25.10.2012 Views

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

Creatine and Creatinine Metabolism - Physiological Reviews

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1212 MARKUS WYSS AND RIMA KADDURAH-DAOUK Volume 80<br />

1104. WILCE MCJ, BOND CS, DIXON NE, FREEMAN HC, GUSS JM,<br />

LILLEY PE, AND WILCE JA. Structure <strong>and</strong> mechanism of a prolinespecific<br />

aminopeptidase from Escherichia coli. Proc Natl Acad<br />

Sci USA 95: 3472–3477, 1998.<br />

1105. WILKEN B, RAMIREZ JM, PROBST I, RICHTER DW, AND<br />

HANEFELD F. <strong>Creatine</strong> protects the central respiratory network<br />

of mammals under anoxic conditions. Pediatr Res 43: 8–14, 1998.<br />

1106. WILLIAMS MH AND BRANCH JD. <strong>Creatine</strong> supplementation <strong>and</strong><br />

exercise performance: an update. J Am Coll Nutr 17: 216–234,<br />

1998.<br />

1107. WILLIAMSON P, DROST D, STANLEY J, CARR T, MORRISON S,<br />

AND MERSKEY H. Localized phosphorus 31 magnetic resonance<br />

spectroscopy in chronic schizophrenic patients <strong>and</strong> normal controls.<br />

Arch Gen Psychiatry 48: 578, 1991.<br />

1108. WINDISCHBAUER A, GRIESMACHER A, AND MÜLLER MM. In<br />

vitro effects of hypoxia <strong>and</strong> reoxygenation on human umbilical<br />

endothelial cells. Eur J Clin Chem Clin Biochem 32: 279–284,<br />

1994.<br />

1109. WISEMAN RW AND KUSHMERICK MJ. <strong>Creatine</strong> kinase equilibration<br />

follows solution thermodynamics in skeletal muscle. 31 P<br />

NMR studies using creatine analogs. J Biol Chem 270: 12428–<br />

12438, 1995.<br />

1110. WISSER H AND KNOLL E. Enzymatisches Verfahren der Kreatininbestimmung.<br />

Internist 28: 123–127, 1987.<br />

1111. WITTWER AJ AND WAGNER C. Identification of the folate-binding<br />

proteins of rat liver mitochondria as dimethylglycine dehydrogenase<br />

<strong>and</strong> sarcosine dehydrogenase. Purification <strong>and</strong> folate-binding<br />

characteristics. J Biol Chem 256: 4102–4108, 1981.<br />

1112. WITTWER AJ AND WAGNER C. Identification of the folate-binding<br />

proteins of rat liver mitochondria as dimethylglycine dehydrogenase<br />

<strong>and</strong> sarcosine dehydrogenase. Flavoprotein nature <strong>and</strong> enzymatic<br />

properties of the purified proteins. J Biol Chem 256:<br />

4109–4115, 1981.<br />

1113. WOGAN GN, PAGLIALUNGA S, ARCHER MC, AND TANNEN-<br />

BAUM SR. Carcinogenicity of nitrosation products of ephedrine,<br />

sarcosine, folic acid, <strong>and</strong> creatinine. Cancer Res 35: 1981–1984,<br />

1975.<br />

1114. WOLFF DJ AND LUBESKIE A. Inactivation of nitric oxide synthase<br />

isoforms by diaminoguanidine <strong>and</strong> N G -amino-L-arginine. Arch Biochem<br />

Biophys 325: 227–234, 1996.<br />

1115. WOLOSKER H, PANIZZUTTI R, AND ENGELENDER S. Inhibition<br />

of creatine kinase by S-nitrosoglutathione. FEBS Lett 392: 274–<br />

276, 1996.<br />

1116. WONG KT, DICK D, AND ANDERSON JR. Mitochondrial abnormalities<br />

in oculopharyngeal muscular dystrophy. Neuromuscular<br />

Disorders 6: 163–166, 1996.<br />

1117. WONG T. Studies on creatine determination by �-naphthol-diacetyl<br />

reaction. Anal Biochem 40: 18–28, 1971.<br />

1118. WOOD JM, HANLEY HG, ENTMAN ML, HARTLEY CJ, SWAIN JA,<br />

BUSCH U, CHANG C-H, LEWIS RM, MORGAN WJ, AND<br />

SCHWARTZ A. Biochemical <strong>and</strong> morphological correlates of<br />

acute experimental myocardial ischemia in the dog. IV. Energy<br />

mechanisms during very early ischemia. Circ Res 44: 52–61, 1979.<br />

1119. WOZNICKI DT AND WALKER JB. Utilization of cyclocreatine<br />

phosphate, an analogue of creatine phosphate, by mouse brain<br />

during ischemia <strong>and</strong> its sparing action on brain energy reserves.<br />

J Neurochem 34: 1247–1253, 1980.<br />

1120. WU AHB. <strong>Creatine</strong> kinase isoforms in ischemic heart disease. Clin<br />

Chem 35: 7–13, 1989.<br />

1121. WU RW, TUCKER JD, SORENSEN KJ, THOMPSON LH, AND FEL-<br />

TON JS. Differential effect of acetyltransferase expression on the<br />

genotoxicity of heterocyclic amines in CHO cells. Mutat Res 390:<br />

93–103, 1997.<br />

1122. WU S, WHITE R, WIKMAN-COFFELT J, SIEVERS R, WENDLAND<br />

M, GARRETT J, HIGGINS CB, JAMES T, AND PARMLEY WW. The<br />

preventive effect of verapamil on ethanol-induced cardiac depression:<br />

phosphorus-31 nuclear magnetic resonance <strong>and</strong> high-pressure<br />

liquid chromatographic studies of hamsters. Circulation 75:<br />

1058–1064, 1987.<br />

1123. WYSS M, FELBER S, SKLADAL D, KOLLER A, KREMSER C, AND<br />

SPERL W. The therapeutic potential of oral creatine supplementation<br />

in muscle disease. Med Hypotheses 51: 333–336, 1998.<br />

1124. WYSS M, SMEITINK J, WEVERS RA, AND WALLIMANN T. Mito-<br />

chondrial creatine kinase: a key enzyme of aerobic energy metabolism.<br />

Biochim Biophys Acta 1102: 119–166, 1992.<br />

1125. WYSS M AND WALLIMANN T. <strong>Creatine</strong> metabolism <strong>and</strong> the consequences<br />

of creatine depletion in muscle. Mol Cell Biochem 133:<br />

51–66, 1994.<br />

1126. XIE Y-W AND WOLIN MS. Role of nitric oxide <strong>and</strong> its interaction<br />

with superoxide in the suppression of cardiac muscle mitochondrial<br />

respiration. Involvement in response to hypoxia/reoxygenation.<br />

Circulation 94: 2580–2586, 1996.<br />

1127. XU CJ, KLUNK WE, KANFER JN, XIONG Q, MILLER G, AND<br />

PETTEGREW JW. Phosphocreatine-dependent glutamate uptake<br />

by synaptic vesicles. A comparison with ATP-dependent glutamate<br />

uptake. J Biol Chem 271: 13435–13440, 1996.<br />

1128. XUE G-P AND SNOSWELL AM. Disturbance of methyl group metabolism<br />

in alloxan-diabetic sheep. Biochem Int 10: 897–905, 1985.<br />

1129. XUE G-P AND SNOSWELL AM. Developmental changes in the<br />

activities of enzymes related to methyl group metabolism in sheep<br />

tissues. Comp Biochem Physiol B Biochem 83: 115–120, 1986.<br />

1130. XUE G-P, SNOSWELL AM, AND FISHLOCK RC. Quantitative study<br />

on creatine metabolism in sheep tissues. Biochem Int 16: 623–628,<br />

1988.<br />

1131. YAMAMOTO K, OKA M, KIKUCHI T, AND EMI S. Cloning of the<br />

creatinine amidohydrolase gene from Pseudomonas sp. PS-7. Biosci<br />

Biotechnol Biochem 59: 1331–1332, 1995.<br />

1132. YAMAMOTO Y, SAITO A, MANJI T, NISHI H, ITO K, MAEDA K,<br />

OHTA K, AND KOBAYASHI K. A new automated analytical method<br />

for guanidino compounds <strong>and</strong> their cerebrospinal fluid levels in<br />

uremia. Trans Am Soc Artif Intern Organs 24: 61–68, 1978.<br />

1133. YAMASHITA H, OHIRA Y, WAKATSUKI T, YAMAMOTO M,<br />

KIZAKI T, OH-ISHI S, AND OHNO H. Increased growth of brown<br />

adipose tissue but its reduced thermogenic activity in creatinedepleted<br />

rats fed �-guanidinopropionic acid. Biochim Biophys<br />

Acta 1230: 69–73, 1995.<br />

1134. YANAGISAWA H, MANABE S, KITAGAWA Y, ISHIKAWA S, NA-<br />

KAJIMA K, AND WADA O. Presence of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline<br />

(MeIQx) in dialysate from patients with<br />

uremia. Biochem Biophys Res Commun 138: 1084–1089, 1986.<br />

1135. YANOKURA M, SAWAI Y, AND TSUKADA K. The uptake of creatine<br />

by various tissues from a mouse bearing tumor cells. Biochim<br />

Biophys Acta 797: 94–98, 1984.<br />

1136. YANOKURA M AND TSUKADA K. Decreased activities of glycine<br />

<strong>and</strong> guanidinoacetate methyltransferases <strong>and</strong> increased levels of<br />

creatine in tumor cells. Biochem Biophys Res Commun 104:<br />

1464–1469, 1982.<br />

1137. YASUDA M, SUGAHARA K, ZHANG J, AGETA T, NAKAYAMA K,<br />

SHUIN T, AND KODAMA H. Simultaneous determination of creatinine,<br />

creatine, <strong>and</strong> guanidinoacetic acid in human serum <strong>and</strong><br />

urine using liquid chromatography-atmospheric pressure chemical<br />

ionization mass spectrometry. Anal Biochem 253: 231–235,<br />

1997.<br />

1138. YASUDA T, FUKASAWA M, OHMINATO M, MAEBA T, OZAWA S,<br />

OWADA S, AND ISHIDA M. The effect of guanidino compounds on<br />

the membrane fluidity of the cultured rat mesangial cell. In: Guanidino<br />

Compounds in Biology <strong>and</strong> Medicine, edited by P. P. De<br />

Deyn, B. Marescau, V. Stalon, <strong>and</strong> I. A. Qureshi. London: Libbey,<br />

1992, p. 293–299.<br />

1139. YATIN SM, AKSENOV M, AND BUTTERFIELD DA. The antioxidant<br />

vitamin E modulates amyloid �-peptide-induced creatine kinase<br />

activity inhibition <strong>and</strong> increased protein oxidation: implications<br />

for the free radical hypothesis of Alzheimer’s disease. Neurochem<br />

Res 24: 427–435, 1999.<br />

1140. YEN G-C AND DUH P-D. Antimutagenic effect of methanolic extracts<br />

from peanut hulls. Biosci Biotechnol Biochem 60: 1698–<br />

1700, 1996.<br />

1141. YOKOZAWA T, CHUNG HY, DONG E, AND OURA H. Confirmation<br />

that magnesium lithospermate B has a hydroxyl radical-scavenging<br />

action. Exp Toxicol Pathol 47: 341–344, 1995.<br />

1142. YOKOZAWA T, DONG E, AND OURA H. Proof that green tea tannin<br />

suppresses the increase in the blood methylguanidine level associated<br />

with renal failure. Exp Toxicol Pathol 49: 117–122, 1997.<br />

1143. YOKOZAWA T, FUJITSUKA N, AND OURA H. Production of methylguanidine<br />

from creatinine in normal rats <strong>and</strong> rats with renal<br />

failure. Nephron 56: 249–254, 1990.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!