20.12.2013 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 10 - 4 December, 2012<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


<strong>Non</strong>linear Dynamic <strong>Analysis</strong><br />

Example Case<br />

Dynamic Shake Table Test <strong>of</strong> a Rein<strong>for</strong>ced Concrete Column<br />

Damper<br />

Specimen<br />

250 1285<br />

1535<br />

Servo hydraulic test cylinder<br />

Piston: + / - 125 mm<br />

Piston <strong>for</strong>ce: + / - 100 kN<br />

Anchorage<br />

ETH ShakeTable<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


Example Case<br />

Elevation Drawings<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


Example Case<br />

Plan Drawings<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


Expected Behavior<br />

RC Response in Cyclic Loading<br />

Experimental Data<br />

Accelerometer Measurements<br />

Displacement Measurements<br />

RC Response Characteristics<br />

Strength Deterioration<br />

Stiffness Degradation<br />

Pinching Behavior<br />

6. Force–displacement relationships observed in static cyclic tests (RF—failure <strong>of</strong> vertical rein<strong>for</strong>cement, DC—diagonal cracking,<br />

pression failure).<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior<br />

Concrete Material Models<br />

-σ<br />

σcu<br />

peak compressive stress<br />

E0<br />

Compression<br />

s<strong>of</strong>tening<br />

+ε<br />

strain at maximum stress<br />

-ε<br />

εo εcu<br />

Tension<br />

σtu = maximum tensile strength <strong>of</strong> concrete<br />

+σ<br />

Figure 2.5: Typical uniaxial compressive <strong>and</strong> tensile stress-strain curve <strong>for</strong> concrete (Bangash 1989)<br />

Typical uniaxial compressive <strong>and</strong> tensile<br />

stress-strain curve <strong>for</strong> concrete<br />

ompression, <strong>the</strong> stress-strain curve <strong>for</strong> concrete is linearly elastic up to about 30 percent <strong>of</strong><br />

maximum compressive strength. Above this point, <strong>the</strong> stress increases gradually up to <strong>the</strong><br />

ximum compressive strength. After it reaches <strong>the</strong> maximum compressive strength σ cu<br />

, <strong>the</strong><br />

ve descends into a s<strong>of</strong>tening region, <strong>and</strong> eventually crushing failure occurs at an ultimate<br />

in ε cu<br />

. In tension, <strong>the</strong> stress-strain curve <strong>for</strong> concrete is approximately linearly elastic up to<br />

maximum tensile strength. After this point, <strong>the</strong> concrete cracks <strong>and</strong> <strong>the</strong> strength decreases<br />

dually to zero (Bangash 1989).<br />

2.3.1.1 FEM Input Data<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


Modeling <strong>of</strong> Rein<strong>for</strong>ced 2. DISCRETE VS Concrete SMEARED CRACK Behavior<br />

MODELS<br />

2.1. <strong>The</strong> discrete crack approach<br />

Failure Criteria <strong>for</strong> Concrete<br />

<strong>The</strong> discrete crack approach to concrete fracture is intuitively appealing: a crack is introduced as<br />

a geometric entity. Initially, this was implemented by letting a crack grow when <strong>the</strong> nodal <strong>for</strong>ce<br />

at <strong>the</strong> node ahead <strong>of</strong> <strong>the</strong> crack tip exceeded a tensile strength criterion. <strong>The</strong>n, <strong>the</strong> node is split<br />

<strong>The</strong> determination into two nodes <strong>and</strong> <strong>of</strong><strong>the</strong> failure tip <strong>of</strong> <strong>the</strong> criteria crack is assumed is very to propagate important to <strong>the</strong> next <strong>for</strong>node. <strong>the</strong>When proper <strong>the</strong><br />

tensile strength criterion is violated at this node, it is split <strong>and</strong> <strong>the</strong> procedure is repeated, as<br />

simulation<br />

sketched<br />

<strong>of</strong> <strong>the</strong><br />

in Figure<br />

degrading<br />

1 [1].<br />

behavior <strong>of</strong> concrete structures.<br />

A. Discrete<strong>The</strong>Cracking<br />

discrete crack approach in its original <strong>for</strong>m has several disadvantages. Cracks are <strong>for</strong>ced<br />

to propagate along element boundaries, so that a mesh bias is introduced. Automatic remeshing<br />

<strong>The</strong> discrete allowscrack <strong>the</strong> mesh approach bias to be reduced, to concrete if not eliminated, fracture <strong>and</strong> sophisticated is intuitively computer appealing: codes with a crack<br />

is introduced remeshing as awere geometric developed by entity. IngraffeaInitially, <strong>and</strong> co-workers this [3]. was Never<strong>the</strong>less, implemented a computational by letting a<br />

difficulty, namely, <strong>the</strong> continuous change in topology, is inherent in <strong>the</strong> discrete crack approach<br />

crack grow<strong>and</strong>when is to a certain <strong>the</strong> nodal extent even <strong>for</strong>ce aggravated at <strong>the</strong> by remeshing node ahead procedures. <strong>of</strong> <strong>the</strong> crack tip exceeded a<br />

tensile strength <strong>The</strong> change criterion. in topology <strong>The</strong>n, was to a<strong>the</strong> largenode extent alleviated is splitbyinto <strong>the</strong> advent two <strong>of</strong> nodes meshless <strong>and</strong> methods, <strong>the</strong> tip <strong>of</strong><br />

such as <strong>the</strong> element-free Galerkin method [4]. Indeed, successful analyses have been carried out<br />

<strong>the</strong> crackusing is assumed <strong>the</strong>se methods, to propagate but disadvantages to including <strong>the</strong> next difficulties node. with When robust <strong>the</strong> three-dimensional tensile strength<br />

criterion is<br />

implementations,<br />

violated at<strong>the</strong> this<br />

largenode, computational<br />

it is split<br />

dem<strong>and</strong><strong>and</strong> compared<br />

<strong>the</strong><br />

with<br />

procedure<br />

finite element<br />

is<br />

methods,<br />

repeated.<br />

<strong>the</strong><br />

somewhat ad hoc manner in which <strong>the</strong> support <strong>of</strong> a node is changed in <strong>the</strong> presence <strong>of</strong> a crack [5]<br />

Figure 1. Early discrete crack modelling.<br />

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2004; 28:583–607<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior<br />

B. Smeared Cracking<br />

In a smeared crack approach, <strong>the</strong> nucleation <strong>of</strong> one or more cracks in<br />

<strong>the</strong> volume is translated into a deterioration <strong>of</strong> <strong>the</strong> current stiffness<br />

<strong>and</strong> strength.<br />

Generally, when <strong>the</strong> combination <strong>of</strong> stresses satisfies a specified<br />

criterion, e.g. <strong>the</strong> major principal stress reaching <strong>the</strong> tensile strength<br />

f t ; a crack is initiated.<br />

This implies that at <strong>the</strong> integration point where <strong>the</strong> stress, strain <strong>and</strong><br />

history variables are monitored, <strong>the</strong> isotropic stress - strain relation is<br />

replaced by an orthotropic elasticity-type relation with <strong>the</strong> n,s-axes<br />

being axes <strong>of</strong> orthotropy; n is <strong>the</strong> direction normal to <strong>the</strong> crack <strong>and</strong> s<br />

is <strong>the</strong> direction tangential to <strong>the</strong> crack.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior<br />

surface <strong>for</strong> <strong>the</strong> concrete. Consequently, a criterion <strong>for</strong> failure <strong>of</strong> <strong>the</strong> concrete due to a<br />

multiaxial stress state can be calculated (William <strong>and</strong> Warnke 1975).<br />

A three-dimensional failure surface <strong>for</strong> concrete is shown in Figure 2.7. <strong>The</strong> most<br />

significant nonzero principal stresses are in <strong>the</strong> x <strong>and</strong> y directions, represented by σxp <strong>and</strong><br />

σyp, respectively. Three failure surfaces are shown as projections on <strong>the</strong> σxp-σyp plane.<br />

<strong>The</strong> mode <strong>of</strong> failure is a function <strong>of</strong> <strong>the</strong> sign <strong>of</strong> σzp (principal stress in <strong>the</strong> z direction).<br />

For example, if σxp <strong>and</strong> σyp are both negative (compressive) <strong>and</strong> σzp is slightly positive<br />

(tensile), cracking would be predicted in a direction perpendicular to σzp. However, if σzp<br />

is zero or slightly negative, <strong>the</strong> material is assumed to crush (ANSYS 1998).<br />

One such criterion is utilized by ANSYS accounting <strong>for</strong> both crushing & cracking.<br />

fc ’<br />

fr<br />

fc ’<br />

fr<br />

For σ xp, σ yp ≤ 0 (compressive) <strong>and</strong> σ zp > 0<br />

(tensile), cracking would be predicted in a direction<br />

perpendicular to σ zp. However, if σ zp ≤ 0, <strong>the</strong><br />

material is assumed to crush.<br />

Figure 2.7: 3-D failure surface <strong>for</strong> concrete (ANSYS 1998)<br />

After cracking, <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> concrete element is set to zero in <strong>the</strong><br />

direction parallel to <strong>the</strong> principal tensile stress direction.<br />

Crushing occurs when compressive stresses exceed <strong>the</strong> compressive failure<br />

strength.<br />

In a concrete element, cracking occurs when <strong>the</strong> principal tensile stress in any direction<br />

lies outside <strong>the</strong> failure surface. After cracking, <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> concrete<br />

element is set to zero in <strong>the</strong> direction parallel to <strong>the</strong> principal tensile stress direction.<br />

Crushing occurs when all principal stresses are compressive <strong>and</strong> lie outside <strong>the</strong> failure<br />

surface; subsequently, <strong>the</strong> elastic modulus is set to zero in all directions (ANSYS 1998),<br />

<strong>and</strong> <strong>the</strong> element effectively disappears.<br />

During this study, it was found that if <strong>the</strong> crushing capability <strong>of</strong> <strong>the</strong> concrete is turned on,<br />

<strong>the</strong> finite element beam models fail prematurely. Crushing <strong>of</strong> <strong>the</strong> concrete started to<br />

develop in elements located directly under <strong>the</strong> loads. Subsequently, adjacent concrete<br />

In practice, a pure compression failure <strong>of</strong> concrete is unlikely. <strong>The</strong>re<strong>for</strong>e, crushing<br />

13<br />

is ignored <strong>and</strong> cracking controls failure.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


ffness <strong>of</strong> <strong>the</strong> entire structure based on diaphragmatic<br />

Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior<br />

Steel Material Models<br />

onventional stress-strain curves both <strong>for</strong> unconfined<br />

parabolic stress-strain relationship with a s<strong>of</strong>tening<br />

-strain diagram with hardening is implemented. <strong>The</strong><br />

in Figure 1.<br />

80<br />

f y<br />

E<br />

E p<br />

60<br />

STRESS [ksi]<br />

40<br />

R=20<br />

R=5<br />

20<br />

Bilinear Model with Hardening<br />

confined concrete <strong>and</strong> b) <strong>for</strong> rein<strong>for</strong>cing steel<br />

al elements namely; beams, columns <strong>and</strong> shear walls<br />

torey buildings. By combining such elements one<br />

nked toge<strong>the</strong>r through diaphragms at <strong>the</strong> floor levels<br />

0<br />

0 0.002 0.004 0.006 0.008<br />

STRAIN [in/in]<br />

Giuffrè-Menegotto-Pinto Model<br />

Figure 15. Material Parameters <strong>of</strong> Monotonic Envelope <strong>of</strong> Steel_2 Model<br />

100<br />

R controls 80 <strong>the</strong> transition from elastic to<br />

Stress [ksi]<br />

60<br />

40<br />

20<br />

inelastic branch.<br />

Institute <strong>of</strong> Structural Engineering<br />

0<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior<br />

Steel Cyclic Model<br />

Figure 2. Steel cyclic model.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


finite element analysis textbooks <strong>for</strong> a more <strong>for</strong>mal <strong>and</strong> complete introduction to basic concepts<br />

if needed.<br />

Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior - 3D Solid<br />

Approach<br />

2.2 ELEMENT TYPES<br />

Concrete Modeling using Solid <strong>Element</strong>s<br />

2.2.1 Rein<strong>for</strong>ced Concrete<br />

A solid (3D) finite element can be used to model <strong>the</strong> concrete. For<br />

An example, eight-node ANSYS solid element, usesSolid65, an eight was node used element to model <strong>the</strong> (Solid concrete. 65) with <strong>The</strong> solid three element degrees has<br />

eight nodes with three degrees <strong>of</strong> freedom at each node – translations in <strong>the</strong> nodal x, y, <strong>and</strong> z<br />

directions.<br />

<strong>of</strong> freedom<br />

<strong>The</strong> element<br />

at each<br />

is<br />

node<br />

capable<br />

translations<br />

<strong>of</strong> plastic de<strong>for</strong>mation,<br />

in <strong>the</strong> nodal<br />

cracking<br />

x, y,<br />

in three<br />

<strong>and</strong> z<br />

orthogonal<br />

directions.<br />

directions, <strong>The</strong> element <strong>and</strong> crushing. is capable <strong>The</strong> geometry <strong>of</strong> plastic <strong>and</strong> de<strong>for</strong>mation, node locations <strong>for</strong> cracking this element in three type orthogonal<br />

are shown in<br />

Figure directions, 2.1. <strong>and</strong> crushing.<br />

Figure 2.1: Solid65 – 3-D rein<strong>for</strong>ced concrete solid (ANSYS 1998)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior - 3D Solid<br />

Approach<br />

LINK8 is a spar which may be used in a variety <strong>of</strong> engineering applications. Depending<br />

application, <strong>the</strong> element may be thought <strong>of</strong> as a truss element, a cable element, a link el<br />

element, etc. <strong>The</strong> three-dimensional spar element is a uniaxial tension-compression elem<br />

degrees <strong>of</strong> freedom at each node: translations in <strong>the</strong> nodal x, y, <strong>and</strong> z directions. As in a<br />

structure, no bending <strong>of</strong> <strong>the</strong> element is considered. Plasticity, creep, swelling, stress stiff<br />

deflection capabilities are included. See Section 14.8 in <strong>the</strong> ANSYS <strong>The</strong>ory Reference fo<br />

about this element. A tension only compression-only element is defined as LINK10 <strong>and</strong><br />

Rein<strong>for</strong>cing Steel Modeling using Solid <strong>Element</strong>s<br />

A truss element can be used to model <strong>the</strong> steel rein<strong>for</strong>cement. Two nodes<br />

are required <strong>for</strong> this element. Each node has three degrees <strong>of</strong> freedom,<br />

translations in <strong>the</strong> nodal x, y, <strong>and</strong> z directions.<br />

For example, ANSYSection uses4.10.<br />

<strong>the</strong> LINK8, a uniaxial tension-compression<br />

element, which is also capable <strong>of</strong> plastic de<strong>for</strong>mation.<br />

Figure 4.8-1 LINK8 3-D Spar<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior - Beam<br />

Approach<br />

Alternative View to <strong>the</strong> simulation <strong>of</strong> Degrading Hysteretic<br />

Behavior<br />

nts - Galerkin<br />

<strong>The</strong> well known 1D beam element can be used as a simplified tool<br />

ht functions <strong>for</strong> <strong>the</strong><strong>and</strong> simulation trial solutions <strong>of</strong> <strong>the</strong> are rein<strong>for</strong>ced column behavior in place <strong>of</strong> <strong>the</strong><br />

ight 3D functions solid element <strong>and</strong> trial solutions <strong>for</strong>mulation.<br />

pe functions are<br />

This element has two degrees <strong>of</strong> freedom per node, one translational<br />

(perpendicular to <strong>the</strong> beam axis) <strong>and</strong> one rotational.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior - Beam<br />

Approach<br />

<strong>The</strong> shape functions utilized from this element are <strong>the</strong> Hermite<br />

Beam <strong>Element</strong>s - Shape Functions<br />

Polynomials (see Lecture 6)<br />

Hermite Polynomials<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


Modeling <strong>of</strong> Rein<strong>for</strong>ced Concrete Behavior - Beam<br />

Approach<br />

<strong>The</strong>n, as we saw in Lecture 6, <strong>the</strong> elastic <strong>for</strong>ce de<strong>for</strong>mation relationship, <strong>for</strong><br />

a prismatic beam without shearing de<strong>for</strong>mations, is<br />

⎡ ⎤ ⎡<br />

⎤ ⎡ ⎤<br />

F i<br />

12 6L −12 6L v i<br />

⎢ M i<br />

⎥<br />

⎣ F j<br />

⎦ = EI<br />

⎢ 6L 4L 2 −6L −2L 2<br />

⎥ ⎢ φ i<br />

⎥<br />

L 3 ⎣ −12 −6L 12 −6L ⎦ ⎣ v j<br />

⎦ or F E = K E v<br />

M j<br />

−6L −2L 2 −6L 4L 2 φ j<br />

Whilst , from Lecture 8, we saw that in case P-Delta effects are taken into<br />

account, <strong>the</strong> geometric (nonlinear) stiffness is:<br />

⎡ ⎤ ⎡<br />

⎤ ⎡ ⎤<br />

F i<br />

36 3L −36 3L v i<br />

⎢ M i<br />

⎥<br />

⎣ F j<br />

⎦ = T<br />

⎢ 3L 4L 2 −3L −L 2<br />

⎥ ⎢ φ i<br />

⎥<br />

30L ⎣ −36 −3L 36 −3L ⎦ ⎣ v j<br />

⎦ or F G = K G v<br />

M j<br />

3L −L 2 −3L 4L 2 φ j<br />

<strong>The</strong>re<strong>for</strong>e, <strong>the</strong> total <strong>for</strong>ces acting on <strong>the</strong> beam element will be:<br />

F T = F E + F G = [K E + K G ]v = K T v<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


Moment Curvature Envelope<br />

In order to simulate <strong>the</strong> effects <strong>of</strong> varying stiffness due to plasticity<br />

appropriate plasticity model <strong>and</strong> a hysteretic law will be<br />

introduced.<br />

<strong>The</strong> hysteretic model is <strong>for</strong>mulated based on an initial<br />

moment-curvature relationship o<strong>the</strong>rwise known as <strong>the</strong> backbone<br />

skeleton curve.<br />

Such skeleton curves must be defined <strong>for</strong> each different section type.<br />

For instance, <strong>the</strong> bottom sections are more heavily rein<strong>for</strong>ced than<br />

<strong>the</strong> top. <strong>The</strong>se curves can be ei<strong>the</strong>r user defined or can be computed<br />

using a fiber model.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


Moment Curvature Envelope<br />

Rein<strong>for</strong>ced Concrete Design Calculations normally assume a simple material<br />

model <strong>for</strong> <strong>the</strong> concrete <strong>and</strong> rein<strong>for</strong>cement so as to determine <strong>the</strong> moment<br />

capacity <strong>of</strong> a section. <strong>The</strong> Whitney stress block <strong>for</strong> concrete along with an elasto<br />

- plastic rein<strong>for</strong>cing steel behavior is one widely used material model.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


Moment Curvature Envelope<br />

However, <strong>the</strong> actual material behavior is nonlinear <strong>and</strong> can be described by<br />

idealized stress-strain (material) models, as <strong>the</strong> ones introduced earlier.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Moment Curvature Envelope<br />

Moment Curvature <strong>Analysis</strong><br />

is a method to accurately determine <strong>the</strong> load - de<strong>for</strong>mation behavior <strong>of</strong> a<br />

concrete section using nonlinear material stress-strain relationships.<br />

For a given axial load <strong>the</strong>re exists an extreme compression fiber strain<br />

<strong>and</strong> a section curvature φ at which <strong>the</strong> nonlinear stress distribution is<br />

in equilibrium with <strong>the</strong> applied axial load. Dividing <strong>the</strong> section into<br />

fibers at distance z from <strong>the</strong> CG axis <strong>the</strong> strain distribution will be:<br />

ε(z) = ε 0 + zφ<br />

A unique bending moment can be calculated at this section curvature<br />

from <strong>the</strong> stress distribution.<br />

<strong>The</strong> extreme concrete compression strain <strong>and</strong> section curvature can be<br />

iterated until a range <strong>of</strong> moment curvature values is obtained.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Moment Curvature Envelope<br />

S<strong>of</strong>tware packages are available <strong>for</strong> generating Moment - Curvature<br />

relationships by inputing <strong>the</strong>, geometry, rein<strong>for</strong>cement characteristics,<br />

material properties <strong>and</strong> axial load <strong>for</strong> a given section.<br />

Material properties <strong>for</strong> concrete can be obtained as a result <strong>of</strong> lab<br />

compression tests on <strong>the</strong> utilized concrete mix.<br />

Material properties from Steel can be directly obtained from <strong>the</strong> quality <strong>of</strong><br />

<strong>the</strong> rein<strong>for</strong>cing Steel<br />

S<strong>of</strong>tware packages that can be used <strong>for</strong> <strong>the</strong> generation <strong>of</strong> Moment<br />

Curvature Envelopes are:<br />

SAP section designer (<strong>for</strong> those that have access to SAP2000)<br />

Response 2000: http://www.ecf.utoronto.ca/ bentz/r2k.htm<br />

MyBiaxial:<br />

http://users.ntua.gr/vkoum/links-prog/MyBiaxial/mybiaxial.htm<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


Plasticity Model<br />

<strong>The</strong>re are different approaches <strong>for</strong> <strong>the</strong> modeling <strong>of</strong> inelastic behavior.<br />

Concentrate Plasticity (plastic hinge approach)<br />

Distributed Plasticity<br />

Spread Plasticity<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Plasticity Model<br />

Concentrated Plasticity Model<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Plasticity Model<br />

Distributed & Spread Plasticity Models<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


Plasticity Model<br />

Distributed & Spread Plasticity Models<br />

source: Hwasung Roh, Andrei M. Reinhorn, Jong Seh Lee, Power spread plasticity model <strong>for</strong> inelastic analysis <strong>of</strong><br />

rein<strong>for</strong>ced concrete structures, Engineering Structures, Volume 39, June 2012, Pages 148-16<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Bouc - Wen Hysteretic Model<br />

<strong>The</strong> smooth hysteretic model presented herein is a variation <strong>of</strong> <strong>the</strong><br />

model originally proposed by Bouc (1967) <strong>and</strong> modified by several<br />

o<strong>the</strong>rs (Wen 1976; Baber Noori 1985).<br />

<strong>The</strong> use <strong>of</strong> such a hysteretic constitutive law is necessary <strong>for</strong> <strong>the</strong><br />

effective simulation <strong>of</strong> <strong>the</strong> behavior <strong>of</strong> R/C structures under cyclic<br />

loading, since <strong>of</strong>ten structures that undergo inelastic de<strong>for</strong>mations<br />

<strong>and</strong> cyclic behavior weaken <strong>and</strong> lose some <strong>of</strong> <strong>the</strong>ir stiffness <strong>and</strong><br />

strength. Moreover, gaps tend to develop due to cracking causing<br />

<strong>the</strong> material to become discontinuous.<br />

<strong>The</strong> Bouc-Wen Hysteretic Model is capable <strong>of</strong> simulating stiffness<br />

degradation, strength deterioration <strong>and</strong> progressive pinching effects.<br />

(see: V. Koumousis, E. Chatzi <strong>and</strong> S. Triantafillou: Plastique “A Computer Program For 3D Inelastic <strong>Analysis</strong> Of<br />

Multi-Storey Buildings, Advances in Engineering Structures, Mechanics & Construction, Solid Mechanics <strong>and</strong> Its<br />

Applications, 2006, Volume 140, Part 3, 367-378)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


elation between generalized moments <strong>and</strong> curvatures is given by:<br />

<br />

M () t = M + ( 1 −α)<br />

z()<br />

t <br />

φ()<br />

t<br />

Bouc - Wen Hysteretic Model<br />

y α<br />

<br />

φy<br />

φ()<br />

t <br />

<br />

M () t = My<br />

α<br />

+ ( 1 −α)<br />

z()<br />

t <br />

where My is <strong>the</strong> yield moment; y is <strong>the</strong> yield curvature; is <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> post-yield to <strong>the</strong> initial<br />

<strong>The</strong> model can be visualized as a linear <br />

<strong>and</strong> φy<br />

a nonlinear <br />

element in parallel:<br />

elastic stiffness <strong>and</strong> z(t) is <strong>the</strong> hysteretic component defined below.<br />

where M y is <strong>the</strong> yield moment; y is <strong>the</strong> yield curvature; is <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> post-yield to <strong>the</strong> initial<br />

elastic stiffness <strong>and</strong> z(t) is <strong>the</strong> hysteretic component defined below.<br />

(1)<br />

(1)<br />

Figure 3. Bouc-Wen Hysteretic Model<br />

<strong>The</strong> relation <strong>The</strong> nondimensional betweenhysteretic generalized function z(t) moments is <strong>the</strong> solution <strong>and</strong> <strong>of</strong> <strong>the</strong> curvatures following non-linear is differential given by:<br />

equation:<br />

[<br />

M(t) = M y α φ(t)<br />

]<br />

+ (1 − α)z(t)<br />

nB<br />

. . 1 dz 1 1 + sign( dφ) | z( t)| + z( t)<br />

<br />

zt ()= f (φ(t), zt ()) or alternatively = Kz<br />

where Kz<br />

= A−B<br />

−<br />

φy<br />

dφ φy<br />

φ y <br />

2 2 <br />

Figure 3. Bouc-Wen Hysteretic Model<br />

C D E <br />

where My is <strong>the</strong> yield moment; φ y is <strong>the</strong> yield curvature; α is <strong>the</strong> ratio <strong>of</strong><br />

n n n<br />

1 + signd ( φ) | zt ()| −zt () 1 − signd ( φ) | zt ()| + zt () 1 −signd ( φ) | zt ()| −zt<br />

() <br />

C −D −E<br />

<br />

2 2 2 2 2 2 <br />

<strong>the</strong> <strong>The</strong> post-yield nondimensional to <strong>the</strong> hysteretic initialfunction elastic z(t) stiffness is <strong>the</strong> solution <strong>and</strong> z(t) <strong>of</strong> is <strong>the</strong> <strong>the</strong> following hysteretic non-linear differential<br />

component defined as:<br />

In <strong>the</strong> above expression A, B, C, D & E are constants which control <strong>the</strong> shape <strong>of</strong> <strong>the</strong> hysteretic loop<br />

equation: <strong>for</strong> each direction <strong>of</strong> loading, while <strong>the</strong> exponents nB, nC, nD & nE govern <strong>the</strong> transition from <strong>the</strong> elastic<br />

to <strong>the</strong> plastic state. Small values <strong>of</strong> ni lead to a smooth transition, however as ni increases <strong>the</strong> transition<br />

becomes sharper tending to a perfectly bilinear behavior in <strong>the</strong> limit (n∞).<br />

nB<br />

. . 1 dz 1 1 + sign( dφ) | z( t)| + z( t)<br />

<br />

zt ()= f (φ(t), <strong>The</strong> program zt ()) defaults or alternatively are: = Kz<br />

where Kz<br />

= A−B<br />

−<br />

φy<br />

dφ φ<br />

−<br />

1 1y<br />

−M<br />

y<br />

<br />

2 2 <br />

A = 1, C=D=0 & B= , E= where e=<br />

, b=1 <strong>and</strong> n<br />

nB<br />

nE<br />

+<br />

B<br />

=n<br />

E<br />

=n (3)<br />

(2)<br />

nC b e<br />

M n<br />

y D nE<br />

1 + signd ( φ) | zt ()| −zt () 1 − signd ( φ) | zt ()| + zt () 1 −signd ( φ) | zt ()| −zt<br />

() <br />

C<br />

2<strong>The</strong> parameters C, 2 D control −D E<br />

<strong>the</strong> gradient 2<strong>of</strong> <strong>the</strong> hysteretic <br />

2loop after −<br />

unloading occurs. 2 <strong>The</strong> assignment<br />

<br />

2 <br />

<strong>of</strong> null values <strong>for</strong> both, results to unloading stiffness equal to that <strong>of</strong> <strong>the</strong> elastic branch. Also, <strong>the</strong> <br />

model is capable Institute <strong>of</strong> simulating <strong>of</strong> Structural non symmetrical Engineeringyielding, <strong>Method</strong> so if <strong>the</strong> <strong>of</strong>positive <strong>Finite</strong> <strong>Element</strong>s yield moment II is regarded<br />

27<br />

(2)


Bouc - Wen Hysteretic Model<br />

In <strong>the</strong> above expression A, B, C, D & E are constants which control <strong>the</strong><br />

shape <strong>of</strong> <strong>the</strong> hysteretic loop <strong>for</strong> each direction <strong>of</strong> loading, while <strong>the</strong><br />

exponents n B , n C , n D & n E govern <strong>the</strong> transition from <strong>the</strong> elastic to <strong>the</strong><br />

plastic state. Small values <strong>of</strong> n i lead to a smooth transition, however as n i<br />

increases <strong>the</strong> transition becomes sharper tending to a perfectly bilinear<br />

behavior in <strong>the</strong> limit (n i → ∞).<br />

“Plastique” Finally, – A<strong>the</strong> Computer flexural Program stiffness <strong>for</strong>can <strong>Analysis</strong> be expressed <strong>of</strong> Multi-Storey as: Buildings 371<br />

Finally, <strong>the</strong> flexural stiffness can be expressed as:<br />

dM 1 dz 1 1 <br />

K = EI = = M y α + ( 1− α) = M y α + ( 1− α) Kz = EI0<br />

α + ( 1−α)<br />

Kz<br />

dφ φy dφ φy φy<br />

<br />

6.1 Hysteretic behavior Variations<br />

(4)<br />

a) Stiffness Degradation<br />

<strong>The</strong> stiffness degradation that occurs due to cyclic loading is taken into account by introducing <strong>the</strong><br />

parameter into <strong>the</strong> differential equation:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28


Modeling <strong>of</strong> Degradation<br />

Stiffness Degradation<br />

Strength Deterioration<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


Modeling <strong>of</strong> Degradation<br />

<strong>The</strong> parameter S depends on <strong>the</strong> damage <strong>of</strong> <strong>the</strong> section which is quantified by <strong>the</strong> Damage Index DI:<br />

µ max − 1 1<br />

S = 1 − S d DI where DI =<br />

(7)<br />

β<br />

µ − 1<br />

2<br />

<br />

Strength Deterioration<br />

1<br />

<br />

S p<br />

c S<br />

p<br />

dEdiss<br />

1 −<br />

<br />

4Emon<br />

<br />

<br />

<br />

In <strong>the</strong> above expression S d , S p1 , S p2 are constants controlling <strong>the</strong> amount <strong>of</strong> strength deterioration; µ c is<br />

<strong>the</strong> maximum plasticity that can be reached, µ c = φu / φ y; dE<br />

diss<br />

is <strong>the</strong> energy dissipated be<strong>for</strong>e<br />

unloading occurs <strong>and</strong> finally E mon is <strong>the</strong> amount <strong>of</strong> energy absorbed during a monotonic loading until<br />

failure as shown in Figure 4.<br />

Figure 4. Dissipated Energy (Ediss) <strong>and</strong> Monotonic Energy (Emon).<br />

<strong>The</strong> model can also be appropriately modified to simulate pinching.<br />

Note: <strong>The</strong> Matlab code <strong>for</strong> <strong>the</strong> Bouc Wen Model will be provided!<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


Bouc Wen Model<br />

Resulting Hysteretic Loops<br />

Stiffness & Strength Degradation<br />

Pinching<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


Bouc Wen Model<br />

Dynamic Equation <strong>of</strong> Motion<br />

This is a dynamic problem (input: base excitation Ü g ). <strong>The</strong> general<br />

equation <strong>of</strong> motion is <strong>the</strong>re<strong>for</strong>e written as:<br />

MẌ(t) + CẊ(t) + KX(t) = −MÜ g (t)<br />

<strong>The</strong> Newmark Constant acceleration method outlined in Lecture 8 can<br />

be used <strong>for</strong> <strong>the</strong> direct integration <strong>of</strong> <strong>the</strong> above equation.<br />

(You can neglect <strong>the</strong> effect <strong>of</strong> damping <strong>for</strong> this project)<br />

In order to achieve equilibrium within each time step, it is necessary to<br />

implement a Newton - Raphson iterative scheme as outlined in Lecture 3.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!