25.10.2012 Views

M-S Quad Driver X12.017 - Guy Carpenter

M-S Quad Driver X12.017 - Guy Carpenter

M-S Quad Driver X12.017 - Guy Carpenter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>X12.017</strong>.03.SP.E M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> 1<br />

Features<br />

- generates microsteps<br />

- glitch filters on all inputs<br />

- VDD = 4.5 to 5.5V<br />

- low EMI emission<br />

Description<br />

M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong><br />

The M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> is a monolithic CMOS<br />

device intended to be used as an interface circuit to<br />

ease the use of the Miniature Stepper Motors M-S<br />

X15.xxx. It was specifically designed for applications<br />

in the car dashboard. The circuit allows the user to<br />

drive four motors as it contains four identical drivers<br />

on the same chip.<br />

The driver circuit converts a pulse train f(scx) into a<br />

current level sequence sent to the motor coils. This<br />

sequence is used to produce the microstepping<br />

movement of the motor. A microstep corresponds to<br />

an angular rotation of 1/12 deg. of the shaft. The<br />

microstepping allows for smooth and appealing<br />

movement of a pointer if the M-S is used as pointer<br />

drive. Note that the precision of the angular position is<br />

always affected by the gear play of the motor which is<br />

±1/3 deg.<br />

Applications<br />

Analogue Instrumentation<br />

- car dashboard (Hybrid Instrument Cluster)<br />

- nautical instrumentation<br />

- aeronautical instrumentation<br />

Microrobotics<br />

- appliance controls<br />

- devices for medical analysis<br />

Typical Operating Configuration<br />

Control bus<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

System µ-processor<br />

RESET<br />

f(scx) A<br />

CW/CCW A<br />

f(scx) B<br />

CW/CCW B<br />

f(scx) C<br />

CW/CCW C<br />

f(scx) D<br />

CW/CCW D<br />

Pin Assignment<br />

VDD<br />

CW/CCW B<br />

f(scx) B<br />

OUT 3A<br />

OUT 4A<br />

OUT 2A<br />

OUT 1A<br />

OUT 1D<br />

OUT 2D<br />

OUT 4D<br />

OUT 3D<br />

VSS<br />

CW/CCW C<br />

f(scx) C<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

M-S <strong>X12.017</strong><br />

M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong><br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

OUT<br />

A<br />

OUT<br />

B<br />

OUT<br />

C<br />

OUT<br />

D<br />

M-S<br />

M-S<br />

M-S<br />

M-S<br />

f(scx) A<br />

CW/CCW A<br />

RESET<br />

OUT 3B<br />

OUT 4B<br />

OUT 2B<br />

OUT 1B<br />

OUT 1C<br />

OUT 2C<br />

OUT 4C<br />

OUT 3C<br />

f(scx) D<br />

CW/CCW D<br />

VDD<br />

Fig. 1<br />

Fig. 2


2 M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> <strong>X12.017</strong>.03.SP.E<br />

Absolute Maximum Ratings<br />

Parameter Symbol Conditions<br />

Voltage V DD to V SS V DD -0.3 to +6V<br />

Voltage at any pin to V DD V MAX +0.3V<br />

Voltage at any pin to V SS V MIN -0.3V<br />

Current at OUTs 1-4 I OUTMAX ±35mA<br />

Max. junction temperature T j 150°C<br />

Operating temp. range T A -40 to +105°C<br />

Storage temp. range T STO -65 to +125°C<br />

Table 1<br />

Stresses beyond these listed maximum ratings may<br />

cause permanent damage to the device. Exposure to<br />

conditions beyond specified operating conditions may<br />

affect device reliability or cause malfunction.<br />

Operating Conditions<br />

Handling Procedures<br />

The device has built-in protection against high static<br />

voltages or electric fields; however, anti-static<br />

precautions must be taken as for any other CMOS<br />

component.<br />

Unless otherwise specified, proper operation can only<br />

occur when all terminal voltages are kept within the<br />

supply voltage range.<br />

Unused inputs must always be tied to a defined logic<br />

voltage level unless otherwise specified.<br />

Parameter Symbol Test Conditions Min Typ Max Units<br />

Operating temperature T A -40 +105 °C<br />

Thermal impedance R th j-a DIP package 60 °C/W<br />

SO package 80 °C/W<br />

Supply voltage V DD 4.5 5 5.5 V<br />

Input voltage at any pin V IN V SS V DD V<br />

Table 2<br />

Load Characteristics<br />

Parameter Symbol Test Conditions Min Typ Max Units<br />

Coil resistance R B25 M-S X15.xxx, T A=25°C 260 290 320 Ω<br />

R B-40 M-S X15.xxx, T A=-40°C 190 Ω<br />

R B105 M-S X15.xxx, T A=105°C 340 Ω<br />

Phase inductance L 25 M-S X15.xxx, T A=25°C 0.4 H<br />

Table 3<br />

Electrical Characteristics<br />

V DD = 4.5 ÷ 5.5V, T A = -40 ÷105°C, unless otherwise specified<br />

Parameter Symbol Test Conditions Min Typ Max Units<br />

Power Consumption<br />

Typical supply current IC VDD=5V, ω=200°/s,<br />

TA=25°C, RB25=290Ω 76 mA<br />

Worst case supply current ICMAX VDD=5.5V, RESET=VSS, TA=-40°C, RB-40=190Ω 200 mA<br />

Quiescent supply current<br />

Inputs<br />

ICC All inputs at VDD or VSS, no<br />

load<br />

300 µA<br />

Low level input voltage VIL VDD = 4.5 ÷ 5.5V VSS 1.35 V<br />

High level input voltage VIH VDD = 4.5 ÷ 5.5V 3.15 VDD V<br />

Input leakage IIN VIN = VSS or VDD -10 10 µA<br />

Table 4<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE


<strong>X12.017</strong>.03.SP.E M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> 3<br />

Timing Characteristics<br />

V DD = 4.5 ÷ 5.5V, T A = -40 ÷105°C, t rise and t fall ≤ 20ns, input signal swing V SS to V DD<br />

Parameter Symbol Test Conditions Min Typ Max Units<br />

Signal pulse width t w high or low 450 ns<br />

Input frequency f(scx) <strong>Driver</strong> input limit 1.1 MHz<br />

Motor speed limit (ω=600°/s) 7.2 kHz<br />

Setup time to f(scx) t s high or low 100 ns<br />

RESET release time to f(scx) t rr 100 ns<br />

Table 5<br />

Delay Timing Waveforms<br />

Any signal<br />

Pin Description<br />

tw<br />

CW/CCW<br />

f(scx)<br />

ts<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

RESET<br />

f(scx)<br />

Unused inputs must always be tied to a defined logic voltage level unless otherwise specified<br />

Pin Number<br />

DIP/SOL 28 Version<br />

Name I/O Function<br />

1 / 15 VDD V Positive supply voltage<br />

12 VSS V Negative supply voltage<br />

28 / 3 / 14 / 17 f(scx) A / B / C / D I Stepping frequency; <strong>Driver</strong> A / B / C / D<br />

27 / 2 / 13 / 16 CW/CCW A / B / C / D I Direction of rotation; <strong>Driver</strong> A / B / C / D<br />

26 RESET I Reset for the four drivers<br />

7 / 22 / 21 / 8 OUT 1A / 1B / 1C / 1D O Coil output 1; <strong>Driver</strong> A / B / C / D<br />

6 / 23 / 20 / 9 OUT 2A / 2B / 2C / 2D O Coil output 2; <strong>Driver</strong> A / B / C / D<br />

4 / 25 / 18 / 11 OUT 3A / 3B / 3C / 3D O Coil output 3; <strong>Driver</strong> A / B / C / D<br />

5 / 24 / 19 / 10 OUT 4A / 4B / 4C / 4D O Coil output 4; <strong>Driver</strong> A / B / C / D<br />

Circuit Protections<br />

To filter fast voltage transients, it is highly<br />

recommended to connect two 100nF ceramic<br />

capacitors to the power supply pins, one on either side<br />

and as close as possible to the IC.<br />

Moreover, to protect the IC against latch-up, a 5μF<br />

capacitor per motor connected should be added.<br />

Thus, for 4 motors, typically a 22μF capacitor must be<br />

used, either electrolytic or tantalum. Note this<br />

capacitor can be placed close to the voltage regulator.<br />

Recommended Power Up<br />

trr<br />

Fig.3<br />

Table 6<br />

In order to power up the circuit in a defined manner, it<br />

is recommended to keep the RESET input low while<br />

the VDD voltage is raising. After a delay of about 1ms,<br />

the RESET can be released (i.e. set high).<br />

Depending on the microcontroller used, an external<br />

pull-down resistor might be required to properly set the<br />

RESET state at low during the start-up.


4 M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> <strong>X12.017</strong>.03.SP.E<br />

Block Diagram<br />

f(scx) A<br />

G/L = Glitch filter & Level Shifter<br />

G/L<br />

CW/CCW A G/L<br />

RESET G/L<br />

f(scx) B<br />

CW/CCW B<br />

f(scx) C<br />

CW/CCW C<br />

f(scx) D<br />

CW/CCW D<br />

G/L<br />

G/L<br />

G/L<br />

G/L<br />

G/L<br />

G/L<br />

OUTPUT<br />

DRIVER<br />

A<br />

OUTPUT<br />

DRIVER<br />

B<br />

OUTPUT<br />

DRIVER<br />

C<br />

OUTPUT<br />

DRIVER<br />

D<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

OUT A1<br />

COIL A1<br />

OUT A2<br />

OUT A3<br />

COIL A2<br />

OUT A4<br />

OUT B1<br />

COIL B1<br />

OUT B2<br />

OUT B3<br />

COIL B2<br />

OUT B4<br />

OUT C1<br />

COIL C1<br />

OUT C2<br />

OUT C3<br />

COIL C2<br />

OUT C4<br />

OUT D1<br />

COIL D1<br />

OUT D2<br />

OUT D3<br />

COIL D2<br />

OUT D4<br />

Fig. 4


<strong>X12.017</strong>.03.SP.E M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> 5<br />

Suggested Applications<br />

VCC<br />

18<br />

VDD<br />

µC<br />

VSS<br />

19<br />

GND<br />

VCC<br />

18<br />

VDD<br />

µC<br />

VSS<br />

19<br />

GND<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

OUT<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

VCC<br />

+<br />

22µF<br />

Note: depending on the µC used, this external<br />

pull-down resistor might be required to properly set<br />

the RESET state at low during the start-up.<br />

9<br />

11<br />

13<br />

15<br />

16<br />

17<br />

Caution : the 100nF ceramic capacitors must be placed as close as possible to the driver<br />

100nF 100nF<br />

GND GND<br />

GND<br />

1<br />

2<br />

VCC<br />

+<br />

GND<br />

22µF<br />

Note: depending on the µC used, this external<br />

pull-down resistor might be required to properly set<br />

the RESET state at low during the start-up.<br />

10k<br />

28<br />

27<br />

3<br />

2<br />

14<br />

13<br />

17<br />

16<br />

26<br />

28<br />

27<br />

3<br />

2<br />

GND<br />

14<br />

13<br />

17<br />

16<br />

26<br />

1<br />

VDD<br />

Fscx A OUT1 A<br />

CW/CCW* A OUT2 A<br />

OUT3 A<br />

OUT4 A<br />

Fscx B OUT1 B<br />

CW/CCW* B OUT2 B<br />

OUT3 B<br />

OUT4 B<br />

Fscx C OUT1 C<br />

CW/CCW* C OUT2 C<br />

OUT3 C<br />

OUT4 C<br />

Fscx D OUT1 D<br />

CW/CCW* D OUT2 D<br />

OUT3 D<br />

OUT4 D<br />

RESET*<br />

1<br />

VDD<br />

VSS<br />

12<br />

GND<br />

15<br />

VDD<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

MS <strong>X12.017</strong><br />

Fscx A OUT1 A<br />

CW/CCW* A OUT2 A<br />

OUT3 A<br />

OUT4 A<br />

Fscx B OUT1 B<br />

CW/CCW* B OUT2 B<br />

OUT3 B<br />

OUT4 B<br />

Fscx C OUT1 C<br />

CW/CCW* C OUT2 C<br />

OUT3 C<br />

OUT4 C<br />

Fscx D OUT1 D<br />

CW/CCW* D OUT2 D<br />

OUT3 D<br />

OUT4 D<br />

RESET*<br />

VSS<br />

12<br />

GND<br />

15<br />

VDD<br />

MS <strong>X12.017</strong><br />

7<br />

6<br />

4<br />

5<br />

22<br />

23<br />

25<br />

24<br />

21<br />

20<br />

18<br />

19<br />

8<br />

9<br />

11<br />

10<br />

100nF 100nF<br />

GND GND<br />

GND<br />

1<br />

2<br />

7<br />

6<br />

4<br />

5<br />

22<br />

23<br />

25<br />

24<br />

21<br />

20<br />

18<br />

19<br />

8<br />

9<br />

11<br />

10<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

X15.xxx<br />

X15.xxx<br />

X15.xxx<br />

X15.xxx<br />

Caution : the 100nF ceramic capacitors must be placed as close as possible to the driver<br />

GND<br />

10k<br />

X15.xxx<br />

X15.xxx<br />

X15.xxx<br />

Fig. 5<br />

Fig. 6


6 M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> <strong>X12.017</strong>.03.SP.E<br />

Functional Description<br />

- The rising edge of the f(scx) input signal moves the<br />

rotor by one microstep.<br />

- The input signal "CW/CCW" (clockwise / counterclockwise)<br />

controls the direction of rotation of the<br />

motor.<br />

- The input signal "RESET" at low resets the output<br />

driver sequence to position 1.<br />

Rotor Positions<br />

Position of the rotor after a RESET<br />

21<br />

20<br />

19<br />

18<br />

23<br />

22<br />

24<br />

1 2 3<br />

4<br />

17<br />

16<br />

10<br />

15 11<br />

14 12<br />

13<br />

Input Glitch Filter & Level Shifter<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Fig. 7<br />

All logic inputs of the M-S <strong>Quad</strong> <strong>Driver</strong> are armed with<br />

a glitch filter to avoid erroneous information due to<br />

spikes and glitches on the input signal lines. All<br />

negative or positive pulses of less than 20 ns width<br />

are ignored.<br />

A minimum signal pulse width (positive or negative) of<br />

450 ns guarantees correct function over the full<br />

temperature range.<br />

All logic inputs also feature a level shifter, which<br />

allows for operation of the circuit at a higher supply<br />

voltage (V DD) than the circuits driving the inputs. This<br />

is in order to drive the M-S motors at a higher torque<br />

level.<br />

M-S Stepping Modes<br />

Full step<br />

180° Partial<br />

step<br />

60°<br />

1<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

Microsteps<br />

15°<br />

Coil<br />

Coil<br />

1 2<br />

2 3<br />

The Output <strong>Driver</strong><br />

4<br />

Gear reduction<br />

1/180<br />

Full step = 1°<br />

Partial step = 1/3°<br />

Microstep = 1/12°<br />

Fig. 8<br />

The output driver converts the pulse train of f(scx) into<br />

a current level sequence sent to the two motor coils of<br />

the M-S. This sequence of 24 current levels per rotor<br />

revolution is used to produce the microstepping<br />

movement of the rotor.<br />

A microstep is an angular rotation of 1/12 deg. of the<br />

M-S shaft or 15 deg. on the rotor shaft.<br />

A partial step is an angular rotation of 1/3 deg. of the<br />

M-S shaft or 60 deg. on the rotor shaft.<br />

A full step is an angular rotation of 1 deg. of the M-S<br />

shaft or 180 deg. on the rotor shaft.<br />

The microstepping allows for smooth and appealing<br />

movement of a pointer if the M-S is used as pointer<br />

drive. It is not intended as a precise positioning. The<br />

precision of the angular position is given by the<br />

resolution of the partial step.


<strong>X12.017</strong>.03.SP.E M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> 7<br />

Dimensions of DIP Package<br />

28-pin plastic DIP<br />

D<br />

C<br />

0 - 15°<br />

Dimensions of SOL Package<br />

28-pin plastic SOL<br />

0 - 8°<br />

E<br />

D<br />

E<br />

C<br />

Ordering Information<br />

J<br />

A<br />

F G<br />

A<br />

F G<br />

The M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> is available in the following packages:<br />

- DIP 28-pin plastic package M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> - DIP28<br />

- SOL 28-pin wide plastic package M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> - SOL28<br />

Chip form on request.<br />

When ordering, please specify the complete part number and package.<br />

H<br />

B<br />

H<br />

I<br />

J<br />

B<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE<br />

I<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

I<br />

J<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

I<br />

J<br />

Inches mm<br />

Min Max Min Max<br />

1.445 1.455 36.70 36.96<br />

0.530 0.550 13.46 13.97<br />

0.600 0.625 15.24 15.88<br />

0.008 0.012 0.20 0.30<br />

0.070 0.080 1.78 2.03<br />

0.015 0.022 0.38 0.56<br />

0.100 BSC 2.54 BSC<br />

0.015 - 0.38 -<br />

- 0.190 - 4.83<br />

0.125 0.135 3.18 3.43<br />

Fig. 9<br />

Inches mm<br />

Min Max Min Max<br />

0.701 0.711 17.81 18.06<br />

0.292 0.299 7.42 7.59<br />

0.400 0.410 10.16 10.41<br />

0.009 0.013 0.23 0.32<br />

0.010 0.016 0.25 0.41<br />

0.014 0.019 0.35 0.48<br />

0.050 BSC 1.27 BSC<br />

0.005 0.012 0.12 0.29<br />

0.097 0.104 2.46 2.64<br />

0.024 0.040 0.61 1.02<br />

Fig. 10


8 M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> <strong>X12.017</strong>.03.SP.E<br />

Table of Contents<br />

M-S <strong>Quad</strong> <strong>Driver</strong> <strong>X12.017</strong> .......................................... 1<br />

Features ................................................................ 1<br />

Description ............................................................ 1<br />

Applications ........................................................... 1<br />

Typical Operating Configuration............................ 1<br />

Pin Assignment ..................................................... 1<br />

Absolute Maximum Ratings................................... 2<br />

Handling Procedures............................................. 2<br />

Operating Conditions............................................. 2<br />

Load Characteristics.............................................. 2<br />

Electrical Characteristics....................................... 2<br />

Timing Characteristics........................................... 3<br />

Delay Timing Waveforms...................................... 3<br />

Pin Description .......................................................3<br />

Circuit Protections ..................................................3<br />

Recommended Power Up......................................3<br />

Block Diagram........................................................4<br />

Suggested Applications..........................................5<br />

Functional Description............................................6<br />

Rotor Positions.......................................................6<br />

Input Glitch Filter & Level Shifter............................6<br />

M-S Stepping Modes..............................................6<br />

The Output <strong>Driver</strong>...................................................6<br />

Dimensions of DIP Package ..................................7<br />

Dimensions of SOL Package .................................7<br />

Ordering Information ..............................................7<br />

The information and specifications given here are correct and valid to the best of our knowledge. However<br />

switec switec assumes no liability for damages which may arise through the incorrect use of this information or<br />

for eventual damages to existing patents or to the rights of third parties. The general purchase conditions for<br />

electrical and mechanical products of switec switec apply to all commercial transactions.<br />

switec switec reserves the right to make changes in the products contained in this document in order to improve<br />

design or performance and to supply the best possible products.<br />

switec switec is a trade mark of the Swatch Group Management Services AG.<br />

© switec a division of Microcomponents SA 2001 SR-10.07.01<br />

a division of Microcomponents SA<br />

Schützengasse 32 | CH-2540 Grenchen<br />

A COMPANY OF THE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!