<br />

‣ Capillary flow underfill<br />

‣ Wafer level underfill<br />

‣ No-flow underfill<br />

Source: SPIL<br />

‣ Package assembly and sample build for reliability<br />

characterization<br />

Reliability assessment and Failure analysis<br />

‣ Moisture sensitivity test<br />

‣ Temperature cycling test<br />

‣ High temperature storage test<br />

‣ Electromigration test<br />

(Source: Infineon)<br />

Slide 9


Project Flow<br />

IME Proprietary<br />

Members inputs<br />

Finalize project scope /<br />

test vehicle spec<br />

Mechanical/<br />

Electrical<br />

design<br />

Test vehicle design<br />

& wafer fabrication<br />

Solder based <strong>Cu</strong> pillar<br />

assembly development<br />

<strong>Fine</strong> pitch / low CTE<br />

substrate fabrication<br />

Other joining method<br />

development<br />

Experiment<br />

characterization<br />

Quick reliability assessment, material<br />

selection and improvement<br />

Reliability test vehicle fabrication<br />

Slide 10<br />

Final reliability test and FA<br />

Project Time line and schedule : Feb 2011 to Aug 2012


Research Outcome<br />

IME Proprietary<br />

• Design and analysis of <strong>Cu</strong> pillar for fine pitch application<br />

Structural design optimization of <strong>Cu</strong> pillar (pillar, solder, land/lead geometry)<br />

Parasitic and EM analysis of <strong>Cu</strong> pillar<br />

Comparison of <strong>Cu</strong> pillar <strong>with</strong> cap solder and micro SnAg solder bump<br />

Design rule for structural and electrical design of <strong>Cu</strong> pillar (bump pitch 130um – 40um)<br />

• Development of joining method and fine pitch substrate<br />

Process development and characterization results of different joining methods<br />

<strong>Cu</strong> pillar <strong>with</strong> solder cap and micro SnAg solder bump<br />

Exploration of <strong>Cu</strong>-<strong>Cu</strong> fine pitch <strong>Cu</strong> pillar application<br />

Fabrication for fine pitch <strong>Cu</strong> pillar and substrate<br />

<strong>Cu</strong> pillar of 130um- 40um bump pitch and AR of >1:1<br />

Organic substrate <strong>with</strong> 130um - 40um bump pitch<br />

Landing pad / lead sizes, shapes, surface finish<br />

Low CTE substrate<br />

• Assembly characterization, reliability assessment and failure analysis results<br />

Assembly process and characterization of underfill material<br />

Reliability test results<br />

Failure analysis results<br />

Slide 11


IME Proprietary<br />

Thanks for your attention<br />

Slide 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!