20.12.2013 Views

Solid Oxide electrolysis hydrogen production, Peter V. Hendriksen

Solid Oxide electrolysis hydrogen production, Peter V. Hendriksen

Solid Oxide electrolysis hydrogen production, Peter V. Hendriksen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solid</strong> <strong>Oxide</strong> Electrolysis Hydrogen <strong>production</strong><br />

<strong>Peter</strong> Vang <strong>Hendriksen</strong><br />

Fuel Cells and <strong>Solid</strong> State Chemistry Division, Risø DTU


Outline<br />

• Principle, what is <strong>electrolysis</strong> ?<br />

• SOEC<br />

• Thermodynamics<br />

• Economy<br />

• Technology status<br />

• Durability<br />

• Upscale (Unit sizes, <strong>production</strong> capacity)<br />

• Example of research activities<br />

• Summary<br />

2<br />

Risø DTU, Danmarks Tekniske Universitet


Routes to <strong>hydrogen</strong><br />

Today<br />

• From Hydrocarbon sources (NG) via syn-gas<br />

• (Electrolysis, industrial applications on site)<br />

In Future<br />

• Fermentation, gasification<br />

• Coal gasification (with CO 2 capture).<br />

Fossil<br />

Biomass<br />

Fossil<br />

CHEAP<br />

• Electrolysis<br />

• Alkaline<br />

• PEM<br />

• SOEC<br />

• Thermochemical watersplitting<br />

• Photolysis<br />

• Sulphur-iodine cycle<br />

Electricity, Wind<br />

Heat, solar<br />

SUSTAINABLE<br />

3<br />

Risø DTU, Danmarks Tekniske Universitet


Electrolysis, principle of operation (SOEC)<br />

Electricity + Heat<br />

Chemical energy<br />

Anode:<br />

Katode:<br />

Oxygen electrode<br />

2O 2- → O 2 + 4e -<br />

O 2<br />

+<br />

2O 2-<br />

2H 2 O 2H 2<br />

Fuel electrode<br />

2H 2 O + 4e - → 2H 2 + 2O 2-<br />

2CO 2 + 4e - → 2CO + 2O 2- 2CO 2 2CO<br />

÷<br />

4 e -<br />

<strong>Solid</strong> electrolyte<br />

Electrolyte Ox. electrode H 2 electrode Temp.<br />

Y 0.16 Zr 0.84 O 2 (La,Sr)MnO 3 Ni/Y 0.16 Zr 0.84 O 2 800 o C<br />

4<br />

Risø DTU, Danmarks Tekniske Universitet


Ni-YSZ supported cell (“2.0G”)<br />

Ni/YSZ support<br />

Ni/YSZ electrode<br />

LSM-YSZ electrode<br />

10 µm Acc. voltage: 12 kV SE image<br />

• Manufacturing techniques


Thermodynamics<br />

300<br />

H 2 O → H 2 + ½O 2<br />

1.55<br />

Energy demand (KJ/mol)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Liquid<br />

Gas<br />

Total energy demand (∆ H f )<br />

1.30<br />

1.04<br />

0.78<br />

0.52<br />

0.26<br />

1/(2·n·F) · Energy demand (Volt)<br />

E cell = E tn<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Temperature (ºC)<br />

0.00<br />

Energy (“volt”) = Energy (kJ/mol)/2F<br />

E tn = ∆H/2F<br />

i ∝ E cell - ∆G/2F<br />

Price ∝ 1/i [A/cm 2 ] ,<br />

η = ∆H/∆G > 1 , η = 100 % at E = E tn (no heat loss)


Hydrogen by <strong>electrolysis</strong> for transport sector<br />

Is this an interesting option ?<br />

• FC vehicle has twice (?) the efficiency of the ICE vehicle<br />

• FC vehicles may have ranges like ICE vehicle<br />

• Transport from sustainable resources<br />

• Market: Many small plants. Good entry point<br />

7<br />

Risø DTU, Danmarks Tekniske Universitet


Economical analysis<br />

10<br />

Price of electricity<br />

Other assumptions<br />

SOEC system cost 0.15 €/cm 2<br />

200$/kW*<br />

Electricity price (¢/kWh)<br />

8<br />

6<br />

4<br />

2<br />

DK Electricity Price in 2010<br />

Average Price<br />

Heat<br />

Cell voltage (H 2 O)<br />

Cell voltage (CO 2 )<br />

0.23 ¢/kWh<br />

1.3 V (Vtn)<br />

1.5 V (Vtn)<br />

Current density 1.5 A/cm 2<br />

Expected life time<br />

Interest rate 5%<br />

10 years<br />

Expected CO 2 cost 23€/ton<br />

0<br />

0 2000 4000 6000 8000<br />

Expected H 2 O cost 2.3 €/ton<br />

Hours<br />

Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen #<br />

and M. Mogensen, ”Cost Estimation of H2 and CO Produced by<br />

Steam and CO2 Electrolysis”, 2011, (Unpublished).<br />

8<br />

Risø DTU, Danmarks Tekniske Universitet<br />

*J. Thijssen, U.S. DOE/NETL 2007


Economical analysis<br />

H 2 <strong>production</strong> cost (€/kg)<br />

2<br />

1<br />

0<br />

Heat 1%<br />

Water2%<br />

Investment<br />

Electricity<br />

12%<br />

85%<br />

0.3 €/cm 2<br />

0.15 €/cm 2 18<br />

0 2000 4000 6000 8000<br />

9<br />

0<br />

H 2 <strong>production</strong> cost (¢/Nm 3 )<br />

86<br />

43<br />

0<br />

Equiv. crude oil (€/barrel)<br />

Electrolysis activity (hours)<br />

Source; S. H. Jensen, S. Ebbesen, K. V. Hansen, A. H. Pedersen #<br />

and M. Mogensen, ”Cost Estimation of H2 and CO Produced by<br />

Steam and CO2 Electrolysis”, 2011, (Unpublished).<br />

• Oil price today ~ 79 $/barrel<br />

• Centralized methanol <strong>production</strong>, break even at ~ 110 $/barrel<br />

• AEC, H 2 <strong>production</strong> cost 1.85 €/kg Source; Final Report “Green SynFuels”, 2011<br />

9<br />

Risø DTU, Danmarks Tekniske Universitet<br />

EUDP 64010-0011<br />

Source; Project Report<br />

“planSOEC”, ForskEL2010,<br />

2010-1-10432


SOFC Technology status<br />

• Large development projects, 1990 -<br />

(Risø DTU, Haldor Topsøe A/S)<br />

2001-2011 Transfer of technology to TOFC<br />

History from 2002 to 2008<br />

20000<br />

100<br />

# 12x12 cm 2 cells produced -<br />

15000<br />

10000<br />

5000<br />

0<br />

2002 2003 2004 2005 2006 2007 2008<br />

Year<br />

75<br />

50<br />

25<br />

0<br />

Success rate for 12x12 (%) - line<br />

Risø DTU, Technical University of Denmark


New Topsoe Fuel Cell pilot plant<br />

• Inaugurated spring 2009<br />

• Production for development,<br />

test and market introduction<br />

• 5 MW per year capacity (for demos)<br />

• Full scale plant in 3-5 years


From cells to stacks<br />

• Each fuel cell gives a voltage of ~ 0.8 volt. To attain<br />

useful voltages several cells, e.g. 50, are stacked in<br />

series<br />

• High energy density: Stack electric power density of<br />

2.5 kW/liter demonstrated with by Topsoe - Risø DTU<br />

cell stacks<br />

• Scalable technology:<br />

From kW to MW


SOEC, Cell performance, Process is reversible<br />

World record !<br />

S. H. Jensen et al. , International Journal of Hydrogen Energy,<br />

Volume 32, Issue 15, 2007, P. 3253<br />

Risø DTU, Danmarks Tekniske Universitet


Technology status, SOEC<br />

Degradation of standard SOFC operated as <strong>electrolysis</strong> cells<br />

– With Clean inlet gasses:<br />

– No degradation at low current density (up to -0.75 A/cm 2 at 850ºC)<br />

Cell voltage (mV)<br />

1125<br />

1100<br />

1075<br />

1050<br />

1025<br />

1000<br />

975<br />

950<br />

925<br />

900<br />

850°C, -0.25 A/cm 2<br />

0 100 200 300 400 500 600<br />

Electrolysis time (h)<br />

H 2 O <strong>electrolysis</strong><br />

CO 2 <strong>electrolysis</strong><br />

Co - <strong>electrolysis</strong><br />

H 2 O + CO 2<br />

S. Ebbesen et al; Journal of The Electrochemical Society, 157 10 B1419-B1429 2010


Status at stack level<br />

Few (~ 7) experiments only<br />

Standard TOFC stack (SOFC stack, 2.0G cells) operated as both H 2 O and co<strong>electrolysis</strong><br />

13.0<br />

-0.50 A/cm 2 -0.75 A/cm 2<br />

Stack voltage (V)<br />

12.5<br />

12.0<br />

11.5<br />

11.0<br />

0 200 400 600 800 1000 1200<br />

Electrolysis time (h)<br />

No degradation at low current density (up to -0.75 A/cm 2 at 850ºC)<br />

The Danish National Advanced Technology Foundation’s advanced technology platform<br />

“Development of 2nd generation bioethanol process and technology”,S. Ebbesen et al. Int. J. of Hydrogen Energy 36, 2011


New SOFC cell types tested for <strong>electrolysis</strong> durability<br />

• A TOFC 10-cell stack with three classes of SOFC cells is being tested currently<br />

– 800 °C, -0.75 A/cm 2 , co-<strong>electrolysis</strong> (45%CO 2 -45%H 2 O-10%H 2 ), 1000 hr.<br />

– 2.5* G cells improved over 500 hr. !!<br />

– “2.1 G” cells and “MTC-cells” showed mild degradation<br />

16<br />

Source: M. Chen ForskEL2010, Energinet.dk 2010-1-10432


Electrolysis, Comparison of technologies<br />

Type Maturity Current density Other Advantages<br />

AEC Proven<br />

LT-PEM H 2 at pressure<br />

SOEC CO 2 /H 2 O <strong>electrolysis</strong><br />

HT-PEM HT heat<br />

Documented lifetime<br />

1/Price<br />

• SOEC: Cheap materials, No noble metals, Low volume<br />

• Winner : ???? Determined by price per Nm 3 /hr over lifetime at right scale and time<br />

17<br />

Risø DTU, Danmarks Tekniske Universitet


Electrolysis, Comparison of technologies<br />

Type<br />

Largest<br />

system<br />

Commercial<br />

suppliers<br />

Danish companies<br />

tanks/day<br />

AEC<br />

3.5 MW<br />

Norsk Hydro<br />

Hydrogenics<br />

Iht,….<br />

Green Hydrogen<br />

Siemens Corp. Tech. (DK)<br />

500<br />

LT-PEM<br />

45 kW<br />

H-TEC systems<br />

Hydro,…<br />

IRD<br />

SOEC<br />

15 kW<br />

Haldor Topsøe A/S<br />

TOFC<br />

2 !<br />

HT-PEM W<br />

Tantaline<br />

18<br />

Risø DTU, Danmarks Tekniske Universitet<br />

Elektrolyse<br />

5/10-2011


Status and Challenges<br />

Status<br />

• 20 kW SOFC deomstrated Wartsila/TOFC<br />

• 100 kW SOFC deomstrated (1996) Westinghouse<br />

• 250 kW design projects stated in Europe and US<br />

• TOFC <strong>production</strong> line 5 MW/year<br />

65 tanks per day<br />

20 units<br />

• Scale relevant for early demonstration (?)<br />

• Durability at 0.75 A/cm 2 looks promising (1000 hour test, SOFC 10.000 hours)<br />

• Economy (SOEC <strong>electrolysis</strong>) looks promising<br />

Challenges<br />

• Fast scale up needed<br />

• Large risk (FC Vehicle vs E-Vehicle vs synthetic sustainable fuels)<br />

• Demonstrate reliability and lifetime<br />

• Improve power density<br />

• Demonstrate pressurized operation<br />

19<br />

Risø DTU, Danmarks Tekniske Universitet


Acknowledgement<br />

Sponsors<br />

Danish Energy Authority<br />

• Energinet.dk<br />

• EU<br />

• Topsoe Fuel Cell A/S<br />

• Danish Programme Committee for Energy and<br />

Environment<br />

• Danish Programme Committee for Nano Science<br />

and Technology, Biotechnology and IT<br />

Colleagues:<br />

M. Mogensen, S. Ebbesen, A. Hauch, S. Højgaard Jensen, X. Sun, M. Chen, C. Graves,<br />

J. V. T. Høgh, K. Agersted Nielsen, Y. L. Liu, J. U. Nielsen + many many more


Status and Challenges<br />

• Scale relevant for early demonstration (?)<br />

• Durability at 0.75 A/cm 2 looks promising<br />

• Economy (SOEC <strong>electrolysis</strong>) looks promising<br />

• SOFC technology is a very good starting point for SOEC technology<br />

Challenges<br />

– Fast scale up needed<br />

– Large risk (FC Vehicle vs E Vehicle vs synthetic sustainable fuels)<br />

– Demonstrate reliability and lifetime<br />

– Improve power density<br />

– Demonstrate pressurised operation<br />

• Further information<br />

http://www.<strong>hydrogen</strong>net.dk/<br />

Report: “Pre-Investigation of Water Electrolysis”, PSO-F&U 2006-1-6287<br />

Report: “plan SOEC” ForskEL 2010-1-10432

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!