25.10.2012 Views

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

July 2000 CREATINE AND CREATININE METABOLISM 1205<br />

831. SAKS VA AND ALIEV MK. Is there the creatine kinase equilibrium<br />

in working heart cells? Biochem Biophys Res Commun 227: 360–<br />

367, 1996.<br />

832. SAKS VA, BELIKOVA YO, KUZNETSOV AV, KHUCHUA ZA,<br />

BRANISHTE TH, SEMENOVSKY ML, AND NAUMOV VG. Phosphocreatine<br />

pathway for energy transport: ADP diffusion <strong>and</strong> cardiomyopathy.<br />

Am J Physiol Suppl 261: 30–38, 1991.<br />

833. SAKS VA, BOBKOV YG, AND STRUMIA EDS E. <strong>Creatine</strong> Phosphate:<br />

Biochemistry, Pharmacology <strong>and</strong> Clinical Efficiency.<br />

Torino, Italy: Edizioni Minerva Medica, 1987.<br />

834. SAKS VA, JAVADOV SA, POZIN E, AND PREOBRAZHENSKY AN.<br />

Biochemical basis of the protective action of phosphocreatine on<br />

the ischemic myocardium. In: <strong>Creatine</strong> Phosphate: Biochemistry,<br />

Pharmacology <strong>and</strong> Clinical Efficiency, edited by V. A. Saks, Y. G.<br />

Bobkov, <strong>and</strong> E. Strumia. Torino, Italy: Edizioni Minerva Medica,<br />

1987, p. 95–111.<br />

835. SAKS VA, KAPELKO VI, KUPRIYANOV VV, KUZNETSOV AV,<br />

LAKOMKIN VL, VEKSLER VI, SHAROV VG, JAVADOV SA, SEP-<br />

PET EK, AND KAIRANE C. Quantitative evaluation of relationship<br />

between cardiac energy metabolism <strong>and</strong> post-ischemic recovery<br />

of contractile function. J Mol Cell Cardiol 21 Suppl I: 67–78, 1989.<br />

836. SAKS VA AND STRUMIA E. Phosphocreatine: molecular <strong>and</strong> cellular<br />

aspects of the mechanism of cardioprotective action. Curr<br />

Ther Res 53: 565–598, 1993.<br />

837. SAKS VA, VENTURA-CLAPIER R, AND ALIEV MK. Metabolic control<br />

<strong>and</strong> metabolic capacity: two aspects of creatine kinase functioning<br />

in the cells. Biochim Biophys Acta 1274: 81–88, 1996.<br />

838. SAKS VA, VENTURA-CLAPIER R, LEVERVE X, RIGOULET M,<br />

AND ROSSI A, Eds. Bioenergetics of the cell: quantitative aspects.<br />

Mol Cell Biochem 184: 1–460, 1998.<br />

839. SALMON CP, KNIZE MG, AND FELTON JS. Effects of marinating<br />

on heterocyclic amine carcinogen formation in grilled chicken.<br />

Food Chem Toxicol 35: 433–441, 1997.<br />

840. SALTARELLI MD, BAUMAN AL, MOORE KR, BRADLEY CC, AND<br />

BLAKELY RD. Expression of the rat brain creatine transporter in<br />

situ <strong>and</strong> in transfected HeLa cells. Dev Neurosci 18: 524–534,<br />

1996.<br />

841. SANBE A, TANONAKA K, KOBAYASI R, AND TAKEO S. Effects of<br />

long-term therapy with ACE inhibitors, captopril, enalapril <strong>and</strong><br />

tr<strong>and</strong>olapril, on myocardial energy metabolism in rats with heart<br />

failure following myocardial infarction. J Mol Cell Cardiol 27:<br />

2209–2222, 1995.<br />

842. SANDBERG AA, HECHT HH, AND TYLER FH. Studies in disorders<br />

of muscle. X. The site of creatine synthesis in the human. <strong>Metabolism</strong><br />

2: 22–29, 1953.<br />

843. SANDOVAL N, BAUER D, BRENNER V, COY JF, DRESCHER B,<br />

KIOSCHIS P, KORN B, NYAKATURA G, POUSTKA A, REICH-<br />

WALD K, ROSENTHAL A, AND PLATZER M. The genomic organization<br />

of a human creatine transporter (CRTR) gene located in<br />

Xq28. Genomics 35: 383–385, 1996.<br />

844. SANT’ANA PEREIRA JAA, SARGEANT AJ, RADEMAKER ACHJ,<br />

DE HAAN A, AND VAN MECHELEN W. Myosin heavy chain isoform<br />

expression <strong>and</strong> high energy phosphate content in human<br />

muscle fibres at rest <strong>and</strong> post-exercise. J Physiol (Lond) 496:<br />

583–588, 1996.<br />

845. SANYAL R, DARROUDI F, PARZEFALL W, NAGAO M, AND KNAS-<br />

MÜLLER S. Inhibition of the genotoxic effects of heterocyclic<br />

amines in human derived hepatoma cells by dietary bioantimutagens.<br />

Mutagenesis 12: 297–303, 1997.<br />

846. SATOH S, TANAKA A, HATANO E, INOMOTO T, IWATA S, KITAI<br />

T, SHINOHARA H, TSUNEKAWA S, CHANCE B, AND YAMAOKA<br />

Y. Energy metabolism <strong>and</strong> regeneration in transgenic mouse liver<br />

expressing creatine kinase after major hepatectomy. Gastroenterology<br />

110: 1166–1174, 1996.<br />

847. SATOLLI F AND MARCHESI G. <strong>Creatine</strong> phosphate in the rehabilitation<br />

of patients with muscle hypotonotrophy of the lower extremity.<br />

Curr Ther Res 46: 67–73, 1989.<br />

848. SAUPE KW, SPINDLER M, TIAN R, AND INGWALL JS. Impaired<br />

cardiac energetics in mice lacking muscle-specific isoenzymes of<br />

creatine kinase. Circ Res 82: 898–907, 1998.<br />

849. SAUTER A AND RUDIN M. Determination of creatine kinase kinetic<br />

parameters in rat brain by NMR magnetization transfer.<br />

Correlation with brain function. J Biol Chem 268: 13166–13171,<br />

1993.<br />

850. SAVABI F. Free creatine available to the creatine phosphate energy<br />

shuttle in isolated rat atria. Proc Natl Acad Sci USA 85:<br />

7476–7480, 1988.<br />

851. SAVABI F. Mitochondrial creatine phosphokinase deficiency in<br />

diabetic rat heart. Biochem Biophys Res Commun 154: 469–475,<br />

1988.<br />

852. SAVABI F AND BESSMAN SP. Postanoxic recovery of spontaneously<br />

beating isolated atria: pH related role of adenylate kinase.<br />

Biochem Med Metab Biol 35: 345–355, 1986.<br />

853. SAVABI F AND BESSMAN SP. Recovery of isolated rat atrial<br />

function related to ATP under different anoxic conditions. Arch<br />

Biochem Biophys 248: 151–157, 1986.<br />

854. SAVABI F AND KIRSCH A. Alteration of the phosphocreatine energy<br />

shuttle components in diabetic rat heart. J Mol Cell Cardiol<br />

23: 1323–1333, 1991.<br />

855. SCATTOLIN G, GABELLINI A, DESIDERI A, FORMICHI M, CAN-<br />

EVE F, AND CORBARA F. Diastolic function <strong>and</strong> creatine phosphate:<br />

an echocardiographic study. Curr Ther Res 54: 562–571,<br />

1993.<br />

856. SCHAEFER S, GOBER JR, SCHWARTZ GG, TWIEG DB, WEINER<br />

MW, AND MASSIE B. In vivo phosphorus-31 spectroscopic imaging<br />

in patients with global myocardial disease. Am J Cardiol 65:<br />

1154–1161, 1990.<br />

857. SCHIFFENBAUER YS, MEIR G, COHN M, AND NEEMAN M. Cyclocreatine<br />

transport <strong>and</strong> cytotoxicity in rat glioma <strong>and</strong> human<br />

ovarian carcinoma cells: 31 P-NMR spectroscopy. Am J Physiol<br />

Cell Physiol 270: C160–C169, 1996.<br />

858. SCHIFFENBAUER YS, TEMPEL C, ABRAMOVITCH R, MEIR G,<br />

AND NEEMAN M. Cyclocreatine accumulation leads to cellular<br />

swelling in C6 glioma multicellular spheroids: diffusion <strong>and</strong> onedimensional<br />

chemical shift nuclear magnetic resonance microscopy.<br />

Cancer Res 55: 153–158, 1995.<br />

859. SCHIMMEL L, KHANDEKAR VS, MARTIN KJ, RIERA T, HONAN<br />

C, SHAW DG, AND KADDURAH-DAOUK R. The synthetic phosphagen<br />

cyclocreatine phosphate inhibits the growth of a broad spectrum<br />

of solid tumors. Anticancer Res 16: 375–380, 1996.<br />

860. SCHLOSS P, MAYSER W, AND BETZ H. The putative rat choline<br />

transporter CHOT1 transports creatine <strong>and</strong> is highly expressed in<br />

neural <strong>and</strong> muscle-rich tissues. Biochem Biophys Res Commun<br />

198: 637–645, 1994.<br />

861. SCHMITT T AND PETTE D. Increased mitochondrial creatine kinase<br />

in chronically stimulated fast-twitch rabbit muscle. FEBS<br />

Lett 188: 341–344, 1985.<br />

862. SCHOENMAKERS CHH, KULLER T, LINDEMANS J, AND BLIJEN-<br />

BERG BG. Automated enzymatic methods for creatinine measurement<br />

with special attention to bilirubin interference. Eur J Clin<br />

Chem Clin Biochem 31: 861–868, 1993.<br />

863. SCHULTHEISS H-P, SCHULZE K, SCHAUER R, WITZEN-<br />

BICHLER B, AND STRAUER BE. Antibody-mediated imbalance of<br />

myocardial energy metabolism. A causal factor of cardiac failure?<br />

Circ Res 76: 64–72, 1995.<br />

864. SCHULTHEISS K, THATE A, AND MEYER DK. Effects of creatine<br />

on synthesis <strong>and</strong> release of �-[ 3 H]aminobutyric acid. J Neurochem<br />

54: 1858–1863, 1990.<br />

865. SCHULTZ D, SU X, BISHOP SP, BILLADELLO J, AND DELL’ITALIA<br />

LJ. Selective induction of the creatine kinase-B gene in chronic<br />

volume overload hypertrophy is not affected by ACE-inhibitor<br />

therapy. J Mol Cell Cardiol 29: 2665–2673, 1997.<br />

866. SCHULZ JB, HENSHAW DR, MACGARVEY U, AND BEAL MF.<br />

Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity.<br />

Neurochem Int 29: 167–171, 1996.<br />

867. SCHULZE A, HESS T, WEVERS R, MAYATEPEK E, BACHERT P,<br />

MARESCAU B, KNOPP MV, DE DEYN PP, BREMER HJ, AND<br />

RATING D. <strong>Creatine</strong> deficiency syndrome caused by guanidinoacetate<br />

methyltransferase deficiency: diagnostic tools for a new<br />

inborn error of metabolism. J Pediatr 131: 626–631, 1997.<br />

868. SCHULZE A, MAYATEPEK E, BACHERT P, MARESCAU B, DE<br />

DEYN PP, AND RATING D. Therapeutic trial of arginine restriction<br />

in creatine deficiency syndrome. Eur J Pediatr 157: 606–607,<br />

1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!