18.12.2013 Views

answers to the Power Series Worksheet

answers to the Power Series Worksheet

answers to the Power Series Worksheet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Math 113, Calculus II<br />

<strong>Power</strong> <strong>Series</strong> - Answers<br />

1. Find <strong>the</strong> radius of convergence and <strong>the</strong> interval of convergence of <strong>the</strong> following series.<br />

(a) ∑ ∞<br />

n=0<br />

(b) ∑ ∞<br />

n=1<br />

(c) ∑ ∞<br />

n=0<br />

(d) ∑ ∞<br />

n=0<br />

x n<br />

(2n)!<br />

2 n<br />

(x − 1)n<br />

n2 5 n<br />

n! xn<br />

2. Use <strong>the</strong> fact that<br />

(−1) n−1<br />

(x + 3) n<br />

n<br />

tan −1 x =<br />

∫ x<br />

0<br />

1<br />

1 + t 2 dt<br />

<strong>to</strong> find a power series expansion for tan −1 x centered at x = 0.<br />

(a) Use this result <strong>to</strong> get a formula for π/4. [Hint: what should you set x equal <strong>to</strong>?]<br />

tan −1 x<br />

(b) Use <strong>the</strong> series <strong>to</strong> evaluate lim .<br />

x→0 x<br />

3. Use <strong>the</strong> Taylor series centered at 0 for e x , sin x, and<br />

at 0 for <strong>the</strong> following functions.<br />

1<br />

<strong>to</strong> derive <strong>the</strong> Taylor series centered<br />

1 − x<br />

(a) e x2 (b) sin(x 3 ) (c) cos x (d) cos 5x<br />

(e)<br />

1<br />

4 + x<br />

(f)<br />

6x<br />

1 − x 2 (g) sin x + cos x (h)<br />

sin x<br />

x<br />

4. Use <strong>the</strong> Taylor series centered at 0 <strong>to</strong> determine if sin x is even, odd, or nei<strong>the</strong>r. Also determine<br />

<strong>the</strong> result for cos x and e x .<br />

5. Find <strong>the</strong> Taylor series centered at 0 for <strong>the</strong> function sin 2 x. [Hint: Begin by differentiating<br />

<strong>the</strong> function, <strong>the</strong>n apply a famous trig. identity.] Use your answer <strong>to</strong> get a power series<br />

representation for cos 2 x.<br />

6. Give <strong>the</strong> first four terms in <strong>the</strong> Taylor series centered at 2 for <strong>the</strong> functions<br />

1<br />

(a)<br />

1<br />

5 x + 1<br />

(b) e −x<br />

7. Give an example of a power series whose interval of convergence is precisely −1 < x ≤ 1.<br />

8. Use power series ra<strong>the</strong>r than l’Hôpital’s Rule <strong>to</strong> calculate <strong>the</strong> following limits.<br />

(a) lim<br />

x→0<br />

sin(3x 2 )<br />

x 2<br />

(b) lim<br />

x→0<br />

1 + x − e x<br />

x 2


Math 113, Calculus II<br />

<strong>Power</strong> <strong>Series</strong> - Answers<br />

Answers <strong>to</strong> <strong>the</strong> <strong>Power</strong> <strong>Series</strong> <strong>Worksheet</strong><br />

1. (a) radius: R = ∞; interval: (−∞, ∞)<br />

(b) radius: R = 1 2<br />

; interval: [1/2, 3/2]<br />

(c) radius: R = ∞; interval: (−∞, ∞)<br />

(d) radius: R = 1; interval: (−4, −2]<br />

2. tan −1 x = ∑ ∞ x2n+1<br />

n=0<br />

(−1)n<br />

2n + 1 = x − x3<br />

3 + x5<br />

5 − x7<br />

7 + · · ·<br />

(a) π/4 = tan −1 (1) = ∑ ∞ (1)2n+1<br />

n=0<br />

(−1)n<br />

2n + 1 = ∑ ∞<br />

n=0<br />

(b) lim x→0<br />

tan −1 x<br />

x<br />

[ (<br />

∑∞<br />

= lim x→0 x −1 x2n+1<br />

n=0<br />

(−1)n<br />

2n + 1<br />

lim x→0<br />

[<br />

1 − x2<br />

3 + x4<br />

5 − x6<br />

7 + · · · ]<br />

= 1<br />

3. (a) e x2 = ∑ ∞ (x 2 ) n<br />

n=0<br />

n!<br />

= ∑ ∞ x 2n<br />

n=0<br />

n!<br />

(b) sin(x 3 ) = ∑ ∞<br />

n=0 (−1)n (x3 ) 2n+1<br />

(2n + 1)! = ∑ ∞ x6n+3<br />

n=0<br />

(−1)n<br />

(2n + 1)!<br />

]<br />

(c) cos x = d d<br />

[sin x] =<br />

dx dx<br />

(d) cos 5x = ∑ ∞ (5x)2n<br />

n=0<br />

(−1)n<br />

(2n)!<br />

(e)<br />

(f)<br />

[<br />

∑∞ x2n+1<br />

n=0<br />

(−1)n<br />

(2n + 1)!<br />

= ∑ ∞<br />

n=0 (−1)n 25n x 2n<br />

(2n)!<br />

(−1) n<br />

2n + 1 = 1 − 1 3 + 1 5 − 1 7 + · · ·<br />

)] [<br />

∑∞ x2n<br />

= lim x→0 n=0<br />

(−1)n<br />

2n + 1<br />

= ∑ ∞ (2n + 1)x2n<br />

n=0<br />

(−1)n<br />

(2n + 1)!<br />

1<br />

4 + x = 1 4 · 1<br />

1 + (x/4) = 1 4 · 1<br />

1 − (−x/4) = 1 4 [∑ ∞<br />

n=0 (−x/4)n ] = 1 4<br />

∑ ∞ (−1) n x n<br />

n=0<br />

4 n+1<br />

[ ]<br />

6x<br />

1 − x 2 = 6x 1<br />

1 − (x 2 = 6x [∑ ∞<br />

n=0<br />

)<br />

(x2 ) n] = ∑ ∞<br />

n=0 6x2n+1<br />

(g) sin x + cos x = ∑ ∞<br />

k=0 c kx k where<br />

⎧<br />

⎪⎨<br />

(−1) k/2<br />

c k = k!<br />

⎪⎩<br />

k!<br />

(−1) (k−1)/2<br />

if k is even<br />

if k is odd<br />

[<br />

∑∞<br />

n=0<br />

]<br />

=<br />

= ∑ ∞ x2n<br />

n=0<br />

(−1)n<br />

(2n)!<br />

(−1) n x n ]<br />

4 n =<br />

(h) sin x<br />

x<br />

= ∑ x−1 ∞ x2n+1<br />

n=0<br />

(−1)n<br />

(2n + 1)! = ∑ ∞ x 2n<br />

n=0 (−1)n (2n + 1)!<br />

4. sin x = ∑ ∞ x2n+1<br />

n=0<br />

(−1)n<br />

(2n + 1)!<br />

only involves odd exponents on x, so it is an odd function;<br />

cos x = ∑ ∞ x2n<br />

n=0<br />

(−1)n<br />

(2n)! only involves even exponents on x, so it is an even function; ex =<br />

∑ ∞ x n<br />

n=0<br />

involves both even and odd exponents on x, so it is nei<strong>the</strong>r an even nor an odd<br />

n!<br />

function.


Math 113, Calculus II<br />

<strong>Power</strong> <strong>Series</strong> - Answers<br />

5. We know d [<br />

sin 2 x ] = 2(sin x) cos x = sin(2x) = ∑ ∞ (2x)2n+1<br />

n=0<br />

(−1)n<br />

dx<br />

so sin 2 x = ∫ sin(2x) dx = ∫ ∑ ∞<br />

n=0 (−1)n 22n+1 x 2n+1<br />

(2n + 1)!<br />

C + ∑ ∞ (−1) n 2 2n+1<br />

n=0<br />

(2n + 1)!<br />

we find C = 0, so<br />

Thus<br />

cos 2 x = 1 − sin 2 x = 1 −<br />

x 2n+2<br />

(2n + 2) = C + ∑ ∞<br />

sin 2 x =<br />

dx = C+ ∑ ∞<br />

n=0<br />

(2n + 1)! = ∑ ∞<br />

n=0 (−1)n 22n+1 x 2n+1<br />

,<br />

(2n + 1)!<br />

(−1) n 2 2n+1 ∫<br />

x 2n+1 dx =<br />

(2n + 1)!<br />

n=0 (−1)n 22n+1 x 2n+2<br />

. Setting x = 0 on both sides,<br />

(2n + 2)!<br />

∞∑<br />

(−1) n 22n+1 x 2n+2<br />

(2n + 2)!<br />

n=0<br />

∞∑<br />

(−1) n 22n+1 x 2n+2<br />

(2n + 2)!<br />

n=0<br />

= 1 − x 2 + 8 4! x4 − 32<br />

6! x6 + · · ·<br />

1<br />

6. (a) Letting f(x) =<br />

1<br />

5 x + 1 = (1 + 0.2x)−1 , we have f ′ (x) = −(1 + 0.2x) −2 [0.2] = −0.2(1 +<br />

0.2x) −2 , f ′′ (x) = 0.4(1 + 0.2x) −3 [0.2] = 0.08(1 + 0.2x) −3 , and f ′′′ (x) = −0.24(1 +<br />

0.2x) −4 [0.2] = −0.048(1+0.2x) −4 . Thus <strong>the</strong> first four terms of <strong>the</strong> Taylor series centered<br />

at 2 for f(x) is<br />

T 3 (x) = f(2) + f ′ (2)(x − 2) + f ′′ (2)<br />

(x − 2) 2 + f ′′′ (2)<br />

(x − 2) 3<br />

2!<br />

3!<br />

= [5/7] + [−5/49](x − 2) + [10/343](x − 2) 2 + [−30/2401](x − 2) 3<br />

(b) Beginning with g(x) = e −x we find f ′ (x) = −e −x , f ′′ (x) = e −x and f ′′′ (x) = −e −x .<br />

Hence <strong>the</strong> first four terms of <strong>the</strong> Taylor series centered at x = 2 for g(x) is<br />

T 3 (x) = g(2) + g ′ (2)(x − 2) + g′′ (2)<br />

(x − 2) 2 + g′′′ (2)<br />

(x − 2) 3<br />

2!<br />

3!<br />

= [e −2 ] + [−e −2 ](x − 2) + [e −2 ](x − 2) 2 + [−e −2 ](x − 2) 3<br />

7. An example of a power series that converges precisely for −1 < x ≤ 1 is ∑ ∞ xn<br />

n=1<br />

(−1)n−1<br />

n .<br />

8. (a) limx −2 ∑ ∞<br />

x→0<br />

n=0 (−1)n (3x2 ) 2n+1<br />

(2n + 1)! = lim ∑ x→0 x−2 ∞<br />

n=0 (−1)n 32n+1 x 4n+2<br />

(2n + 1)!<br />

27x4<br />

lim(3 − + · · · ) = 3<br />

x→0 3!<br />

(b) lim<br />

x→0<br />

1 + x − e x<br />

x 2<br />

[<br />

= limx −2 1 + x − ∑ ∞<br />

x→0<br />

n=0<br />

x n ] [<br />

= limx −2<br />

n! x→0<br />

= lim<br />

x→0<br />

∑ ∞<br />

n=0 (−1)n 32n+1 x 4n<br />

(2n + 1)! =<br />

]<br />

1 + x − 1 − x − x2<br />

2! − x3<br />

3! − · · · =<br />

]<br />

= −1/2<br />

[<br />

] [<br />

lim<br />

x→0 x−2 − x2<br />

2! − x3<br />

3! − · · · − xn<br />

n! − · · · = lim − 1<br />

x→0 2! − x 3! − · · · − xn−2<br />

− · · ·<br />

n!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!