19.12.2013 Views

Dielectric Breakdown of Gases - Fachgebiet Hochspannungstechnik

Dielectric Breakdown of Gases - Fachgebiet Hochspannungstechnik

Dielectric Breakdown of Gases - Fachgebiet Hochspannungstechnik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Disruptive discharges<br />

Overview<br />

Non-self sustaining discharge<br />

• mobility, drift velocity<br />

• average free traveling distance<br />

• pre-current density<br />

• impact ionization by electrons, formation <strong>of</strong> avalanches<br />

• ionization coefficient<br />

Self sustaining discharge<br />

• secondary emission coefficient<br />

• generations mechanism (Townsend mechanism)<br />

• Paschen‘s law<br />

• streamer mechanism<br />

• disruptive discharges in the extremely inhomogeneous field<br />

• disruptive discharges at impulse voltage stress<br />

• correction with air density, impact <strong>of</strong> humidity<br />

• dielectric strength <strong>of</strong> SF 6<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 1 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Therole<strong>of</strong> positive ions:<br />

• no contribution to ionization <strong>of</strong> the gas (energy too low!)<br />

but......<br />

release <strong>of</strong> free electrons from the metallic cathode surface<br />

necessary energy:<br />

Work function W a<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 2 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Element<br />

Work Function W a (eV)<br />

Cs 0.7 ... 1.9<br />

Al 1.8 ... 4<br />

Ag 3.0 ... 4.7<br />

Mo 3.2 ... 4.2<br />

Ni 3.7 ... 5<br />

Cu 3.9 ... 4.8<br />

Fe 3.9 ... 4.8<br />

Au 4.3 ... 4.9<br />

Cr 4.4<br />

W a<br />

≈ ¼ W i<br />

Order number Name<br />

Allocation <strong>of</strong> shells<br />

K ... N with electrons<br />

K L M N<br />

1 Hydrogen (H) 1<br />

2 Helium (He) 2<br />

3 Lithium (Li) 2 1<br />

4 Beryllium (Be) 2 2<br />

5 Boron (B) 2 3<br />

6 Carbon (C) 2 4<br />

7 Nitrogen (N) 2 5<br />

8 Oxygen (O) 2 6<br />

9 Fluor (F) 2 7<br />

10 Neon (Ne) 2 8<br />

11 Sodium (Na) 2 8 1<br />

12 Magnesium (Mg) 2 8 2<br />

13 Aluminum (Al) 2 8 3<br />

14 Silicon (Si) 2 8 4<br />

15 Phosphorus (P) 2 8 5<br />

16 Sulfur (S) 2 8 6<br />

17 Chlorine (Cl) 2 8 7<br />

18 Argon (Ar) 2 8 8<br />

19 Pottassium (K) 2 8 8 1<br />

20 Calcium (Ca) 2 8 8 2<br />

1 st ionization energy<br />

(eV)<br />

1 st activation energy<br />

(eV)<br />

Remark<br />

13.6 10.2<br />

24.59 19 inert gas<br />

5.39<br />

9.32<br />

8.3<br />

11.26<br />

14.53 6.3 (for N 2 )<br />

13.62 7.9 (for O 2 ) electronegative<br />

17.42 Fluor (F) electronegative<br />

21.56 16.6 inert gas<br />

5.14<br />

7.65<br />

5.99<br />

8.15<br />

10.49<br />

10.36<br />

12.97 electronegative<br />

15.76 inert gas<br />

4.34<br />

6.11<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 3 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

W = W a<br />

E<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 4 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 5 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

W = 2*W a<br />

E<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 6 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 7 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Precondition for release <strong>of</strong> a free charge carrier<br />

by an ion colliding with a metal surface:<br />

2·W a ≤ W = W i + W kin ≈ W i<br />

Yield <strong>of</strong> free charge carriers:<br />

Secondary emission coefficient (by positive ions) γ i<br />

or<br />

Second Townsend ionization coefficient<br />

γ = i<br />

number <strong>of</strong> released free charge carriers by positive ions<br />

number <strong>of</strong> positive ions arriving at the electrode surface<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 8 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Release <strong>of</strong> free electrons from the cathode surface by photons<br />

Necessary energy again:<br />

Work function W a<br />

"photo effect"<br />

or "photo emission"<br />

Precondition for release <strong>of</strong> a free charge carrier<br />

by a photon colliding with a metal surface:<br />

h·ν ≥ W a<br />

with ν = c 0<br />

/λ<br />

Frequency <strong>of</strong><br />

the photon<br />

h ... "Planck‘s constant" or "Quantum <strong>of</strong> action"<br />

= 6.625·10 -34 Ws 2 = 4.134·10 -15 eVs<br />

c 0<br />

... velocity <strong>of</strong> light = 2.998·10 8 m/s<br />

λ<br />

h⋅c<br />

W<br />

≤<br />

0<br />

a<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 9 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Question:<br />

What is the required wavelength to release a free electron from the surface<br />

<strong>of</strong> a copper electrode?<br />

h ⋅ c 4. 135 ⋅10 eVs ⋅ 2. 998 ⋅10<br />

m/s<br />

λ ≤ = =<br />

W<br />

48 . eV<br />

a, Cu<br />

−15 8<br />

258<br />

nm<br />

visible light: λ = 380 nm ... 750 nm<br />

UV-light: λ = 100 nm ... 380 nm<br />

Exposure <strong>of</strong> measuring sphere gaps by UV-lamps (see IEC 60052)!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 10 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Number <strong>of</strong> photons approximately proportional to number <strong>of</strong> positive ions<br />

at breakdown electric field strength<br />

Definition <strong>of</strong> a common secondary emission coefficient γ possible:<br />

γ =<br />

number <strong>of</strong> released free electrons from the electrode surface<br />

number <strong>of</strong> positive ions<br />

γ = f(E/p, electrode material, surface condition, type <strong>of</strong> gas)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 11 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Secondary emission coefficient<br />

Estimations:<br />

Under atmospheric conditions and gap spacings <strong>of</strong> several centimeters<br />

("long-range breakdown"):<br />

Air: γ ≈ 2·10 -6<br />

SF 6<br />

: γ ≈ 2·10 -7<br />

For the "close-range breakdown" in air:<br />

Aluminum: γ ≈ 0.035<br />

Copper: γ ≈ 0.025<br />

Iron: γ ≈ 0.02<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 12 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

radiation<br />

start<br />

electron<br />

1 st avalanche<br />

secondary emission<br />

start<br />

electron<br />

2 nd avalanche<br />

electric field strength E<br />

cathode<br />

anode<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 13 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

No. <strong>of</strong><br />

avalanche<br />

number <strong>of</strong><br />

start electrons<br />

number <strong>of</strong> elctrons<br />

in the avalanche<br />

number <strong>of</strong> generated ions<br />

(elementary charges)<br />

1 1<br />

α<br />

2 γ(e s −1)<br />

3<br />

4<br />

γ<br />

γ<br />

2 αs<br />

( e −<br />

3<br />

1)<br />

αs<br />

( e −1)<br />

2<br />

3<br />

γ<br />

γ<br />

γ(e<br />

2<br />

3<br />

(e<br />

(e<br />

s<br />

e α α<br />

1<br />

αs<br />

αs<br />

αs αs αs<br />

αs<br />

αs<br />

−1)<br />

⋅e<br />

−1)<br />

−1)<br />

2<br />

3<br />

⋅e<br />

⋅e<br />

αs<br />

αs<br />

γ<br />

γ<br />

2<br />

3<br />

γ(e<br />

(e<br />

(e<br />

αs<br />

αs<br />

−1)<br />

⋅e<br />

−1)<br />

−1)<br />

2<br />

3<br />

⋅e<br />

⋅e<br />

αs<br />

αs<br />

e s −<br />

− γ(e −1)<br />

= γ(e<br />

− γ<br />

− γ<br />

etc. etc. etc. etc.<br />

2<br />

3<br />

(e<br />

(e<br />

αs<br />

αs<br />

−1)<br />

−1)<br />

2<br />

3<br />

αs<br />

2<br />

= γ (e<br />

3<br />

= γ (e<br />

−1)<br />

αs<br />

αs<br />

2<br />

−1)<br />

−1)<br />

3<br />

4<br />

A breakdown can happen only if each avalanche is at least<br />

as large as its predecessor, i.e.:<br />

γ<br />

α<br />

α n<br />

αs<br />

(e −1) ≥γ<br />

(e −1 ) or γ (e −1)<br />

≥ 1<br />

n+ 1 s n+<br />

1 n s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 14 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

αs<br />

γ (e −1)<br />

≥ 1<br />

Solving to:<br />

αs ≥ ln (1 + 1/γ) = k<br />

Townsend condition <strong>of</strong> ignition for the homogeneous field<br />

s<br />

∫ α dx ≥<br />

0<br />

Townsend condition <strong>of</strong> ignition for the slightly inhomogeneous field<br />

k<br />

A breakdown can happen only if the number <strong>of</strong> ionizing collisions has<br />

reached a critical value k.<br />

k = 2.5 ... 18<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 15 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

Depending on electrode material, type <strong>of</strong> gas, electric field strength and pressure<br />

3 to 18 ionizing collisions along the discharge path are required<br />

in order to initiate a breakdown.<br />

The development <strong>of</strong> a breakdown according to the generations mechanism<br />

is limited to k = α·s


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

Traveling time in the gas along a distance <strong>of</strong> 1 to 2 cm:<br />

v e<br />

≈ 500 (cm/s)/(V/cm) · 30 000 V/cm = 150 mm/µs<br />

v i<br />

≈ (1...2) (cm/s)/(V/cm) · 30 000 V/cm = (0.3 ... 0.6) mm/µs<br />

for electrons: ca. 100 ns<br />

for ions: ca. 20 µs<br />

propagation time <strong>of</strong><br />

electron avalanche<br />

Expected current:<br />

electron<br />

current<br />

propagation<br />

time <strong>of</strong> ions<br />

ion current<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 17 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Generations mechanism<br />

Actual (measured) current:<br />

propagation time <strong>of</strong><br />

electron avalanche<br />

photo effect = decisive mechanism<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 18 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Derived so far:<br />

B<br />

( E p)<br />

α<br />

−<br />

⎛E<br />

⎞<br />

= A⋅ e = f ⎜ ⎟<br />

p<br />

⎝ p⎠<br />

αs ≥ ln (1 + 1/γ)<br />

Approximation <strong>of</strong> ionization coefficient<br />

Townsend condition <strong>of</strong> ignition<br />

E d<br />

= U d<br />

/s<br />

breakdown field strength – breakdown voltage<br />

Combining these equations and solving to U d<br />

....<br />

U<br />

d<br />

B⋅ p⋅s<br />

B⋅ p⋅s<br />

= = = f( p⋅s)<br />

A⋅ p⋅s<br />

A⋅ p⋅s<br />

ln<br />

ln<br />

⎛ 1 ⎞ k<br />

ln ⎜1+<br />

γ<br />

⎟<br />

⎝ ⎠<br />

Paschen's law<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 19 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen's law:<br />

U d exclusively depends<br />

on the product p·s.<br />

(for a given temperature)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 20 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Calculation <strong>of</strong> breqakdown voltage <strong>of</strong> a homogeneous plate electrode<br />

configuration (Rogowski pr<strong>of</strong>ile) at:<br />

s = 1 cm, p = 1013 mbar, ϑ = 20 °C.<br />

From table hvt_9a, slide 76: A = 645 (bar·mm) -1 , B = 19 kV/(bar·mm).<br />

From slide 12: γ = 2·10 -6 (long range breakdown)<br />

U<br />

d<br />

B⋅ p⋅s<br />

19kV/(bar⋅mm)1.013bar ⋅ ⋅10mm = = = 30.945 kV ≈ 31 kV<br />

A⋅ p⋅s<br />

−1<br />

645(bar⋅mm)<br />

⋅1.013bar⋅10mm<br />

ln<br />

ln<br />

⎛ 1 ⎞ ⎛ 1<br />

ln 1+<br />

+<br />

⎞<br />

⎜ ⎟<br />

ln⎜1<br />

⎟<br />

−6<br />

γ<br />

210 ⋅<br />

⎝<br />

⎠<br />

⎝<br />

When the gap spacing is halved to s = 0.5 cm and the pressure is doubled to<br />

p = 2026 mbar, the resulting breakdown voltage is exactly the same!<br />

⎠<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 21 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen curve<br />

short<br />

range<br />

breakdown<br />

long range<br />

breakdown<br />

Paschen curve <strong>of</strong> air at 20 °C in the homogeneous field<br />

1) experimentally derived curve<br />

2) for short range breakdown calculated with γ = 0,025 (see slide 12)<br />

3) for long range breakdown calculated with γ = 2·10 -6 (k = 13) (see slide 12)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 22 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen curve<br />

Paschen minimum by calculation <strong>of</strong> extreme value: dU d<br />

/d(p·s) = 0<br />

(p·s) min<br />

= e·k/A<br />

U d,min<br />

= B·(p·s) min<br />

-<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 23 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen minimum<br />

(p·s) min<br />

= e·k/A<br />

U d,min<br />

= B·(p·s) min<br />

Gas U d, min (V) (p·s) min (bar·µm)<br />

SF 6 507 3.5<br />

O 2 450 9.3<br />

CO 2 420 6.8<br />

Air 330 … 350 7.3<br />

N 2 240 … 250 7.3<br />

H 2 230 ...270 14<br />

Ne 129 ... 245 53.2<br />

Ar 94 ... 265<br />

He 155 53.2<br />

At normal pressure<br />

(p = 1.013 bar):<br />

s = 7.3 µm<br />

At s = 1 cm:<br />

p = 0.73 mbar<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 24 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen minimum<br />

At voltages below the<br />

Paschen minimum a<br />

breakdown is impossible!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 25 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen curve air<br />

p·s = 1 bar·cm<br />

U d<br />

= 31 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 26 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law Paschen curve SF 6<br />

p·s = 1 bar·cm<br />

U d<br />

≈ 89 kV<br />

p·s = 4 bar·cm<br />

U d<br />

≈ 330 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 27 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Comparison <strong>of</strong> Paschen minima for air, SF 6<br />

, Argon<br />

Mean value <strong>of</strong> at least 20 measurements<br />

peak value <strong>of</strong> 50 Hz alternating voltage<br />

direct voltage, positive polarity<br />

dry air<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 28 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Increase <strong>of</strong> breakdown voltage at both sides <strong>of</strong> the Paschen minimum<br />

Long range breakdown<br />

short<br />

range<br />

breakdown<br />

long range<br />

breakdown<br />

p ↑ ......<br />

s ↑ ......<br />

free traveling distance ↓<br />

electric field strength ↓<br />

Short range breakdown<br />

number <strong>of</strong> available molecules ↓<br />

infinite increase not possible, though!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 29 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Paschen's law<br />

Paschen curve <strong>of</strong> a vacuum breaker tube<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 30 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Approximations<br />

For air in the homogeneous field, under atmospheric standard conditions and<br />

for gap spacings <strong>of</strong> few centimeters<br />

E d<br />

... breakdown electric field strength in kV<br />

C2<br />

Ed ≈ C1+<br />

s … gap spacing in cm<br />

s C 1<br />

= 24.36 kV/cm<br />

C 2<br />

= 6.72 kV/cm ½<br />

Ud = Ed⋅ s= C1⋅ s+ C2⋅<br />

s<br />

(s ≈ 1 cm ... 10 cm)<br />

Ud = 24.5⋅ s+ 7⋅<br />

s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 31 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Approximations<br />

For SF 6<br />

in the homogeneous field, at normal temperature and<br />

for gap spacings <strong>of</strong> few centimeters<br />

U d = [8.84 kV/(bar·mm)]·p·s + 0.5 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 32 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Streamer mechanism<br />

(according to Raether)<br />

Generations mechanism only as far as the number <strong>of</strong> electrons <strong>of</strong> the<br />

first avalanche stays below a critical value:<br />

<br />

E m<br />

N kr<br />

≈ e 18 ≈ 10 8<br />

<br />

E s<br />

space charge field E s<br />

superimposed to<br />

main field E m<br />

resulting increase<br />

<strong>of</strong> electric field strength<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 33 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Streamer mechanism<br />

E<br />

N el >= N kr<br />

• photo radiation, propagation at velocity <strong>of</strong> light<br />

• formation <strong>of</strong> new avalanches in front <strong>of</strong>, behind and beneath the primary avalanche<br />

• individual avalanches grow together streamer ("cold discharge")<br />

• propagation velocity 10 cm/µs ... 100 cm/µs<br />

• several parallel streamers possible<br />

• finally bridging <strong>of</strong> the total spacing by a streamer plasma channel, breakdown<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 34 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Streamer mechanism<br />

Important: a complete breakdown can<br />

develop from a single avalanche!<br />

Condition <strong>of</strong> ignition for streamer breakdown:<br />

α ⋅x kr<br />

≥18<br />

for the homogeneous field<br />

x<br />

∫ kr<br />

0<br />

αdx<br />

≥18<br />

for the slightly inhomogeneous field<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 35 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Streamer mechanism<br />

The drift velocity <strong>of</strong> electrons at values <strong>of</strong> the breakdown dielectric<br />

field strength (ca. 30 kV/cm) was calculated to be v e<br />

= 150 mm/µs.<br />

Assuming an ionization coefficient <strong>of</strong> α = 10.7 cm -1 (see calculation example<br />

chapter 9a, slide 79) the avalanche has reached the critical amplification e 18<br />

after a time t kr<br />

:<br />

t<br />

x α ⋅ x<br />

18<br />

= = = = 0.11µs<br />

10.7 cm ⋅15 cm/µs<br />

kr<br />

kr<br />

kr −1<br />

ve<br />

α ⋅ve<br />

The distance x kr<br />

passed up to this moment is<br />

x<br />

18 18<br />

= = = 1.68 cm<br />

α 10.7 cm<br />

kr −1<br />

conclusions ...<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 36 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Streamer mechanism<br />

conclusions ...<br />

<strong>Dielectric</strong> breakdowns may occur within a time <strong>of</strong> little more than 100 ns even<br />

at gap spacings in the range <strong>of</strong> far above one to two centimeters.<br />

The dielectric breakdown <strong>of</strong> air at atmospheric standard conditions follows the<br />

Townsend mechanism only at gap spacings <strong>of</strong> one to two centimeters.<br />

At gap spacings <strong>of</strong> several centimeters the streamer mechanism is<br />

relevant for dielectric breakdown.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 37 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Disruptive discharges<br />

Overview<br />

Non-self sustaining discharge<br />

• mobility, drift velocity<br />

• average free traveling distance<br />

• pre-current density<br />

• impact ionization by electrons, formation <strong>of</strong> avalanches<br />

• ionization coefficient<br />

Self sustaining discharge<br />

• secondary emission coefficient<br />

• generations mechanism (Townsend mechanism)<br />

• Paschen‘s law<br />

• streamer mechanism<br />

• disruptive discharges in the extremely inhomogeneous field<br />

• disruptive discharges at impulse voltage stress<br />

• correction with air density, impact <strong>of</strong> humidity<br />

• dielectric strength <strong>of</strong> SF 6<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 38 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

Condition <strong>of</strong> ignition for generations meachnism (Townsend):<br />

αs ≥ ln (1 + 1/γ) = k = 2.5 … 18<br />

homogeneous field<br />

s<br />

∫<br />

0<br />

αdx<br />

≥ k =<br />

2.5 ...18<br />

slightly inhomogeneous field<br />

Condition <strong>of</strong> ignition for streamer mechanism:<br />

α ⋅x kr<br />

≥18<br />

homogeneous field<br />

x<br />

kr<br />

∫<br />

0<br />

αdx<br />

≥18<br />

slightly inhomogeneous field<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 39 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

Definition <strong>of</strong> inhomogeneity by the utilization factor according to Schwaiger:<br />

η = E 0<br />

/E max<br />

homogeneous field: η = 1 ... 0.8<br />

slightly inhomogeneous field: η = 0.8 ... 0.2<br />

strongly inhomogeneous field: η = < 0.2<br />

η is also called degree <strong>of</strong> homogeneity.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 40 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

slightly inhomogeneous field: U a<br />

= U d<br />

When the condition <strong>of</strong> ignition is fulfilled ⇒ complete breakdown<br />

U d <strong>of</strong> the slightly inhomogeneous field is always<br />

lower than U d <strong>of</strong> the homogeneous field!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 41 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

Due to its non-linear<br />

dependence on electric field<br />

strength, ionization<br />

coefficient α increases more<br />

with an increase in field<br />

strength E than it decreases<br />

with a decrease <strong>of</strong> E.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 42 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

slightly inhomogeneous field<br />

homogeneous field<br />

U<br />

i<br />

s<br />

= ∫<br />

E id<br />

x<br />

0<br />

=<br />

U h = E h·s<br />

s<br />

∫<br />

0<br />

α<br />

d<br />

x<br />

><br />

α·s<br />

U d,i<br />

<<br />

U d,h<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 43 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

For the same reason: U d, symmetrical<br />

> U d, asymmetrical<br />

U<br />

s<br />

U<br />

s<br />

E<br />

E<br />

x<br />

x<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 44 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

slightly inhomogeneous<br />

symmetrical field<br />

slightly inhomogeneous<br />

asymmetrical field<br />

sym<br />

s<br />

s<br />

= ∫ symd<br />

= asym<br />

= ∫<br />

asym<br />

0<br />

0<br />

U E x<br />

U E d<br />

x<br />

s<br />

∫ α<br />

d<br />

x<br />

<<br />

0<br />

s<br />

∫<br />

0<br />

α<br />

d<br />

x<br />

U d,sym > U d,asym<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 45 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

U d = 24.5·s + 7·√s<br />

symmetrical<br />

configuration<br />

asymmetrical<br />

configuration<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 46 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

p<br />

=<br />

s<br />

+<br />

r<br />

r<br />

q<br />

=<br />

R<br />

r<br />

η ⇒<br />

next slide<br />

D = 100 cm, s = 10 cm<br />

p = 1.2; q = 1; η = 0.93<br />

U d = 24.5·s + 7·√s<br />

symmetrical<br />

configuration<br />

D = 25 cm, s = 10 cm<br />

p = 1.8; q = 1; η = 0.77<br />

D = 25 cm, s = 10 cm<br />

p = 1.8; q = ∞; η = 0.62<br />

D = 10 cm, s = 10 cm<br />

p = 3; q = 1; η = 0.56<br />

asymmetrical<br />

configuration<br />

D = 10 cm, s = 10 cm<br />

p = 3; q = ∞; η = 0.375<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 47 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Characteristics <strong>of</strong> the slightly inhomogeneous field<br />

spheres<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 48 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Development <strong>of</strong> breakdown in the strongly inhomogeneous field<br />

η < 0.2 0.2<br />

Fulfilling the thecondition <strong>of</strong> <strong>of</strong> ignition ignitionnot notsufficient to to initiate initiatea complete breakdown<br />

Formation <strong>of</strong> <strong>of</strong> space spacecharges, which whichsuperimpose the themain mainfield<br />

Pre-discharges, partial partial discharges, corona discharges<br />

when whenthe theinception voltage U e<br />

has<br />

e<br />

has been beenreached<br />

Partial Partial breakdowns, stabilized by byregions regions<strong>of</strong> <strong>of</strong> low lowelectric field fieldstrength<br />

(with (withthe theeffect effect<strong>of</strong> <strong>of</strong> a resistive-capacitive series seriesimpedance)<br />

<strong>Breakdown</strong> when whenU d<br />

><br />

d or or >> >> U e<br />

has<br />

e<br />

has been beenreached<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 49 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Development <strong>of</strong> breakdown in the strongly inhomogeneous field<br />

breakdown<br />

voltage<br />

corona<br />

inception<br />

voltage<br />

Distinct dependence on polarity<br />

for U e and U d<br />

strongly<br />

slightly inhomogeneous field<br />

Degree <strong>of</strong> homogeneity η<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 50 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field, positive tip<br />

Start electrons must be generated<br />

in the region where α > 0.<br />

Primary avalanche develops towards a region<br />

<strong>of</strong> increasing field strength.<br />

Space charge density<br />

Due to photo ionization: after initial individual<br />

discharges (streamer type): glow<br />

Electrons propagate to the anode, positive ions<br />

form a positiveley charged cloud (space charge)<br />

Decrease <strong>of</strong> electric field strength at the tip,<br />

increase <strong>of</strong> electric field in the space,<br />

border <strong>of</strong> α > 0 shifted to the right<br />

Strong streamers reaching far out into the space<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 51 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field, positive tip<br />

Type <strong>of</strong> discharge Oscillogram <strong>of</strong> discharge current<br />

Streamers<br />

Glow<br />

Streamers<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 52 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field, negative tip<br />

Start electrons must be generated directly at<br />

the tip to be able to produce avalanches;<br />

delay <strong>of</strong> ignition by statistical scattering<br />

Primary avalanche propagates towards a region<br />

<strong>of</strong> decreasing field strength; individual corona impulses<br />

Electrons propagate to the anode, positive ions<br />

form a positively charged cloud (space charge)<br />

Space charge density<br />

Attachment <strong>of</strong> electrons in the region <strong>of</strong> low electric<br />

field strength: negative ions, negative space charge<br />

Increase <strong>of</strong> electric field strength at the tip, decrease<br />

<strong>of</strong> electric field strength in the space, border <strong>of</strong> α > 0<br />

shifted to the left<br />

Trichel impulses, re-ignition whenever the negative<br />

space charge has disappeared<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 53 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field, negative tip<br />

Type <strong>of</strong> discharge Oscillogram <strong>of</strong> discharge current<br />

Trichel pulses<br />

increase Steigerung in frequency der (repetition Frequenzrate)<br />

with voltage mit der Spannung<br />

Streamers<br />

Streamers<br />

pulseless glow,<br />

negative glow<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 54 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Corona discharges<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 55 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field, negative tip<br />

• <strong>Breakdown</strong> voltage <strong>of</strong> positive tip is always lower<br />

than that <strong>of</strong> a negative tip<br />

U d, d, positive positive<br />

< U d, d, negative negative<br />

memory hook: "positive is negative"<br />

• At alternating voltage stress the breakdown <strong>of</strong> a strongly inhomogeneous<br />

asymmetrical electrode configuration generally occurs in the positive half cycle<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 56 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Stark inhomogenes Feld<br />

Ionenschirm<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 57 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Development <strong>of</strong> breakdown from pre-discharges<br />

Range <strong>of</strong> existence for different types <strong>of</strong> discharge<br />

Type <strong>of</strong> discharge<br />

Demand in<br />

voltage per<br />

unit length<br />

Leader<br />

ca. 1 m … several m<br />

> 20 cm<br />

< 20 cm<br />

Streamer<br />

Glow<br />

Gap spacing<br />

(for air under<br />

standard<br />

atmospheric<br />

conditions)<br />

Limit <strong>of</strong> homogeneous field<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 58 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Leader mechanism<br />

Pre-requisites:<br />

• Leader<br />

• Thermo ionization<br />

• Negative resistance<br />

• gap spacing > 1 m<br />

• sufficiently long time duration <strong>of</strong> stress<br />

• sufficiently high voltage rate <strong>of</strong> change (du/dt)<br />

• Leader corona (streamer)<br />

Fulfilled for positive SI voltage and alternating voltage (positive half cycle)<br />

Not fulfilled for direct voltage and LI voltage<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 59 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Leader mechanism at positive SI voltage<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 60 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Leader mechanism at positive SI voltage<br />

For insulation <strong>of</strong> alternating voltage <strong>of</strong> û = 1000 kV: s = 2 m<br />

For insulation <strong>of</strong> alternating voltage <strong>of</strong> û = 2000 kV: s = 8 m<br />

System System voltage voltage<strong>of</strong> <strong>of</strong> U s<br />

><br />

s 1200 1200 kV kV not noteconomical<br />

due dueto to extreme requirements <strong>of</strong> <strong>of</strong> insulation!<br />

Electrical stength stengthto to positive SI SI voltage is is<br />

dimensioning for forequipment <strong>of</strong> <strong>of</strong> EHV EHV systems!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 61 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

≈<br />

≈<br />

8<br />

8<br />

kV/cm<br />

kV/cm<br />

≈<br />

≈<br />

4.5<br />

4.5<br />

kV/cm<br />

kV/cm<br />

•• direct directvoltage<br />

•• sphere sphereØ 10 10 cm cm<br />

•air •air<br />

•• δ δ = 1<br />

positive sphere<br />

negative sphere<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 62 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

≈<br />

≈<br />

4.5<br />

4.5<br />

kV/cm<br />

kV/cm<br />

•• alternating voltage voltage<br />

•• sphere sphereØ 10 10 cm cm<br />

•air •air<br />

•• δ δ = 1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 63 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

hom. field<br />

Tip<br />

≈<br />

≈<br />

4...5<br />

4...5<br />

kV/cm<br />

kV/cm<br />

•• alternating voltage voltage<br />

•air •air<br />

•• δ δ = 1<br />

In<br />

In<br />

order<br />

order<br />

to<br />

to<br />

increase<br />

increase<br />

inception<br />

inception<br />

voltage,<br />

voltage,<br />

radii<br />

radii<br />

must<br />

must<br />

be<br />

be<br />

increased.<br />

increased.<br />

In<br />

In<br />

order<br />

order<br />

to<br />

to<br />

increase<br />

increase<br />

breakdown<br />

breakdown<br />

voltage,<br />

voltage,<br />

gap<br />

gap<br />

spacing<br />

spacing<br />

must<br />

must<br />

be<br />

be<br />

increased.<br />

increased.<br />

Tip <strong>of</strong> 0.5 mm radius<br />

(voltage strongly depending on implementation <strong>of</strong> the tip)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 64 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

LI voltage<br />

1.2/50<br />

≈<br />

≈<br />

0.8<br />

0.8<br />

kV/cm<br />

kV/cm<br />

SI voltage<br />

alternating voltage, 50 Hz<br />

•• alternating, SI SI and and LI LI voltage voltage<br />

•air •air<br />

•• δ δ = 1<br />

gap spacing s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 65 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 66 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Strongly inhomogeneous field<br />

Inception and breakdown voltages<br />

•• alternating voltage voltage<br />

•• sphere sphereØ 14 14 cm cm<br />

•air •air<br />

•• ϑ ϑ = 20 20 °C °C<br />

Beyond a certain limit the breakdown develops<br />

directly when inception voltage has been<br />

reached, without any pre-discharges, even for<br />

strongly inhomogeneous configurations!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 67 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Disruptive discharges<br />

Overview<br />

Non-self sustaining discharge<br />

• mobility, drift velocity<br />

• average free traveling distance<br />

• pre-current density<br />

• impact ionization by electrons, formation <strong>of</strong> avalanches<br />

• ionization coefficient<br />

Self sustaining discharge<br />

• secondary emission coefficient<br />

• generations mechanism (Townsend mechanism)<br />

• Paschen‘s law<br />

• streamer mechanism<br />

• disruptive discharges in the extremely inhomogeneous field<br />

• disruptive discharges at impulse voltage stress<br />

• correction with air density, impact <strong>of</strong> humidity<br />

• dielectric strength <strong>of</strong> SF 6<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 68 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

U 0<br />

...<br />

0<br />

... static staticinception voltage voltage<br />

U max<br />

t 0 t ...<br />

Start electron<br />

0<br />

... time time to to reach reachU 0 0<br />

u<br />

available<br />

t S t ...<br />

S<br />

... statistical scattering time time<br />

U 0<br />

t A t ...<br />

A<br />

... time time <strong>of</strong> <strong>of</strong> discharge dvpmt dvpmt<br />

t F t ...<br />

F<br />

... time time <strong>of</strong> <strong>of</strong> final final breakdown<br />

+<br />

t 0 t S t A t F<br />

t<br />

discharge delay delaytime t V t V<br />

Total Total time time <strong>of</strong> <strong>of</strong> breakdown t D t =<br />

D t 0 t +<br />

0 t S t +<br />

S t A t +<br />

A t F t =<br />

F t 0 t +<br />

0 t V t +<br />

V t F t F<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 69 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

t S t ...<br />

S<br />

... statistical scattering time time<br />

U max<br />

u<br />

Start electron<br />

available<br />

- decreases with increasing volume<br />

- in air at s = 1 mm: several 10 ns<br />

U 0<br />

- by UV radiation: t s<br />

0<br />

- decrease also by high roughness<br />

<strong>of</strong> electrode surface<br />

t 0 t S t A t F<br />

t<br />

- t S<br />

is higher in electronegative gases than in air<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 70 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

t A t ...<br />

A<br />

... time time <strong>of</strong> <strong>of</strong> discharge development<br />

U max<br />

u<br />

U 0<br />

Start electron<br />

available<br />

Generations mechanism limited<br />

to low values <strong>of</strong> (p·s) and u ≈ U 0<br />

Streamer mechanism effective<br />

Velocity <strong>of</strong> avalanche propagation:<br />

v(t) ~ (u(t) - U 0<br />

)<br />

t 0 t S t A t F<br />

t<br />

d<br />

t + t + t<br />

0 S A<br />

0 S A<br />

= ∫ v()<br />

t dt { }<br />

t<br />

+ t<br />

0 S<br />

~<br />

t + t + t<br />

t<br />

∫<br />

+ t<br />

0 S<br />

ut () − U dt= Ad ⋅ = const.<br />

0<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 71 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

t A t ...<br />

A<br />

... time time <strong>of</strong> <strong>of</strong> discharge development<br />

U max<br />

u<br />

U 0<br />

A·d<br />

(voltage-time-area)<br />

Generations mechanism limited<br />

to low values <strong>of</strong> (p·s) and u ≈ U 0<br />

Streamer mechanism effective<br />

Velocity <strong>of</strong> avalanche propagation:<br />

v(t) ~ (u(t) - U 0<br />

)<br />

t 0 t S t A t F<br />

t<br />

d<br />

t + t + t<br />

0 S A<br />

0 S A<br />

= ∫ v()<br />

t dt { }<br />

t<br />

+ t<br />

0 S<br />

~<br />

t + t + t<br />

t<br />

∫<br />

+ t<br />

0 S<br />

ut () − U dt= Ad ⋅ = const.<br />

0<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 72 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

t A t ...<br />

A<br />

... time time <strong>of</strong> <strong>of</strong> discharge development<br />

U max<br />

u<br />

A·d<br />

(voltage-time-area)<br />

U 0<br />

t 0 t S t A t F<br />

t<br />

Law <strong>of</strong> <strong>of</strong> voltage-time-area (Kind, 1957)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 73 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

Law Law<strong>of</strong> <strong>of</strong> voltage-time-area<br />

Discharge development characteristic<br />

Scatter characteristic<br />

A·d<br />

D<br />

Average characteristic<br />

A·d<br />

D<br />

A·d<br />

D<br />

Scatter <strong>of</strong> time to breakdown<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 74 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

<strong>Breakdown</strong>-voltage-time-characteristic<br />

Problem: spark sparkgap gapshall shallprotect protectequipment<br />

Impulse breakdown voltage<br />

Time to breakdown<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 75 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

<strong>Breakdown</strong>-voltage-time-characteristic<br />

Problem: spark sparkgap gapshall shallprotect protectequipment<br />

Impulse breakdown voltage<br />

No!<br />

Time to breakdown<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 76 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

<strong>Breakdown</strong>-voltage-time-characteristic<br />

Problem: spark sparkgap gapshall shallprotect protectequipment<br />

Impulse breakdown voltage<br />

Better,but<br />

just bad!<br />

Time to breakdown<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 77 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

Insulation coordination<br />

U-t-characteristics<br />

Voltage<br />

Rod-rod gap 1210 mm gap spacing<br />

GIS: withstand characteristic for chopped<br />

impulses at minimum operating pressure<br />

Arrester protective characteristic<br />

(max protection level)<br />

Time<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 78 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

<strong>Breakdown</strong>-voltage-time-characteristic<br />

LI<br />

voltage<br />

SI<br />

voltage<br />

TOV<br />

continuous<br />

operating voltage<br />

Minimum<br />

Minimum<br />

at<br />

at<br />

front<br />

front<br />

time<br />

time<br />

<strong>of</strong><br />

<strong>of</strong><br />

≈<br />

≈<br />

1<br />

1<br />

ms<br />

ms<br />

Schematische <strong>Breakdown</strong>-voltage-time-characteristics Darstellung von Stoßkennlinien air at in small Luft bei gap<br />

kleinen spacings Schlagweiten (1) (streamer (1) mechanism) mit Streamerdurchschlag and large gap spacings und großen<br />

Schlagweiten (2) (leader mechanism) (2) mit Leaderdurchschlag<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 79 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Time delay <strong>of</strong> breakdown<br />

<strong>Breakdown</strong>-voltage-time-characteristic<br />

50%-breakdown voltage <strong>of</strong> a rod-plane<br />

electrode 50%-Durchschlagspannung configuration in air einer under Stab-Platteatmospheric<br />

Funkenstrecke standard in Luft unter conditions atmosphärischen for<br />

positive Normalbedingungen LI and SI voltage: bei positiver Blitz- und<br />

1) Schaltstoßspannung<br />

standard LI voltage 1.2/50<br />

2) 1) standard Blitzstoßspannung SI voltage1,2/50<br />

250/2500<br />

3) 2) curve Schaltstoßspannung <strong>of</strong> minimum dielectric 250/2500 strength<br />

3) Kurve minimaler Festigkeit<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 80 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Disruptive discharges<br />

Overview<br />

Non-self sustaining discharge<br />

• mobility, drift velocity<br />

• average free traveling distance<br />

• pre-current density<br />

• impact ionization by electrons, formation <strong>of</strong> avalanches<br />

• ionization coefficient<br />

Self sustaining discharge<br />

• secondary emission coefficient<br />

• generations mechanism (Townsend mechanism)<br />

• Paschen‘s law<br />

• streamer mechanism<br />

• disruptive discharges in the extremely inhomogeneous field<br />

• disruptive discharges at impulse voltage stress<br />

• correction with air density, impact <strong>of</strong> humidity<br />

• dielectric strength <strong>of</strong> SF 6<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 81 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Correction with air density<br />

Relation between particle density n, gas pressure p and<br />

absolute temperature T (universal gas law):<br />

n<br />

p<br />

=<br />

k ⋅ T<br />

k ... Boltzmann constant = 1.37·10 -23 Ws/K<br />

absolute gas density<br />

ρ ~ p (p in bar or Pa; T in K)<br />

T<br />

relative gas density (by reference to standard values)<br />

δ<br />

ρ p T p 273+<br />

20<br />

p<br />

0,289<br />

ρ p T 1013 273 + ϑ 273 + ϑ<br />

0<br />

= = ⋅ = ⋅ = ⋅<br />

0 0<br />

(p in mbar or hPa<br />

ϑ in °C)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 82 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Correction with air density<br />

In case <strong>of</strong><br />

• only minor deviation from standard pressure and temperature<br />

• homogeneous or slightly inhomogeneous field<br />

Ud p⋅T0<br />

≈ = δ<br />

U p ⋅T<br />

d0 0<br />

Therefore: correction with density required! Acc. to IEC 60060-1:<br />

U<br />

d0<br />

U<br />

=<br />

k<br />

d<br />

d<br />

with<br />

k<br />

d<br />

m<br />

⎛ p ⎞ ⎛T0<br />

⎞<br />

= ⎜ ⎟ ⋅<br />

p<br />

⎜<br />

0<br />

T<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

n<br />

m = n = 1 <br />

k d<br />

= δ<br />

for homogeneous and slightly inhomogeneous field at any kind <strong>of</strong> voltage<br />

for strongly inhomogeneous field at direct and LI voltage<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 83 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Correction with air density<br />

For alternating and SI voltage and s > 1 m (leader mechanism!)<br />

m = n < 1<br />

3 7 9<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 84 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Impact <strong>of</strong> humidity<br />

see chapter HVT 1, Ch. 5<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 85 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Disruptive discharges<br />

Overview<br />

Non-self sustaining discharge<br />

• mobility, drift velocity<br />

• average free traveling distance<br />

• pre-current density<br />

• impact ionization by electrons, formation <strong>of</strong> avalanches<br />

• ionization coefficient<br />

Self sustaining discharge<br />

• secondary emission coefficient<br />

• generations mechanism (Townsend mechanism)<br />

• Paschen‘s law<br />

• streamer mechanism<br />

• disruptive discharges in the extremely inhomogeneous field<br />

• disruptive discharges at impulse voltage stress<br />

• correction with air density, impact <strong>of</strong> humidity<br />

• dielectric strength <strong>of</strong> SF 6<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 86 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

•• about about3 times timeshigher higherdielectric strength compared with withair airat at 0.1 0.1 MPa MPa (α (α eff<br />

/p!)<br />

eff<br />

/p!)<br />

•• at at 0.2 0.2 MPa MPa to to 0.3 0.3 MPa MPa (2 (2 bar bar to to 3 bar) bar) overpressure diel.strength like likeinsulating oil oil<br />

•• GIS GIS are areoperated at at overpressures <strong>of</strong> <strong>of</strong> 0.3 0.3 MPa MPa to to 0.6 0.6 MPa MPa<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 87 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

Ionization coefficient<br />

For formation <strong>of</strong> avalanches:<br />

α eff<br />

must be > 0.<br />

For air this is the case at<br />

E/p >= 25 kV/(cm bar),<br />

for SF 6<br />

it is the case only for<br />

E/p >= 88.4 kV/(cm bar)<br />

Reason for the two- to threefold<br />

dielectric strength <strong>of</strong> SF 6<br />

compared<br />

with that <strong>of</strong> air!<br />

Related effective ionization coefficient <strong>of</strong> air (1), nitrogen (2) and<br />

Effektiver bezogener Ionisierungskoeffizient von Luft (1), Stickst<strong>of</strong>f N 2 (2) und SF 6 (3)<br />

SF 6 (3), in Abhängigkeit depending von der related bezogenen electric elektrischen field strength Feldstärke<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 88 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

Saturated vapor pressure curve <strong>of</strong> SF 6<br />

critical pressure<br />

liquid<br />

gaseous<br />

critical temperature<br />

SF Meaning 6 -Dampfdruckkurve <strong>of</strong> critical pressure and temperature: above these values SF<br />

Bedeutung des kritischen Drucks und der kritischen Temperatur: oberhalb dieser Werte tritt SF 6 nur noch 6<br />

gasförmig exists exclusively auf in gaseous form<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 89 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

clean Al-conductor<br />

(laboratory conditions)<br />

50-Hz breakdown voltage<br />

(peak value)<br />

free conductive particles<br />

(length: 1 mm)<br />

free conductive particles<br />

(length: 6 mm)<br />

SF 6<br />

pressure<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 90 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

Total pressure<br />

Plan: Plan:<br />

GIL GILshall shallbe beoperated at at<br />

20% 20% SF SF 6<br />

and<br />

6<br />

and 80% 80% N 2 2<br />

SF SF 6<br />

-air-mixture<br />

6 100 SF 6<br />

fraction<br />

0 Vol.% air<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 91 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

SF 6<br />

Air<br />

<strong>Breakdown</strong> alternating voltage vs. (p·s) <strong>of</strong> a homogeneous field configuration in SF 6 and air<br />

Durchschlagwechselspannung einer Homogenfeld-Funkenstrecke in SF6<br />

in Abhängigkeit vom Produkt (p·s) mit Vergleichskurven für Luft<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 92 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

Inception and breakdown alternating and direct voltage vs. gap spacing <strong>of</strong><br />

Anfangs- und Durchschlagspannung einer Spitze-Platten-Funkenstrecke (Spitzenöffnungswinkel 30°)<br />

in SF 6 bei 1 bar Druck in Abhängigkeit von der Schlagweite s mit Vergleichskurven für Luft bei<br />

Gleich- und Wechselspannung<br />

a tip-plate electrode configuration (tip angle 30°) in SF 6 and air at 0.1 MPa<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 93 -


<strong>Dielectric</strong> <strong>Breakdown</strong> <strong>of</strong> <strong>Gases</strong><br />

<strong>Breakdown</strong> behaviour in SF 6<br />

Inception<br />

Air<br />

and breakdown alternating and direct voltage vs. pressure <strong>of</strong> a<br />

Anfangs- und Durchschlagspannung einer Kugel-Platte-Funkenstrecke (Kugeldurchmesser 1 cm) in SF 6<br />

sphere-plate in Abhängigkeit electrode vom Gasdruck configuration p mit Vergleichskurven (sphere für Luft diameter bei Gleich- und 1 Wechselspannung cm) in SF 6 and air<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 9, Part 2 - 94 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!