25.10.2012 Views

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1194 MARKUS WYSS AND RIMA KADDURAH-DAOUK Volume 80<br />

395. IENAGA K, NAKAMURA K, NAKA F, AND GOTO T. The metabolism<br />

of 1-methylhydantoin via 5-hydroxy-1-methylhydantoin in<br />

mammals. Biochim Biophys Acta 967: 441–443, 1988.<br />

396. IENAGA K, NAKAMURA K, YAMAKAWA M, TOYOMAKI Y, MAT-<br />

SUURA H, YOKOZAWA T, OURA H, AND NAKANO K. The use of<br />

13 C-labelling to prove that creatinine is oxidized by mammals into<br />

creatol <strong>and</strong> 5-hydroxy-1-methylhydantoin. J Chem Soc Chem<br />

Commun 509–510, 1991.<br />

397. IM YS, CHIANG PK, AND CANTONI GL. Guanidoacetate methyltransferase.<br />

Purification <strong>and</strong> molecular properties. J Biol Chem<br />

254: 11047–11050, 1979.<br />

398. INANA G, HOTTA Y, ZINTZ C, CHAMBERS C, KENNAWAY NG,<br />

WELEBER RG, NAKAJIMA A, AND SHIONO T. Molecular basis of<br />

ornithine aminotransferase defect in gyrate atrophy. Prog Clin<br />

Biol Res 362: 191–219, 1991.<br />

399. INGROSSO D, FOWLER AV, BLEIBAUM J, AND CLARKE S. Sequence<br />

of the D-aspartyl/L-isoaspartyl protein methyltransferase<br />

from human erythrocytes. Common sequence motifs for protein,<br />

DNA, RNA, <strong>and</strong> small molecule S-adenosylmethionine-dependent<br />

methyltransferases. J Biol Chem 264: 20131–20139, 1989.<br />

400. INGWALL JS. The hypertrophied myocardium accumulates the<br />

MB-creatine kinase isozyme. Eur Heart J 5 Suppl F: 129–139,<br />

1984.<br />

401. INGWALL JS. Is cardiac failure a consequence of decreased energy<br />

reserve? Circulation 87 Suppl VII: VII-58–VII-62, 1993.<br />

402. INGWALL JS. Whole-organ enzymology of the creatine kinase<br />

system in heart. Biochem Soc Trans 19: 1006–1010, 1991.<br />

403. INGWALL JS, ATKINSON DE, CLARKE K, AND FETTERS JK.<br />

Energetic correlates of cardiac failure: changes in the creatine<br />

kinase system in the failing myocardium. Eur Heart J 11 Suppl B:<br />

108–115, 1990.<br />

404. INGWALL JS AND FOSSEL ET. Changes in the creatine kinase<br />

system in the hypertrophied myocardium of the dog <strong>and</strong> rat. In:<br />

Perspectives in Cardiovascular Research, edited by N. R. Alpert.<br />

New York: Raven, 1983, p. 601–617.<br />

405. INGWALL JS, KRAMER MF, FIFER MA, LORELL BH, SHEMIN R,<br />

GROSSMAN W, AND ALLEN PD. The creatine kinase system in<br />

normal <strong>and</strong> diseased human myocardium. N Engl J Med 313:<br />

1050–1054, 1985.<br />

406. INGWALL JS AND WILDENTHAL K. Role of creatine in the regulation<br />

of cardiac protein synthesis. J Cell Biol 68: 159–163, 1976.<br />

407. INOUYE Y, MATSUDA Y, NAID T, ARAI S, HASHIMOTO Y,<br />

ASANO K, OZAKI M, AND NAKAMURA S. Purification <strong>and</strong> characterization<br />

of creatinine amidohydrolase of Alcaligenes origin.<br />

Chem Pharm Bull 34: 269–274, 1986.<br />

408. IPATA PL, MARMOCCHI F, MAGNI G, FELICIOLI R, AND POLI-<br />

DORO G. Baker’s yeast cytosine deaminase. Some enzymic properties<br />

<strong>and</strong> allosteric inhibition by nucleosides <strong>and</strong> nucleotides.<br />

Biochemistry 10: 4270–4276, 1971.<br />

409. ISBRANDT D AND VON FIGURA K. Cloning <strong>and</strong> sequence analysis<br />

of human guanidinoacetate N-methyltransferase cDNA. Biochim<br />

Biophys Acta 1264: 265–267, 1995.<br />

410. ISHIKAWA F, TAKAKU F, NAGAO M, OCHIAI M, HAYASHI K,<br />

TAKAYAMA S, AND SUGIMURA T. Activated oncogenes in a rat<br />

hepatocellular carcinoma induced by 2-amino-3-methyl-imidazo[4,5-f]quinoline.<br />

Jpn J Cancer Res 76: 425–428, 1985.<br />

411. ISHIKAWA Y, SAFFITZ JE, MEALMAN TL, GRACE AM, AND ROB-<br />

ERTS R. Reversible myocardial ischemic injury is not associated<br />

with increased creatine kinase activity in plasma. Clin Chem 43:<br />

467–475, 1997.<br />

412. ISHIZAKI M, KITAMURA H, TAGUMA Y, AOYAGI K, AND NARITA<br />

M. Urinary excretion rate of guanidinoacetic acid as a sensitive<br />

indicator of early-stage nephropathy. In: Guanidino Compounds<br />

in Biology <strong>and</strong> Medicine, edited by P. P. De Deyn, B. Marescau,<br />

V. Stalon, <strong>and</strong> I. A. Qureshi. London: Libbey, 1992, p. 275–280.<br />

413. ITO N, HASEGAWA R, IMAIDA K, TAMANO S, HAGIWARA A,<br />

HIROSE M, AND SHIRAI T. Carcinogenicity of 2-amino-1-methyl-<br />

6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat. Mutat Res 376:<br />

107–114, 1997.<br />

414. IYENGAR MR, COLEMAN DW, AND BUTLER TM. Phosphocreatinine,<br />

a high-energy phosphate in muscle, spontaneously forms<br />

phosphocreatine <strong>and</strong> creatinine under physiological conditions.<br />

J Biol Chem 260: 7562–7567, 1985.<br />

415. IYER GS, KRAHE R, GOODWIN LA, DOGGETT NA, SICILIANO<br />

MJ, FUNANAGE VL, AND PROUJANSKY R. Identification of a<br />

testis-expressed creatine transporter gene at 16p11.2 <strong>and</strong> confirmation<br />

of the X-linked locus to Xq28. Genomics 34: 143–146, 1996.<br />

416. IZAWA S, HARADA N, WATANABE T, KOTOKAWA N,<br />

YAMAMOTO A, HAYATSU H, AND ARIMOTO-KOBAYASHI S. Inhibitory<br />

effects of food-coloring agents derived from Monascus on<br />

the mutagenicity of heterocyclic amines. J Agric Food Chem 45:<br />

3980–3984, 1997.<br />

417. JACKSON LS AND HARGRAVES WA. Effects of time <strong>and</strong> temperature<br />

on the formation of MeIQ x <strong>and</strong> DiMeIQ x in a model system<br />

containing threonine, glucose, <strong>and</strong> creatine. J Agric Food Chem<br />

43: 1678–1684, 1995.<br />

418. JACOBS I, BLEUE S, AND GOODMAN J. <strong>Creatine</strong> ingestion increases<br />

anaerobic capacity <strong>and</strong> maximum accumulated oxygen<br />

deficit. Can J Appl Physiol 22: 231–243, 1997.<br />

419. JACOBSTEIN MD, GERKEN TA, BHAT AM, AND CARLIER PG.<br />

Myocardial protection during ischemia by prior feeding with the<br />

creatine analog cyclocreatine. J Am Coll Cardiol 14: 246–251,<br />

1989.<br />

420. JACOBUS WE, BITTL JA, AND WEISFELDT ML. Loss of mitochondrial<br />

creatine kinase in vitro <strong>and</strong> in vivo: a sensitive index of<br />

ischemic cellular <strong>and</strong> functional damage. In: Heart <strong>Creatine</strong> Kinase,<br />

edited by W. E. Jacobus <strong>and</strong> J. S. Ingwall. Baltimore, MD:<br />

Williams & Wilkins, 1980, p. 155–175.<br />

421. JACOBUS WE AND SAKS VA. <strong>Creatine</strong> kinase of heart mitochondria:<br />

changes in its kinetic properties induced by coupling to<br />

oxidative phosphorylation. Arch Biochem Biophys 219: 167–178,<br />

1982.<br />

422. JAFFE M. Ueber den Niederschlag, welchen Pikrinsäure in normalem<br />

Harn erzeugt und über eine neue Reaction des Kreatinins.<br />

Hoppe-Seyler’s Z Physiol Chem 10: 391–400, 1886.<br />

423. JÄGERSTAD M, LASER REUTERSWÄRD A, ÖSTE R, AND DAHL-<br />

QVIST A. <strong>Creatinine</strong> <strong>and</strong> Maillard reaction products as precursors<br />

of mutagenic compounds formed in fried beef. In: The Maillard<br />

Reaction in Foods <strong>and</strong> Nutrition, edited by G. R. Waller <strong>and</strong> M. S.<br />

Feather. Washington, DC: Am. Chem. Soc., 1983, p. 507–519.<br />

424. JÄGERSTAD M, SKOG K, GRIVAS S, AND OLSSON K. Formation<br />

of heterocyclic amines using model systems. Mutat Res 259: 219–<br />

233, 1991.<br />

425. JANSSON E, SYLVÉN C, HENZE A, AND KAIJSER L. Myocardial<br />

enzyme activities in patients with mitral regurgitation or mitral<br />

stenosis. Cardiovasc Res 21: 202–207, 1987.<br />

426. JAVIERRE C, LIZARRAGA MA, VENTURA JL, GARRIDO E, AND<br />

SEGURA R. <strong>Creatine</strong> supplementation does not improve physical<br />

performance in a 150 m race. J Physiol Biochem 53: 343–348,<br />

1997.<br />

427. JENNE DE, OLSEN AS, AND ZIMMER M. The human guanidinoacetate<br />

methyltransferase (GAMT) gene maps to a syntenic region<br />

on 19p13.3, homologous to b<strong>and</strong> C of mouse chromosome 10, but<br />

GAMT is not mutated in jittery mice. Biochem Biophys Res Commun<br />

238: 723–727, 1997.<br />

428. JENNER P AND OLANOW CW. Underst<strong>and</strong>ing cell death in Parkinson’s<br />

disease. Ann Neurol 44 Suppl 1: S72–S84, 1998.<br />

429. JENNINGS RB, REIMER KA, HILL ML, AND MAYER SE. Total<br />

ischemia in dog hearts, in vitro. 1. Comparison of high energy<br />

phosphate production, utilization, <strong>and</strong> depletion, <strong>and</strong> of adenine<br />

nucleotide catabolism in total ischemia in vitro vs severe ischemia<br />

in vivo. Circ Res 49: 892–900, 1981.<br />

430. JENNINGS RB AND STEENBERGEN C. Nucleotide metabolism<br />

<strong>and</strong> cellular damage in myocardial ischemia. Annu Rev Physiol<br />

47: 727–749, 1985.<br />

431. JERNBERG-WIKLUND H, PETTERSSON M, AND NILSSON K. Recombinant<br />

interferon-� inhibits the growth of IL-6-dependent human<br />

multiple myeloma cell lines in vitro. Eur J Haematol 46:<br />

231–239, 1991.<br />

432. JIAO Y, OKUMIYA T, SAIBARA T, TSUBOSAKI E, MATSUMURA<br />

H, PARK K, SUGIMOTO K, KAGEOKA T, AND SASAKI M. An<br />

enzymatic assay for erythrocyte creatine as an index of the erythrocyte<br />

life time. Clin Biochem 31: 59–65, 1998.<br />

433. JINNAI D, MORI A, MUKAWA J, OHKUSU H, HOSOTANI M,<br />

MIZUNO A, AND TYE LC. Biochemical <strong>and</strong> physiological studies

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!