23.11.2013 Views

Breakout Session A - US Pharmacopeial Convention

Breakout Session A - US Pharmacopeial Convention

Breakout Session A - US Pharmacopeial Convention

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Theory, Instrumentation and<br />

Sampling Techniques for<br />

Vibrational Spectroscopy<br />

Peter R. Griffiths<br />

Department of Chemistry<br />

University of Idaho<br />

Moscow, ID 83844-2343<br />

Food Protein Workshop: Developing a Toolbox of Analytical<br />

Solutions to Address Adulteration<br />

June 16 and 17, 2009: <strong>Breakout</strong> <strong>Session</strong>: “Theory and application<br />

of rapid mid-infrared, near-infrared and Raman methods and<br />

chemometrics to measure protein and prevent adulteration.”<br />

Handbook of Vibrational Spectroscopy<br />

1


Number of Vibrational Modes<br />

Molecules have three degrees of translational freedom,<br />

corresponding to motion in the x, y and z directions, and three<br />

degrees of rotational freedom, corresponding to motion<br />

around the three principal axes.<br />

y<br />

z<br />

O<br />

x<br />

H<br />

H<br />

The other 3N - 6 degrees of freedom are manifested as<br />

vibrational modes.<br />

Vibrational Transitions<br />

Each vibrational mode is<br />

quantized and the molecule<br />

can exist in the ground<br />

vibrational state (v = 0) or an<br />

excited vibrational state. The<br />

energy to promote the<br />

transition from the ground to<br />

the first excited vibrational<br />

state (v = 0 → 1) corresponds<br />

to absorption of radiation in<br />

the infrared spectrum.<br />

2


Energy of a Harmonic<br />

Vibrational Mode<br />

The energy of a harmonic vibration is:<br />

E<br />

~<br />

iv<br />

= h cν<br />

i<br />

(vi<br />

+ 0.5)<br />

where<br />

~ ν<br />

i is the wavenumber of the i th mode<br />

and v i is the vibrational quantum number<br />

The only transitions allowed for harmonic<br />

vibrations are for Δv i = ±1.<br />

Fundamental Transitions<br />

Fundamental Transition: v = 0 → v = 1<br />

v = 0<br />

v = 1<br />

v = 2<br />

v is the vibrational quantum number<br />

3


Fundamental Transitions<br />

All fundamental transitions absorb radiation<br />

in the mid-infrared region of the spectrum<br />

(wavelengths from 2.5 – 25 μm);<br />

Wavenumber is the number of waves per<br />

unit length - usually given as cm -1 ;<br />

Therefore the wavenumber region of the<br />

mid-infrared spectrum is 4000 – 400 cm -1 .<br />

Energy of an Anharmonic<br />

Vibrational Mode<br />

The energy of an anharmonic vibration is:<br />

E<br />

iv<br />

= h c<br />

~ ν (v + 0.5) −<br />

~<br />

i i<br />

h cν<br />

i<br />

xi<br />

(vi<br />

+<br />

2<br />

0.5)<br />

where x i is the anharmonicity constant;<br />

and ~ ν is the wavenumber of the i th mode.<br />

i<br />

The transitions allowed for anharmonic vibrations are<br />

for Δv i = ±1, ±2, ±3, etc…. but as Δv i gets larger, the<br />

probability of the transition decreases and the band<br />

becomes much weaker.<br />

4


First Overtone<br />

Fundamental Transition: v = 0 → v = 1<br />

First Overtone: v = 0 → v = 2<br />

v = 0<br />

v = 1<br />

v = 2<br />

Second Overtone<br />

Fundamental Transition: v = 0 → v = 1<br />

First Overtone: v = 0 → v = 2<br />

Second Overtone: v = 0 → v = 3<br />

v = 0<br />

v = 1<br />

v = 2<br />

v = 3<br />

5


Combination Bands<br />

It is possible for one photon to excite two different<br />

vibrational modes, so that an absorption band is<br />

seen at a wavenumber equal to the sum of the<br />

wavenumbers of the two fundamentals. Such<br />

bands are known as combination bands.<br />

The two modes must have at least one atom in<br />

common.<br />

Overtone and Combination Bands<br />

Overtone and combination bands may absorb light in<br />

either the mid-infrared or the near-infrared region of<br />

the spectrum.<br />

Overtone and combination bands involving C-H, O-H<br />

or N-H stretching modes usually absorb radiation in<br />

the near-infrared spectrum.<br />

They are weaker than the fundamental modes from<br />

which they are derived, but this is not necessarily a<br />

bad thing.<br />

6


1st Overtone Bands<br />

H 2<br />

O<br />

ROH<br />

R‐NH 2<br />

Ar OH<br />

Ar C‐H<br />

CH 3<br />

CH 2<br />

CH<br />

CH‐Bend Fundamental<br />

Combined with CH‐<br />

Stretch 1 st Overtone<br />

CH 3<br />

CH 2<br />

CH<br />

1350 1400 1450 1500 1550 1600 1650 1700 1750 1800<br />

Wavelength (nm)<br />

2nd & 3rd Overtone Bands<br />

H 2<br />

O<br />

R‐NH 2<br />

R‐NH 2<br />

ROH<br />

Ar C‐H<br />

Ar C‐H<br />

CH 3<br />

CH 2<br />

CH 3<br />

CH 2<br />

CH<br />

CH<br />

750 800 850 900 950 1000 1050 1100 1150 1200 1250<br />

Wavelength (nm)<br />

7


How Do Molecules Interact With Light?<br />

For a vibration to absorb infrared radiation, there must<br />

be a change in the dipole moment during the vibration.<br />

The vibration is sometimes described by a normal<br />

coordinate, Q.<br />

The absorptivity is proportional to the square of the<br />

change in dipole moment with the normal coordinate.<br />

a<br />

=<br />

k<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

μ ⎞<br />

⎟<br />

⎠<br />

d<br />

dQ<br />

where k is a constant.<br />

Raman Spectroscopy<br />

Sample is illuminated with monochromatic light from a<br />

laser.<br />

Assume that the sample is transparent, i.e., no absorption.<br />

Not quite all the light passes through the sample; a small<br />

fraction is scattered in all directions.<br />

This scattered light is collected and passed into a<br />

monochromator or an interferometer and hence to a<br />

detector.<br />

8


Rayleigh Scattering<br />

Most of the scattered radiation is of the same wavelength<br />

as the incident laser radiation.<br />

This is known as Rayleigh scattering, or to elastic<br />

collisions between the photons and the molecule.<br />

Rayleigh scattered light is about 10 -5 or 10 -6 times the<br />

intensity of the laser radiation and is actually a nuisance<br />

for Raman spectroscopy.<br />

Raman Scattering<br />

Some extremely weak additional features in the scattered<br />

light are found at slightly different frequencies.<br />

They are displaced from the “exciting line” by exactly the<br />

vibrational energy spacings.<br />

These new features are called Raman lines bands and are<br />

due to inelastically scattered radiation.<br />

They are very weak - about 10,000 times weaker than the<br />

Rayleigh scattered radiation.<br />

9


Collision Model for Scattering<br />

Rayleigh Scattering<br />

hν 0 hν 0<br />

Raman Scattering<br />

hν 0 h(ν 0 - ν vib )<br />

Raman Scattering<br />

An elastic collision gives Rayleigh scattering - a change in<br />

direction but no change in frequency.<br />

An inelastic collision leaves an amount of energy in the molecule<br />

equal to hcν ~ vib, where ~ ν vib is in cm -1 . Therefore, the scattered<br />

photon has less energy than the incident photon. Because it has an<br />

energy hc (ν ~ 0 - ~ ν vib), it will appear at the new position (ν ~ 0 - ~ ν vib).<br />

Thus there is a change in direction and frequency.<br />

Thus for a Raman band, ~ ν obs = (ν ~ 0 - ~ ν vib). This can be rearranged<br />

to ~ ν vib = (ν ~ 0 - ~ ν obs). Since the latter two can be measured, one can<br />

obtain vibrational frequencies from Raman scattering.<br />

By convention, Raman frequencies are displacements from the<br />

exciting line, ~ ν 0 - ~ ν obs. They are always given in cm -1 .<br />

10


Energy Level Diagram<br />

“Virtual State”<br />

Origin of Raman Scattering<br />

11


Nature of Raman Scattering<br />

It is not an absorption process. It is a scattering<br />

effect and closer to emission than absorption.<br />

The displacement, ν ~ 0 - ν ~ obs cm -1 , corresponds to<br />

the infrared range.<br />

Raman scattering offers a means of measuring<br />

vibrational bands using ultraviolet, visible or<br />

near-infrared light, where detection is far more<br />

sensitive.<br />

Raman intensity is proportional to (ν ~ 0 - ν ~ obs) 4 , so<br />

the shorter the wavelength the better – except<br />

when the sample fluoresces!<br />

Comparison of Infrared and<br />

Raman Spectra<br />

Both infrared and Raman are vibrational spectra<br />

Provided that both spectra are of samples in the<br />

same physical state, the wavenumber of a give<br />

vibrational mode is the same in the IR and Raman.<br />

The relative intensities of bands in the IR and<br />

Raman may be very different as the mechanisms<br />

are very different.<br />

In many respects, IR and Raman spectroscopy are<br />

complementary.<br />

12


Forbidden Bands in the Infrared<br />

If the dipole moment doesn’t change during the<br />

vibration, I = 0 and the band is “forbidden in the<br />

infrared.<br />

(The vibration still occurs but it cannot be excited by<br />

absorption of infrared radiation.)<br />

If ∂μ/∂Q is large, the band is intense. (Remember the<br />

squared dependence.)<br />

Strong Bands in the Infrared<br />

Bands that are strong in the infrared:<br />

Stretching of polar bonds: O-H, C-O, C=O, C-Cl<br />

Out-of-plane wags of unsaturated C-H, as in olefin<br />

and phenyl rings<br />

13


Weak Bands in the Infrared<br />

If the electronegativities of the two atoms forming the<br />

bond are nearly equal, stretching the bond usually gives<br />

rise to a weak band, e.g.:<br />

H-H, C-C<br />

C≡C stretch in H- C≡C-H, R- C≡C-R and R- C≡C-R′<br />

C-H stretch; the intensity per C-H group is usually low.<br />

Intensity in Raman Bands<br />

The intensity of Raman bands is determined by a<br />

change in polarizability during a vibration:<br />

I<br />

⎛ ∂α<br />

⎞<br />

α ⎜ ⎟<br />

⎝ ∂Q<br />

⎠<br />

2<br />

where α is the polarizability<br />

Q is the normal coordinate.<br />

The polarizability measures the ease with which an<br />

external electric field can induce a temporary dipole<br />

momemt, i.e., the ease with which electrical charges in<br />

a molecule can be displaced.<br />

14


Strong Raman Bands<br />

The polarizability is large when there is a high<br />

concentration of loosely held electrons in a bond that is<br />

involved in the vibration, since ∂α/∂Q is also large<br />

then. Some examples:<br />

Multiple bonds: C≡C, -C≡N, C=C, C=O;<br />

Stretching and bending of -Cl, -Br and -I bonds;<br />

Other many-electron atoms: S, Hg, other heavy metals<br />

For bonds that are strongly polar, Raman bands tend to<br />

be weak, e.g.:<br />

Stretching of O-H and C-F.<br />

Infrared Spectral Regions<br />

Now classified as follows:<br />

cm -1<br />

μm<br />

Near-Infrared 12,500 - 4000 0.8 - 2.5<br />

Si region 12,500 - 9,100 0.8 - 1.1<br />

PbS region 9,100 - 4,000 1.1 - 2.5<br />

Mid-Infrared 4,000 - 400 2.5 - 25<br />

Far-Infrared 400 - 10 25 - 1,000<br />

15


Sources<br />

Mid Infrared<br />

Incandescent SiC rod at ~1200K (Globar)<br />

Near Infrared<br />

Standard tungsten filament light bulb<br />

Quartz-tungsten-halogen lamp<br />

Raman<br />

Nd:YAG or Nd:YAlO 4 (1064 nm)<br />

Diode laser (785 nm usually)<br />

Helium-neon (633 nm)<br />

Frequency-doubled Nd:YAG (532 nm)<br />

Detectors<br />

Mid Infrared<br />

Deuterated triglycine sulfate pyroelectric (298K)<br />

Mercury cadmium telluride (77K)<br />

Near Infrared<br />

TE-cooled lead sulfide<br />

Indium gallium arsenide<br />

Silicon (for λ < 1100 nm)<br />

Raman<br />

TE-cooled charge-couple device array (CCD)<br />

LN 2 -cooled Ge or InGaAs<br />

16


Spectrometers<br />

Mid Infrared<br />

Fourier transform infrared (FT-IR)<br />

Near Infrared<br />

Filter<br />

Grating monochromator or polychromator<br />

FT-NIR<br />

Tunable laser<br />

Raman<br />

Polychromator<br />

FT-Raman<br />

Smiths Detection IdentifyIR TM<br />

Portable FT-IR Spectrometer<br />

17


Concept<br />

Reality<br />

Miniature Optical Bench<br />

14mm<br />

How do you make an optical<br />

bench that is just 14mm long?<br />

18


The Platform<br />

BENCH<br />

DEVICES<br />

Optical Module<br />

Ahura Hand-Held Raman Spectrometer<br />

19


Sampling Techniques for Mid-Infrared<br />

Transmission<br />

KBr disks and mineral oil mulls (rare today)<br />

Diffuse Reflection<br />

Needs dilution in an IR-transparent powder<br />

Attenuated Total Reflection (ATR)<br />

ZnSe or diamond (n = 2.4)<br />

Germanium (n = 4.0)<br />

Diffuse Reflection<br />

20


Beam Paths Through Powders<br />

Specularly reflected<br />

light<br />

Diffusely reflected<br />

light<br />

Diffusely transmitted light<br />

Attenuated Total Reflection<br />

21


Refraction<br />

Low refractive<br />

index, n 1<br />

θ 1<br />

θ 2<br />

High refractive<br />

index, n 2<br />

Snell’s Law: n 1 sin θ 1 = n 2 sin θ 2<br />

Behavior Above and Below the Critical Angle<br />

Low refractive<br />

index, n 1<br />

High refractive<br />

index, n 2<br />

θ C<br />

Beam below critical<br />

angle obeys Snell’s<br />

Law<br />

θ C = sin -1 (n 1 /n 2 )<br />

Beam above critical<br />

angle reflects<br />

internally<br />

22


Optical Properties of Infrared<br />

Transmitting Materials<br />

Material n 2 θ C (for n 1 = 1.50)<br />

Potassium bromide 1.51 90º<br />

Silver chloride 1.90 49º<br />

Zinc sulfide 2.20 43º<br />

KRS-5 2.37 40º<br />

Zinc selenide 2.40 40º<br />

Diamond 2.41 40º<br />

Silicon 3.41 26º<br />

Germanium 4.00 22º<br />

Depth of Penetration<br />

d p<br />

=<br />

λ<br />

2<br />

2<br />

2π<br />

n<br />

1<br />

2<br />

sin θ −<br />

⎛n<br />

⎞<br />

⎜ n ⎟<br />

2 ⎠<br />

⎝<br />

23


First-Order ATR Correction<br />

(divide by wavelength)<br />

650 to 4000 cm -1 @ better than 4 cm -1 resolution<br />

Single-bounce diamond ATR for ‘press-and-shoot’<br />

ZnSe beamsplitter, laser-referenced interferometer<br />

Temperature/shock/drop rugged (-20°C to +40°C operation)<br />

“MIL-STD 810F” certified<br />

DLTGS<br />

ATR (diamond)<br />

fixed mirror<br />

broadband source<br />

beamsplitter<br />

moving mirror<br />

24


MIL-SPEC-810F Compliance<br />

CHALLENGE<br />

Mechanical shock<br />

Vibration<br />

Transit Shock<br />

Humidity<br />

Sand/dust/dirt<br />

Thermal shock<br />

Low temp. (op)<br />

High temp. (op)<br />

Low temp. (store)<br />

High temp. (store)<br />

Immersion (op)<br />

SPECIFICATION<br />

40g in 11ms, saw-tooth 1 day<br />

1hr/axis, composite wheeled vibration<br />

4 foot drop onto plywood on concrete 26 times<br />

5X (48hrs) @ 60C & 95% RH<br />

Blowing dust<br />

-30C to +60C in 1 meter of water<br />

Sampling Techniques for Near-Infrared<br />

Transmission<br />

Usually in the short-wavelength region<br />

Diffuse Reflection<br />

Needs no dilution<br />

Transflection<br />

Mount liquid or semi-solid sample on reflective<br />

base and then use diffuse reflection optics.<br />

25


Sampling Techniques for Raman<br />

Liquids<br />

Hold sample in glass capillary or in glass bottle<br />

Solids<br />

Measure as received<br />

Surface-Enhanced Raman Scattering (SERS)<br />

Evaporate solution on roughened silver or gold.<br />

Surface-Enhanced Raman Scattering<br />

(SERS)<br />

Enhancement of the<br />

Raman spectrum of<br />

molecules on the<br />

surface of roughened<br />

silver or gold metal<br />

plates, colloids or<br />

nanoparticles.<br />

5-nm thick layer of silver<br />

26


SERS Spectrum of a Self-Assembled Monolayer<br />

of p-Nitrothiophenol on Silver Surface<br />

Produced by Physical Vapor Deposition (10 s)<br />

Counts (Normalized and Corrected)<br />

2000<br />

1000<br />

0<br />

2000<br />

1500<br />

1000<br />

Raman Shift / cm -1<br />

500<br />

27


NIR Technology to Help<br />

Food Technology<br />

Karl H. Norris<br />

Consultant<br />

11204 Montgomery Rd,<br />

Beltsville, MD 20705<br />

knnirs@gmail.com<br />

Food Protein Workshop: Developing a Toolbox of Analytical<br />

Solutions to Address Adulteration, June 16-17,2009<br />

NIR Merits<br />

1. Many food constituents have an NIR signal.<br />

2. The absorption bands are of the correct magnitude for<br />

measurement with little or no sample preparation.<br />

3. Radiation sources are readily available.<br />

4. Rapid data collection, with good signal to noise.<br />

5. Detectors and associated electronics exist, and they<br />

continuing to improve.<br />

6. Windows, lenses, fibers, and standards are available.<br />

7. Chemometrics has grown with NIR technology.<br />

8. Computer technology is readily available.<br />

9. Many technologies available for collecting NIR spectra.<br />

28


Error Sources for NIR of Scattering Samples<br />

1. Sampling Errors<br />

2. Sample Stability<br />

3. Packing Effects<br />

4. Sample Temperature Effects<br />

5. Reference Data Errors<br />

6. Instrument Noise<br />

7. Humidity Effects<br />

29


Source Fibers<br />

Collecting Fibers<br />

Blocking Metal<br />

Interactance Probe<br />

30


Photo by Kayla Dowell 9th Grade Germann Hills Christian School<br />

31


Beam Paths Through Powders<br />

Specularly reflected<br />

light<br />

Diffusely reflected<br />

light<br />

Diffusely transmitted light<br />

DIFF<strong>US</strong>E REFLECTION: 1850-2500 nm<br />

1. Small Particles, less than 0.5 mm<br />

2. Low Moisture, less than 15%<br />

36


DIFF<strong>US</strong>E REFLECTION: 1350-1850 nm<br />

1. Medium Particle Size, less than 2 mm<br />

2. Medium Moisture, 15-30 %<br />

DIFF<strong>US</strong>E REFLECTION: 700-1350 nm<br />

1. Large Particle Size, greater than 2 mm<br />

2. High Moisture, 30-90 %<br />

37


Human Hand<br />

Water<br />

Fat<br />

Deoxyhemoglobin<br />

38


B<br />

B<br />

A<br />

39


Protein Measurements in Food Products<br />

• The official method measures nitrogen to<br />

obtain protein content.<br />

• NIR does not sense nitrogen.<br />

• NIR senses overtones of NH vibrations of<br />

the amino acids to sense protein.<br />

41


Detecting Adulterants and Unwanted Synthetics in Ingredients<br />

by Cynthia Kradjel, Application Development Manager, Buchi Corporation<br />

42


References to use of NIR to detect melamine in food powders:<br />

Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared<br />

Spectroscopy<br />

Lisa J. Mauer, Alona A. Chernyshova, Ashley Hiatt, Amanda Deering and Reeta<br />

Davis<br />

J. Agric. Food Chem., 2009, 57 (10), pp 3974–3980<br />

Publication Date (Web): April 22, 2009 (Article)<br />

DOI: 10.1021/jf900587m<br />

doi: 10.1255/jnirs.829<br />

Rapid detection of melamine in milk powder by near infrared spectroscopy<br />

Chenghui Lu, Bingren Xiang, Gang Hao, Jianping Xu, Zhengwu Wang and<br />

Changyun Chen<br />

43


0.9<br />

2 Melamine Reflection Spectra<br />

0.8<br />

0.7<br />

Log(1/R)<br />

0.6<br />

0.5<br />

0.4<br />

9 nm bandpass monochromator-<br />

0.3<br />

0.2<br />

0.1<br />

-High Resolution FT<br />

0<br />

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500<br />

Wavelength nm<br />

44


Proposed Method for Detecting Adulteration<br />

1. Develop 6 or more different calibrations for protein on the<br />

product to be tested.<br />

2. Perform an NIR scan of the sample to be tested.<br />

3. Predict the protein content of test sample with each of the<br />

different calibrations.<br />

4. Observe the range of the predicted proteins.<br />

5. If the predicted range exceeds a value (~5% of the average),<br />

the sample is declared as adulterated.<br />

Derivative-Ratio Regression<br />

• % Protein = A + B(WL1-WL2)/ WL3<br />

• WL1 is second derivative at wavelength 1<br />

• WL2 is second derivative at wavelength 2<br />

• WL3 is second derivative at wavelength 3<br />

• A, B, WL1, WL2, and WL3 are optimized<br />

to provide the minimum SEC for %Protein<br />

on a group of sample spectra.<br />

45


Results of Adulteration Tests on Flour<br />

% Protein = A + B(WL1-WL2)/ WL3<br />

Calibration No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

WL1 nm<br />

1977.0<br />

1687.0<br />

1223.5<br />

2209.0<br />

1068.5<br />

1845.0<br />

1139.0<br />

WL2 nm<br />

1625.0<br />

1961.5<br />

1978.0<br />

1971.5<br />

1976.5<br />

1978.5<br />

1978.0<br />

WL3 nm<br />

1333.0<br />

2293.0<br />

1965.5<br />

1966.5<br />

994.0<br />

872.5<br />

868.0<br />

SEC %PRO.<br />

0.102<br />

0.139<br />

.0114<br />

0.122<br />

0.118<br />

0.114<br />

0.124<br />

0% RMSEP<br />

0.008<br />

0.214<br />

0.135<br />

0.030<br />

0.084<br />

0.092<br />

0.072<br />

0.1%M RMSEP<br />

0.132<br />

0.246<br />

0.258<br />

0.335<br />

0.163<br />

0.097<br />

0.071<br />

1.0%M RMSEP<br />

1.300<br />

1.292<br />

0.987<br />

2.201<br />

1.425<br />

0.207<br />

0.272<br />

.<br />

Results of Adulteration Tests on Flour<br />

% Protein = A + B(WL1-WL2)/ WL3<br />

Calibration #<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

WL1 nm<br />

1692<br />

1982<br />

1736<br />

2184<br />

2112<br />

1188<br />

WL2 nm<br />

816<br />

748<br />

2170<br />

774<br />

2330<br />

1184<br />

WL3 nm<br />

1606<br />

1816<br />

1516<br />

1518<br />

1896<br />

976<br />

SEC %PRO.<br />

0.116<br />

0.076<br />

0.086<br />

0.076<br />

0.132<br />

0.123<br />

0% RMSEP<br />

0.070<br />

0.101<br />

0.037<br />

0.062<br />

0.046<br />

0.162<br />

0.1%M RMSEP<br />

0.075<br />

0.172<br />

0.127<br />

0.123<br />

0.153<br />

0.251<br />

1%M RMSEP<br />

0.181<br />

1.715<br />

1.627<br />

1.452<br />

1.474<br />

2.209<br />

46


Results of Adulteration Tests on Flour<br />

% Protein = A + B(WL1-WL2)/ WL3<br />

Calibration No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

WL1 nm<br />

1692<br />

1982<br />

1736<br />

2184<br />

2112<br />

1188<br />

WL2 nm<br />

816<br />

748<br />

2170<br />

774<br />

2330<br />

1184<br />

WL3 nm<br />

1606<br />

1816<br />

1516<br />

1518<br />

1896<br />

976<br />

SEC %PRO.<br />

0.116<br />

0.076<br />

0.086<br />

0.076<br />

0.132<br />

0.123<br />

0% RMSEP<br />

0.070<br />

0.101<br />

0.037<br />

0.062<br />

0.046<br />

0.162<br />

0.1%M RMSEP<br />

0.075<br />

0.172<br />

0.127<br />

0.123<br />

0.153<br />

0.251<br />

1%M RMSEP<br />

0.181<br />

1.715<br />

1.627<br />

1.452<br />

1.474<br />

2.209<br />

0.2%Urea RMSEP<br />

0.575<br />

0.181<br />

0.166<br />

0.116<br />

0.438<br />

0.222<br />

1.0%Urea RMSEP<br />

3.507<br />

1.078<br />

0.822<br />

0.621<br />

3.187<br />

0.992<br />

Results of Adulteration Tests on Flour<br />

NIRSystems 6500, year 1990<br />

Calibration No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

STD<br />

Max-Min<br />

SEC % Pro.<br />

0.116<br />

0.076<br />

0.086<br />

0.076<br />

0.132<br />

0.123<br />

0.025<br />

0.056<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

13.94<br />

13.92<br />

13.76<br />

10.78<br />

10.77<br />

10.64<br />

8.51<br />

8.50<br />

8.37<br />

13.76<br />

13.93<br />

15.45<br />

10.84<br />

11.01<br />

12.59<br />

8.59<br />

8.78<br />

10.45<br />

13.88<br />

14.07<br />

15.89<br />

10.75<br />

10.90<br />

12.26<br />

8.56<br />

8.69<br />

9.91<br />

13.87<br />

13.99<br />

15.72<br />

10.83<br />

10.84<br />

11.01<br />

8.52<br />

8.46<br />

7.60<br />

13.88<br />

13.87<br />

13.78<br />

10.76<br />

10.68<br />

9.80<br />

8.54<br />

8.39<br />

6.48<br />

13.72<br />

13.93<br />

16.08<br />

10.86<br />

11.05<br />

12.91<br />

8.72<br />

8.92<br />

10.92<br />

0.084<br />

0.069<br />

1.061<br />

0.046<br />

0.041<br />

1.249<br />

0.077<br />

0.206<br />

1.750<br />

0.22<br />

0.20<br />

2.32<br />

0.11<br />

0.37<br />

3.11<br />

0.21<br />

0.53<br />

4.44<br />

47


Results of Adulteration Tests on Flour<br />

NIRSystems 6500, year 1990<br />

Calibration No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

STD<br />

Max-Min<br />

SEC % Pro.<br />

0.116<br />

0.076<br />

0.086<br />

0.076<br />

0.132<br />

0.123<br />

0.025<br />

0.056<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

NIR % P, Clean<br />

NIR % P, 0.1%M<br />

NIR % P, 1.0%M<br />

13.94<br />

13.92<br />

13.76<br />

10.78<br />

10.77<br />

10.64<br />

8.51<br />

8.50<br />

8.37<br />

13.76<br />

13.93<br />

15.45<br />

10.84<br />

11.01<br />

12.59<br />

8.59<br />

8.78<br />

10.45<br />

13.88<br />

14.07<br />

15.89<br />

10.75<br />

10.90<br />

12.26<br />

8.56<br />

8.69<br />

9.91<br />

13.87<br />

13.99<br />

15.72<br />

10.83<br />

10.84<br />

11.01<br />

8.52<br />

8.46<br />

7.60<br />

13.88<br />

13.87<br />

13.78<br />

10.76<br />

10.68<br />

9.80<br />

8.54<br />

8.39<br />

6.48<br />

13.72<br />

13.93<br />

16.08<br />

10.86<br />

11.05<br />

12.91<br />

8.72<br />

8.92<br />

10.92<br />

0.084<br />

0.069<br />

1.061<br />

0.046<br />

0.041<br />

1.249<br />

0.077<br />

0.206<br />

1.750<br />

0.22<br />

0.20<br />

2.32<br />

0.11<br />

0.37<br />

3.11<br />

0.21<br />

0.53<br />

4.44<br />

Results of Adulteration Tests on Flour<br />

NIRSystems 6500, year 1990<br />

Calibration No.<br />

SEC % Pro.<br />

1<br />

0.116<br />

2<br />

0.076<br />

3<br />

0.086<br />

4<br />

0.076<br />

5<br />

0.132<br />

6<br />

0.123<br />

STD<br />

0.025<br />

Max-Min<br />

0.056<br />

NIR % P, Clean<br />

13.94<br />

13.76<br />

13.88<br />

13.87<br />

13.88<br />

13.72<br />

0.084<br />

0.22<br />

NIR % P, 0.2%Urea<br />

14.63<br />

14.01<br />

13.94<br />

13.98<br />

14.50<br />

13.94<br />

0.276<br />

0.69<br />

NIR % P, 1.0%Urea<br />

18.08<br />

15.11<br />

14.12<br />

14.40<br />

18.08<br />

14.92<br />

1.584<br />

3.96<br />

NIR % P, Clean<br />

10.78<br />

10.84<br />

10.75<br />

10.83<br />

10.76<br />

10.86<br />

0.046<br />

0.11<br />

NIR % P, 0.2%Urea<br />

11.31<br />

11.03<br />

10.94<br />

10.96<br />

11.15<br />

11.03<br />

0.148<br />

0.37<br />

NIR % P, 1.0%Urea<br />

13.94<br />

11.87<br />

11.53<br />

11.45<br />

13.40<br />

11.78<br />

0.96<br />

2.41<br />

NIR % P, Clean<br />

8.51<br />

8.59<br />

8.56<br />

8.52<br />

8.54<br />

8.72<br />

0.077<br />

0.21<br />

NIR % P, 0.2%Urea<br />

9.02<br />

8.77<br />

8.83<br />

8.68<br />

8.86<br />

8.88<br />

0.096<br />

0.24<br />

NIR % P, 1.0%Urea<br />

11.63<br />

9.52<br />

9.72<br />

9.29<br />

10.88<br />

9.57<br />

0.94<br />

2.34<br />

48


Results of Adulteration Tests on Flour<br />

NIRSystems 6500, year 1990<br />

Calibration No.<br />

SEC % Pro.<br />

1<br />

0.116<br />

2<br />

0.076<br />

3<br />

0.086<br />

4<br />

0.076<br />

5<br />

0.132<br />

6<br />

0.123<br />

STD<br />

0.025<br />

Max-Min<br />

0.056<br />

NIR % P, Clean<br />

13.94<br />

13.76<br />

13.88<br />

13.87<br />

13.88<br />

13.72<br />

0.084<br />

0.22<br />

NIR % P, 0.2%Urea<br />

14.63<br />

14.01<br />

13.94<br />

13.98<br />

14.50<br />

13.94<br />

0.276<br />

0.69<br />

NIR % P, 1.0%Urea<br />

18.08<br />

15.11<br />

14.12<br />

14.40<br />

18.08<br />

14.92<br />

1.584<br />

3.96<br />

NIR % P, Clean<br />

10.78<br />

10.84<br />

10.75<br />

10.83<br />

10.76<br />

10.86<br />

0.046<br />

0.11<br />

NIR % P, 0.2%Urea<br />

11.31<br />

11.03<br />

10.94<br />

10.96<br />

11.15<br />

11.03<br />

0.148<br />

0.37<br />

NIR % P, 1.0%Urea<br />

13.94<br />

11.87<br />

11.53<br />

11.45<br />

13.40<br />

11.78<br />

0.96<br />

2.41<br />

NIR % P, Clean<br />

8.51<br />

8.59<br />

8.56<br />

8.52<br />

8.54<br />

8.72<br />

0.077<br />

0.21<br />

NIR % P, 0.2%Urea<br />

9.02<br />

8.77<br />

8.83<br />

8.68<br />

8.86<br />

8.88<br />

0.096<br />

0.24<br />

NIR % P, 1.0%Urea<br />

11.63<br />

9.52<br />

9.72<br />

9.29<br />

10.88<br />

9.57<br />

0.94<br />

2.34<br />

Testing for Adulteration with Different Materials<br />

Model XDS-RCA, year 2002<br />

49


Testing for Adulteration with Different Materials<br />

Model XDS-RCA, year 2002<br />

14.5<br />

14<br />

13.5<br />

Testing for Adulteration with Different Materials<br />

on a high protein flour spectrum<br />

NIR % Protein<br />

13<br />

12.5<br />

12<br />

11.5<br />

11<br />

No Contamination<br />

0.1% Melamine<br />

1.0% Melamine<br />

1.0% Talc<br />

1.0% Urea<br />

5.0% Soy Protein<br />

10.5<br />

10<br />

9.5<br />

1 2 3 4 5 6 7<br />

Calibration Number<br />

50


Acknowledgements<br />

• Dr. David Hopkins for the melamine spectrum.<br />

• DR. Ron Rubinovitz, Buchi Corp., for a high<br />

resolution melamine spectrum.<br />

• Foss-NIRSystems for access to flour spectra.<br />

Conclusions<br />

NIR Technology can help Food Technology.<br />

A simple method is proposed using multiple<br />

protein calibrations on a single NIR scan to<br />

detect adulteration in food products.<br />

Test results are provided with computer simulation<br />

of wheat flour spectra adulterated with a<br />

melamine spectrum, and shows definitive<br />

detection at the 1.0% level.<br />

Results are also presented for detection of<br />

adulteration with talc, soy protein, and urea.<br />

The procedure needs to be tested with actual<br />

samples on different types of food products.<br />

51


“Intuitive” Chemometrics for<br />

Protein Measurements and<br />

Adulterant Detection<br />

David B. Funk, Ph.D.<br />

Technical Services Division<br />

Grain Inspection, Packers and Stockyards Administration<br />

U.S. Department of Agriculture<br />

Kansas City, Missouri<br />

52


What is an NIR Calibration?<br />

• An equation (or, particularly, a set of<br />

equation coefficients) that expresses a useful<br />

relationship between electro-optic parameters<br />

and a constituent of interest.<br />

• Many different mathematical methods exist<br />

for deriving “optimum” equations.<br />

• Most NIR calibration equations have a simple<br />

common form.<br />

NIRS Prediction Equation Forms<br />

Sum of products<br />

%P K 0 + K 1 ⋅L 1 + K 2 ⋅L 2 + .... + K n ⋅L n<br />

Summation Notation<br />

Vector/Matrix Notation<br />

∑ ( )<br />

%P K 0 + K n ⋅L n %P K⋅L<br />

n<br />

L 0 1<br />

53


An NIR Calibration Defines:<br />

• The wavelengths used<br />

• Few wavelengths<br />

• Many wavelengths<br />

• All available wavelengths<br />

• The form of the equation<br />

• Usually linear sum of products<br />

• Data pretreatment required<br />

• Derivative math (smoothing, gap)<br />

• Scatter correction<br />

• Specific coefficients associated with data<br />

collected at each wavelength or linear<br />

combination of wavelengths<br />

Typical Wheat NIRT Spectrum<br />

200<br />

Coefficient Absorbance Value<br />

3.2<br />

100<br />

3.1<br />

0<br />

3<br />

100<br />

2.9<br />

0<br />

200 2.8<br />

860 880 900 920 940 960 980 1000 1020 1040<br />

Wavelength (nm)<br />

.<br />

54


Wheat Protein Calibration Coefficients<br />

200<br />

Coefficient Value<br />

100<br />

0<br />

100<br />

0<br />

200<br />

860 880 900 920 940 960 980 1000 1020 1040<br />

Wavelength (nm)<br />

.<br />

Products of Spectral Values and Coefficients<br />

+<br />

∑ ( )<br />

%P K 0<br />

n<br />

K n ⋅L n<br />

55


NIRS Calibration Visualization<br />

• “Simple” geometric interpretation<br />

• Extensible to many dimensions<br />

• Unifies calibration methods<br />

Calibration Contours:<br />

Surfaces of Constant Predicted Values<br />

% C K + K L + ⋅⋅⋅+<br />

= 0 1 1<br />

K n L n<br />

0 = ( K + K L + K L<br />

0<br />

− % C)<br />

1<br />

1<br />

2<br />

2<br />

0 =<br />

B + Mx +<br />

Ny<br />

y= -(B/N)-(M/N)x y=a+bx<br />

56


Technicon 400 Wheat Moisture<br />

Calibration Contour Lines and Data<br />

0=(3.05-%M) + 63.4*L 1940 - 58.5*L 2230<br />

12% M<br />

K 1940 = 63.4<br />

Log (1/R) @ 1940 nm<br />

0.55<br />

10% M<br />

8% M<br />

No effect<br />

on results<br />

0.5<br />

0.4 0.45<br />

Log (1/R) @ 2230 nm<br />

K 2230 = -58.5<br />

Thinking in Spectral Space<br />

Log 1/R values shown as points in spectral space<br />

1680 nm<br />

Data shown as spectra<br />

0.5<br />

Log(1/R)<br />

0.4<br />

2100 nm<br />

0.3<br />

2180 nm<br />

( L 〈〉 2 , L 〈〉 3 , L 〈〉 5 )<br />

0.2<br />

1600 1700 1800 1900 2000 2100 2200<br />

Wavelength (nm)<br />

57


3-Wavelength NIRR Data and Calibration<br />

Contour Planes:<br />

12, 14, 16 % Protein<br />

1680 nm, K= -131.5<br />

2100 nm,<br />

K= -337.8<br />

2180 nm, K= 426.6<br />

L < 2><br />

, L < 3><br />

, L < 5><br />

, ( XY , , Z12)<br />

, ( XY , , Z14)<br />

, ( XY , , Z16)<br />

3-Wavelength NIRR Data and<br />

Calibration Contour Planes:<br />

12, 14, 16 % Protein<br />

1680 nm , K= -131.5<br />

2180 nm,<br />

K= 426.6<br />

2100 nm,<br />

K= -337.8<br />

L < 2><br />

, L < 3><br />

, L < 5><br />

, ( XY , , Z12)<br />

, ( XY , , Z14)<br />

, ( XY , , Z16)<br />

58


3-Wavelength NIRR Data and Calibration<br />

Contour Planes:<br />

12, 14, 16 % Protein<br />

1680 nm , K= -131.5<br />

2180 nm,<br />

K= 426.6<br />

2100 nm,<br />

K= -337.8<br />

L < 2><br />

, L < 3><br />

, L < 5><br />

, ( XY , , Z12)<br />

, ( XY , , Z14)<br />

, ( XY , , Z16)<br />

Generalized Calibration Contours of<br />

Constant Predicted Values<br />

0 1<br />

= ( K −%<br />

C)<br />

+ K L + ... + K L 0<br />

1<br />

n n<br />

Dimensions (n) Contour Type<br />

1 Points<br />

2 Lines<br />

3 Planes<br />

>3 Hyperplanes<br />

59


Calibration Contours for<br />

Linear Equations<br />

• Contours are linear (straight/flat).<br />

• Contours are parallel.<br />

• Contours of regular prediction increments are<br />

evenly placed in spectral space.<br />

• Wavelength axes with zero coefficients are<br />

parallel to contours.<br />

Calibration Contours for Linear<br />

Equations<br />

• All linear calibration methods attempt to find<br />

the direction, spacing, and offset of the<br />

“calibration contours” that maximize<br />

sensitivity to the desired quantity while<br />

minimizing the effects of interfering factors.<br />

• Multiple linear regression, Fourier regression,<br />

principal components regression, and partial<br />

least squares regression are basically<br />

equivalent in that sense.<br />

• Each method has certain advantages for<br />

finding the optimum solution.<br />

60


Calibration Contours for<br />

Non-Linear Equations<br />

• Non-linear calibrations<br />

• Artificial Neural Networks<br />

• Support Vector Machines<br />

• Some data pre-treatments<br />

• Same as for linear calibrations except:<br />

• Contours are not linear (not straight/flat).<br />

• Contours are not parallel.<br />

• Contours of regular prediction increments are not<br />

evenly placed in spectral space.<br />

• The “curviness” of the contours depends on how<br />

non-linear the equations are.<br />

Statistics for Evaluating Calibrations<br />

61


Bias<br />

Bias or<br />

Mean Error<br />

N<br />

∑<br />

i =<br />

1<br />

y pi − y<br />

( i )<br />

N<br />

SD( y)<br />

Population<br />

Standard Deviation<br />

i<br />

N<br />

∑<br />

=<br />

1<br />

( ) 2<br />

y i − mean( y)<br />

N − 1<br />

• Average prediction<br />

residuals for a data set.<br />

• The differences<br />

between predicted and<br />

reference values are<br />

“errors” or “residuals.”<br />

• A measure of the<br />

“scatter” in data set.<br />

y p : predicted values<br />

y : reference values<br />

N: number of observations<br />

Standard Error of Estimate or<br />

Standard Error of Calibration<br />

SEE<br />

SEC<br />

i<br />

N<br />

∑<br />

= 1<br />

N<br />

(<br />

y pi − y i ) 2<br />

− K − 1<br />

• Standard deviation of the residuals within the<br />

calibration data set.<br />

• Corrected for the number of degrees of freedom by<br />

“K” in the denominator. K is number of coefficients.<br />

• Estimates calibration accuracy for unknown samples.<br />

62


Standard Error of Prediction<br />

Standard Error of Performance<br />

SEP<br />

i<br />

N<br />

∑<br />

=<br />

1<br />

⎡<br />

⎣<br />

y pi<br />

− − mean y p − y<br />

y i<br />

(<br />

N − 1<br />

( )<br />

2<br />

⎤<br />

⎦<br />

• Standard deviation of the residuals due to<br />

differences between predicted and reference<br />

values for samples NOT in calibration set.<br />

• Note exclusion of the mean difference.<br />

Coefficient of Multiple Determination<br />

“R-squared”<br />

N<br />

∑<br />

R 2 i = 1<br />

N<br />

∑<br />

i = 1<br />

(<br />

y pi − mean ( y ) ) 2<br />

( ) 2<br />

y i − mean( y)<br />

y p<br />

y<br />

predicted<br />

reference<br />

• Gives the fraction of the population variance that<br />

is “explained” by the regression.<br />

• Population variance= square of population<br />

standard deviation.<br />

63


Relative Performance Determinant (RPD)<br />

Estimate of Practical Value<br />

RPD<br />

SD pop<br />

SEC<br />

1<br />

1 − R 2<br />

(Approx.)<br />

RPD<br />

Practical Value<br />

10 Excellent<br />

5 Good<br />

2.5 Dubious (screening?<br />

1<br />

Relationship between RPD and R 2<br />

10<br />

9<br />

8<br />

7<br />

6<br />

10<br />

9<br />

8<br />

7<br />

6<br />

X<br />

RPD<br />

5<br />

RPD<br />

5<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

X<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

R-squared<br />

0<br />

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1<br />

R-squared<br />

R 2 of 0.90 gives RPD of only 3<br />

RPD of 10 requires R 2 of 0.99<br />

64


Overview of Chemometric Methods<br />

• Spectra as Vectors<br />

• Multiple Linear Regression<br />

• Principal Component Regression<br />

• Partial Least Squares Regression<br />

• Artificial Neural Networks<br />

Dimensionality of Spectral Space<br />

• A spectrum defines a point in spectral space<br />

(but we can’t plot more than three<br />

dimensions).<br />

• The number of dimensions = number of<br />

variables (wavelengths)<br />

• Number of wavelengths is usually determined<br />

by the instrumentation.<br />

• How many wavelengths are needed?<br />

• Why not use all available wavelengths?<br />

65


Vector Characteristics<br />

Length of vector<br />

Normalized vector<br />

v<br />

vn<br />

v<br />

∑ ( n )2<br />

n<br />

v<br />

vn 1<br />

v<br />

Orthogonal vectors<br />

v1⋅v2<br />

0<br />

Orthonormal vectors<br />

vn1 1 vn2 1 vn1 ⋅vn2<br />

0<br />

Length = 1 and<br />

mutually “perpendicular”<br />

(vector product = 0)<br />

Basis vectors<br />

• A vector space is the combination of all possible<br />

vectors in the system considered.<br />

• Line: 1-D vector space<br />

• Plane: 2-D vector space<br />

• Volume: 3-D vector space<br />

• NIRS spectra: 10, 100, 700, etc.-D vector space<br />

• For n-dimensional vector space any vector (or<br />

any point in space) can be exactly expressed as a<br />

linear combination of n linearly independent basis<br />

vectors. That is, none of the basis vectors can be<br />

expressed as a linear combination of the other basis<br />

vectors.<br />

66


Multiple Linear Regression (MLR)<br />

y Xb b ( X T ⋅X)<br />

− 1<br />

⋅X T ⋅y<br />

• Mathematically extend simple linear<br />

regression to multiple independent variables<br />

• If rows or columns of X are not independent,<br />

the inverse “blows up”<br />

• High correlation between wavelengths<br />

(multicollinearity) makes regression noisy,<br />

unstable<br />

• Need to reduce correlation between<br />

independent variables<br />

Why reduce dimensionality<br />

( number of fitted coefficients)?<br />

• Using many independent variables leads to "overfitting"<br />

of the data.<br />

• Very large coefficients<br />

• Larger calibration transferability errors<br />

• Greater sensitivity to random noise<br />

• Overly optimistic performance estimates<br />

• General recommendations call for about 10<br />

independent calibration samples for each<br />

coefficient fitted.<br />

• Very large sample sets are needed to avoid overfitting<br />

and other problems with large numbers of<br />

variables.<br />

67


Why reduce dimensionality?<br />

Wheat Protein Coefficients<br />

1.5 . 10 4 PLS Coefficients<br />

1 . 10 4<br />

Coefficient Value)<br />

5000<br />

0<br />

5000<br />

1 . 10 4<br />

1.5 . 10 4<br />

860 880 900 920 940 960 980 1000 1020 1040<br />

Wavelength (nm)<br />

.<br />

MLR with 50 wavelengths<br />

MLR with 100 wavelengths<br />

MLR with 4 wavelengths<br />

Multiple Linear Regression Model<br />

X<br />

Weights (B-coefficients)<br />

X<br />

Inputs<br />

X<br />

X<br />

∑<br />

B0<br />

Output<br />

1<br />

68


Multiple Linear Regression<br />

• Find limited number of most useful<br />

independent variables<br />

• Step up<br />

• Step down<br />

• Step up, down, up, down<br />

• All possible combinations<br />

Another way: Define new “latent” variables<br />

(basis vectors) that are linear combinations of<br />

data from all wavelengths<br />

• Fourier regression<br />

• Sine and cosine functions<br />

• Principal components regression<br />

• Principal components<br />

• Directions in space that explain most variance<br />

• Partial least squares<br />

• Loading factors<br />

• Directions in space that are most highly correlated<br />

to constituent of interest<br />

• Each of these simply define orthonormal sets<br />

of basis vectors in spectral space.<br />

69


Assume that we want to<br />

“describe” a spectrum<br />

Sines and Cosines as Basis Vectors<br />

70


Calculate T-scores<br />

• Use projection (sum of products) to test “how much” of<br />

each basis vector is represented in each of the spectra.<br />

• The result is the Discrete Fourier Transform of the spectrum<br />

1<br />

SS q :=<br />

CS q :=<br />

〈〉<br />

L⋅SIFN q<br />

〈〉<br />

L⋅COFN q<br />

Fourier T Scores<br />

SS q<br />

CS q<br />

0.5<br />

0<br />

0.5<br />

1<br />

.<br />

1.5<br />

0 5 10 15 20<br />

q<br />

Factor Number<br />

Reconstruct the spectrum from basis<br />

vectors and T-Scores<br />

“Length” of residual<br />

(unexplained) spectrum<br />

71


Can’t we find something more efficient<br />

than sines and cosines to describe spectra?<br />

• Yes! Principal components<br />

• Eigenvectors of the variance-covariance matrix<br />

• Find the set of directions in spectral space that<br />

explain the most variance.<br />

• The first principal component is in the direction of the<br />

greatest variation.<br />

• Second is in the direction of the greatest variation<br />

after the first component direction is removed.<br />

• Etc.<br />

• It’s like squishing a football!<br />

First principal component<br />

72


Second principal component<br />

Third principal component<br />

73


Principal components in wavelength space<br />

Normalized Principal Components<br />

Display the final three principal component vectors.<br />

1<br />

0.5<br />

0<br />

0.5<br />

1<br />

1600 1700 1800 1900 2000 2100 2200<br />

PC1<br />

PC2<br />

PC3<br />

Wavelength (nm)<br />

Principal Components in 100 Dimensions<br />

74


Partial Least Squares Factors: Directions most<br />

highly correlated with desired constituent<br />

Log 1/R Values, Normalized Weights, and B-Vector in Centered Log Space<br />

W3<br />

B-vector<br />

W1<br />

W2<br />

( LC 〈〉 0 , LC 〈〉 1 , LC 〈〉 2 ),( Wn1x, Wn1y,<br />

Wn1z)<br />

, ( Wn2x, Wn2y,<br />

Wn2z)<br />

,( Wn3x, Wn3y,<br />

Wn3z)<br />

, ( BVx, BVy,<br />

BVz)<br />

Bilinear Models<br />

Loading coefficients<br />

Sine & Cosines, PC’s,<br />

PLS factors, etc.<br />

“How much” of each basis vector<br />

is in the input spectrum?<br />

T-scores<br />

∑<br />

Chemical<br />

Weights (from MLR)<br />

∑<br />

“Raw”<br />

Inputs<br />

∑<br />

∑<br />

Output<br />

∑<br />

1<br />

B0<br />

∑<br />

75


Creating Bilinear Prediction Equations<br />

Find “chemical weights” from T-scores and<br />

chemistry with MLR.<br />

CW TS T − 1<br />

:= ( ⋅TS)<br />

⋅TS T ⋅C<br />

Form B-vector from basis vector matrix and<br />

chemical weights<br />

BV<br />

BasisVectors ⋅ChemicalWeights<br />

Predict chemical values from B-vector and<br />

spectra<br />

CPred<br />

L⋅BV<br />

Artificial Neural Network Models<br />

“Hidden” layer<br />

weights v i,j<br />

∑<br />

∑<br />

Non-Linear<br />

Transfer function<br />

∫<br />

Output layer<br />

weights w j<br />

∑<br />

1<br />

“Raw”<br />

Inputs<br />

∑<br />

∑<br />

∑<br />

∑<br />

1<br />

∑<br />

∫<br />

∫<br />

∑<br />

1<br />

∫<br />

Output<br />

Pre-process to create orthogonal<br />

normalized input variables<br />

x p,i<br />

y p,j z p<br />

1<br />

76


Artificial Neural Networks<br />

• Massively interconnected “nodes” simulate<br />

neuron connections in the brain.<br />

• Inputs at each node are summed and applied<br />

to special non-linear “transfer function.”<br />

• May have multiple layers of nodes and<br />

weights.<br />

• May have multiple outputs.<br />

• Networks are “trained” by iterative search for<br />

minimum error.<br />

Methods for Detecting “Outliers”<br />

• Create calibrations to “look” for suspected<br />

adulterants.<br />

• Detect extreme examples of spectra (leverage).<br />

• Detect spectra that weren’t represented in the<br />

calibration (spectral residuals).<br />

• Other?<br />

77


1985!<br />

Mahalanobis Distance<br />

H= 2.5<br />

x<br />

2 σ<br />

3 σ<br />

1 σ<br />

Distances are normalized<br />

by the standard deviation of<br />

population variation in the<br />

specified “direction”.<br />

“Global” distance from center<br />

of population.<br />

“Local” distance between points<br />

representing different spectra.<br />

78


Triplets of Principal Component Scores in<br />

3D Space with Chemical Weight Vector<br />

Not Normalized<br />

Principal Component Scores Plotted<br />

Normalized<br />

TN i<br />

T i<br />

StDev( T)<br />

Global Mahalanobis Distances<br />

Normalized Distances from Population Center<br />

Global Mahalanobis Distance (normalized)<br />

X<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200 .<br />

Sample Index<br />

79


Maximum T-Scores<br />

Maximum T-Score for Sample<br />

15<br />

X<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Sample Index<br />

Local Mahalanobis Distances<br />

Comparing All Pairs of Spectra<br />

Sample Index<br />

Sample Index<br />

Greatest<br />

Distance<br />

Medium<br />

Distance<br />

Closest<br />

80


Principal Component Spectral Decomposition<br />

Spectral Residual (unexplained)<br />

(HRWW, 16 factors)<br />

1.4<br />

X<br />

1.2<br />

Sjpectral Residual (x 1000)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 50 100 150 200<br />

.<br />

Sample Index<br />

81


Causes of Large Spectral Residuals<br />

• Instrument noise<br />

• Sample or instrument temperature extremes<br />

• Poor instrument standardization<br />

• Unusual sample physical condition<br />

• Sample adulteration<br />

Automatic Outlier Detection to<br />

Detect Adulteration<br />

• Instruments offer automatic outlier detection<br />

• Constituent ranges<br />

• Mahalanobis distance<br />

• Spectral residuals<br />

• Difficult to set outlier criteria to avoid false<br />

positives<br />

• Need to test outlier capabilities to detect<br />

adulteration<br />

• Need processes to follow up on “hits”<br />

82


Summary and Implications<br />

• Near-infrared spectroscopy has fostered<br />

many mathematical methods for dealing with<br />

difficult data such as found in NIRS.<br />

• The bilinear methods (FR, PCR, PLS) are<br />

fundamentally very similar except for the<br />

choice of basis vectors.<br />

• ANN calibrations can deal with greater data<br />

complexity and nonlinearity—at the price of<br />

needing many more calibration and validation<br />

samples.<br />

• Chemometric methods offer outlier detection.<br />

Wisconsin Center for Dairy Research<br />

A dairy perspective on the<br />

use and applications,<br />

challenges ahead<br />

<strong>US</strong>P Food Protein Workshop<br />

Developing a Toolbox of Analytical Solutions to Address Adulteration<br />

June 16 – 17, 2009<br />

<strong>US</strong>P Headquarters, Rockville, Maryland<br />

Juan Romero<br />

Coordinator Analytical Services<br />

83


Why Milk ?<br />

Amino<br />

acid<br />

score<br />

Digestibility<br />

% PDCAAS PER<br />

Egg 121 98 118 3.8<br />

Milk 127 95 121 3.1<br />

Beef 94 98 92 2.9<br />

Wheat 47 91 42 1.5<br />

International Dairy Federation<br />

• Membership<br />

• 56 Countries<br />

• 86% World Milk Production<br />

• Advisor to Codex<br />

• CCMMP<br />

• CCMAS<br />

• CCNFSDU<br />

• Analytical methods<br />

• ISO<br />

• CEN<br />

• DHIA<br />

• ICAR<br />

84


AFTERMATH OF THE CHINA MILK ADULTERATION<br />

SCANDAL<br />

Situation:<br />

• Trust in the (regional) dairy sector is suffering<br />

• Market requests to test dairy products for presence of<br />

melamine & cyanuric acid<br />

IDF actions aiming at (re)building trust:<br />

• Provision of methods to determine the presence of<br />

melamine & cyanuric acid in dairy products (short<br />

term)<br />

• Provision of effective and recognized approaches to<br />

counteract intentional adulteration (long term)<br />

OBJECTIVE OF THE IDF TASK FORCE<br />

Provide a non-prescriptive inventory of means (tools,<br />

procedures, methods, including screening<br />

techniques, etc) that:<br />

• can be used alone or in combination to indicate systematic<br />

and/or large scale adulteration of suppliers´ milk,<br />

• are internationally recognized as effective and appropriate,<br />

• are intended to assist the dairy sector in showing due diligence<br />

by selecting the most feasible approaches that suit the specific<br />

and local needs<br />

85


KEY PRINCIPLES IN FOOD CHAIN MANAGEMENT<br />

• Adequate food safety skills<br />

All players along the food chain should have a general understanding of the nature and impact of<br />

all hazards that may occur at all stages in the food chain, and an in-depth understanding of<br />

those hazards that need be controlled at the step(s) for which they are responsible<br />

• Reliable suppliers<br />

Suppliers of products (ingredients or raw materials) and services should only be accepted by the<br />

receiving food business if it has been approved and/or recognized (certified or else) as<br />

being able to meet agreed outputs and/or to follow agreed procedures<br />

• Shared responsibility<br />

The individual food business responsible for a particular step in the food chain has the primary<br />

responsibility for meeting the requirements with regard to the safety of their products and<br />

services, when they are supplied to the subsequent step of the food chain<br />

• Effective communication<br />

Food businesses involved in the same food chain* should establish effective communication with<br />

the other key players operating in the same chain<br />

DEVIATIONS<br />

Unintentional deviations<br />

• Caused by accidents, failures and/or ignorance<br />

• Foreseen/known from experience and risk assessments<br />

• Sporadic in nature<br />

• Preventive measures can be targeted (i.e. efficient)<br />

Intentional deviations<br />

• Driven by economic gains(fraud, crime)<br />

• Difficult to foresee<br />

• Systematic in nature<br />

• Preventive measures difficult to target (i.e. not likely to be<br />

efficient)<br />

86


COUNTERACTING FRAUD<br />

Assessment of vulnerability for fraud<br />

• Payment system<br />

Criminal gain related to the value of individual components of the<br />

payment scheme (fat, protein, snf, volume, quality parameters)<br />

• Milk collection infra-structure<br />

Number of steps involved, communication patterns, and degree of<br />

commitment (feeling of “ownership” and responsibility)<br />

COUNTERACTING FRAUD<br />

Preventive measures<br />

•Procurement strategy motivating high standards<br />

Examples include continuous communication, training & education (farmers & vets),<br />

providing advisory services, farm QA programs, etc)<br />

•Monitoring procedures on individual farmers milk<br />

– Benchmarking/trend analysis<br />

– Gathering of intelligence.<br />

Awareness of these activities reduces potential for fraud in the supply chain<br />

•Bio-security measures during transports<br />

To prevent milk from being tampered<br />

87


OUTLINE OF THE IDF INVENTORY<br />

1. Introduction<br />

2. Purpose, scope and use<br />

3. Maintaining the integrity of the food chain<br />

4. Assessment of the vulnerability for adulteration of<br />

milk<br />

5. Measures suitable for the purpose of counteracting<br />

possible adulteration<br />

– Preventive measures<br />

– Benchmarking and trend analyses<br />

– Intelligence gathering<br />

FTIR technology for routine<br />

milk screening<br />

Steve Holroyd<br />

Per Waaben Hansen (Foss)<br />

88


What is FTIR?<br />

• Fourier transform infrared<br />

spectroscopy<br />

• Allows rapid quantification of<br />

composition of complex<br />

matrices<br />

• Uses absorption of infrared<br />

frequency radiation<br />

• Fourier transform –<br />

mathematical function used<br />

for collecting data<br />

177<br />

Milk and water FTIR spectra<br />

178<br />

89


Milk – water difference spectrum<br />

Lactose<br />

Protein<br />

Fat<br />

179<br />

Quantification<br />

• The amount of infrared<br />

absorption is directly<br />

proportional to the<br />

concentration of an absorbing<br />

chemical bonds<br />

• Allows precise quantification<br />

of concentration<br />

• Must have reliable<br />

instrumentation and link to<br />

calibration from chemically<br />

known samples<br />

180<br />

90


How a rapid screening method can work<br />

• FTIR is already used widely for<br />

rapid compositional analysis of<br />

liquid dairy products<br />

Two potential methods to detect<br />

economic adulteration of milk:<br />

• Quantitative - a calibration for a<br />

specific adulterant<br />

• Qualitative – a method for<br />

differentiating adulterated and<br />

non-adulterated milk<br />

181<br />

Quantitative analysis<br />

• Use the relationship between absorption and<br />

concentration to measure specific adulterants<br />

• Adulterants must have different spectral signatures<br />

and absorption strengths<br />

• Detection will be dependent upon the type of<br />

adulterant<br />

• Must create a calibration set with known reference<br />

values<br />

182<br />

91


Difference spectrum - melamine<br />

Melamine dissolved in milk - FT6000<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

0<br />

1600<br />

1500<br />

1400<br />

1300 1200<br />

wavenumber<br />

1100<br />

1000<br />

183<br />

Difference spectrum – ammonium sulphate<br />

Ammonium sulphate dissolved in milk<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

500 ppm<br />

1000 ppm<br />

2000 ppm<br />

3000 ppm<br />

4000 ppm<br />

5000 ppm<br />

6000 ppm<br />

0<br />

1600<br />

1500<br />

1400<br />

1300 1200<br />

wavenumber<br />

1100<br />

1000<br />

184<br />

92


Difference spectrum - urea<br />

Urea dissolved in milk<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

0<br />

1600<br />

1500<br />

1400<br />

1300 1200<br />

wavenumber<br />

1100<br />

1000<br />

185<br />

FTIR to quantify melamine in milk<br />

Added melamine, ppm<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

57 samples in 3 replicates<br />

%CV: RMSEP=8.31 SEP=8.33 SEPCorr=8.35 SDrep=3.77<br />

Slope: 1.0013<br />

Intcpt: -1.8636<br />

r: 0.9969<br />

Bias : -1.4116<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

186<br />

FT-IR detected melamine, ppm<br />

93


Quantification of specific adulterants<br />

• With the current generation of FTIR instruments, the<br />

melamine LoD (Limit of Detection) is 75-100 ppm<br />

(0.0075-0.0100 %)<br />

• Hurdles for use in routine screening<br />

– The adulterant must be known<br />

– A large number of samples must be collected to<br />

ensure robustness over time<br />

– Good reference results must be available<br />

187<br />

Qualitative analysis<br />

• Assess the “quality” of normal milk via FTIR spectra<br />

• Use statistical techniques to distinguish variation<br />

greater than “routine”<br />

• Principal component analysis – PCA<br />

– A data reduction technique<br />

188<br />

94


2000 FTIR spectra of liquid milk<br />

189<br />

Principal component analysis<br />

• An orthogonal linear transformation<br />

• Separates out the major features of variation from a<br />

large data matrix<br />

• Transforms a large number of possibly correlated<br />

variables (spectra) into a smaller number of variables<br />

called principal components<br />

• Plot principal components against each other and<br />

establish trends<br />

190<br />

95


Deliberately adulterated milk by FTIR and PCA<br />

0.15<br />

0.1<br />

• Normal milk<br />

• Adulterated milk<br />

Melamine+water<br />

Cyanuric acid<br />

Score PC5<br />

0.05<br />

0<br />

Urea<br />

Melamine<br />

-0.05<br />

Ammonium sulphate<br />

-0.1<br />

191<br />

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4<br />

Score PC2<br />

FTIR for qualitative analysis<br />

• Gather spectral information from ”normal milk”<br />

– Critical that no adulteration is present in such data sets<br />

• No reference measurements needed<br />

• Spectra from unknown samples, deviating from ”normal<br />

milk”, can be identified to a certain level<br />

• The LoD for un-specific adulteration is higher than for<br />

specific adulteration<br />

– The LoD for melamine as unknown adulterant is 250-<br />

500 ppm (0.025-0.050%)<br />

192<br />

96


Essential features<br />

• FTIR must be in widespread and effective routine use<br />

– Instruments properly maintained<br />

– Calibrations up to date<br />

• Sensitivity to potential adulteration must be<br />

demonstrated<br />

• Calibration models may be created to cover individual<br />

sample types, sites, regions, countries, breeds. Some<br />

current composition models are global in nature<br />

193<br />

Challenges<br />

• FTIR not sensitive at low concentration levels – will<br />

not detect trace adulteration or contamination<br />

• Knowledge of normal variation vs variation due to<br />

adulteration<br />

• Must ensure unadulterated milks used to define<br />

“normal” and data must cover routine variation in milk<br />

spectral data<br />

• Must keep model up to date with new “normal” data<br />

194<br />

97


FTIR Summary<br />

• FTIR is an excellent rapid tool for determining liquid<br />

milk composition<br />

• FTIR can be used to detect economic adulteration of<br />

milk using commercially available equipment<br />

• Quantitative analysis<br />

– Requires knowledge of the adulterant<br />

• Qualitative analysis<br />

– Requires an understanding of FTIR variation in<br />

“good” milk<br />

195<br />

The Future of FTIR<br />

• A robust network of FTIR instruments measuring milk<br />

• Each instrument compares the spectrum of every<br />

sample to a spectral database of normal milks<br />

• A red flag appears if any samples deviate<br />

• A mechanism is in place to identify an causes of<br />

deviation<br />

196<br />

98


IDF-ISO Guideline to the measurement of MEL and<br />

CYA<br />

• Guideline to the measurement of Melamine and<br />

Cyanuric Acid<br />

• LC-MS/MS<br />

• Performance Criteria<br />

– 2002/657/EC. Performance of analytical<br />

methods and the interpretation of results<br />

– ISO 11843. Capability of detection – Parts 1-5<br />

LC-MS/MS<br />

• Any method which combines either high performance liquid<br />

chromatography (HPLC) or ultra performance liquid<br />

chromatography (UPLC) with a triple quadrupole mass<br />

spectrometry instrument.<br />

• Ionization shall be performed by either electrospray (ESI),<br />

atmospheric pressure chemical ionization (APCI), atmsopheric<br />

pressure photospray ionization (APPI) or any other ionization<br />

mode with appropriate performance.<br />

• The acquisition mode shall be carried out in the selected<br />

reaction monitoring (SRM) mode. The quantification of both<br />

melamine and cyanuric acid is based on an isotope dilution<br />

approach using isotope stable internal standards for both<br />

analytes.<br />

99


A dairy perspective on the use and<br />

applications, challenges ahead<br />

Questions<br />

Food Protein Workshop: Developing a Toolbox of Analytical<br />

Solutions to Address Adulteration<br />

<strong>US</strong>P Headquarters, Rockville, Maryland<br />

<strong>US</strong>P Meeting Center<br />

Wednesday, June 17, 2009<br />

6a. <strong>Breakout</strong> <strong>Session</strong> A<br />

Possibilities of FTIR and NIR for the detection of adulteration<br />

in food and feed<br />

By<br />

Jürgen Möller<br />

FOSS Analytical, Sweden<br />

Dedicated Analytical Solutions<br />

100


TCD – Team Chemometric Devopment contribution<br />

”FT-IR for the detection of adulteration in milk”<br />

Per Waaben Hansen, Ph. D., R & D Scientist,<br />

FOSS Analytical A/S, Denmark<br />

”NIR possibilities for the detection of adulterants”<br />

Martin Lagerholm, Ph.D., R & D Scientist<br />

FOSS Analytical AB, Sweden<br />

Dedicated Analytical Solutions<br />

Where we come from…<br />

Höganäs<br />

• ….<br />

Hilleröd<br />

Copenhagen<br />

Dedicated Analytical Solutions<br />

101


Adulteration of milk<br />

• Milk trade is often based on weight<br />

- Fraudulently added water is a general problem<br />

• Authorities therefore check for added water by analysing for a protein decrease<br />

- Kjeldahl (total N) is used<br />

• Kjeldahl detects all types of N – i.e. not only protein<br />

- Melamine is rich in N and therefore a popular adulterant<br />

- 0.3 % added melamine corresponds to an artificial protein increase of<br />

approx. 1.2 %<br />

Dedicated Analytical Solutions<br />

Consumer protection and prevention of adulterations<br />

• Detection of adulterants at contamination levels is<br />

obviously important for consumer protection and<br />

tracking of adulterations<br />

• For the prevention of adulteration fast and simple<br />

analytical solutions are needed to detect fraud already<br />

at collection points and payment stations for the raw<br />

material<br />

• Different analytical challenges?<br />

- Contamination levels: ppb – ppm<br />

- Fraudulent addition levels: 0,1% - 1%<br />

Dedicated Analytical Solutions<br />

102


Melamine<br />

66% Nitrogen<br />

”Protein” content = >400%<br />

Solubility in water: 3,2 g/l<br />

Dedicated Analytical Solutions<br />

FTIR spectra of Melamine<br />

Melamine dissolved in milk - FT6000<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

wavenumber<br />

Dedicated Analytical Solutions<br />

103


FTIR spectra of Urea<br />

Urea dissolved in milk - FT6000<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

wavenumber<br />

Dedicated Analytical Solutions<br />

FTIR spectra of Ammonium sulphate<br />

Ammonium sulphate dissolved in milk - FT6000<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

500 ppm<br />

1000 ppm<br />

2000 ppm<br />

3000 ppm<br />

4000 ppm<br />

5000 ppm<br />

6000 ppm<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

wavenumber<br />

Dedicated Analytical Solutions<br />

104


FTIR: Adulterants have different mid-IR signatures<br />

Melamine dissolved in milk - FT6000<br />

Urea dissolved in milk - FT6000<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

absorbance difference<br />

0.1<br />

0.05<br />

0 ppm<br />

250 ppm<br />

500 ppm<br />

1000 ppm<br />

1500 ppm<br />

2000 ppm<br />

2500 ppm<br />

3000 ppm<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

wavenumber<br />

wavenumber<br />

Ammonium sulphate dissolved in milk - FT6000<br />

0 ppm<br />

500 ppm<br />

1000 ppm<br />

2000 ppm<br />

3000 ppm<br />

• Adulterants have different spectral<br />

signatures, making it easy to distinguish<br />

even related compounds<br />

absorbance difference<br />

0.1<br />

0.05<br />

4000 ppm<br />

5000 ppm<br />

6000 ppm<br />

• Adulterants show different absorption at<br />

similar concentrations – detection limits<br />

are therefore dependent on the adulterant<br />

0<br />

1000 1100 1200 1300 1400 1500 1600<br />

wavenumber<br />

Dedicated Analytical Solutions<br />

Example: Limit of detection is lower if the adulterant is known<br />

1000<br />

900<br />

800<br />

57 samples in 3 replicates<br />

%CV: RMSEP=8.31 SEP=8.33 SEPCorr=8.35 SDrep=3.77<br />

Slope: 1.0013<br />

Intcpt: -1.8636<br />

r: 0.9969<br />

Bias : -1.4116<br />

Added melamine, ppm<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

FT-IR detected melamine, ppm<br />

• With the current generation of FT-IR instruments, the melamine LoD (Limit of Detection) is 75-100 ppm<br />

(0.0075-0.0100 %)<br />

• However,<br />

- The adulterant must be known (in this case melamine)<br />

- A large number of samples must be collected to ensure robustness over time<br />

- Good reference results must be available<br />

Dedicated Analytical Solutions<br />

105


FTIR: Spectral integrity / Principle Component Analysis (PCA)<br />

0.15<br />

• Normal milk<br />

• Adulterated milk<br />

Cyanuric acid<br />

Score PC5<br />

0.1<br />

0.05<br />

0<br />

Melamine+water<br />

(diluted samples)<br />

Urea<br />

Melamine<br />

-0.05<br />

-0.1<br />

This particular score combination (PC 2 vs.<br />

PC 5) is good for detecting cyanuric acid or<br />

ammonium sulphate; other combinations<br />

can be used for detecting adulteration caused<br />

by melamine or urea<br />

Ammonium sulphate<br />

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4<br />

Score PC2<br />

Dedicated Analytical Solutions<br />

FTIR: Spectral integrity<br />

• By reasonable choice of ”factor” (% of unexplained variance) and ”threshold” (determines<br />

the detection limit and the number of acceptable false positives) PCA calibrations can<br />

successfully detect ”unnormal” samples<br />

Dedicated Analytical Solutions<br />

106


Spectral integrity in general (FTIR)<br />

• Only spectral information from ”normal milk” is needed<br />

- Critical that no adulteration is present in such data sets<br />

• No reference measurements needed (unless required to confirm that<br />

the milk samples are un-adulterated)<br />

• Spectra from unknown samples, deviating from ”normal milk”, can be<br />

identified<br />

• The reason for the deviation must be identified by alternative means<br />

• Models can be created to cover individual sample types, sites,<br />

regions, countries, depending on relevance<br />

Dedicated Analytical Solutions<br />

Spectral integrity, ctd.<br />

• The LoD (defined as 3xSEP) for un-specific<br />

adulteration is higher than for specific adulteration<br />

- The LoD for melamine as unknown adulterant is<br />

250-500 ppm (0.025-0.050 %)<br />

- The LoD for melamine as a known adulterant is 75-<br />

100 ppm<br />

• The LoD for other adulterants will be different from the<br />

LoD for melamine, and will depend on the absorptive<br />

intensity of the adulterant and on how much the<br />

spectrum differs from that of milk.<br />

Dedicated Analytical Solutions<br />

107


NIR spectra of pure Melamine and skim milk powder<br />

• Melamine<br />

• Skim milk powder<br />

Dedicated Analytical Solutions<br />

NIR example: PCA plot incl adulterated samples<br />

Cal set<br />

Test set 1<br />

Test set 2<br />

Dedicated Analytical Solutions<br />

108


NIR: Validation of melamine calibration<br />

Values in<br />

% melamine<br />

• Test set 1: 27 samples, SEP 0.03<br />

Dedicated Analytical Solutions<br />

NIR: Validation of NIR calibration<br />

Values in % melamine<br />

• Test set 2, 144 samples, SEP 0.05<br />

Dedicated Analytical Solutions<br />

109


NIR<br />

• Spiking experiments indicate a LoD of about 0,1 %<br />

melamine in milk powder<br />

• Using this LoD, a computer simulation of a database<br />

of 5000 spectra gave no false positive results<br />

• Using a similar spectral integrity technique as<br />

described above might be used to identify deviating<br />

patterns at higher levels, e.g. 0,3% melamine<br />

Dedicated Analytical Solutions<br />

Other sample types<br />

• Soybean meal<br />

- At levels around 45% protein Dumas and Kjeldahl methods show a standard<br />

deviation of reproducibility of about sdR = 0,4% protein, corresponding to<br />

about 0,1% melamine<br />

• Wheat flour<br />

- At levels around 13% protein the N-based methods show a standard<br />

deviation of reproducibility of about sdR = 0,2% protein, corresponding to<br />

about 0,05% melamine<br />

• Fraudulent additions of adulterants are supposingly made at levels above the<br />

measurement uncertainty of current N-based methods<br />

• Screening for adulterants at these levels seems to be feasable with NIR<br />

Dedicated Analytical Solutions<br />

110


Conclusions<br />

• FTIR and NIR are usually optimized for measuring quality<br />

parameters such as protein, fat etc<br />

• As these platforms are fast, cost-effective and widely used in the<br />

dairy and food processing industries it is of interest to further<br />

evaluate the extent to which they can be used to detect adulterations<br />

• Specific calibrations maybe developed and used for known<br />

adulterants<br />

• The analysis of spectral integrity offers a good chance of detecting<br />

higher levels of a broad range of adulterants, also of unknown nature<br />

• Spectra and reference data of unadulterated samples must be<br />

available<br />

• FTIR and NIR should only be used for screening at the raw material<br />

source or intake and should be complemented with other methods<br />

for final prove<br />

Dedicated Analytical Solutions<br />

“Advanced” Vibrational<br />

Spectroscopic Techniques for the<br />

Investigation of Adulterants<br />

Peter R. Griffiths<br />

Department of Chemistry<br />

University of Idaho<br />

Moscow, ID 83844-2343<br />

Food Protein Workshop: Developing a Toolbox of Analytical<br />

Solutions to Address Adulteration<br />

June 16 and 17, 2009: <strong>Breakout</strong> <strong>Session</strong>: “Theory and application<br />

of rapid mid-infrared, near-infrared and Raman methods and<br />

chemometrics to measure protein and prevent adulteration.”<br />

111


Mid-Infrared Spectroscopy:<br />

Attenuated Total Reflection<br />

Spectroscopy<br />

Melamine in infant formula<br />

Low-Concentration Melamine Detection with the IdentifyIR Diamond ATR Spectrometer, S.<br />

Sumair, P. E. Leary and J. A. Reffner, Spectroscopy Application Notebook, Feb 1, 2009.<br />

112


Detection limits: melamine in infant<br />

formula<br />

Low-Concentration Melamine Detection with the IdentifyIR Diamond ATR Spectrometer, S.<br />

Sumair, P. E. Leary and J. A. Reffner, Spectroscopy Application Notebook, Feb 1, 2009.<br />

Mid- and Near Infrared Diffuse<br />

Reflection Spectroscopy<br />

113


NIR/DR Spectrum of Pure Melamine,<br />

6 nm resolution<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

NIR/DR Spectrum of Pure Melamine,<br />

2 nm resolution<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

114


NIR/DR Spectra of Pure Gluten<br />

6 nm resolution<br />

2 nm resolution<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

NIR/DR Spectra of Melamine<br />

and Infant Formula<br />

L. J. Mauer et al. J. Agric. Food Chem., 2009, 57 (10), pp 3974–3980<br />

115


Mid-Infrared Spectra of<br />

Melamine and Infant Formula<br />

Diffuse reflection<br />

spectra (no<br />

dilution in KBr)<br />

ATR spectra<br />

L. J. Mauer et al. J. Agric. Food Chem., 2009, 57 (10), pp 3974–3980<br />

Raman Spectroscopy<br />

116


RTA’s Portable Raman Analyzer<br />

Sample Compartment<br />

Advantages:<br />

• No sample preparation<br />

• Simple integration via fiber optics<br />

• Remote analysis, multi-component<br />

• Complete spectral coverage<br />

• Wavelength stability<br />

• Confident spectral subtraction<br />

• and library search/match<br />

• Real-time, On-demand analysis<br />

• Long term stability<br />

• Temperature and vibration immune<br />

• Shock resistant<br />

• 25 Pounds<br />

• 5 hour battery<br />

Providing Chemical Information When & Where You Need It<br />

Raman Spectra of Baby Milk Formula<br />

785 nm Laser<br />

1064 nm Laser<br />

Providing Chemical Information When & Where You Need It<br />

117


1% Melamine in Baby Milk Formula<br />

1% in Formula<br />

Pure Formula<br />

Difference spectrum<br />

Pure Melamine<br />

Providing Chemical Information When & Where You Need It<br />

Surface-Enhanced Raman<br />

Scattering (SERS)<br />

118


Surface-Enhanced Raman Scattering<br />

(SERS)<br />

Enhancement of the<br />

Raman spectrum of<br />

molecules on the<br />

surface of roughened<br />

silver or gold metal<br />

plates, colloids or<br />

nanoparticles.<br />

5-nm thick layer of silver<br />

SERS Spectrum of a Self-Assembled Monolayer<br />

of p-Nitrothiophenol on Silver Surface<br />

Produced by Physical Vapor Deposition (10 s)<br />

Counts (Normalized and Corrected)<br />

2000<br />

1000<br />

0<br />

2000<br />

1500<br />

1000<br />

Raman Shift / cm -1<br />

500<br />

119


SEM of Klarite<br />

Melamine on Klarite by SERS<br />

Aliquots of melamine<br />

solutions were applied to<br />

Klarite and the SERS<br />

spectrum measured in<br />

10 s (20 mW, 785-nm<br />

laser.)<br />

A. 10 -2 M;<br />

B. 10 -3 M;<br />

C. 10 -4 M;<br />

D. 10 -5 M;<br />

E. 10 -6 M;<br />

F. 10 -7 M;<br />

G. 10 -3 M on bare gold<br />

He et al., Sens. & Instrum. Food Qual. (2008), 2:66-71.<br />

120


Quantitative Result<br />

He et al., Sens. & Instrum. Food Qual. (2008), 2:66-71.<br />

SERS Spectra of Melamine and Cyanurate<br />

1 x 10 -3 M melamine<br />

1 x 10 -3 M cyanuric acid<br />

Solid cyanuric acid (not SERS)<br />

Mixture of 1 x 10-3 M<br />

melamine and 1 x 10-3 M<br />

cyanuric acid on Karite<br />

He et al., Sens. & Instrum. Food Qual. (2008), 2:66-71.<br />

121


4 Ag + Ge 4+<br />

4 e -<br />

Ag + Ge 4+<br />

e -<br />

Ag + 4 e -<br />

Ge 4+<br />

e -<br />

“Electroless Deposition”<br />

AgNPs Formed by Electroless Deposition<br />

1 mM AgNO 3<br />

20 min 10 mM AgNO 3<br />

3 min<br />

10 mM AgNO 3<br />

15 min 10 mM AgNO 3<br />

24 min<br />

122


AuNPs Formed by Electroless Deposition<br />

SERS of Melamine<br />

0.5 PPM in Solvent<br />

(X20)<br />

Glass<br />

Luminescence<br />

5 PPM in Solvent<br />

250 PPM extracted<br />

from Baby Formula<br />

Simple SERS<br />

Sample Vial<br />

Providing Chemical Information When & Where You Need It<br />

123


Mid-Infrared Hyperspectral Imaging<br />

Either the transmission (thin section) or ATR mode<br />

Wheat Kernel<br />

124


Wheat Kernel<br />

Feline Kidney Tissue<br />

125


λ<br />

40 x 40 µm<br />

FT and<br />

Background Subtraction<br />

FPA detector<br />

128x128 pixels<br />

Absorbance<br />

Wavenumber cm -1<br />

IR Spectra from Multiple Kidney Crystals<br />

Crystal<br />

Surrounding<br />

tissue<br />

Absorbance<br />

Sample<br />

3500 3000 2500 2000 1500 1000<br />

Wavenumber (cm -1 )<br />

•Most of the crystals in the kidney tissue are the same material<br />

• Kidney crystals inconsistent with pure crystalline melamine<br />

•Hypothesis = melamine is paired with something<br />

melamine cyanurate<br />

Absorbance<br />

Wheat Gluten<br />

Particle<br />

Kidney<br />

Particle<br />

Urine<br />

Crystal<br />

Melamine<br />

cyanurate<br />

3500 3000 2500 2000 1500 1000<br />

Wavenumber (cm -1 )<br />

• Crystals recovered from wheat gluten, kidney tissue,<br />

and urine samples match melamine cyanurate<br />

126


Section of the extensive two-dimensional<br />

hydrogen bond network (dashed) between<br />

melamine (blue) and cyanuric acid (red)<br />

NIR Hyperspectral Imaging<br />

(usually in the diffuse reflection mode.)<br />

127


Why Use Near-IR Imaging?<br />

• Universal –works with all organic molecules<br />

• Reflection or transmission modes<br />

• Thick samples (no sample preparation)<br />

• Large range of spatial resolutions<br />

• Low cost room temp. large format high performance arrays<br />

• Rugged, no‐moving parts<br />

• Real‐time capability<br />

• Technology driven by communications industry<br />

Spectral Imaging as a Data Cube<br />

A spectrum is collected at every pixel<br />

in a 2‐dimensional image, resulting in<br />

3‐dimensional cube of data: x, y, λ<br />

(x, y) = x, y spatial description<br />

(z) = λ spectral description<br />

Wavelength (λ, nm)<br />

Image Pixel (y)<br />

Two ways to think of this:<br />

• Each pixel in the image stack results in a full spectrum at that point.<br />

• Each image is recorded at a different wavelength of light.<br />

Image Pixel (x)<br />

128


Current Technology for NIR<br />

Hyperspectral Imaging<br />

• “Push‐Broom” or “Stare‐Down” configurations<br />

• The presentation is focused on “Stare‐Down”<br />

• Broadband light sources to illuminate the target then filter<br />

the reflected light<br />

• Tunable filters (e.g., LCTF or AOTF): ~6 nm spectral resolution<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

Broadband Light Sources<br />

• Slow Data Collection<br />

• Dark noise, low Signal to Noise<br />

• Small Field of View (FOV)<br />

• Limited Spectral Resolution<br />

• Generation of Heat, may be harmful to the sample<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

129


Concept of Using Tunable Laser<br />

for Hyperspectral Imaging<br />

• The tunable laser (Optical<br />

Parametric Oscillator ‐ OPO) scans<br />

the NIR wavelength range<br />

• The light is transmitted via fiber(s)<br />

to the target<br />

• The reflected light is collected by<br />

an IR camera<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

Tunable Laser (OPO) Illumination<br />

Attribute Effect Advantage<br />

Wide Tuning<br />

Range<br />

Narrow Spectral<br />

Linewidth<br />

410 – 2400nm<br />

High Spectral Resolution<br />

(1 –2.5nm)<br />

Short Pulse (5ns) Short Integration Time Camera Gating<br />

Not affected by Ambient Light<br />

High Intensity Single frame data acquisition Short scan time<br />

Large FOV<br />

Low Avg. Power Sample not subjected to heat No sample damage<br />

Wavelength<br />

Measurement<br />

Real‐time calibrated wavelength<br />

High spectral accuracy<br />

Fiber Delivery Easy and efficient fiber delivery Flexible configurations<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

130


Opotek HySPEC TM System<br />

Camera:<br />

FOV:<br />

Wavelength:<br />

Spectral<br />

Resolution:<br />

InSb or InGaAs<br />

640x512 or 320x256<br />

13 –50 mm, 20 cm<br />

1000 – 2400 nm (InSb)<br />

1000 – 1700 nm (InGaAs)<br />

1 ‐ 3nm<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

Melamine in Gluten<br />

2 nm resolution<br />

Image of Scores on PC 4 (3.10%)<br />

Image of Scores on PC 3 (3.61%)<br />

Image of Scores on PC 2 (5.20%)<br />

50<br />

50<br />

50<br />

100<br />

100<br />

100<br />

150<br />

150<br />

150<br />

200<br />

200<br />

200<br />

250<br />

250<br />

250<br />

50 100 150 200 250 300<br />

50 100 150 200 250 300<br />

0% 0.05% 0.5% % !% 1%<br />

50 100 150 200 250 300<br />

Image of Scores on PC 2 (5.76%)<br />

Image of Scores on PC 1 (10.38%)<br />

Image of Scores on PC 1 (14.96%)<br />

Image of Scores on PC 1 (14.60%)<br />

50<br />

50<br />

50<br />

50<br />

100<br />

100<br />

100<br />

100<br />

150<br />

150<br />

150<br />

150<br />

200<br />

200<br />

200<br />

200<br />

250<br />

250<br />

250<br />

250<br />

50 100 150 200 250 300<br />

50 100 150 200 250 300<br />

50 100 150 200 250 300<br />

50 100 150 200 250 300<br />

2% 3% 4% 5%<br />

Courtesy of Eli Margalith, Opotek Corporation<br />

131


30 ppm Melamine in Wheat Gluten<br />

Image of 1454<br />

50<br />

100<br />

150<br />

200<br />

9000<br />

8500<br />

10 frames, 1 nm step<br />

2 of 64,074 pixels<br />

250<br />

300<br />

8000<br />

350<br />

400<br />

450<br />

Mean<br />

7500<br />

7000<br />

500<br />

100 200 300 400 500 600<br />

6500<br />

6000<br />

1300 1350 1400 1450 1500 1550 1600<br />

Wavelength<br />

Raman Hyperspectral Imaging<br />

132


Chemical Imaging Instrumentation<br />

Falcon II TM , Condor TM and Macro Raman Chemical Imaging<br />

Wide‐field Chemical<br />

Imaging offers:<br />

• High Spatial and spectral<br />

resolution<br />

• Little to no sample<br />

preparation<br />

• Nondestructive analysis<br />

• Fast, automated acquisition<br />

• Multiple imaging<br />

modalities<br />

• Near-IR<br />

• Fluorescence<br />

265<br />

• Colorimetric<br />

System<br />

Macro Raman Chemical<br />

Imaging System<br />

Falcon II TM<br />

Condor TM<br />

Food & Beverage Adulteration<br />

Raman Chemical Imaging for the Detection of Melamine<br />

670 cm ‐1<br />

Brightfield Reflectance Raman Chemical Image Brightfield/Raman Fusion Image<br />

670 cm ‐1<br />

Raman Intensity<br />

Average spectra from region 1<br />

Average spectra from region 2<br />

600 700 800 900 1000<br />

Raman Shift (cm ‐1 )<br />

Y. Liu, K. Chao, M. Kim, D. Tuschel, O. Olkhovyk and R. Priore “Potential of Raman spectroscopy and imaging<br />

266methods for rapid and routine screening of the presence of melamine in animal feed and foods,” Appl. Spec.,<br />

63(4), 477-480 (2009).<br />

133


Macroscopic Raman Chemical<br />

Imaging<br />

Melamine Identification in Wheat Flour<br />

Brightfield Reflectance (880 nm) Raman Chemical Image Brightfield/Raman Fusion Image<br />

267<br />

Courtesy of Ryan Priore, ChemImage Corp.<br />

Condor TM NIR Chemical Imaging<br />

Melamine Identification in Wheat Flour<br />

100 %<br />

0 %<br />

0.2 % 0.5 %<br />

1.0 %<br />

3.0 %<br />

6.0 %<br />

Calibration<br />

Validation<br />

268<br />

6.0 % 3.0 %<br />

Raw NIR image<br />

1.0 %<br />

0.5 %<br />

0.2 %<br />

100 %<br />

0.25 in<br />

• Six wheat flour samples were prepared with<br />

melamine concentrations ranging from 0.0 – 6.0 %<br />

• Samples were placed in a 96-well plate in two<br />

groups: Calibration (model development) and<br />

Validation (model challenge) sets<br />

0 %<br />

Courtesy of Ryan Priore, ChemImage Corp.<br />

134


Condor TM NIR Chemical Imaging<br />

Melamine Identification in Wheat Flour<br />

Mixture Spectra<br />

(Calibration)<br />

Calibration<br />

Spectra ROIs<br />

269<br />

1 st Derivative Absorbance (1490 nm)<br />

0.25 in<br />

Courtesy of Ryan Priore, ChemImage Corp.<br />

Falcon II TM Fusion Imaging via CIdentify TM<br />

Melamine Identification in Skim Milk Powder (w/ HDPE interferent)<br />

270<br />

• Raman and NIR imaging data sets may be fused together for<br />

improved accuracy in class discrimination<br />

– Raman possesses higher specificity than NIR but requires a<br />

longer integration time than NIR<br />

– NIR alone may not offer 100% discrimination due to<br />

spectroscopic similarities between the analyte and matrix<br />

• Can be used for either macroscopic or microscopic data<br />

analysis and provides a visual output for decision making<br />

• Useful for determining intentional vs. unintentional<br />

adulteration identification<br />

– melamine is a known intentional adulterant<br />

– HDPE may be an unintentional adulterant from a can liner<br />

Courtesy of Ryan Priore, ChemImage Corp.<br />

135


Falcon II TM Fusion Imaging via CIdentify TM<br />

Melamine Identification in Skim Milk Powder (w/ HDPE interferent)<br />

Melamine & HDPE<br />

Melamine & Skim Milk Powder<br />

Brightfield Reflectance<br />

50 µm 50 µm<br />

Brightfield Reflectance<br />

HDPE<br />

Melamine<br />

Skim Milk Powder<br />

Concatenated ROIs<br />

Ground Truth<br />

50 µm<br />

271<br />

Courtesy of Ryan Priore, ChemImage Corp.<br />

Falcon II TM Fusion Imaging via CIdentify TM<br />

Melamine Identification in Skim Milk Powder (w/ HDPE interferent)<br />

272<br />

• Pure components were measured using Raman<br />

and NIR over identical fields of view;<br />

• Raman full spectral range was measured;<br />

• NIR absorbance data was converted to 1 st<br />

© ChemImage Corporation 2009. All Rights Reserved. ChemImage Products and Services are protected by U.S. and International issued and pending patents.<br />

derivative and cropped from 1350-1600 nm.<br />

136


Acknowledgements<br />

• Curtis Marcott, Light Light Solutions<br />

• Eli Margalith, Opotek Corporation<br />

• Stu Farquharson, Real-Time Analyzers<br />

• Ryan Priore and Pat Treado, ChemImage Corporation<br />

137


Classification Technology<br />

Changing from diagnosing calibrations to<br />

diagnosing products<br />

Dr. David Honigs- Perten Instruments,<br />

Springfield, IL<br />

Two Types of Classification<br />

• Similarity -Is this sample similar to other samples?<br />

• Dissimilarity - Is this sample unlike another samples?<br />

• Samples are always both similar and<br />

dissimilar in some respects.<br />

– e.g.. an apples and oranges are placed together in the<br />

breakfast fruit basket. However, they are as different<br />

as “comparing apples to oranges”.<br />

138


Similarity<br />

• Looking at similarity of vectors<br />

Correlation (R)<br />

Melamine in Correlation<br />

Gluten (%) Coefficient<br />

0.000 0.9996<br />

0.001 0.9996<br />

0.005 0.9996<br />

0.010 0.9996<br />

0.050 0.9996<br />

0.100 0.9996<br />

0.500 0.9996<br />

1.000 0.9995<br />

5.000 0.9981<br />

10.000 0.9954<br />

100.000 0.7784<br />

139


Going From ‘How Similar?’<br />

to<br />

‘How Different?’<br />

• Similarity is measured by cross multiplication<br />

(correlation)<br />

• Differences are measured by subtraction<br />

• Generally express the difference as a root<br />

mean square sum (RMS) difference<br />

Looking At Differences<br />

140


RMS Difference as an Indicator of<br />

Contamination<br />

Melamine RMS Diff.<br />

0 0.010<br />

0.001 0.111<br />

0.005 0.119<br />

0.01 0.122<br />

0.05 0.125<br />

0.1 0.121<br />

0.5 0.113<br />

1 0.132<br />

5 0.538<br />

10 1.285<br />

100 55.166<br />

Is the difference abnormal or an<br />

adulteration<br />

• What is a normal difference?<br />

– This requires more than 1 sample and subtraction.<br />

141


How to View Atypical Differences<br />

• Need to subtract several spectra<br />

• The problem is that the different spectra are so<br />

very similar to one another.<br />

Create Ideal Sample Spectra to<br />

Subtract (Loadings)<br />

142


Sample Scores are typically<br />

calculated and measured already<br />

• H statistic, M distance, Leverage<br />

M, H, or Leverage Measure the<br />

Distance from the Mean of the Data<br />

143


Typical NIR Manufacturer<br />

• If a sample has a large distance, don’t trust the<br />

answer and send it to the lab. Use it for future<br />

calibration.<br />

• In calibration the first step is to throw out the<br />

high M distance samples and use the rest.<br />

Distance Depends on What is<br />

Called ‘Typical’<br />

144


Pet Food Melamine Contamination<br />

• Measured by NIR, showed high M distances,<br />

sent to wet lab, showed reasonable<br />

Kjeldahl/Dumas results.<br />

• The apple-cart is upset because of human<br />

intervention. The odds of an accidental<br />

contamination matching the Kjeldahl/Dumas<br />

techniques are slim.<br />

• Someone has practiced to make oranges look<br />

like apples in the eye of this beholder.<br />

First Things to Fix<br />

• The M distance is not commonly used for<br />

product qualification because the calibrations<br />

are not fully trusted.<br />

• Best practices are that one must find the<br />

reason for the high M distances.<br />

• This becomes challenging on evenings,<br />

weekends and with just-in-time product flow.<br />

• Ultimately, one must separate out high M<br />

distances caused by contamination from those<br />

caused by instrumentation, calibration and<br />

operator error.<br />

145


Qualify before Quantify - SIMCA<br />

• Create Several Categories of Materials and<br />

Measure the Distance to Them.<br />

• Each distance is measured based on that own<br />

model ellipse.<br />

SIMCA Analysis of Gluten<br />

Samples<br />

146


Gluten and Melamine Models<br />

Discrimination Power<br />

Similarity/Dissimilarity<br />

• Looking at dissimilarity of vectors<br />

147


A Commercial Set of 45 Corn<br />

Gluten Samples<br />

Harmonized Spectra of Corn<br />

Gluten Data Set<br />

148


Conclusion<br />

• Changing the standard practice response to<br />

an incorrect M Distance onexisting equipment<br />

would do a lot<br />

• One can easily add classification testing for<br />

modest cost and effort to current testing.<br />

• Both similarity and difference techniques are<br />

useful. One does not have to use only one.<br />

• These Classification techniques are applicable<br />

to NIR, FTIR, or other spectral signatures of<br />

the products.<br />

149

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!