20.12.2013 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 4 - 24 October, 2012<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


<strong>The</strong> Continuum Mechanics Incremental Equations<br />

<strong>The</strong> basic Problem<br />

Establish <strong>the</strong> solution using an incremental <strong>for</strong>mulation. Two main<br />

approaches exist <strong>for</strong> establishing equilibrium<br />

Lagrangian Formulation: Track <strong>the</strong> movement <strong>of</strong> all particles <strong>of</strong> <strong>the</strong><br />

body, in <strong>the</strong>ir motion from an initial to a final configuration (pathline)<br />

Eulerian Formulation: <strong>The</strong> motion <strong>of</strong> <strong>the</strong> material through a<br />

stationary control volume is considered (streamlines). Mainly used in<br />

fluid mechanics (but also in large strain plasticity <strong>the</strong>ories - e.g.<br />

generalized plasticity).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


Lagrangian vs. Eulerian Formulation - 1D Example<br />

Spatial or Eulerian coordinates (x): <strong>The</strong>se coordinates are used to locate a<br />

point in space with respect to a fixed basis.<br />

Material or Lagrangian coordinates (X): <strong>The</strong>se coordinates are used to label<br />

material points. If we sit on a material point, <strong>the</strong> label does not change with time.<br />

Example: Assume that <strong>the</strong> motion is<br />

x = φ(X, t) = X(1 + 2t + t 2 )<br />

<strong>The</strong> inverse <strong>of</strong> <strong>the</strong> map gives us X in terms <strong>of</strong> x, i.e.,<br />

X = φ −1 (x, t) =<br />

<strong>The</strong>n, <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> material point X is<br />

x<br />

(1 + 2t + t 2 )<br />

u(X, t) = φ(X, t) − φ(X, 0) = X(2t + t 2 )<br />

<strong>The</strong> velocity <strong>of</strong> <strong>the</strong> material point is (Langrangian Description)<br />

v(X, t) = ∂u = 2X(1 + t)<br />

∂t<br />

Alternatively we can express <strong>the</strong> velocity in terms <strong>of</strong> x (Eulerian Description)<br />

ˆv(X, t) = v(φ −1 (x, t), t) =<br />

2x(1 + t)<br />

(1 + 2t + t 2 )<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


FE <strong>Non</strong>linear <strong>Analysis</strong> in Solids <strong>and</strong> Structural Mechanics<br />

How can we evaluate stresses <strong>and</strong> <strong>for</strong>ces at time t since both <strong>the</strong> surface <strong>and</strong> <strong>the</strong><br />

volume <strong>of</strong> <strong>the</strong> body are unknown ? (In <strong>the</strong> linear case stiffness <strong>and</strong> equilibrium<br />

were evaluated based on <strong>the</strong> initial configuration)<br />

We need to properly map both current strains <strong>and</strong> stresses to corresponding<br />

measures evaluated at previous configurations<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


Lagrangian Formulation<br />

In <strong>the</strong> fur<strong>the</strong>r we introduce an appropriate notation:<br />

t x i = 0 x i + t u i , i =1, 2, 3<br />

t+∆t x i = 0 x i + t+∆t u i<br />

Increments in displacements from time t to t + ∆t are related as:<br />

u i = t+∆t u i − t u i , i =1, 2, 3<br />

Reference configurations are indexed as e.g.<br />

t+∆t<br />

0 f s i<br />

where <strong>the</strong> left subscript indicates <strong>the</strong> reference configuration <strong>and</strong> <strong>the</strong> left<br />

superscript indicates at which configuration <strong>the</strong> quantity occurs.<br />

Note if those quantities are <strong>the</strong> same <strong>the</strong> left subscript maybe omitted e.g:<br />

Differentiation is indexed as:<br />

t+∆t<br />

t+∆tτ ij<br />

t+∆t<br />

0 u i<br />

0 u i,j = ∂t+∆t<br />

∂ 0 x j<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


<strong>The</strong> de<strong>for</strong>mation gradient, strain <strong>and</strong> stress tensors<br />

As mentioned we must try to establish a description <strong>of</strong> <strong>the</strong> volume we<br />

consider such that we can express <strong>the</strong> internal virtual work in terms <strong>of</strong><br />

an integral over a volume we know!<br />

Fur<strong>the</strong>r we would like to be able to decompose <strong>the</strong> stresses <strong>and</strong> strains<br />

in an efficient manner keeping track <strong>of</strong> how <strong>the</strong> volume stretches <strong>and</strong><br />

rotates (rigidly).<br />

We consider a body under de<strong>for</strong>mation at times 0 <strong>and</strong> t:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


<strong>The</strong> de<strong>for</strong>mation gradient<br />

We now consider <strong>the</strong> change <strong>of</strong> an infinitesimal gradient vector<br />

Definition<br />

<strong>The</strong> de<strong>for</strong>mation gradient maps d 0 x onto d t x through <strong>the</strong> following relation<br />

d t x = t 0Xd 0 x<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


<strong>The</strong> de<strong>for</strong>mation gradient<br />

We can write <strong>the</strong> de<strong>for</strong>mation gradient as <strong>the</strong> Jacobian <strong>of</strong> <strong>the</strong><br />

current configuration at time t, with respect to <strong>the</strong> initial<br />

configuration at time 0.<br />

t<br />

0X =<br />

⎡<br />

⎢<br />

⎣<br />

∂ t x 1<br />

∂ 0 x 1<br />

∂ t x 1<br />

∂ 0 x 2<br />

∂ t x 1<br />

∂ 0 x 3<br />

∂ t x 2<br />

∂ 0 x 1<br />

∂ t x 2<br />

∂ 0 x 2<br />

∂ t x 2<br />

∂ 0 x 3<br />

∂ t x 3<br />

∂ 0 x 1<br />

∂ t x 3<br />

∂ 0 x 2<br />

∂ t x 3<br />

∂ 0 x 3<br />

⎤<br />

⎥<br />

⎦<br />

t<br />

0X = ( 0 ∇ t x T ) T , where 0∇ =<br />

⎡<br />

⎢<br />

⎣<br />

It can be shown that t 0X = ( 0 t X) −1<br />

<strong>The</strong> de<strong>for</strong>mation gradient describes<br />

<strong>the</strong> stretches <strong>and</strong> rotations that <strong>the</strong><br />

material fibers have undergone from<br />

time zero to time t<br />

∂<br />

∂ 0 x 1<br />

∂<br />

∂ 0 x 2<br />

∂<br />

∂ 0 x 3<br />

⎤<br />

⎥<br />

⎦<br />

<strong>and</strong> t x T = [ t x 1 t x 2 t x 3<br />

]<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


<strong>The</strong> de<strong>for</strong>mation gradient<br />

<strong>The</strong>n we introduce <strong>the</strong> Cauchy-Green de<strong>for</strong>mation tensor<br />

<strong>The</strong> de<strong>for</strong>mation gradient is also used to measure <strong>the</strong> stretch <strong>of</strong> a material<br />

fiber <strong>and</strong> <strong>the</strong> change in angle between fibers due to <strong>the</strong> de<strong>for</strong>mation. For<br />

this we use <strong>the</strong><br />

t<br />

0C = t 0X T t 0X: Right Cauchy-Green de<strong>for</strong>mation tensor<br />

≠ t 0 B = t 0X t 0 XT : Left Cauchy-Green de<strong>for</strong>mation tensor<br />

<strong>The</strong> de<strong>for</strong>mation gradient can be decomposed into a unique product <strong>of</strong> two<br />

matrices<br />

t<br />

0U: Symmetric stretch matrix<br />

t<br />

0R: Orthogonal rotation matrix<br />

t<br />

0X = t 0R t 0 U<br />

This is referred to as a Polar Decomposition<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


<strong>The</strong> de<strong>for</strong>mation gradient<br />

Decomposition <strong>of</strong> <strong>the</strong> de<strong>for</strong>mation gradient<br />

We continue by rewriting <strong>the</strong> de<strong>for</strong>mation gradient<br />

X = RU = RUR T R = VR<br />

where U: <strong>the</strong> right stretch matrix <strong>and</strong> V: <strong>the</strong> left stretch matrix<br />

Fur<strong>the</strong>r it can be shown that:<br />

U = R L ΛR T L<br />

where Λ: <strong>the</strong> principal stretches <strong>and</strong> R L : <strong>the</strong> Direction <strong>of</strong> principal<br />

stretches<br />

V = R E ΛR T E<br />

where R E : <strong>the</strong> Base vectors <strong>of</strong> principal stretches in <strong>the</strong> stationary<br />

coordinate system<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


<strong>The</strong> de<strong>for</strong>mation gradient<br />

Swiss Federal Institute <strong>of</strong> Technology Page 22<br />

<strong>The</strong> de<strong>for</strong>mation gradient, strain <strong>and</strong> stress tensors<br />

Consider a bar under stretch <strong>and</strong> rotation<br />

We consider a bar under stretch <strong>and</strong> rotation<br />

2L<br />

t x<br />

1<br />

L<br />

Stretching<br />

⎡<br />

2 0<br />

⎤<br />

0<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II<br />

U = ⎢<br />

⎣ 0 1 0 ⎥<br />

⎦<br />

0 0 1<br />

X=<br />

RU<br />

WeDecomposition continue by rewriting (Ex 6.8) <strong>the</strong><br />

de<strong>for</strong>mation gradient<br />

It is instructive to consider <strong>the</strong><br />

de<strong>for</strong>mation in two steps<br />

X 2 = 0 RU<br />

⎡ 0⎤<br />

⎢<br />

Stretching U = 0 1 0<br />

⎥<br />

⎢<br />

⎥<br />

⎢⎣<br />

0 0 1⎥⎦<br />

0<br />

x 1<br />

⎡0 −1 0<br />

⎤<br />

=<br />

⎢<br />

1 0 0<br />

⎥<br />

Rotation R ⎢ ⎥<br />

⎡ ⎢<br />

⎣0 0 1⎥<br />

⎦ ⎤<br />

R =<br />

⎢<br />

⎣<br />

Decomposition<br />

It is simpler to consider <strong>the</strong><br />

de<strong>for</strong>mation in two steps<br />

cosθ −sinθ 0<br />

sinθ cosθ 0<br />

0 0 1<br />

⎡<br />

⎥<br />

⎦ = ⎢<br />

⎣<br />

0 −1 0<br />

1 0 0<br />

0 0 1<br />

⎤<br />

⎥<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


<strong>The</strong> de<strong>for</strong>mation gradient, strain <strong>and</strong> stress tensors<br />

General Case<br />

Assuming both rotation U <strong>and</strong> stretch R: X = RU<br />

⎡<br />

⎤<br />

l<br />

L 0 0 ⎡<br />

⎤<br />

cosθ −sinθ 0<br />

U = ⎢ h<br />

⎣ 0<br />

H 0 ⎥<br />

⎦<br />

R = ⎣ sinθ cosθ 0 ⎦<br />

0 0 1<br />

0 0 1<br />

ss Federal Institute <strong>of</strong> Technology Page 2<br />

de<strong>for</strong>mation gradient, strain <strong>and</strong> stress tensors<br />

which yields<br />

mple – beam element<br />

⎡<br />

U X =<br />

⎢<br />

⎣<br />

l<br />

L cosθ − h H sinθ 0<br />

l<br />

L sinθ h<br />

H cosθ 0<br />

0 0 1<br />

⎤<br />

⎥<br />

⎦<br />

0<br />

x2, t x2<br />

L<br />

θ<br />

h<br />

H<br />

0<br />

x1, t x1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


<strong>The</strong> de<strong>for</strong>mation gradient<br />

Using <strong>the</strong> decomposition <strong>of</strong> <strong>the</strong> de<strong>for</strong>mation gradient we may rewrite<br />

<strong>the</strong> right <strong>and</strong> left Cauchy-Green de<strong>for</strong>mation tensors:<br />

<strong>The</strong> right Cauchy-Green de<strong>for</strong>mation tensor:<br />

C = X T X = (RU) T RU = U T R T RU = U 2<br />

since R is orthogonal, hence RR T = R T R = I<br />

<strong>The</strong> left Cauchy-Green de<strong>for</strong>mation tensor:<br />

B = XX T = VR T RV = V 2<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


<strong>The</strong> strain tensor<br />

From de<strong>for</strong>mations to strains:<br />

<strong>The</strong> strain may be understood in terms <strong>of</strong> <strong>the</strong> stretch λ = l L .<br />

In a previous lecture we saw that <strong>the</strong> one dimensional equivalents where:<br />

Using time 0 as reference<br />

Green - Lagrange strain: E = 1 2<br />

Tensor Equivalent:<br />

Using time t as reference<br />

Almansi strain: A = 1 2<br />

Tensor Equivalent:<br />

( l<br />

2<br />

t+∆t<br />

0 ɛ = 1 (C − I)<br />

2<br />

L 2 − 1 )<br />

= 1 2<br />

) (1 − L2<br />

l 2 = 1 ( )<br />

1 − λ<br />

−2<br />

2<br />

t+∆t<br />

t ɛ = 1 2 (I − B−1 )<br />

(<br />

λ 2 − 1 )<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


<strong>The</strong> de<strong>for</strong>mation gradient, strain <strong>and</strong> stress tensors<br />

In terms <strong>of</strong> tensor components,<br />

Green - Lagrange strains:<br />

Almansi strains:<br />

(<br />

)<br />

ɛ ij = 1 ∂u i<br />

2 ∂ 0 + ∂u 3∑<br />

j ∂u k ∂u k<br />

x j ∂ 0 +<br />

x i ∂ 0 x i ∂ 0 x j<br />

k=1<br />

(<br />

)<br />

ɛ ij = 1 ∂u i<br />

2 ∂ t + ∂u 3∑<br />

j ∂u k ∂u k<br />

x j ∂ t +<br />

x i ∂ t x i ∂ t x j<br />

k=1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


<strong>The</strong> stress tensors<br />

Finally we need to establish <strong>the</strong> stresses<br />

We start by introducing <strong>the</strong> Cauchy stresses:<br />

<strong>The</strong> Cauchy stress tensor relates <strong>for</strong>ces at <strong>the</strong> current configuration<br />

to areas at <strong>the</strong> current configuration<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


<strong>The</strong> stress tensors<br />

Since <strong>the</strong> Cauchy tensor is not known a-priori, <strong>for</strong>ces <strong>and</strong> areas are<br />

mapped through <strong>the</strong> de<strong>for</strong>mation gradient to <strong>the</strong> reference<br />

configuration.<br />

Definition<br />

<strong>The</strong> Second Piola-Kirch<strong>of</strong>f stress tensor<br />

t<br />

0S =<br />

0 ρ 0<br />

t<br />

ρ<br />

t X t τ 0 t X T<br />

where t ρ is <strong>the</strong> mass density <strong>of</strong> <strong>the</strong> body at time t <strong>and</strong><br />

0 ρ<br />

t<br />

ρ = det(t 0X)<br />

<strong>The</strong>se are so-called work conjugate to <strong>the</strong> Green - Lagrange strains<br />

<strong>The</strong> mapping retains <strong>the</strong> symmetry <strong>of</strong> <strong>the</strong> Cauchy tensor<br />

Rigid body motions (translations/rotations) do not induce<br />

strains/stresses<br />

<strong>The</strong> components <strong>of</strong> <strong>the</strong> Piola-Kirch<strong>of</strong>f stress tensor have little physical<br />

meaning <strong>and</strong> in practice, Cauchy stresses must be calculated<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


Total <strong>and</strong> Updated Lagrangian Formulation<br />

Remember, a configuration C is a snapshot <strong>of</strong> <strong>the</strong> set <strong>of</strong> motions <strong>of</strong><br />

all particles<br />

Definition-Initial Configuration<br />

<strong>The</strong> configuration defined as <strong>the</strong> origin <strong>of</strong> Unde<strong>for</strong>med displacements.<br />

Strain free but not necessarily stress free<br />

Definition-Reference Configuration<br />

Configuration to which stepping computations in an incremental solution<br />

process are referred<br />

Definition-Target Configuration<br />

Equilibrium configuration accepted after completing <strong>the</strong> an increment step<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


Total <strong>and</strong> Updated Lagrangian Formulation<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Total <strong>and</strong> Updated Lagrangian Formulation<br />

Total Lagrangian (TL)<br />

<strong>The</strong> initial configuration is<br />

<strong>the</strong> reference configuration.<br />

Stress & Strain measures at<br />

<strong>the</strong> target configuration<br />

t + ∆t are computed with<br />

respect to <strong>the</strong> initial<br />

configuration at time 0.<br />

Derivatives <strong>and</strong> Integrals are<br />

taken with respect to 0 V<br />

(initial conf.)<br />

Updated Lagrangian (UL)<br />

<strong>The</strong> previous configuration is<br />

<strong>the</strong> reference configuration.<br />

Stress & Strain measures at<br />

<strong>the</strong> target configuration<br />

t + ∆t are evaluated with<br />

respect to <strong>the</strong> configuration<br />

at time t.<br />

Derivatives <strong>and</strong> Integrals are<br />

taken with respect to t V<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Total <strong>and</strong> Updated Lagrangian Formulation<br />

We originally set out to solve <strong>the</strong> following equation:<br />

∫<br />

t+∆t V<br />

t+∆t<br />

τ δ t+∆t e ij d t+∆t V = t+∆t R<br />

Two schemes have been <strong>for</strong>mulated <strong>for</strong> this namely:<br />

<strong>The</strong> Total Lagrangian (TL) <strong>for</strong>mulation<br />

∫<br />

t+∆t<br />

0 S δt+∆t 0 ɛ ij d 0 V = t+∆t R<br />

0 V<br />

<strong>The</strong> Updated Lagrangian (UL) <strong>for</strong>mulation<br />

∫<br />

t+∆t<br />

t S δt+∆t t ɛ ij d t V = t+∆t R<br />

t V<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


Setting up <strong>the</strong> governing equations<br />

<strong>The</strong>re<strong>for</strong>e <strong>for</strong> <strong>the</strong> Total Lagrangian (TL) Formulation we obtain :<br />

∫<br />

t+∆t<br />

0 S ij δt+∆t 0 ɛ ij d 0 V = t+∆t R (1)<br />

0 V<br />

where <strong>the</strong> Green-Lagrange strain component has been defined as:<br />

(<br />

)<br />

t+∆t<br />

0 ɛ ij = 1 3∑<br />

t+∆t<br />

0<br />

2<br />

u i,j + t+∆t<br />

0 u t+∆t<br />

j,i + 0 u k,i t+∆t<br />

0 u k,j<br />

If we denote 0 ɛ ij , 0 u i as increments in <strong>the</strong> strains <strong>and</strong> displacements<br />

respectively we can write:<br />

k=1<br />

δ t+∆t<br />

0 ɛ ij = δ t 0ɛ ij + 0 ɛ ij (2)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Setting up <strong>the</strong> governing equations<br />

<strong>The</strong> incremental strain in eq (2) can be fur<strong>the</strong>r decomposed to<br />

0ɛ ij = 0 e ij + 0 η ij (3)<br />

where <strong>the</strong> linear incremental strains are:<br />

(<br />

)<br />

0e ij = 1 3∑<br />

t<br />

t<br />

0u i,j + 0 u j,i +<br />

2<br />

0u k,i 0 u k,j + 0 u k,i 0u k,j<br />

k=1<br />

where <strong>the</strong> nonlinear incremental strains are:<br />

0η ij = 1 3∑<br />

0u k,i 0 u k,j<br />

2<br />

k=1<br />

Fur<strong>the</strong>rmore, stresses can be written incrementally as:<br />

δ t+∆t<br />

0 S ij = δ t 0S ij + 0 S ij (4)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Setting up <strong>the</strong> governing equations<br />

Noting that <strong>the</strong> variation δ t+∆t<br />

0<br />

ɛ ij at configuration time t+∆t is only<br />

dependent on <strong>the</strong> variation <strong>of</strong> <strong>the</strong> increment, hence<br />

δ t+∆t<br />

0<br />

ɛ ij = δ 0 ɛ ij<br />

<strong>and</strong> plugging eqns (3),(4) into eqn(2) we obtain <strong>the</strong> Equation <strong>of</strong><br />

Motion with Incremental Decompositions<br />

∫<br />

∫<br />

∫<br />

0S ij δ 0 ɛ ij d 0 t<br />

V + 0S ij<br />

δ 0 η ij d 0 V = t+∆t t<br />

R − 0S ij<br />

δ 0 e ij d 0 V<br />

0 V<br />

0 V<br />

0 V<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


Setting up <strong>the</strong> governing equations<br />

Remarks<br />

Term ∫0 V t 0S ij<br />

δ 0 e ij d 0 V is known, so it can be moved to <strong>the</strong><br />

right h<strong>and</strong> side <strong>of</strong> <strong>the</strong> equation <strong>of</strong> motion.<br />

Term ∫0 V t 0S ij<br />

δ 0 η ij d 0 V is linear with respect to <strong>the</strong><br />

incremental displacements u i .<br />

Term ∫0 V 0 S ij δ 0 ɛ ij d 0 V is highly nonlinear but we can use<br />

Taylor expansion to approximate it<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Setting up <strong>the</strong> governing equations<br />

Since 0 η ij is <strong>of</strong> higher order we can approximate:<br />

0ɛ ij = 0 e ij + 0 η ij = 0 e ij<br />

Using <strong>the</strong> above <strong>and</strong> <strong>the</strong> Taylor approximation <strong>of</strong> <strong>the</strong> highly<br />

nonlinear term ultimately yields<br />

∫<br />

0S ij δ 0 ɛ ij d 0 V =<br />

0 V<br />

∫<br />

0C ijrs e rs δ 0 e ij d 0 V<br />

0 V<br />

∣ ∣∣∣∣t<br />

where 0 C ijrs = ∂t 0S ij<br />

∂ t 0ɛ rs<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


Setting up <strong>the</strong> governing equations<br />

Finally, <strong>the</strong> <strong>Linear</strong>ized Equation <strong>of</strong> Motion <strong>for</strong> <strong>the</strong> (TL) <strong>for</strong>mulation is:<br />

∫<br />

0C ijrs e rs δ 0 e ij d 0 V +<br />

0 V<br />

∫<br />

0 V<br />

∫<br />

t<br />

0S ij<br />

δ 0 η ij d 0 V = t+∆t R −<br />

0 V<br />

t<br />

0S ij<br />

δ 0 e ij d 0 V<br />

Similarly, <strong>for</strong> <strong>the</strong> (UL) <strong>for</strong>mulation we get:<br />

∫<br />

tC ijrs e rs δ t e ij d t V +<br />

t V<br />

∫<br />

t V<br />

∫<br />

t τ ij δ t η ij d t V = t+∆t R −<br />

t τ ij δ t e ij d t V<br />

t V<br />

where t 0S ij<br />

, t τ ij are <strong>the</strong> Piola-Kirchh<strong>of</strong>f <strong>and</strong> Cauchy stresses at time t<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


Total Lagrangian Formulation<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28


Updated Lagrangian Formulation<br />

In practice, it is <strong>of</strong>ten sufficient to account <strong>for</strong> only material non-linearity. In this case<br />

<strong>the</strong> TL <strong>and</strong> <strong>the</strong> UL <strong>for</strong>mulations become identical.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


<strong>Element</strong> Matrices<br />

<strong>The</strong> general matrix equations vector depend on <strong>the</strong> assumed type <strong>of</strong><br />

analysis <strong>and</strong> <strong>the</strong> approach<br />

A) Material nonlinearity<br />

Static <strong>Analysis</strong><br />

t<br />

KU = t+∆t R − t F<br />

Dynamic <strong>Analysis</strong>, Implicit Integration scheme<br />

M t+∆t Ü + t KU = t+∆t R − t F<br />

Dynamic <strong>Analysis</strong>, Explicit Integration scheme<br />

M t Ü = t R − t F<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


<strong>Element</strong> Matrices<br />

B) TL Formulation<br />

Static <strong>Analysis</strong><br />

( t 0K L + t 0<br />

K NL )U = t+∆t R − t 0F<br />

Dynamic <strong>Analysis</strong>, Implicit Integration scheme<br />

M t+∆t Ü + ( t 0K L + t 0<br />

K NL )U = t+∆t R − t 0F<br />

Dynamic <strong>Analysis</strong>, Explicit Integration scheme<br />

M t Ü = t R − t 0F<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


<strong>Element</strong> Matrices<br />

C) UL Formulation<br />

Static <strong>Analysis</strong><br />

( t tK L + t t<br />

K NL )U = t+∆t R − t tF<br />

Dynamic <strong>Analysis</strong>, Implicit Integration scheme<br />

M t+∆t Ü + ( t tK L + t t<br />

K NL )U = t+∆t R − t tF<br />

Dynamic <strong>Analysis</strong>, Explicit Integration scheme<br />

M t Ü = t R − t tF<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32


<strong>Element</strong> Matrices<br />

where <strong>the</strong> following notation has been used<br />

M = time independent Mass matrix<br />

t<br />

K, t 0K L , t tK L =<br />

linear strain incremental Stiffness matrices<br />

t<br />

0K NL , t tK NL = nonlinear strain incremental Stiffness matrices<br />

t+∆t<br />

R = vector <strong>of</strong> externally applied nodal point loads at time t + ∆t<br />

t<br />

F, t 0F, t tF = vector <strong>of</strong> nodal point <strong>for</strong>ces equivalent to <strong>the</strong> element stresses<br />

U = vector <strong>of</strong> increments in nodal point displacements<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 33


<strong>Element</strong> Matrices<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 34


<strong>Element</strong> Matrices<br />

where <strong>the</strong> following notation has been used<br />

H S , H = <strong>the</strong> shape function matrices (usually denoted by N)<br />

0<br />

f S , 0 f B = vector <strong>of</strong> surface <strong>and</strong> body <strong>for</strong>ces at time 0<br />

B L , t 0B L , t tB L =<br />

linear strain displacement trans<strong>for</strong>mation matrices<br />

t<br />

0B NL , t tB NL = nonlinear strain displacement trans<strong>for</strong>mation matrices<br />

0C, t C = incremental stress strain material property matrices<br />

t<br />

τ , t ˆτ = matrix <strong>and</strong> vector <strong>of</strong> Cauchy stresses<br />

t<br />

0S, t Ŝ = matrix <strong>and</strong> vector <strong>of</strong> 2nd Piola-Kirchh<strong>of</strong>f stresses<br />

<strong>The</strong>se matrices depend on <strong>the</strong> type <strong>of</strong> <strong>Finite</strong> <strong>Element</strong> considered<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 35


Structural <strong>Element</strong>s<br />

Truss <strong>and</strong> Cable <strong>Element</strong>s<br />

A Truss <strong>Element</strong> is a structural element capable <strong>of</strong> transmitting<br />

stresses only in <strong>the</strong> direction normal to <strong>the</strong> cross-sectional area<br />

Consider a truss element<br />

that has an arbitrary<br />

orientation. It is usually<br />

described by two to four<br />

nodes <strong>and</strong> is subjected to<br />

large displacements <strong>and</strong><br />

large strains.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 36


Truss <strong>and</strong> Cable (Bar) <strong>Element</strong>s<br />

<strong>The</strong> nodal point coordinates determine <strong>the</strong> spatial configuration <strong>of</strong><br />

<strong>the</strong> bar at time 0 <strong>and</strong> t using:<br />

0<br />

x 1 (r) =<br />

<strong>and</strong> t x 1 (r) =<br />

n∑<br />

N k0 x k 1<br />

k=1<br />

n∑<br />

N kt x k 1<br />

k=1<br />

n∑<br />

0<br />

x 2 (r) = N k0 x k 2<br />

k=1<br />

n∑<br />

t<br />

x 2 (r) = N kt x k 2<br />

k=1<br />

n∑<br />

0<br />

x 3 (r) = N k0 x k 3<br />

k=1<br />

n∑<br />

t<br />

x 3 (r) = N kt x k 3<br />

k=1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 37


Truss <strong>and</strong> Cable (Bar) <strong>Element</strong>s<br />

Shape Functions<br />

n = 2 nodes at r 1 = −1, r 2 = 1<br />

N1 a = 1 2 (1 − r), N 2 a = 1 (1 + r)<br />

2<br />

n = 3 nodes at r 1 = −1, r 2 = 1, r 3 = 0<br />

N b 1 = N a 1 − 1 2 (1 − r2 ), N b 2 = N a 2 − 1 2 (1 − r2 ), N b 3 = (1 − r 2 )<br />

n = 4 nodes at r 1 = −1, r 2 = 1, r 3 = − 1 3 , r4 = 1 3<br />

N c 1 = N b 1 + 1 16 (−9r3 + r 2 + 9r − 1), N c 2 = N b 2 + 1 16 (9r3 + r 2 − 9r − 1),<br />

N c 3 = N b 3 + 1 16 (27r3 + 7r 2 − 27r − 7), N c 4 = 1 16 (−27r3 − 9r 2 + 27r + 9)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 38


Truss <strong>and</strong> Cable <strong>Element</strong>s<br />

Isoparametric <strong>Element</strong>s ⇒ t u i (r) = ∑ n<br />

k=1 N t k uk i<br />

i=1,2,3<br />

<strong>Element</strong> Matrices<br />

Since <strong>the</strong> only stress is <strong>the</strong> normal stress we consider only <strong>the</strong><br />

corresponding longitudinal strain along s: t 0˜ɛ 11.<br />

From <strong>the</strong> TL Formulation we obtain:<br />

t<br />

0˜ɛ 11 =<br />

3∑<br />

i=1<br />

Incremental Decomposition<br />

0ẽ 11 =<br />

0 ˜η 11 = 1 2<br />

3∑<br />

i=1<br />

d 0 x i<br />

d 0 s<br />

d 0 x i<br />

d 0 s<br />

3∑<br />

i=1<br />

d t u i<br />

d 0 s + 1 d t u i d t u i<br />

2 d 0 s d 0 s<br />

du i<br />

d 0 s + dt u i du i<br />

d 0 s d 0 s<br />

du i du i<br />

d 0 s d 0 s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 39


Truss <strong>and</strong> Cable <strong>Element</strong>s<br />

Matrix Equivalent Formulation<br />

Strain Displacement Matrices<br />

t<br />

0B L = ( 0 J −1 ) 2 ( 0 x T N Ț rN ,r + t u T N Ț rN ,r )<br />

t<br />

0B NL = ( 0 J −1 )N ,r :independent <strong>of</strong> orientation<br />

where 0 J −1 = dr<br />

d 0 s <strong>and</strong> 0 s(r) is <strong>the</strong> arc length (coordinate) at point<br />

(x 1(r), x 2(r), x 3(r)) given by<br />

n∑<br />

0<br />

s(r) = N k0 s k<br />

k=1<br />

<strong>The</strong> only non zero stress component is t 0˜S 11<br />

<strong>and</strong> <strong>the</strong> tangent Stress<br />

Strain relationship <strong>the</strong>re<strong>for</strong>e is:<br />

0C 1111 = ∂t 0˜S 11<br />

∂ t 0˜ɛ 11<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 40


Truss <strong>and</strong> Cable <strong>Element</strong>s<br />

Example<br />

Develop <strong>the</strong> tangent stiffness matrix <strong>and</strong> <strong>for</strong>ce vector at time t.<br />

Consider large displacement <strong>and</strong> large strain conditions.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 41


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

Since <strong>the</strong> element is aligned with <strong>the</strong> 0 x 1 axis at time 0 we need not introduce<br />

<strong>the</strong> arc length s in our calculations. From <strong>the</strong> relevant TL <strong>for</strong>mulation table we<br />

have that <strong>the</strong> linear <strong>and</strong> nonlinear components <strong>of</strong> <strong>the</strong> Green- Lagrange strain<br />

increments will be given as:<br />

(<br />

)<br />

0e ij = 1 3∑<br />

0u i,j + 0u j,i + ( t t<br />

0u k,i 0u k,j + 0u k,i 0 u k,j )<br />

2<br />

k=1<br />

( 3∑<br />

)<br />

0u k,i 0u k,j<br />

k=1<br />

0η ij = 1 2<br />

Since we are interested in 0e 11, 0η 11, <strong>and</strong> since <strong>the</strong> displacements are restricted in<br />

<strong>the</strong> 0 x 1, 0 x 2 plane <strong>the</strong> above expressions become<br />

[ (<br />

0e 11 = ∂u1 + ∂t u 1 ∂u 1<br />

+ ∂t u 2 ∂u 2<br />

0η<br />

∂ 0 x 1 ∂ 0 x 1 ∂ 0 x 1 ∂ 0 x 1 ∂ 0 11 = 1 ) 2 ( ) ] 2 ∂u1 ∂u2<br />

+<br />

x 1 2 ∂ 0 x 1 ∂ 0 x 1<br />

(5)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 42


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

From <strong>the</strong> Geometry <strong>the</strong> nodal coordinates at time t are:<br />

t u 1 1 = 0,<br />

t u 1 2 = 0,<br />

t u 2 1 = ( 0 L + ∆L)cosθ − 0 L<br />

t u 2 2 = ( 0 L + ∆L)sinθ<br />

<strong>The</strong> displacement at a point within <strong>the</strong> element (at a distance ξ from <strong>the</strong> center)<br />

is given by<br />

t u i =<br />

2∑<br />

k=1<br />

N t k u k i with N 1 = 1 2 (1 − ξ), N2 = 1 (1 + ξ)<br />

2<br />

Also, 0 J = ∂0 x 1<br />

∂ξ<br />

= ∂0 x 2<br />

∂ξ<br />

=<br />

0 L<br />

. <strong>The</strong>n we obtain<br />

2<br />

∂ t u 1<br />

= ∂N1(ξ)<br />

∂ 0 x 1 ∂ξ<br />

∂ t u 1<br />

∂ 0 x 1<br />

= 0 +<br />

Similarly,<br />

∂ξ t u 1<br />

∂ 0 1 + ∂N2(ξ)<br />

x 1 ∂ξ<br />

[<br />

( 0 L + ∆L)cosθ − 0 L<br />

∂ t u 2<br />

= (0 L + ∆L)sinθ<br />

∂ 0 x 0 1 L<br />

∂ξ t u 2<br />

∂ 0 1 ⇒ (6)<br />

x 1<br />

]<br />

0<br />

J −1 = (0 L + ∆L)cosθ<br />

− 1 (7)<br />

0<br />

L<br />

(8)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 43


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

In addition, <strong>the</strong> incremental displacements are also written as:<br />

u i =<br />

2∑<br />

k=1<br />

which yields:<br />

N k u k i with N 1 = 1 2 (1 − ξ), N 2 = 1 (1 + ξ)<br />

2<br />

∂u 1<br />

∂ 0 x 1<br />

= 1<br />

0 L (u2 1 − u1 1 ), ∂u 2<br />

∂ 0 x 1<br />

= 1<br />

0 L (u2 2 − u1 2 ) (9)<br />

Substituting expressions (6) - (9) into equation (5) we obtain <strong>the</strong> matrix equivalent<br />

representation:<br />

[<br />

0e 11 = 1<br />

( [ ] ( 0 )<br />

L + ∆L)cosθ [ −1 0 1 0 + 0 L<br />

− 1 −1<br />

L<br />

0 1<br />

] 0<br />

⎡<br />

( ( 0 )<br />

L + ∆L)sinθ [ ] ] u 1 ⎤<br />

1<br />

u<br />

+<br />

0 −1 0 1 2<br />

0 L<br />

⎢<br />

⎣ u 2 ⎥<br />

1 ⎦ ⇒<br />

u 2 2<br />

⎡<br />

0e 11 = (0 L + ∆L) [ ]<br />

−cosθ −sinθ cosθ sinθ ( 0 L) 2 ⎢<br />

⎣<br />

u 1 1<br />

u 1 2<br />

u 2 1<br />

u 2 2<br />

⎤<br />

⎥<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 44


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

Hence,<br />

t<br />

0 B L = (0 L + ∆L) [ ]<br />

−cosθ −sinθ cosθ sinθ<br />

( 0 L) 2<br />

<strong>The</strong> same could be obtained by directly applying <strong>the</strong> <strong>for</strong>mula:<br />

t<br />

0 B L = ( 0 J −1 ) 2 ( 0 x T N Ț ξ N ,ξ + t u T N Ț ξ N ,ξ)<br />

Next, <strong>the</strong> linear part <strong>of</strong> <strong>the</strong> stiffness matrix is <strong>the</strong>n obtained as:<br />

∫<br />

t<br />

0 K t T<br />

L = 0 B L 0 C t 0 B Ld 0 V<br />

0 V<br />

where <strong>for</strong> <strong>the</strong> truss element 0 C = ∂t 0 S 11<br />

∂ t 0 ɛ . If we use that <strong>the</strong> original ratio is equal to <strong>the</strong><br />

11<br />

elasticity modulus, we have 0 C = E. Also, 0 V = 0 A 0 L. <strong>The</strong>n,<br />

⎡<br />

t<br />

0 K L = 0A 0 C (0 L + ∆L) 2<br />

⎢<br />

( 0 L) 3 ⎣<br />

cos 2 θ cosθsinθ −cos 2 ⎤<br />

θ −cosθsinθ<br />

sin 2 θ −sinθcosθ −sin 2 θ<br />

cos 2 ⎥<br />

θ sinθcosθ ⎦<br />

Symm<br />

sin 2 θ<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 45


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

In order to derive <strong>the</strong> nonlinear part <strong>of</strong> <strong>the</strong> stiffness matrix we first need to evaluate <strong>the</strong><br />

Piola-Kirchh<strong>of</strong>f stress. We know that <strong>the</strong> Cauchy stress at time t is equal to t t P<br />

τ =<br />

t A ,<br />

directed along <strong>the</strong> axis <strong>of</strong> <strong>the</strong> element at time t. Using <strong>the</strong> rotational matrix we can<br />

rotate <strong>the</strong> stress tensor from <strong>the</strong> element axis system to <strong>the</strong> original reference system<br />

( t x 1 , t x 2 ). Denoting <strong>the</strong> rotated tensor as t ¯τ we have:<br />

t ¯τ = R<br />

[ t τ 0<br />

0 0<br />

]<br />

[<br />

R T cosθ −sinθ<br />

, R =<br />

sinθ cosθ<br />

<strong>The</strong>n, from Lecture 4 we know that <strong>the</strong> Piola-Kirchh<strong>of</strong>f stress is given as:<br />

t<br />

0 [<br />

0 S = ρ<br />

t<br />

0<br />

t t X t ¯τ 0 t X T τ 0<br />

or R<br />

ρ<br />

0 0<br />

]<br />

R T =<br />

]<br />

t ρ t<br />

0 0<br />

ρ<br />

X t 0 S t 0 XT (10)<br />

where <strong>the</strong> de<strong>for</strong>mation gradient, t 0X, can be obtained as <strong>the</strong> product <strong>of</strong> a rotational <strong>and</strong><br />

a stretch component as t 0X = RU. For this example <strong>the</strong> stretch matrix is obviously<br />

(elongation along x):<br />

⎡<br />

⎤<br />

⎡<br />

0 L + ∆L<br />

U = ⎣ 0 0 ⎦<br />

L<br />

⇒ U −1 = ⎣<br />

0 1<br />

0 L<br />

0 L + ∆L 0<br />

0 1<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 46


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

<strong>The</strong>n equation (10) can be rewritten as:<br />

[ t<br />

]<br />

τ 0<br />

R<br />

R<br />

0 0<br />

T t ρ<br />

=<br />

0 ρ RU t 0 S RUT ⇒ R<br />

[ t<br />

]<br />

τ 0<br />

t [<br />

ρ<br />

t0<br />

=<br />

0 0 0 ρ U t 0 S S 0<br />

UT ⇒<br />

0 0<br />

[ t τ 0<br />

0 0<br />

]<br />

=<br />

]<br />

R T t ρ<br />

=<br />

0 ρ RU t 0 S UT R T ⇒<br />

0 ρ<br />

t ρ U−1 [ t τ 0<br />

0 0<br />

]<br />

(U −1 ) T<br />

Ultimately, carrying out <strong>the</strong> calculations yields:<br />

t<br />

0 0 S 11 = ρ 0<br />

t ρ ( L t P<br />

0 L + ∆L )2 t A<br />

Since mass=const<br />

0 ρ 0 L 0 A = t ρ 0 L + ∆L t A ⇒ t 0 0 S 11 = L t P<br />

0 L + ∆L 0 A<br />

Note how <strong>the</strong> components <strong>of</strong> t 0S do not depend on rotation, hence <strong>the</strong> tensor retains only<br />

<strong>the</strong> S 11 one component. <strong>The</strong>n, <strong>the</strong> nonlinear part <strong>of</strong> <strong>the</strong> stiffness matrix is derived as:<br />

∫<br />

t<br />

0 K t T<br />

NL = 0 B NL 0 S t 0 B NLd 0 V<br />

0 V<br />

[<br />

where t 0 B NL = ( 0 J −1 −1 0 1 0<br />

) N ,ξ =<br />

0 −1 0 1<br />

]<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 47


Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

Finally, t 0 K NL =<br />

t P<br />

0 L + ∆L<br />

⎡<br />

⎢<br />

⎣<br />

1 0 −1 0<br />

0 1 0 −1<br />

−1 0 1 0<br />

0 −1 0 1<br />

⎤<br />

⎥<br />

⎦<br />

<strong>and</strong>, t 0 K N = t 0 K L + t 0 K NL<br />

<strong>and</strong> <strong>the</strong> <strong>for</strong>ce vector is obtained as (see relevant table <strong>for</strong> (TL) <strong>for</strong>mulation):<br />

⎡<br />

∫<br />

t<br />

0 F = t Tt<br />

0 B L 0 S 11 d 0 V = (0 L + ∆L)<br />

0 V ( 0 L) 2 ⎢<br />

⎣<br />

⎡ ⎤<br />

−cosθ<br />

t<br />

0 F = t −sinθ<br />

P<br />

⎢<br />

⎣ cosθ<br />

⎥<br />

⎦<br />

sinθ<br />

−cosθ<br />

−sinθ<br />

cosθ<br />

sinθ<br />

⎤<br />

0 L t P<br />

⎥<br />

0 ⎦<br />

0 L + ∆L 0 V ⇒<br />

A<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!