22.11.2013 Views

Accelerometer cut-points and youth physical activity prevalence

Accelerometer cut-points and youth physical activity prevalence

Accelerometer cut-points and youth physical activity prevalence

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

02 081795 Mota 17/7/07 5:20 pm Page 287<br />

EUROPEAN PHYSICAL EDUCATION REVIEW [DOI: 10.1177/1356336X07081795]<br />

Volume13(3):287–299:081795<br />

EPER<br />

<strong>Accelerometer</strong> <strong>cut</strong>-<strong>points</strong> <strong>and</strong> <strong>youth</strong> <strong>physical</strong><br />

<strong>activity</strong> <strong>prevalence</strong><br />

<br />

Jorge Mota, Mónica Valente, Luísa Aires, Pedro Silva, Maria<br />

Paula Santos <strong>and</strong> José Carlos Ribeiro Research Centre in Physical<br />

Activity Health <strong>and</strong> Leisure, Faculty of Sport Sciences, University of Porto<br />

Abstract<br />

The purpose of this study was twofold: first, to examine the effects of specific <strong>cut</strong>off<br />

scoring <strong>points</strong> (on the estimated <strong>prevalence</strong> of meeting health-related guidelines<br />

for <strong>physical</strong> <strong>activity</strong> in <strong>youth</strong>) <strong>and</strong>, second, to document the differences in gender<br />

<strong>physical</strong> <strong>activity</strong> patterns according to two different <strong>cut</strong>-off <strong>points</strong>. The sample<br />

comprised 62 children (boys n = 23; girls n = 39) aged 8–16 years old. Children<br />

wore accelerometers for three conse<strong>cut</strong>ive weekdays. The daily time spent in<br />

moderate-to-vigorous <strong>physical</strong> <strong>activity</strong> (MVPA) was calculated using an equation<br />

regression developed for <strong>youth</strong> according to different <strong>cut</strong>-<strong>points</strong>. The data analysis<br />

from Freedson’s <strong>cut</strong> <strong>points</strong> showed that both sexes engaged in significantly (p ≤ .01)<br />

more MVPA when compared with Puyau’s <strong>cut</strong> <strong>points</strong>. Boys engaged in significantly<br />

(p ≤ .01) more MVPA activities than girls regardless of the <strong>cut</strong>-off point used. Our<br />

data also showed that the percentage of students that reach the <strong>physical</strong><br />

<strong>activity</strong>/health related guidelines was significantly higher in both boys (77.3 vs 6.9<br />

percent; p < .001) <strong>and</strong> girls (60 vs 2.3 percent; p < .001) when Freedson’s <strong>cut</strong>-off<br />

point was used. Our data showed that for preventive strategies <strong>youth</strong> specific <strong>cut</strong>off<br />

<strong>points</strong> still need to be refined <strong>and</strong>, as a result, health-related criteria for young<br />

people need to be based on further research evidence.<br />

Key-words: accelerometer • health-related criteria • <strong>physical</strong> <strong>activity</strong> • <strong>youth</strong><br />

Introduction<br />

PROOF ONLY<br />

Physical in<strong>activity</strong> is associated with increased risk of several chronic diseases<br />

(Raitakari et al., 1997). In adults, it was observed that each 1-MET increase in exercise<br />

capacity conferred a 12 percent improvement in survival (Myers et al., 2002). It has<br />

been suggested that in<strong>activity</strong> during <strong>youth</strong> is linked to several health-related risks<br />

in adulthood (Powell <strong>and</strong> Dysinger, 1987; Twisk et al., 1997). As researchers begin<br />

to explore the <strong>physical</strong> <strong>activity</strong> (PA) dose-response relationship with health<br />

parameters (Bouchard, 2001), it is increasingly important to provide a more precise<br />

estimate of both the quantity <strong>and</strong> quality of <strong>physical</strong> <strong>activity</strong> (Sallis <strong>and</strong> Saelens,<br />

Copyright © 2007 North West Counties Physical Education Association <strong>and</strong> SAGE Publications (Los Angeles, London, New Delhi <strong>and</strong> Singapore)<br />

www.sagepublications.com


02 081795 Mota 17/7/07 5:20 pm Page 288<br />

288 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

2000). Precise measures of habitual <strong>physical</strong> <strong>activity</strong> are necessary in studies designed<br />

to: (1) document the frequency <strong>and</strong> distribution of <strong>physical</strong> <strong>activity</strong> in defined<br />

population groups, (2) determine the amount or dose of <strong>physical</strong> <strong>activity</strong> required to<br />

influence specific health parameters (Trost et al., 2000).<br />

However, the assessment of PA in childhood <strong>and</strong> adolescence is a complex task,<br />

hampered by methodological difficulties in which quality measures play a critical role<br />

(Anderson et al., 2005; Freedson et al., 1998). Wide ranges of methods have been<br />

used to quantify <strong>youth</strong> PA behaviour. These methods include subjective measures<br />

such as child <strong>and</strong> parent self-reports <strong>and</strong> objective measures such as direct observation,<br />

heart rate monitoring, motion sensors <strong>and</strong> doubly labelled water. The<br />

advantages <strong>and</strong> disadvantages of different measures have been extensively reviewed<br />

(Sallis <strong>and</strong> Owen, 1999).<br />

Objective measures with real time data storage capabilities offer a distinct advantage<br />

over self-report methods in that they provide reliable information on patterns of<br />

<strong>physical</strong> <strong>activity</strong> within a given day or over several days (Trost et al., 2000). Activity<br />

monitors like Tritrac <strong>and</strong> MTI Actigraph accelerometer seem to be one solution to<br />

this problem (Freedson <strong>and</strong> Miller, 2000). The MTI has been shown to be highly<br />

significantly correlated with energy expenditure, as assessed by indirect calorimetry,<br />

<strong>and</strong> has a high degree of inter-instrument reliability (Ekelund et al., 2001). The<br />

validity studies for the instruments have been conducted in laboratory <strong>and</strong> field<br />

settings (Brage et al., 2003; Coe <strong>and</strong> Pivarnick, 2001). Since children are likely to<br />

engage in activities that involve bending, jumping, running <strong>and</strong> throwing as part of<br />

their daily <strong>physical</strong> <strong>activity</strong>, measurement tools should be validated for use with such<br />

activities (Ott et al., 2000 ). Studies carried out with those activities found moderate<br />

<strong>and</strong> significant correlations, <strong>and</strong> the researchers concluded that accelerometers are an<br />

appropriate instrument for measuring children’s free-play <strong>physical</strong> <strong>activity</strong> (Puyau<br />

et al., 2002).<br />

General guidelines are widely used to describe the amount of <strong>physical</strong> <strong>activity</strong><br />

related to health benefits in <strong>youth</strong> <strong>and</strong> are described elsewhere (Cavill et al., 2001;<br />

Corbin <strong>and</strong> Pangrazi, 1998). Estimates of adherence to published recommendations<br />

for PA depend on estimates of time spent engaging in moderate-to-vigorous <strong>physical</strong><br />

<strong>activity</strong> (MVPA). Since policy <strong>and</strong> programme strategies are based on <strong>prevalence</strong><br />

estimates for meeting these guidelines, it is essential that <strong>prevalence</strong> estimates are<br />

accurate (Sarkin et al., 2000). Nonetheless, <strong>prevalence</strong> rates are dependent on the<br />

instrument used to assess PA (Sarkin et al., 2000). For example, it was reported that<br />

for children the extent of sex <strong>and</strong> ethnic differences in children’s PA depends on the<br />

measure used (Sallis et al., 1998). Riddoch <strong>and</strong> Boreham (Anderson et al., 2005)<br />

raised this point, commenting that different conclusions had been reached depending<br />

upon the criterion selected to distinguish <strong>activity</strong> from in<strong>activity</strong>. Indeed, several<br />

age-specific <strong>activity</strong> thresholds have been suggested for <strong>youth</strong> with different<br />

accelerometer <strong>cut</strong> <strong>points</strong> proposed (Freedson et al., 1998; Puyau et al., 2002). This<br />

problem raised questions about the difference in the <strong>prevalence</strong> estimates of PA.<br />

PROOF ONLY


02 081795 Mota 17/7/07 5:20 pm Page 289<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 289<br />

However so far, to the best of our knowledge, no studies have attempted to<br />

compare the <strong>prevalence</strong> rates of health-related <strong>physical</strong> <strong>activity</strong> criteria in <strong>youth</strong>.<br />

Therefore, the purpose of this study was twofold: (1) to analyse the magnitude of<br />

differences in the <strong>prevalence</strong> estimates of accomplishment of <strong>youth</strong> PA guidelines<br />

(≥ 60 min/day MVPA) using two age-adjusted MTI <strong>cut</strong>-<strong>points</strong> values; <strong>and</strong> (2) to<br />

document the gender differences in PA according to different two different <strong>cut</strong>-point<br />

systems.<br />

Methodology<br />

Sample<br />

The participants for this study were a subsample from a longitudinal study to assess<br />

the cardiovascular risk factors in a Portuguese paediatric population. More detailed<br />

information is described elsewhere (Duarte et al., 2000). Data were collected from 84<br />

volunteer students recruited from local schools (Porto region). Of the total sample of<br />

84 students, 22 were excluded from the analysis due to incomplete MTI data. The<br />

sample for the present study comprised of 62 children (boys n= 23 <strong>and</strong> girls n= 39),<br />

aged 8 to 15 years old. Study procedures were approved by the Portuguese Ministry<br />

for Science <strong>and</strong> Technology. Informed written consent was obtained from the<br />

children’s parents <strong>and</strong> individual school principals.<br />

Anthropometric measures <strong>and</strong> body composition<br />

Stature was measured using the Harpenden Portable Stadiometer (Holtain Ltd, UK).<br />

The values of stature were recorded in centimetres to the nearest mm. Body mass was<br />

measured to the nearest 0.1 kg with an electronic weighing scale (Tanita Inner Scan<br />

BC 532, UK), with the subjects in T-shirt <strong>and</strong> shorts. Body mass index (BMI) (kg/m 2 )<br />

was calculated from the ratio of weight /height 2 .<br />

Daily <strong>physical</strong> <strong>activity</strong><br />

The MTI model 7164 accelerometer (Manufacturing Technology Incorporated, Fort<br />

Walton Beach, FL) was used as an objective measure of daily <strong>physical</strong> <strong>activity</strong>. The<br />

MTI (formerly known as the CSA) uniaxial accelerometer is a small, lightweight<br />

single-channel accelerometer designed to measure <strong>and</strong> record acceleration ranging in<br />

magnitude from 0.05 to 2.00 G with frequency response from 0.25 to 2.50 Hz. The<br />

filtered acceleration signal is digitized <strong>and</strong> the magnitude is summed over a userspecified<br />

period of time (an epoch interval). At the end of each epoch, the summed<br />

value is stored in memory <strong>and</strong> the numerical integrator is reset. This process can<br />

repeat itself for 22 conse<strong>cut</strong>ive days, if a one-minute epoch is used, before the memory<br />

is filled. With a reader interface unit (RIU) connected to a computer, it is possible to<br />

PROOF ONLY


02 081795 Mota 17/7/07 5:20 pm Page 290<br />

290 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

download the recorded data <strong>and</strong> use the software supplied with the RIU to<br />

analyse it.<br />

Protocol <strong>and</strong> MTI data reduction<br />

Each student in the present study was scheduled to wear the MTI for three conse<strong>cut</strong>ive<br />

school weekdays (Tuesday to Thursday) between April <strong>and</strong> May 2004. For<br />

the present study, the epoch duration or sampling period was set at 1 minute <strong>and</strong><br />

output was expressed as counts per minute (cnts.min –1 ). The accelerometer was placed<br />

in a small nylon pouch <strong>and</strong> firmly adjusted at the child’s right hip by an elastic waist<br />

belt. A data sheet was given to each child who was instructed to record the time when<br />

the monitor was attached in the morning <strong>and</strong> detached in the evening <strong>and</strong> every time<br />

he/she performed any restricted activities like showering <strong>and</strong> swimming. The<br />

programme excludes from analysis MTI output equal to zero for more than 20<br />

continuous minutes, assuming that the device is not being worn during these periods.<br />

Subjects were included in the analysis only if they had three complete days of<br />

MTI data which included at least 12 hours of recorded time for each day.<br />

Statistical analysis<br />

Analysis was carried-out with SPSS (Windows version 11.0). Descriptive statistics<br />

were used in order to characterize <strong>and</strong> describe the sample. The age-specific count<br />

ranges developed by Freedson et al. (1997) [F<strong>cut</strong>-point] <strong>and</strong> Puyau et al. (2002)<br />

[P<strong>cut</strong>-point] were used to determine the number of minutes of MVPA. For the<br />

analysis, only MVPA was considered since <strong>youth</strong> health-related <strong>physical</strong> <strong>activity</strong><br />

guidelines stressed the health-related participation in MVPA (Cavill et al., 2001).<br />

Thus the daily time spent in MVPA (≥ 3 MET) was calculated by summing the<br />

minutes of moderate, vigorous, <strong>and</strong> very vigorous minutes for each day.<br />

Intra-class correlations coefficients (ICC) were used to assess the stability of the<br />

accelerometer scores across the three days of assessment, which estimates the<br />

reliability of a single day’s measure. Spearman rank order correlations were used to<br />

compare the average number of MVPA minutes over three days obtained from the<br />

two <strong>cut</strong>-off point methods. Gender differences for total time spent in MVPA were<br />

analysed by independent t-test. For testing the significance of differences among boys<br />

<strong>and</strong> girls, the chi-squared was applied to determine differences between frequencies<br />

of participation in MVPA. The level of significance was set at p < 0.05.<br />

PROOF ONLY<br />

Results<br />

Subject descriptive characteristics <strong>and</strong> MTI raw data per day are summarized by<br />

gender in Table 1. No significant gender differences were found for age <strong>and</strong> <strong>physical</strong><br />

characteristics of the sample. The average daily hours of assessment were about 14.<br />

Results are consistent with the expected sleeping habits of children <strong>and</strong> adolescents


02 081795 Mota 17/7/07 5:20 pm Page 291<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 291<br />

Table 1<br />

Descriptive characteristics of the sample (mean ± SD)<br />

Boys (n = 23) Girls (n = 39) p<br />

X ±SD<br />

X ±SD<br />

Age 11.1 ± 2.82 12.4 ± 2.6 .092<br />

Body mass (kg) 42.5 ± 13.3 44.5 ± 12.6 .820<br />

Height (cm) 147.9 ± 15.1 149.9 ± 13.5 .571<br />

BMI (kg/m 2 ) 20.3 ± 3.5 19.4 ± 3.2 .281<br />

Time (h/day) 14.1 ± 1.1 14.2 ± 1.1 .930<br />

MTI (counts. min –1 ) 596.32 ± 220.20 498.96 ± 160.08 .01<br />

which have been described in a similar population (Mota et al., 2003). The total<br />

amount of PA expressed as total counts (cnts.min –1 ) by the MTI were significantly<br />

higher in boys than girls.<br />

The reliability of MTI scores across days (Table 2) provides an estimate of<br />

variability of PA. The intra-class correlations coefficients (ICC) estimated for a single<br />

day for MTI scores ranged between 0.30 <strong>and</strong> 0.60 for total counts. ICC for moderate<br />

intensities either in boys (0.70–0.78) or girls (0.60–073) was higher in F<strong>cut</strong>-<strong>points</strong><br />

than for P<strong>cut</strong>-<strong>points</strong> (0.31–0.49 in boys <strong>and</strong> 0.17–0.41 in girls). The ICC for MVPA<br />

was higher, regardless of gender, in F<strong>cut</strong>-<strong>points</strong> (0.69–0.72 in boys <strong>and</strong> 0.58–0.70 in<br />

girls) compared to P<strong>cut</strong>-<strong>points</strong> (0.35–0.53 in boys <strong>and</strong> 0.42–0.66 in girls).<br />

Spearman correlation coefficient <strong>and</strong> Intra-class correlation coefficient between<br />

MVPA from MTI accelerometer <strong>cut</strong>-<strong>points</strong> is shown in Table 3. Both, ICC (0.33;<br />

p < 0.05) <strong>and</strong> Spearman’s correlation (R = 0.57; p = .005) were statistically significant<br />

in boys but not in girls.<br />

Table 4 shows the time spent per day (min.) in MVPA according to the two <strong>cut</strong>off<br />

<strong>points</strong> by gender. As expected, the MVPA mean number in minutes is different<br />

according to the <strong>cut</strong>-point used. Total MVPA (min) was significantly higher when<br />

using the F<strong>cut</strong>-point (149 <strong>and</strong> 111 min.d –1 ) compared to the P<strong>cut</strong>-point (35 <strong>and</strong><br />

27 min.d –1 ). Boys engaged in significantly (p ≤ .01) more MVPA than girls if the<br />

F<strong>cut</strong>-point was used, while no statistical significance was found for the P<strong>cut</strong>-point.<br />

The <strong>prevalence</strong> estimates of accomplishment of <strong>youth</strong> PA guidelines (≥ 60<br />

min/day MVPA) using the two age-adjusted MTI <strong>cut</strong>-<strong>points</strong> methods are shown in<br />

Figure 1. The results showed that the percentage of students that reach the <strong>physical</strong><br />

<strong>activity</strong>-health related criteria was significantly higher in both boys (95.7% vs 17.4%,<br />

p < .000) <strong>and</strong> girls (87.2% vs 5.1%, p < .000) when the F<strong>cut</strong>-point was used instead<br />

the P<strong>cut</strong>-point.<br />

PROOF ONLY<br />

Discussion<br />

The aim of this study was to analyse the magnitude of differences in the <strong>prevalence</strong><br />

estimates of accomplishment of <strong>youth</strong> PA guidelines (≥ 60 min/day MVPA) using<br />

two age-adjusted MTI <strong>cut</strong>-<strong>points</strong> values. It might seem intuitive that using different


02 081795 Mota 17/7/07 5:20 pm Page 292<br />

292 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

Table 2 The reliability (intra-class correlations coefficients, ICC) of MTI scores across days<br />

Activity BOYS GIRLS<br />

Total Counts ICC (CI 95%) ICC (CI 95%)<br />

Day 1 vs Day 2 0.48 (0.09–074) *** 0.35 (0.04–0.59) ***<br />

Day 1 vs Day 3 0.60 (0.26–0.81) *** 0.40 (0.1–0.63) ***<br />

Day 2 vs Day 3 0.52 (0.14–0.76) *** 0.30 (0.02–0.55) ***<br />

F<strong>cut</strong>-point P<strong>cut</strong>-point F<strong>cut</strong>-point P<strong>cut</strong>-point<br />

Moderate ICC (CI 95%) ICC (CI 95%) ICC (CI 95%) ICC (CI 95%)<br />

Day 1 vs Day 2 0.78 (0.39–0.86) *** 0.36 (0.03–0.67)* 0.60 (0.35–0.77) *** 0.41 (0.11–0.64) **<br />

Day 1 vs Day 3 0.70 (0.41–0.86) *** 0.49 (0.10–0.74)** 0.73 (0.54–0.85) *** 0.26 (0.01–0.53)<br />

Day 2 vs Day 3 0.71 (0.43–0.87) *** 0.31 (0.03–0.63) 0.69 (0.47–0.82) *** 0.17 (–0.15–0.46)<br />

Vigorous<br />

Day 1 vs Day 2 0.48 (0.09–0.74) ** –0.01 (–0.41–0.40) 0.43 (0.14–0.66) *** 0.10 (–0.22–0.40)<br />

Day 1 vs Day 3 0.50 (0.13–0.76) ** 0.32 (–0.10–0.64) 0.48 (0.15–0.66) ** 0.46 (0.17–0.67) **<br />

Day 2 vs Day 3 0.57 (0.21–0.79) ** 0.37 (–0.04–0.67)* 0.42 (0.13–0.65) ** 0.10 (–0.22–0.40)<br />

MVPA<br />

Day 1 vs Day 2 0.72 (0.45–0.87) *** 0.35 (–0.07–0.66)* 0.18 (0.33–0.76) *** 0.42 (0.12–0.65) **<br />

Day 1 vs Day 3 0.70 (0.41–0.86)*** 0.72 (0.45–0.87)*** 0.70 (0.50–0.83) *** 0.66 (0.44–0.81) ***<br />

Day 2 vs Day 3 0.69 (0.40–0.86)*** 0.53 (0.15–0.77) * 0.64 (0.41–0.80) *** 0.66 (0.43–0.80) ***<br />

PROOF ONLY<br />

* p < .05; ** p < .01; *** p < .001.


02 081795 Mota 17/7/07 5:20 pm Page 293<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 293<br />

Table 3 Spearman correlation (Rho) <strong>and</strong> Intra-class correlation coefficient (ICC)<br />

between MVPA from MTI accelerometer <strong>cut</strong>-<strong>points</strong><br />

MTI DATA<br />

ICC (CI-95%) p Rho p<br />

Boys 0.33 (0.08–0.65) .05 0.57 .005<br />

Girls 0.16 (–0.15–0.45) ns 0.30 ns<br />

Table 4 Time spent per day (min.) in moderate, vigorous <strong>and</strong> MVPA according to the<br />

two <strong>cut</strong>-off <strong>points</strong> by gender<br />

Boys Girls p<br />

X ±SD CV X ±SD CV<br />

Freedson et al. (1997)<br />

MVPA (min. d –1 ) 149.0 ± 72.6 48.6 111.4 ± 56.9 51.1 .01<br />

Moderate (min. d –1 ) 129.8 ± 60.9 46.9 100.1 ± 49.2 49.2 .01<br />

Vigorous (min. d –1 ) 19.1 ± 14.3 74.8 11.3 ± 9.4 83.1 .01<br />

Puyau et al. (2002)<br />

MVPA (min. d –1 35.2 ± 24.5 69.6 27.8 ± 17.1 61.5 ns<br />

Moderate (min. d –1 ) 34.4 ± 23.7 68.9 27.2 ± 16.3 59.9 ns<br />

Vigorous (min. d –1 ) 0.8 ± 1.3 162.5 0.6 ± 1.2 200 ns<br />

(%) 100<br />

80<br />

60<br />

40<br />

20<br />

*<br />

PROOF ONLY<br />

*<br />

*<br />

0<br />

Boys<br />

Girls<br />

Physical Activity<br />

**<br />

Note.* p < 0.001 – differences between gender.<br />

Figure 1 Percentage of children that accomplished the <strong>youth</strong> <strong>physical</strong> <strong>activity</strong><br />

guidelines (60 minutes/day of MVPA) according to different <strong>cut</strong>-off <strong>points</strong>


02 081795 Mota 17/7/07 5:20 pm Page 294<br />

294 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

<strong>cut</strong>-<strong>points</strong> would lead to different estimates of PA <strong>prevalence</strong>, but to the best of our<br />

knowledge this is one of the first studies showing differences in PA level between two<br />

well-known <strong>cut</strong>-<strong>points</strong> used in young people MTI analysis.<br />

Published accelerometer <strong>youth</strong>-related <strong>cut</strong>-off levels corresponding to MVPA<br />

intensity levels were used in this study (Freedson et al., 1997; Puyau et al., 2002).<br />

Both proposed <strong>cut</strong> <strong>points</strong> are age-specific, which is needed since the correspondence<br />

between counts <strong>and</strong> energy expenditure at different workloads is likely to differ<br />

between age-groups (Schofield, 1985). Nevertheless, the critical point is that different<br />

<strong>cut</strong>-<strong>points</strong> influence the <strong>prevalence</strong> of MVPA among young people. To what<br />

extent <strong>youth</strong> meet the recommended guidelines is a timely issue with a public health<br />

interest, because there is a risk of misinterpretation depending on <strong>cut</strong>-<strong>points</strong> used.<br />

The analysis showed that using F<strong>cut</strong>-<strong>points</strong> both sexes engaged in significantly<br />

(p ≤ .01) more MVPA compared with P<strong>cut</strong>-<strong>points</strong>. Further, boys engaged in significantly<br />

more MVPA than girls (p ≤ 0.01) when F<strong>cut</strong>-point is considered. Comparisons<br />

of minutes of <strong>activity</strong> per day between the two <strong>cut</strong>-off <strong>points</strong> clearly showed that the<br />

P<strong>cut</strong>-point estimate significantly less minutes of MVPA <strong>activity</strong> level (p ≤ .001) than<br />

the F<strong>cut</strong>-point. Total MVPA was 149.0 vs 111.4 min.d –1 for F<strong>cut</strong>-point, <strong>and</strong> 35.2 vs<br />

27.8 min.d –1 for P<strong>cut</strong>-point, respectively for boys <strong>and</strong> girls. The findings of the<br />

present study agree with another survey using the two methods to validate an<br />

adolescent diary. In that study the sample was less active than in the present study.<br />

Total MVPA was 86.5 vs 46.9 min.d –1 for MTI F<strong>cut</strong>-point, <strong>and</strong> 27.1 vs 9.2 min.d –1<br />

for P<strong>cut</strong>-point, respectively for boys <strong>and</strong> girls. The mean values of MVPA within<br />

F<strong>cut</strong>-point are in accordance with other studies that have used objective measures of<br />

<strong>physical</strong> <strong>activity</strong>, which reported significantly higher levels of <strong>physical</strong> <strong>activity</strong> in boys<br />

than girls (Pate et al., 2002; Santos et al., 2003; Trost et al., 2002).<br />

Our data also showed that the percentage of students that reach the <strong>physical</strong><br />

<strong>activity</strong>-health related criteria (at least 60 min of MVPA/day) was significantly higher<br />

in both boys (95.7% vs 17.4%; p < .001) <strong>and</strong> girls (87.2% vs 5.1%, p < .001) when<br />

the F<strong>cut</strong>-point was used compared to P<strong>cut</strong>-point. Thus, when data were reported to<br />

F<strong>cut</strong>-point it appears that children meet minimum <strong>physical</strong> <strong>activity</strong> recommendations<br />

for health, which agrees with other studies (Hussey et al., 2001; Sleap <strong>and</strong><br />

Tolfrey, 2001). The differences in estimates of the mean number of minutes engaged<br />

in MVPA are important from a public health perspective when defining estimates <strong>and</strong> <strong>prevalence</strong><br />

of levels of health-related PA achievements. However those differences are difficult to<br />

explain. One can argue that a possible explanation lies in the fact that F<strong>cut</strong>-point<br />

tends to give higher <strong>prevalence</strong> estimates, probably because <strong>cut</strong>-offs are derived from<br />

a laboratory setting, while P<strong>cut</strong>-point was originated in daily routine activities with<br />

target on sedentary activities rather than MVPA, which may lead to a under-estimation<br />

of moderate activities. As reported for adults, the high <strong>cut</strong>-off <strong>points</strong> lead to a misclassification<br />

of some moderate <strong>physical</strong> activities (Ainsworth et al., 2000). In fact, a<br />

study carried out with the aim to evaluate the validity of a questionnaire against the<br />

two <strong>cut</strong>-<strong>points</strong> methods, showed that the best agreement was with F<strong>cut</strong>-point for<br />

students whose average total MVPA < 60 min. (Anderson et al., 2005). Additionally,<br />

PROOF ONLY


02 081795 Mota 17/7/07 5:20 pm Page 295<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 295<br />

it might be considered that some differences in estimation of vigorous activities may<br />

relate to the epoch time (sampling interval) procedures. The 1 minute epoch was used<br />

in this study. Moreover the 5 seconds epoch has been shown as the best approach to<br />

detect vigorous PA in <strong>youth</strong> (Nilsson et al., 2002). Nevertheless, in the present study<br />

the reliability values of the MTI scores across the day were similar to other findings<br />

reported in the literature (Mota et al., 2002; Sallis et al., 1993; Trost et al., 2000). In<br />

children from grades 1 to 6, the single-day reliability of MVPA assessed by MTI<br />

ranged from 0.46 to 0.49 while the values decreased as children got older, ranging<br />

from 0.32 to 0.31 (Trost et al., 2000). The scores obtained may also be representative<br />

of subjects’ day-to-day variability in MVPA participation.<br />

Our data showed high CV values for boys <strong>and</strong> girls in vigorous activities with<br />

those related to P<strong>cut</strong>-point over 100 percent (Table1). This issue should also be<br />

considered along with gender. Indeed, our results showed statistically significant<br />

differences between boys <strong>and</strong> girls for F<strong>cut</strong>-point but not for P<strong>cut</strong>-point, which might<br />

suggest different accuracy <strong>and</strong> sensitivity of <strong>cut</strong>-<strong>points</strong> according to gender. Further,<br />

the correlations (ICC <strong>and</strong> Spearman’s correlation) between MVPA MTI <strong>cut</strong>-<strong>points</strong><br />

were statistically significant in boys but not in girls, which may be a reflection of the<br />

restricted range of MVPA among girls.<br />

Limitations to the present study should be recognized. The sample is small <strong>and</strong><br />

it is believed that a larger group of participants is needed to clarify to what extent<br />

the differences are significant for public health strategies. Further studies should be<br />

designed to improve such estimations since the validity of <strong>activity</strong> monitors vary by<br />

setting (laboratory or field) <strong>and</strong> type of <strong>activity</strong> (Welk et al., 2000).<br />

Conclusion<br />

The data clearly show that compliance with a specific PA guideline will depend on<br />

the <strong>cut</strong>-<strong>points</strong> used to interpret the data collected. Therefore, the <strong>cut</strong>-<strong>points</strong> still need<br />

to be refined, <strong>and</strong> as a result health-related criteria for young people need to be based<br />

on further research evidence.<br />

Acknowledgment<br />

PROOF ONLY<br />

This study was supported in part by grant FCT: PSAU/122/96 <strong>and</strong> PAFID 284/2005.<br />

References<br />

Ainsworth, B.E., Bassett, D.R., Strath, S.J., Swartz, S.J., O’Brien, W.L., Thompson, R.W.,<br />

Jones, D.A., Macera, C.A. <strong>and</strong> Kimsey, C.D. (2000) ‘Comparison of Three Methods for<br />

Measuring the Time Spent in Physical Activity’, Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise<br />

32(9): S457–S464.<br />

Anderson, C.B., Hagströmer, M. <strong>and</strong> Yngve, A. (2005) ‘Validation of the PDPAR as an<br />

Adolescent Diary: Effect of <strong>Accelerometer</strong> Cut Points’, Medicine Science Sports Science 37:<br />

1224–30.


02 081795 Mota 17/7/07 5:20 pm Page 296<br />

296 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

Bouchard, C. (2001) ‘Physical Activity <strong>and</strong> Health: Introduction to the Dose-Response<br />

Symposium’, Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise 33: S347–S351.<br />

Brage, S., Wedderkopp, N., Franks, P.W., Andersen, L.B. <strong>and</strong> Froberg, K. (2003) ‘Reexamination<br />

of Validity <strong>and</strong> Reliability of the CSA Monitor in Walking <strong>and</strong> Running’, Medicine<br />

Science Sports Exercise 35(8): 1447–54.<br />

Cavill, N., Biddle, S. <strong>and</strong> Sallis, J.F. (2001) ‘Health Enhancing Physical Activity for Young<br />

People: Statement of the United Kingdom Expert Consensus Conference’, Pediatric<br />

Exercise Science 1: 12–25.<br />

Coe, D. <strong>and</strong> Pivarnick, J.M. (2001) ‘Validation of the CSA <strong>Accelerometer</strong> in Adolescent Boys<br />

during Basketball Practice’, Pediatric Exercise Science 13: 373–9.<br />

Corbin, C.B. <strong>and</strong> Pangrazi, R.P. (1998) Physical Activity for Children: A Statement of Guidelines.<br />

Reston, VA: NASPE Publications.<br />

Duarte, J.A., Guerra, S.C., Ribeiro, J.C., Costa, R. <strong>and</strong> Mota, J.A. (2000) ‘Blood Pressure in<br />

Pediatric Years (8–13 Years Old) in the Oporto Region’, Revista Portuguesa de Cardiologia<br />

19: 809–19.<br />

Ekelund, U., Sjöström, M., Yngve, A., Poortvliet, E., Nilsson, A., Froberg, K., Wedderkopp,<br />

N. <strong>and</strong> Westerterp, K. (2001) ‘Physical Activity Assessed by Activity Monitor <strong>and</strong><br />

Doubly Labelled Water’, Medicine Science Sports Exercise 33: 275–81.<br />

Freedson, P.S., Sirard, J., Debold, E.P., Pate, R.R., Dowda, M., Trost, S.G. <strong>and</strong> Sallis, J.F. (1997)<br />

‘Calibration of the Computer Science <strong>and</strong> Applications, Inc. (CSA) <strong>Accelerometer</strong>’,<br />

Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise 29 (suppl.): S45.<br />

Freedson, P.S., Melason Jr, E.L. <strong>and</strong> Sirard, J. (1998) ‘Calibration of the Computer Science <strong>and</strong><br />

Applications, Inc. <strong>Accelerometer</strong>’, Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise 30(5): 777–81.<br />

Freedson, P.S. <strong>and</strong> Miller, K. (2000) ‘Objective Monitoring of Physical Activity Using Motion<br />

Sensors <strong>and</strong> Heart Rate’, Research Quarterly for Exercise <strong>and</strong> Sport 71: S21–S29.<br />

Hussey, J., Gormley, J. <strong>and</strong> Bell, C. (2001) ‘Physical Activity in Dublin Children Aged 7–9<br />

Years’, British Journal of Sports Medicine 35(4): 268–72.<br />

Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S. <strong>and</strong> Atwood, E. (2002) ‘Exercise<br />

Capacity <strong>and</strong> Mortality among Men Referred for Exercise Testing’, New Engl<strong>and</strong> Journal<br />

of Medicine 346(11): 793–801.<br />

Mota, J., Santos, P., Guerra, S., Ribeiro, J.C., Duarte, J.A. <strong>and</strong> Sallis, J.F. (2002) ‘Validation<br />

of a Physical Activity Self-Report Questionnaire in a Portuguese Pediatric Population’,<br />

Pediatric Exercise Science 14(3): 269–76.<br />

Mota, J.P., Santos, S., Guerra, J.C., Ribeiro, J.D. (2003) ‘Patterns of Daily Physical Activity<br />

during School Days in Children <strong>and</strong> Adolescents’, American Journal of Human Biology<br />

15(4): 547–53.<br />

Nilsson, A., Ekelund, U., Yngve, A. <strong>and</strong> Sjöström, M. (2002) ‘Assessing Physical Activity<br />

among Children with the <strong>Accelerometer</strong>s Using Different Time Sampling Intervals <strong>and</strong><br />

Placements’, Pediatric Exercise Science 14: 87–96.<br />

Ott, A. E., Pate, R.R., Trost, S.G., Ward, D.S. <strong>and</strong> Saunders, R. (2000) ‘The Use of Uniaxial<br />

<strong>and</strong> Triaxial <strong>Accelerometer</strong>s to Measure Children’s “Free-Play” Physical Activity’,<br />

Pediatric Exercise Science 12: 360–70.<br />

Pate, R.R., Freedson, P.S., Sallis, J.F. et al. (2002) ‘Compliance with Physical Activity Guidelines:<br />

Prevalence in a Population of Children <strong>and</strong> Youth’, Annual Epidemiology 12: 303–8.<br />

Powell, K.E. <strong>and</strong> Dysinger, W. (1987) ‘Childhood Participation in Organised School Sports<br />

<strong>and</strong> Physical Education as Precursors of Adult Physical Activity’, American Journal Preview<br />

Medicine 3: 276–81.<br />

Puyau, M.R., Adolph, A.L., Vohra, F.A. <strong>and</strong> Butte, N.F. (2002) ‘Validation <strong>and</strong> Calibration of<br />

Physical Activity Monitors in Children’, Research Obesity 10(3): 150–7.<br />

Raitakari, O.T., Taimela, S., Porkka, K.V., Telama, R., Valimaki, I., Akerblom, H.K. <strong>and</strong><br />

Viikari, J.S. (1997) ‘Association between Physical Activity <strong>and</strong> Risk Factors for Coronary<br />

PROOF ONLY


02 081795 Mota 17/7/07 5:20 pm Page 297<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 297<br />

Heart Disease: The Cardiovascular Risk in Young Finns Study’, Medicine <strong>and</strong> Science in<br />

Sports <strong>and</strong> Exercise 29(8): 1055–61.<br />

Riddoch, C.J. <strong>and</strong> Boreham, C.A.G. (1995) ‘The Health-Related Physical Activity of<br />

Children’, Sports Medicine 19(2): 86–102.<br />

Sallis, J.F. <strong>and</strong> Owen, N. (1999) Physical Activity <strong>and</strong> Behavioral Medicine. London: SAGE.<br />

Sallis, J.F. <strong>and</strong> Saelens, B.E. (2000) ‘Assessment of Physical Activity by Self-Report: Status,<br />

Limitation <strong>and</strong> Future Directions’, Research Quarterly for Exercise <strong>and</strong> Sport 71: S1–S14.<br />

Sallis, J.F., Nader, P., Broyles, S., Berry, C., Elder, J., McKenzie, T. <strong>and</strong> Nelson, J. (1993)<br />

‘Correlates of Physical Activity at Home in Mexican-American <strong>and</strong> Anglo-American<br />

Preschool Children’, Health Psychology 12(5): 390–9.<br />

Sallis, J.F., McKenzie, T.L., Elder, J.P., Hoy, P.L., Galati, T., Berry, C.C., Zive, M.M. <strong>and</strong><br />

Nader, P.R. (1998) ‘Sex <strong>and</strong> Ethnic Differences in Children’s Physical Activity: Discrepancies<br />

between Self-Report <strong>and</strong> Objective Measures’, Pediatric Exercise Science 10: 277–84.<br />

Santos, M.P., Guerra, S., Ribeiro, J.C., Duarte, J.A. <strong>and</strong> Mota, J. (2003) ‘Age <strong>and</strong> Gender<br />

Related Physical Activity: A Descriptive Study in Children Using Accelerometry’,<br />

Journal of Sports Medicine <strong>and</strong> Physical Fitness 43(1): 85–9.<br />

Sarkin, J.A., Nichols, J.F., Sallis, J.F. <strong>and</strong> Calfas, K.J. (2000) ‘Self-Report Measures <strong>and</strong> Scoring<br />

Protocols Affect Prevalence Estimates of Meeting Physical Activity Guidelines’, Medicine<br />

<strong>and</strong> Science in Sports <strong>and</strong> Exercise 32(1): 149–56.<br />

Schofield, W.N. (1985) ‘Predicting Basal Metabolic Rate, New St<strong>and</strong>ards <strong>and</strong> Review of<br />

Previous Work’, Human Clinical Nutrition 39C: 5–41.<br />

Sleap, M. <strong>and</strong> Tolfrey, K. (2001) ‘Do 9- to 12 yr-old Children Meet Existing Physical Activity<br />

Recommendations for Health?’, Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise 33(4): 591–6.<br />

Trost, S.G., Pate, R.R., Freedson, P.S., Sallis, J.F. <strong>and</strong> Taylor, W.C. (2000) ‘Using Objective<br />

Physical Activity Measures with Youth: How Many Days of Monitoring are Needed?’,<br />

Medicine <strong>and</strong> Science in Sports <strong>and</strong> Exercise 32(2): 426–31.<br />

Trost, S.G., Pate, R.R., Sallis, J.F., Freedson, P.S., Taylor, W.C., Dowda, M. <strong>and</strong> Sirard, J.<br />

(2002) ‘Age <strong>and</strong> Gender Differences in Objectively Measured Physical Activity in Youth’,<br />

Medicine Science Sports Exercise 34(2): 350–5.<br />

Twisk, J.W.R., Mellenbergh, G.J. <strong>and</strong> Van Mechelen, W. (1997) ‘Tracking of Biological<br />

<strong>and</strong> Lifestyle Cardiovascular Risk Factors over a 14-Year Period’, American Journal<br />

Epidemiology 145: 888–98.<br />

Welk, G.J., Corbin, C.B. <strong>and</strong> Dale, D. (2000) ‘Measurement Issues in the Assessment of<br />

Physical Activity in Children’, Research Quarterly for Exercise <strong>and</strong> Sport 71: S59–S73.<br />

Résumé<br />

PROOF ONLY<br />

Seuil d’activation et fréquence d’Activité Physique chez les<br />

jeunes<br />

Le but de cette étude était double : tout d’abord, l’examen des effets de seuils spécifiques,<br />

puis, dans un second temps, la documentation des différences des modèles d’activité<br />

physiques liées au genre selon deux seuils différents. L’échantillon était composé de 62 enfants<br />

(garçons n = 23; filles n = 39) âgés de 8 à 16 ans. Les enfants ont porté des<br />

cardiofréquencemètres pendant trois jours consé<strong>cut</strong>ifs. Le temps quotidien d’activité<br />

physique modérée à vigoureuse a été calculé en utilisant une régression d’équation<br />

développée spécifiquement pour un jeune public au regard de seuils différents. L’analyse des<br />

données à partir des seuils de Freedson a montré que les deux sexes se sont engagés


02 081795 Mota 17/7/07 5:20 pm Page 298<br />

298 EUROPEAN PHYSICAL EDUCATION REVIEW 13(3)<br />

significativement plus (p ≤ 0.01) dans une activité physique modérée à vigoureuse qu’en<br />

comparaison avec les seuils de Puyau. Les garçons se sont engagés significativement plus<br />

(p ≤ 0.01) dans une activité physique modérée à vigoureuse que les filles indépendamment<br />

du seuil utilisé. Nos données ont également montré que le pourcentage d’élèves qui atteint<br />

le seuil d’une activité de santé en référence aux directives était significativement plus élevé<br />

tant chez les garçons (77.3 % contre 6.9 %; p < 0.001) et que chez les filles (60 % contre<br />

2.3 %; p < 0.001) en recourant au seuil de Freedson. Enfin, sur la base de nos résultats, il<br />

apparaît que, pour une stratégie préventive, les seuils spécifiques à un jeune public devraient<br />

être ré-affinés, et en conséquence les critères concernant la santé pour les jeunes devraient<br />

être basés sur de futurs résultats de recherche.<br />

Resumen<br />

Puntos de corte del acelerómetro y prevalencia de la actividad<br />

física juvenil<br />

El propósito de este estudio es doble. Por un lado se ha pretendido estudiar los efectos de<br />

la puntuación límite específica (sobre la prevalencia estimada de cumplir las directrices<br />

sanitarias sobre la actividad física en la juventud), y, por otro, se pretendía documentar las<br />

diferencias existentes en los modelos de actividad física según el sexo de acuerdo con dos<br />

puntos de corte diferentes. La muestra se realizó sobre 62 menores (23 niños y 39 niñas)<br />

de entre 8 y 16 años de edad. Los menores llevaron puesto un acelerómetro durante tres<br />

días laborables conse<strong>cut</strong>ivos. El tiempo que diariamente dedicaron a una actividad física entre<br />

moderada y vigorosa (AFMV) se calculó utiliz<strong>and</strong>o una ecuación de regresión desarrollada<br />

para los jóvenes según diferentes puntos de corte. El análisis de los datos a partir de los<br />

puntos de corte establecidos por Freedson ha demostrado que ambos sexos realizan<br />

bastante más AFMV (p ≤ 0,01) en comparación con los puntos de corte de Puyau. Los niños<br />

realizan bastante más AFMV (p ≤ 0,01) que las niñas, independientemente de los puntos de<br />

corte utilizados. Los datos que obtuvimos también indican que el porcentaje de estudiantes<br />

que cumplen las directrices sanitarias sobre actividad física fue bastante mayor tanto en el<br />

caso de los niños (77,3% frente al 6,9%; p < 0,001) como en el de las niñas (60% frente al<br />

2,3%; p < 0,001) cu<strong>and</strong>o se utilizaban los puntos de corte de Freedson. Nuestros resultados<br />

demuestran que los puntos de corte específicos para la juventud, en lo que se refiere a las<br />

estrategias preventivas, necesitan una reformulación, y, en consecuencia, los criterios sanitarios<br />

para los jóvenes deben basarse en los resultados de futuras investigaciones.<br />

PROOF ONLY<br />

Zusammenfassung<br />

Messpunktvorgaben von Beschleunigungsmessern und<br />

Häufigkeit körperlicher Aktivität bei Jugendlichen<br />

Der Zweck dieser Studie war ein zweifacher. Zuerst galt es die Auswirkung spezifischer<br />

Grenzwertvorgaben (bezüglich der Einschätzung, mit gesundheitsbezogenen Richtlinien für


02 081795 Mota 17/7/07 5:20 pm Page 299<br />

MOTA ET AL.: ACCELEROMETER CUT-POINTS AND YOUTH PHYSICAL ACTIVITY 299<br />

körperliche Aktivitäten im Jugendalter übereinzustimmen) zu untersuchen, und zweitens<br />

sollten die Unterschiede in geschlechterspezifischen Mustern körperlicher Aktivität<br />

entsprechend zwei verschiedenen Grenzwertvorgaben dokumentiert werden.. Die<br />

Stichprobe umfasste 62 Kinder (Jungen n = 23; Mädchen n = 39) im Alter von 8–16 Jahren.<br />

Die Kinder trugen an drei aufein<strong>and</strong>er folgenden Wochentagen Beschleunigungsmesser.<br />

Die Zeit, die sie täglich für moderate bis starke körperliche Aktivität (moderate-to-vigorous<br />

<strong>physical</strong> <strong>activity</strong> (MVPA) aufwendeten wurde mittels einer Regressionsgleichung berechnet,<br />

die für Jugendliche entsprechend den unterschiedlichen Messpunktvorgaben entwickelt<br />

worden war. Die Datenauswertung nach Freedsons Schwellenwerten zeigten für beide<br />

Geschlechter signifikant mehr MVPA (p ≤ 0.01), mehr MVPA im Vergleich mit Puyaus<br />

Schwellenangaben. Unabhängig von den verwendeten Schwellenwertvorgaben beteiligten<br />

sich Jungen signifikant (p ≤ 0.01) mehr an MVPA Aktivitäten (Sic!) als Mädchen. Unsere Daten<br />

zeigten auch, dass der Prozentsatz der Schüler, die die Vorgaben der gesundheitsbezogenen<br />

Richtlinien für körperliche Aktivität erfüllten, sowohl bei Jungen (77.3% vs 6.9%; p < 0.001)<br />

als auch Mädchen (60% vs. 2.3%; p < 0.001) signifikant höher war, wenn Freedsons<br />

Schwellenwert benutzt wurde. Unsere Daten zeigten auch, dass es nötig ist, für<br />

Präventivmassnahmen jugendspezifische Messwertvorgaben noch feiner einzustellen. Weiters<br />

müssen gesundheitsbezogene Kriterien für Jugendliche auf weiteren wissenschaftlichen<br />

Erkenntnissen aufgebaut werden.<br />

Jorge Mota, Mónica Valente, Luísa Aires, Pedro Silva, Maria Paula Santos <strong>and</strong><br />

José Carlos Ribeiro are based at the Research Centre in Physical Activity Health <strong>and</strong><br />

Leisure, Faculty of Sport Sciences, University of Porto.<br />

Address for correspondence: Jorge Mota, FCDEF-UP, R.Plácido Costa, 91 4200 450,<br />

Porto, Portugal. [email: jmota@fcdef.up.pt]<br />

PROOF ONLY


02 081795 Mota 17/7/07 5:20 pm Page 300<br />

PROOF ONLY

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!