25.10.2012 Views

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1202 MARKUS WYSS AND RIMA KADDURAH-DAOUK Volume 80<br />

dazo[4,5-g]quinoxaline (7,9-DiMeIgQx), present in beef extract.<br />

Carcinogenesis 15: 1151–1154, 1994.<br />

711. ODOOM JE, KEMP GJ, AND RADDA GK. The regulation of total<br />

creatine content in a myoblast cell line. Mol Cell Biochem 158:<br />

179–188, 1996.<br />

712. OGAWA H, DATE T, GOMI T, KONISHI K, PITOT HC, CANTONI<br />

GL, AND FUJIOKA M. Molecular cloning, sequence analysis, <strong>and</strong><br />

expression in Escherichia coli of the cDNA for guanidinoacetate<br />

methyltransferase from rat liver. Proc Natl Acad Sci USA 85:<br />

694–698, 1988.<br />

713. OGAWA H, ISHIGURO Y, AND FUJIOKA M. Guanidoacetate methyltransferase<br />

from rat liver: purification, properties, <strong>and</strong> evidence<br />

for the involvement of sulfhydryl groups for activity. Arch Biochem<br />

Biophys 226: 265–275, 1983.<br />

714. OGAWA J, KIM JM, NIRDNOY W, AMANO Y, YAMADA H, AND<br />

SHIMIZU S. Purification <strong>and</strong> characterization of an ATP-dependent<br />

amidohydrolase, N-methylhydantoin amidohydrolase, from<br />

Pseudomonas putida 77. Eur J Biochem 229: 284–290, 1995.<br />

715. OGAWA J, NIRDNOY W, TABATA M, YAMADA H, AND SHIMIZU S.<br />

A new enzymatic method for the measurement of creatinine involving<br />

a novel ATP-dependent enzyme, N-methylhydantoin<br />

amidohydrolase. Biosci Biotechnol Biochem 59: 2292–2294, 1995.<br />

716. OGIMOTO G, OZAWA S, MAEBA T, OWADA S, AND ISHIDA M.<br />

31 P-NMR study for the energy metabolism of skeletal muscle in<br />

chronic haemodialysis patients. In: Guanidino Compounds in<br />

Biology <strong>and</strong> Medicine, edited by P. P. De Deyn, B. Marescau, V.<br />

Stalon, <strong>and</strong> I. A. Qureshi. London: Libbey, 1992, p. 281–285.<br />

717. O’GORMAN E, BEUTNER G, DOLDER M, KORETSKY AP,<br />

BRDICZKA D, AND WALLIMANN T. The role of creatine kinase in<br />

inhibition of mitochondrial permeability transition. FEBS Lett<br />

414: 253–257, 1997.<br />

718. O’GORMAN E, BEUTNER G, WALLIMANN T, AND BRDICZKA D.<br />

Differential effects of creatine depletion on the regulation of<br />

enzyme activities <strong>and</strong> on creatine-stimulated mitochondrial respiration<br />

in skeletal muscle, heart, <strong>and</strong> brain. Biochim Biophys Acta<br />

1276: 161–170, 1996.<br />

719. O’GORMAN E, FUCHS K-H, TITTMANN P, GROSS H, AND WAL-<br />

LIMANN T. Crystalline mitochondrial inclusion bodies isolated<br />

from creatine depleted rat soleus muscle. J Cell Sci 110: 1403–<br />

1411, 1997.<br />

720. O’GORMAN E, PIENDL T, MÜLLER M, BRDICZKA D, AND WAL-<br />

LIMANN T. Mitochondrial intermembrane inclusion bodies: the<br />

common denominator between human mitochondrial myopathies<br />

<strong>and</strong> creatine depletion, due to impairment of cellular energetics.<br />

Mol Cell Biochem 174: 283–289, 1997.<br />

721. OGURI A, NAGAO M, ARAKAWA N, SUGIMURA T, AND WAKABA-<br />

YASHI K. Mutagen formation after heating of mixtures of guanidino<br />

compounds, amino acids <strong>and</strong> glucose. Proc Jpn Acad 70:<br />

67–70, 1994.<br />

722. OHASHI F, AWAJI T, SHIMADA T, AND SHIMADA Y. Plasma<br />

methylguanidine <strong>and</strong> creatinine concentrations in cats with experimentally<br />

induced acute renal failure. J Vet Med Sci 57: 965–<br />

966, 1995.<br />

723. OHGAKI H, TAKAYAMA S, AND SUGIMURA T. Carcinogenicities<br />

of heterocyclic amines in cooked food. Mutat Res 259: 399–410,<br />

1991.<br />

724. OHIRA Y, ISHINE S, TABATA I, KURATA H, WAKATSUKI T,<br />

SUGAWARA S, YASUI W, TANAKA H, AND KURODA Y. Noninsulin<br />

<strong>and</strong> non-exercise related increase of glucose utilization in<br />

rats <strong>and</strong> mice. Jpn J Physiol 44: 391–402, 1994.<br />

725. OHIRA Y, KANZAKI M, AND CHEN C-S. Intramitochondrial inclusions<br />

caused by depletion of creatine in rat skeletal muscles. Jpn<br />

J Physiol 38: 159–166, 1988.<br />

726. OHIRA Y, SAITO K, WAKATSUKI T, YASUI W, SUETSUGU T,<br />

NAKAMURA K, TANAKA H, AND ASAKURA T. Responses of �-adrenoceptor<br />

in rat soleus to phosphorus compound levels <strong>and</strong>/or<br />

unloading. Am J Physiol Cell Physiol 266: C1257–C1262, 1994.<br />

727. OHIRA Y, WAKATSUKI T, INOUE N, NAKAMURA K, ASAKURA T,<br />

IKEDA K, TOMIYOSHI T, AND NAKAJOH M. Non-exercise-related<br />

stimulation of mitochondrial protein synthesis in creatine-depleted<br />

rats. Med Sport Sci 37: 318–323, 1992.<br />

728. OHKOSHI N, MIZUSAWA H, FUJITA T, AND SHOJI S. Histological<br />

determination of nitric oxide synthase (NOS) <strong>and</strong> NADPH-diaph-<br />

orase in ragged-red fibers from patients with mitochondrial encephalomyopathies.<br />

J Neurol Sci 149: 151–156, 1997.<br />

729. OKA I, YOSHIMOTO T, RIKITAKE K, OGUSHI S, AND TSURU D.<br />

Sarcosine dehydrogenase from Pseudomonas putida: purification<br />

<strong>and</strong> some properties. Agric Biol Chem 43: 1197–1203, 1979.<br />

730. OKADA Y AND YONEDA K. Effects of accumulation of phosphocreatine<br />

on the survival time of thin hippocampal slices from the<br />

guinea pig during deprivation of both oxygen <strong>and</strong> glucose. Neurosci<br />

Lett 41: 125–131, 1983.<br />

731. OKONOGI H, USHIJIMA T, SHIMIZU H, SUGIMURA T, AND NA-<br />

GAO M. Induction of aberrant crypt foci in C57BL/6N mice by<br />

2-amino-9H-pyrido[2,3-b]indole (A�C) <strong>and</strong> 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline<br />

(MeIQx). Cancer Lett 111: 105–109,<br />

1997.<br />

732. OLDFORS A, LARSSON N-G, LINDBERG C, AND HOLME E. Mitochondrial<br />

DNA deletions in inclusion body myositis. Brain 116:<br />

325–336, 1993.<br />

733. ÖÖPIK V, PÄÄSUKE M, TIMPMANN S, MEDIJAINEN L, ERELINE<br />

J, AND SMIRNOVA T. Effect of creatine supplementation during<br />

rapid body mass reduction on metabolism <strong>and</strong> isokinetic muscle<br />

performance capacity. Eur J Appl Physiol 78: 83–92, 1998.<br />

734. ÖÖPIK V, TIMPMANN S, MEDIJAINEN L, AND ALEKSEJEVA T.<br />

Effect of creatine administration on blood urea level <strong>and</strong> postexercise<br />

glycogen repletion in liver <strong>and</strong> skeletal muscle in rats. Ann<br />

Nutr Metab 40: 359–363, 1996.<br />

735. ORITA Y, ANDO A, TSUBAKIHARA Y, MIKAMI H, KIKUCHI T,<br />

NAKATA K, AND ABE H. Tissue <strong>and</strong> blood cell concentration of<br />

methylguanidine in rats <strong>and</strong> patients with chronic renal failure.<br />

Nephron 27: 35–39, 1981.<br />

736. ORITA Y, TSUBAKIHARA Y, ANDO A, NAKATA K, TAKAMITSU<br />

Y, FUKUHARA Y, AND ABE H. Effect of arginine or creatinine<br />

administration on the urinary excretion of methylguanidine.<br />

Nephron 22: 328–336, 1978.<br />

737. OSBAKKEN M, DOUGLAS PS, IVANICS T, ZHANG D, AND VAN<br />

WINKLE T. <strong>Creatine</strong> kinase kinetics studied by phosphorus-31<br />

nuclear magnetic resonance in a canine model of chronic hypertension-induced<br />

cardiac hypertrophy. J Am Coll Cardiol 19: 223–<br />

228, 1992.<br />

738. OSBAKKEN M, ITO K, ZHANG D, PONOMARENKO I, IVANICS T,<br />

JAHNGEN EGE, AND COHN M. <strong>Creatine</strong> <strong>and</strong> cyclocreatine effects<br />

on ischemic myocardium: 31 P nuclear magnetic resonance evaluation<br />

of intact heart. Cardiology 80: 184–195, 1992.<br />

739. OSBAKKEN MD. Metabolic regulation of in vivo myocardial contractile<br />

function: multiparameter analysis. Mol Cell Biochem 133:<br />

13–37, 1994.<br />

740. OTSU N, YAMAGUCHI I, KOMATSU E, AND MIYAZAWA K.<br />

Changes in creatine kinase M localization in acute ischemic myocardial<br />

cells. Immunoelectron microscopic studies. Circ Res 73:<br />

935–942, 1993.<br />

741. OTTEN JV, FITCH CD, WHEATLEY JB, AND FISCHER VW. Thyrotoxic<br />

myopathy in mice: accentuation by a creatine transport<br />

inhibitor. <strong>Metabolism</strong> 35: 481–484, 1986.<br />

742. OUELLET M AND SHOUBRIDGE EA. Phosphocreatine-dependent<br />

protein phosphorylation in rat skeletal muscle. Biochem J 284:<br />

115–122, 1992.<br />

743. VERVIK E AND GUSTAFSSON J-Å. Cooked-food mutagens: current<br />

knowledge of formation <strong>and</strong> biological significance. Mutagenesis<br />

5: 437–446, 1990.<br />

744. VERVIK E, KLEMAN M, BERG I, AND GUSTAFSSON J-Å. Influence<br />

of creatine, amino acids <strong>and</strong> water on the formation of the mutagenic<br />

heterocyclic amines found in cooked meat. Carcinogenesis<br />

10: 2293–2301, 1989.<br />

745. OWENS CWI, ALBUQUERQUE ZP, AND TOMLINSON GM. In vitro<br />

metabolism of creatinine, methylamine <strong>and</strong> amino acids by intestinal<br />

contents of normal <strong>and</strong> uraemic subjects. Gut 20: 568–574,<br />

1979.<br />

746. OZASA H, HORIKAWA S, AND OTA K. Methylguanidine synthase<br />

from rat kidney is identical to long-chain L-2-hydroxy acid oxidase.<br />

Nephron 68: 279, 1994.<br />

747. OZASA H, WATANABE T, NAKAMURA K, FUKUNAGA Y,<br />

IENAGA K, AND HAGIWARA K. Changes in serum levels of creatol<br />

<strong>and</strong> methylguanidine in renal injury induced by lipid peroxide

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!