20.12.2013 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 14 - 20 December, 2010<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


Special Topics<br />

<strong>The</strong> st<strong>and</strong>ard finite element method has been used with great success<br />

in many fields with both academic <strong>and</strong> industrial applications. It is<br />

however not without limitations. Due to mesh-based interpolation,<br />

distorted or low quality meshes lead to higher errors, necessitate<br />

remeshing, a time <strong>and</strong> human labor consuming task, which is not<br />

guaranteed to be feasible in finite time <strong>for</strong> complex three-dimensional<br />

geometries. Additionally, <strong>the</strong>y are not well suited to treat problems<br />

with discontinuities that do not align with element edges.<br />

Alternative/Extended Approaches<br />

Meshless <strong>Method</strong>s<br />

Multigrid <strong>Method</strong>s<br />

Extended <strong>Finite</strong> <strong>Element</strong> methods<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


Special Topics<br />

Meshless <strong>Method</strong>s<br />

Traditional simulation algorithms relied on a grid or a mesh, Meshless<br />

methods in contrast use <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> simulated object directly <strong>for</strong><br />

calculations. Meshless (or Meshfree) methods (MMs) were born with <strong>the</strong><br />

objective <strong>of</strong> eliminating part <strong>of</strong> <strong>the</strong> difficulties associated with reliance on a<br />

mesh to construct <strong>the</strong> approximation.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


Special Topics<br />

Meshless <strong>Method</strong>s<br />

Meshless approximations <strong>for</strong> a scalar function u in terms <strong>of</strong> <strong>the</strong><br />

material (Lagrangian) coordinates can be written as<br />

u(x, t) = ∑ i∈S<br />

N i (x)u i (t)<br />

where N i : Ω → R are <strong>the</strong> shape functions <strong>and</strong> <strong>the</strong> u i are <strong>the</strong> nodal<br />

values at particle i located at position x i <strong>and</strong> S is <strong>the</strong> set <strong>of</strong> nodes i<br />

<strong>for</strong> which N i (x) ≠ 0. In contrast to FEM, <strong>the</strong> shape functions are<br />

only approximants <strong>and</strong> not interpolants, since u i ≠ u(x i ).<br />

<strong>The</strong>re<strong>for</strong>e, special techniques are needed to treat displacement<br />

boundary conditions.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


Special Topics<br />

Meshless <strong>Method</strong>s<br />

Advantages<br />

problems with moving<br />

discontinuities such as crack<br />

propagation <strong>and</strong> phase<br />

trans<strong>for</strong>mation can be treated<br />

with ease<br />

large de<strong>for</strong>mation can be<br />

h<strong>and</strong>led more robustly<br />

higher-order continuous<br />

shape functions<br />

non-local interpolation<br />

character<br />

no mesh alignment sensitivity.<br />

Disadvantages<br />

<strong>The</strong> MMs shape functions<br />

are rational functions which<br />

requires high-order<br />

integration scheme to be<br />

correctly computed<br />

<strong>The</strong> treatment <strong>of</strong> essential<br />

boundary conditions is not as<br />

straight<strong>for</strong>ward<br />

<strong>The</strong>y do not satisfy <strong>the</strong><br />

Kronecker delta property<br />

In general, <strong>the</strong> computational<br />

cost <strong>of</strong> MMs is higher than<br />

one <strong>of</strong> FEM.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


Special Topics<br />

Multigrid <strong>Method</strong>s<br />

Multigrid (MG) methods in numerical analysis are a group <strong>of</strong><br />

algorithms <strong>for</strong> solving differential equations using a hierarchy <strong>of</strong><br />

discretizations. <strong>The</strong>y are a class <strong>of</strong> techniques very useful in<br />

problems exhibiting multiple scales <strong>of</strong> behavior. <strong>The</strong>y are fast linear<br />

iterative solvers based on <strong>the</strong> multilevel or multi-scale paradigm.<br />

<strong>The</strong> typical application <strong>for</strong><br />

multigrid is in <strong>the</strong><br />

numerical solution <strong>of</strong><br />

elliptic partial differential<br />

equations in two or more<br />

dimensions.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


Special Topics<br />

Multigrid <strong>Method</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


Special Topics<br />

Multigrid <strong>Method</strong>s<br />

<strong>The</strong>re are many variations <strong>of</strong> multigrid algorithms, but <strong>the</strong> common<br />

features are that a hierarchy <strong>of</strong> discretizations (grids) is considered.<br />

<strong>The</strong> important steps are:<br />

Smoothing Per<strong>for</strong>m some steps <strong>of</strong> a basic method in order to<br />

smooth out <strong>the</strong> error.<br />

Restriction Restrict <strong>the</strong> current state <strong>of</strong> <strong>the</strong> problem to a<br />

subset <strong>of</strong> <strong>the</strong> grid points, <strong>the</strong> so-called “coarse grid”, <strong>and</strong> solve<br />

<strong>the</strong> resulting projected problem.<br />

Interpolation or Prolongation Interpolate <strong>the</strong> coarse grid<br />

solution back to <strong>the</strong> original grid, <strong>and</strong> per<strong>for</strong>m a number <strong>of</strong><br />

steps <strong>of</strong> <strong>the</strong> basic method again.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


Special Topics<br />

Multigrid <strong>Method</strong>s - Adaptive Mesh<br />

Adaptive multigrid exhibits adaptive mesh refinement, that is, it<br />

adjusts <strong>the</strong> grid as <strong>the</strong> computation proceeds, in a manner dependent<br />

upon <strong>the</strong> computation itself. <strong>The</strong> idea is to increase resolution <strong>of</strong> <strong>the</strong><br />

grid only in regions <strong>of</strong> <strong>the</strong> solution where it is needed.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


Special Topics<br />

Multigrid <strong>Method</strong>s<br />

Advantages<br />

MG can be applied in combination with any <strong>of</strong> <strong>the</strong> common<br />

discretization techniques.<br />

Multigrid is among <strong>the</strong> fastest solution techniques known today.<br />

In contrast to o<strong>the</strong>r methods, multigrid is general in that it can<br />

treat arbitrary regions <strong>and</strong> boundary conditions.<br />

Multigrid does not depend on <strong>the</strong> separability <strong>of</strong> <strong>the</strong> equations<br />

or o<strong>the</strong>r special properties <strong>of</strong> <strong>the</strong> equation.<br />

MG is also directly applicable to more complicated,<br />

non-symmetric <strong>and</strong> nonlinear systems <strong>of</strong> equations.<br />

Can be very easily parallelized.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


Special Topics<br />

<strong>The</strong> Extended <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (XFEM)<br />

<strong>The</strong> Extended <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> is a numerical method that<br />

enables a local enrichment <strong>of</strong> approximation spaces. <strong>The</strong> enrichment<br />

is realized through <strong>the</strong> partition <strong>of</strong> unity concept.<br />

<strong>The</strong> method is useful <strong>for</strong> <strong>the</strong> approximation <strong>of</strong> solutions with<br />

pronounced non-smooth characteristics in small parts <strong>of</strong> <strong>the</strong><br />

computational domain, <strong>for</strong> example near discontinuities <strong>and</strong><br />

singularities. In <strong>the</strong>se cases, st<strong>and</strong>ard numerical methods such as <strong>the</strong><br />

FEM <strong>of</strong>ten exhibit poor accuracy.<br />

<strong>The</strong> XFEM <strong>of</strong>fers significant advantages by enabling optimal<br />

convergence rates <strong>for</strong> <strong>the</strong>se applications.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


Special Topics<br />

XFEM - Motivation<br />

Modeling <strong>of</strong> discontinuities, ex. structural flaws (cracks, holes)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


Special Topics<br />

XFEM - Motivation<br />

Modeling <strong>of</strong> complicated crack geometries (ex. non planar cracks)<br />

A T-Joint with Crack on a<br />

Given Curved Plane<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


Special Topics<br />

XFEM vs FEM<br />

- XFEM locally enrich <strong>the</strong> st<strong>and</strong>ard FE approximation with local<br />

partitions <strong>of</strong> unity enrichment functions<br />

- This allows <strong>for</strong> <strong>the</strong> separation <strong>of</strong> geometry from <strong>the</strong> mesh.<br />

St<strong>and</strong>ard FEM<br />

X-FEM<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


Special Topics<br />

XFEM Scheme<br />

<strong>The</strong> conventional shape function space is enriched with a set <strong>of</strong><br />

enrichment functions H(x) <strong>and</strong> F j (x)<br />

u h (x) =<br />

n∑ ∑n J<br />

N I (x)u I + N I (x)H(x)a I +<br />

I=1<br />

Tip Enrichment<br />

I=1<br />

n T ∑<br />

I=1<br />

⎡<br />

⎣N I (x)<br />

4∑<br />

j=1<br />

F j (x)b jI<br />

⎤<br />

⎦<br />

F j (r(x), θ(x)) = { √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 sin θ, √ r cos θ 2 sin θ} j=1,..,4<br />

Jump Enrichment<br />

H(X) =<br />

{<br />

1 above Γ + c<br />

0 bellow Γ − c<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


Special Topics<br />

XFEM Scheme - Tip <strong>and</strong> Jump Enrichments<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


Special Topics<br />

XFEM Applications - Composite Materials<br />

G XFEM<br />

= 4.762<br />

G ABAQUS<br />

= 4.703<br />

Gexp eriment<br />

= 4.784<br />

[lb in/in^2]<br />

Hart D., NSWCCD [2006]<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

G<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

coordinate along crack<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


Special Topics<br />

XFEM Applications - Crack Growth<br />

Load P<br />

6.25<br />

Unit: mm<br />

Simplification<br />

BC 1<br />

Fix U,V<br />

15.63<br />

7.813<br />

BC 2<br />

Fix U<br />

35.0<br />

6.25<br />

37.5<br />

100<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


Special Topics<br />

Crack Initiation Site:<br />

Experimental Observation<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Special Topics<br />

XFEM Applications - Crack Growth<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Introduction to FEM S<strong>of</strong>tware<br />

XFEM Applications - Crack Growth<br />

*<strong>The</strong> section on Introduction to FEM S<strong>of</strong>tware is based on<br />

Pr<strong>of</strong>. M. Faber’s notes <strong>of</strong> <strong>the</strong> FEM II course - Fall 2009<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II<br />

1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


Introduction to FEM S<strong>of</strong>tware<br />

Overview<br />

FEM development<br />

Introduction to <strong>the</strong> use <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s<br />

Modeling <strong>the</strong> physical problem<br />

<strong>Finite</strong> elements as a tool <strong>for</strong> computer aided design <strong>and</strong><br />

assessment<br />

An overview <strong>of</strong> FEM s<strong>of</strong>tware (open source <strong>and</strong> commercial)<br />

Example: ABAQUS<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Introduction to FEM S<strong>of</strong>tware<br />

FE development<br />

FEM development<br />

FE is <strong>the</strong> confluence <strong>of</strong> three ingredients: matrix structural<br />

analysis, variational approach <strong>and</strong> computer<br />

1950s, M.J. Turner at Boeing (aerospace industry in general):<br />

Direct Stiffness <strong>Method</strong><br />

Academia: J.H. Argyris, R.W. Clough (name “finite element),<br />

H.C. Martin <strong>and</strong> O.C. Zienkiewicz popularization<br />

1960s, Melosh <strong>and</strong> De Veubeke: Variational Approach<br />

Commercial finite element computer codes<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Introduction to FEM S<strong>of</strong>tware<br />

FE Basics<br />

Within <strong>the</strong> framework <strong>of</strong> continuum mechanics dependencies<br />

between geometrical <strong>and</strong> physical quantities are <strong>for</strong>mulated on a<br />

differentially small element <strong>and</strong> <strong>the</strong>n extended to <strong>the</strong> whole<br />

continuum<br />

As a result we obtain differential, partial differential or integral<br />

equations <strong>for</strong> which, generally, an analytical solution is not<br />

available <strong>the</strong>y have to be solved using some numerical<br />

procedure<br />

MFE is based on <strong>the</strong> physical discretization <strong>of</strong> <strong>the</strong> observed<br />

domain, thus reducing <strong>the</strong> number <strong>of</strong> <strong>the</strong> degrees <strong>of</strong> freedom;<br />

moreover <strong>the</strong> governing equations are in general algebraic<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


Introduction to FEM S<strong>of</strong>tware<br />

FE Steps<br />

Continuum is discretized in a mesh <strong>of</strong> finite elements<br />

<strong>Element</strong>s are connected at nodes located on element boundaries<br />

State <strong>of</strong> de<strong>for</strong>mation, stresses, etc. in each element is described<br />

by interpolation (shape) functions <strong>and</strong> corresponding values in<br />

<strong>the</strong> nodes; <strong>the</strong>se node values are basic unknowns <strong>of</strong> <strong>the</strong> method<br />

<strong>of</strong> finite elements<br />

<strong>The</strong> way in which <strong>the</strong>se three steps are approached has a great<br />

influence on <strong>the</strong> results <strong>of</strong> <strong>the</strong> calculations<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Introduction to FEM S<strong>of</strong>tware<br />

Modeling <strong>the</strong> Physical Problem<br />

Ideal<br />

Ma<strong>the</strong>matical<br />

model<br />

§1.3 THE FEM ANALYSIS PRO<br />

generally<br />

irrelevant<br />

CONTINUIFICATION<br />

SOLUTION<br />

Physical<br />

system<br />

FEM<br />

Discrete<br />

model<br />

Discrete<br />

solution<br />

IDEALIZATION &<br />

DISCRETIZATION<br />

VERIFICATION<br />

solution error<br />

simulation error= modeling + solution error<br />

VALIDATION<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


Introduction to FEM S<strong>of</strong>tware<br />

Modeling <strong>the</strong> Physical Problem<br />

MFE is only a way <strong>of</strong> solving <strong>the</strong> ma<strong>the</strong>matical model<br />

<strong>The</strong> solution <strong>of</strong> <strong>the</strong> physical problem depends on <strong>the</strong> quality <strong>of</strong><br />

<strong>the</strong> ma<strong>the</strong>matical model <strong>the</strong> choice <strong>of</strong> <strong>the</strong> ma<strong>the</strong>matical model<br />

is crucial<br />

Thus, ma<strong>the</strong>matical model must be reliable <strong>and</strong> effective<br />

<strong>The</strong> chosen ma<strong>the</strong>matical model is reliable if <strong>the</strong> required<br />

response can be predicted within a given level <strong>of</strong> accuracy<br />

measured on <strong>the</strong> response <strong>of</strong> a very comprehensive<br />

ma<strong>the</strong>matical model<br />

<strong>The</strong> most effective ma<strong>the</strong>matical model <strong>for</strong> <strong>the</strong> analysis is <strong>the</strong><br />

one that gives <strong>the</strong> required response with sufficient accuracy<br />

<strong>and</strong> at least costs<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


Introduction to FEM S<strong>of</strong>tware<br />

Complex physical problem (steel bracket) modelled<br />

p p y p ( )<br />

by a simple ma<strong>the</strong>matical model<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28<br />

Example<br />

Complex physical problem (steel bracket) modeled by a simple<br />

ma<strong>the</strong>matical model


Introduction to FEM S<strong>of</strong>tware<br />

Example<br />

Detailed reference model 2D plane stress model <strong>for</strong> FE analysis<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


Introduction to FEM S<strong>of</strong>tware<br />

Example<br />

Choice <strong>of</strong> ma<strong>the</strong>matical model must correspond to desired<br />

response<br />

<strong>The</strong> most effective ma<strong>the</strong>matical model delivers reliable answers<br />

with <strong>the</strong> least amount <strong>of</strong> ef<strong>for</strong>t<br />

Any solution (including MFE) <strong>of</strong> a ma<strong>the</strong>matical model is<br />

limited to in<strong>for</strong>mation contained in or fed into <strong>the</strong> model: bad<br />

input bad output (garbage in garbage out)<br />

Assessment <strong>of</strong> accuracy is based on comparisons with <strong>the</strong><br />

results from very comprehensive models but in practice it has<br />

to be based on experience (experiments)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


Introduction to FEM S<strong>of</strong>tware<br />

FE as a Tool <strong>for</strong> CAD<br />

Practical application requires that solutions obtained by MFE<br />

are reliable <strong>and</strong> efficient<br />

However, it is also necessary that <strong>the</strong> use <strong>of</strong> FE is robust this<br />

implies that minor changes in any input to an FE analysis<br />

should not change <strong>the</strong> response quantity significantly<br />

<strong>The</strong> engineer (user) should be able to judge <strong>the</strong> quality <strong>of</strong> <strong>the</strong><br />

obtained results (i.e. <strong>for</strong> plausibility)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


Introduction to FEM S<strong>of</strong>tware<br />

Implementation <strong>of</strong> FE<br />

Calculation <strong>of</strong> system matrices K, M, C <strong>and</strong> R whichever<br />

applicable (nodal point <strong>and</strong> element in<strong>for</strong>mation are read;<br />

element stiffness matrices, mass <strong>and</strong> damping matrices <strong>and</strong><br />

equivalent loads are calculated; structure matrices are<br />

assembled)<br />

Solution <strong>of</strong> equilibrium equations<br />

Evaluation <strong>of</strong> element stresses<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32


Introduction to FEM S<strong>of</strong>tware<br />

Implementation <strong>of</strong> FE - Flowchart<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 33


Introduction to FEM S<strong>of</strong>tware<br />

Open Source Packages<br />

CalculiX is an Open Source FEA project. <strong>The</strong> solver uses a<br />

partially compatible ABAQUS file <strong>for</strong>mat.<br />

OpenSees, <strong>the</strong> Open System <strong>for</strong> Earthquake Engineering<br />

Simulation, is an object-oriented, open source s<strong>of</strong>tware<br />

framework created at <strong>the</strong> NSF-sponsored Pacific Earthquake<br />

Engineering (PEER) Center.<br />

FEAP is a general purpose finite element analysis program<br />

which is designed <strong>for</strong> research <strong>and</strong> educational use.<br />

http://www.ce.berkeley.edu/projects/feap/<br />

ForcePAD: educational s<strong>of</strong>tware <strong>for</strong>cepad.source<strong>for</strong>ge.net<br />

Sundance: a s<strong>of</strong>tware package developed at S<strong>and</strong>ia National<br />

Laboratories<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 34


Introduction to FEM S<strong>of</strong>tware<br />

Commercial Packages<br />

ABAQUS: Franco - American s<strong>of</strong>tware from SIMULIA<br />

ADINA R&D, Inc. See http://www.adina.com/<br />

ANSYS: American s<strong>of</strong>tware<br />

COMSOL Multiphysics<br />

COSMOSWorks: A SolidWorks module<br />

GTSTRUDL30<br />

LS-DYNA, LSTC - Livermore S<strong>of</strong>tware Technology Corporation<br />

Nastran: American s<strong>of</strong>tware<br />

CUBUS Swiss S<strong>of</strong>tware Structurally Oriented<br />

SAP: Structurally Oriented<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 35


Introduction to FEM S<strong>of</strong>tware<br />

ABAQUS Features<br />

Wide material modeling capability<br />

Ability to be customized<br />

A good collection <strong>of</strong> multiphysics capabilities, such as coupled<br />

acoustic - structural piezoelectric etc.<br />

Attractive <strong>for</strong> simulations where multiple fields need to be<br />

coupled<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 36


Introduction to FEM S<strong>of</strong>tware<br />

ABAQUS Multiphysics Example<br />

Example: Shock Response <strong>and</strong> Acoustic Radiation <strong>Analysis</strong> <strong>for</strong> marine<br />

structures<br />

Most naval organizations require some <strong>for</strong>m <strong>of</strong> shock survival assessment to<br />

be per<strong>for</strong>med on marine structures be<strong>for</strong>e <strong>the</strong>y are commissioned<br />

Besides shock survivability, ano<strong>the</strong>r important consideration in submarine<br />

design is stealth. Since <strong>the</strong>ir inception, submarines have been deployed in<br />

strategic situations where susceptibility to detection is equated with<br />

reduced effectiveness <strong>of</strong> <strong>the</strong> vessel. Various acoustic treatments are used to<br />

reduce <strong>the</strong> target strength <strong>and</strong> acoustic signature <strong>of</strong> a submarine.<br />

ABAQUS provides fully coupled structural acoustic capabilities in <strong>the</strong><br />

frequency domain that predict near <strong>and</strong> far-field sound pressure levels due<br />

to machinery-induced vibrations.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 37


Introduction to FEM S<strong>of</strong>tware<br />

ABAQUS Multiphysics Example<br />

<strong>The</strong> structure was meshed with quadrilateral shells <strong>and</strong> <strong>the</strong> fluid with<br />

acoustic tetrahedra.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 38


Introduction to FEM S<strong>of</strong>tware<br />

ABAQUS Multiphysics Example<br />

Figure 14 <strong>and</strong> Figure 15 show <strong>the</strong> Mises stress<br />

distribution on <strong>the</strong> external surface <strong>of</strong> <strong>the</strong> submarine<br />

<strong>and</strong> in <strong>the</strong> internal compartments, respectively.<br />

Stresses are notably lower in <strong>the</strong> areas where <strong>the</strong><br />

hulls overlap, as is expected due to <strong>the</strong> enhanced<br />

thickness <strong>the</strong>re.<br />

Figure 14. Mises stress distribution on <strong>the</strong> exterior<br />

surface <strong>of</strong> <strong>the</strong> submarine after 10 ms.<br />

Figure 12. Acoustic pressure distribution in <strong>the</strong><br />

outer water after 10 ms.<br />

presence <strong>of</strong> <strong>the</strong> terminating fluid boundary. This<br />

indicates that <strong>the</strong> fluid zone is sufficiently large, so<br />

<strong>the</strong>re are no significant spurious reflections from <strong>the</strong><br />

boundary. Since <strong>the</strong> effect <strong>of</strong> hydrostatic pressure is<br />

Figure 15. Mises stress distribution in <strong>the</strong> internal<br />

structures <strong>of</strong> <strong>the</strong> submarine after 10 ms.<br />

<strong>The</strong> results <strong>of</strong> <strong>the</strong> acoustic radiation analysis are<br />

examined next. Figure 16, Figure 17, <strong>and</strong> Figure 18<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!