21.11.2013 Views

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-O-06 Ball Aerospace Hybrid Space Cryocoolers<br />

W. Gully, D.S. Glaister, P. Hendershott, V. Kotsubo,<br />

E.D. Marquardt, Ball Aerospace & Technologies<br />

Corp..<br />

This paper describes the design, development, test<strong>in</strong>g and<br />

performance at Ball Aerospace <strong>of</strong> a long life, hybrid (comb<strong>in</strong>ation <strong>of</strong><br />

Stirl<strong>in</strong>g and Joule-Thomson thermodynamic cycles) space<br />

cryocoolers. Hybrid coolers are synergistic comb<strong>in</strong>ation <strong>of</strong> two<br />

thermodynamic cycles which comb<strong>in</strong>es advantages <strong>of</strong> each cycle to<br />

yield overall improved performance. Hybrid cooler performance<br />

advantages <strong>in</strong>clude: 1) load level<strong>in</strong>g <strong>of</strong> large heat loads, 2) remote<br />

cryogenic cool<strong>in</strong>g with very low to negligible <strong>in</strong>duced vibration and<br />

jitter, 3) very low redundant (<strong>of</strong>f state) cooler penalties, 4) high power<br />

efficiency, especially at low temperatures, and 5) simplified system<br />

<strong>in</strong>tegration with capability to cross gimbals and no need for thermal<br />

straps or switches. Ball is currently develop<strong>in</strong>g hybrid coolers on<br />

several programs. The 35 K hybrid cooler provides 2.0 W at 35 K and<br />

8.5 W at 85 K with an emph<strong>as</strong>is on load level<strong>in</strong>g <strong>of</strong> high transient heat<br />

loads and remote, low vibration cool<strong>in</strong>g. The 10 K hybrid cooler<br />

provides 200 mW at 10 K, 700mW at 15 K, and 10.7 W at 85 K with<br />

an emph<strong>as</strong>is on power efficiency. In addition, Ball built and tested a<br />

complete hybrid cooler that met the requirements <strong>of</strong> the JWST Mid-<br />

Infrared Instrument (MIRI) cooler <strong>in</strong>clud<strong>in</strong>g provid<strong>in</strong>g 80 mW at 6 K<br />

and 100 mW at 18 K.<br />

C1-O-<strong>07</strong> Flight Qualified High Capacity Pulse Tube<br />

Cooler<br />

C. Jacob, T. Nguyen, J. Raab, Northrop Grumman<br />

Space Technology.<br />

The High Capacity Cryocooler Flight Qualified Cryocooler (HCC<br />

Qual) is designed to provide large capacity cool<strong>in</strong>g at 35K (2.3 Watts)<br />

and 85 K (14.3 Watts) for space applications which require cold focal<br />

planes and optics cool<strong>in</strong>g. The HCC Qual is built upon the heritage <strong>of</strong><br />

the High Capacity Cryocooler (HCC) with a coaxial cold head<br />

configuration. The coaxial configuration m<strong>in</strong>imizes the cooler<br />

par<strong>as</strong>itic and <strong>of</strong>fers superior cooler <strong>in</strong>tegration. Flight qualification <strong>of</strong><br />

this cryocooler <strong>in</strong>cludes thermal performance mapp<strong>in</strong>g over a range <strong>of</strong><br />

reject temperatures, launch vibration test<strong>in</strong>g and thermal cycl<strong>in</strong>g<br />

test<strong>in</strong>g. Acceptance test data will be presented.<br />

C1-O-08 Raytheon Dual-Use Cryocooler Progress<br />

R.C. Hon, C.S. Kirkconnell, Raytheon Space and<br />

Airborne Systems.<br />

Raytheon <strong>in</strong>itiated development <strong>of</strong> the Dual-Use Cryocooler (DUC) <strong>as</strong><br />

a way <strong>of</strong> bridg<strong>in</strong>g the gap between tactical and space cryocooler<br />

systems. The goal <strong>of</strong> the program is to produce a cryocooler system<br />

with 80% <strong>of</strong> the typical space system functionality at less than 20% <strong>of</strong><br />

the typical cost. A s<strong>in</strong>gle-stage pulse tube configuration w<strong>as</strong> selected<br />

due to its <strong>in</strong>herently low complexity. The compressor module is a<br />

dual-opposed, self balanced design, mak<strong>in</strong>g use <strong>of</strong> a flexure<br />

suspension and clearance gap scheme for long operational life. The<br />

drive electronics is b<strong>as</strong>ed on a robust tactical design, modified for<br />

additional functionality and hardened aga<strong>in</strong>st radiation typical <strong>of</strong> the<br />

space environment.<br />

Development <strong>of</strong> the DUC system h<strong>as</strong> progressed substantially over<br />

the p<strong>as</strong>t two years, <strong>in</strong>clud<strong>in</strong>g the design, build and test<strong>in</strong>g <strong>of</strong> a<br />

br<strong>as</strong>sboard thermo-mechanical unit (TMU). Demonstrated design<br />

simplification features and <strong>in</strong>itial test results are presented.<br />

Significant progress w<strong>as</strong> also made <strong>in</strong> terms <strong>of</strong> electronics<br />

development. Exist<strong>in</strong>g tactical <strong>as</strong>sets were modified for use with the<br />

DUC, <strong>in</strong>clud<strong>in</strong>g the addition <strong>of</strong> separate drive circuits for each<br />

compressor motor. The s<strong>of</strong>tware w<strong>as</strong> modified to enable features not<br />

found <strong>in</strong> typical tactical systems such <strong>as</strong> first-order active vibration<br />

cancellation. The br<strong>as</strong>sboard electronics test results are also<br />

presented.<br />

C1-P Large Scale Refrigerators and<br />

Liquefiers - II<br />

C1-P-01 Large scale helium liquefaction and<br />

considerations for site services for a plant located <strong>in</strong><br />

Algeria<br />

P. Froehlich, J.J. Clausen, L<strong>in</strong>de Kryotechnik AG.<br />

The large scale liquefaction <strong>of</strong> helium extracted from natural g<strong>as</strong> is<br />

depicted. B<strong>as</strong>ed on a block diagram the cha<strong>in</strong>, start<strong>in</strong>g with the<br />

pipel<strong>in</strong>e downstream <strong>of</strong> the natural g<strong>as</strong> plant to the f<strong>in</strong>al storage <strong>of</strong><br />

liquid helium is expla<strong>in</strong>ed. In<strong>format</strong>ion will be provided about the<br />

recent experiences dur<strong>in</strong>g <strong>in</strong>stallation and start-up <strong>of</strong> a bulk helium<br />

liquefaction plant located <strong>in</strong> Skikda, Algeria, <strong>in</strong>clud<strong>in</strong>g part load<br />

operation b<strong>as</strong>ed on a reduced feed g<strong>as</strong> supply.<br />

The local work<strong>in</strong>g and ambient conditions are described <strong>in</strong>clud<strong>in</strong>g<br />

challeng<strong>in</strong>g logistic problems like shipp<strong>in</strong>g and receiv<strong>in</strong>g <strong>of</strong> parts,<br />

qualified and semi-qualified subcontractors, b<strong>as</strong>ic provisions and tools<br />

at site, and precautions to sea water and ambient conditions.<br />

F<strong>in</strong>ally the differences <strong>in</strong> commission<strong>in</strong>g (technically and evaluation<br />

<strong>of</strong> time and work packages) to a European location and standards will<br />

be discussed.<br />

C1-P-02 Status <strong>of</strong> the refrigeration plant for the<br />

Electrostatic<br />

Cryogenic Storage R<strong>in</strong>g (CSR) at MPI-K <strong>in</strong> Heidelberg<br />

R. von Hahn, J. R. Crespo Lopez-Urrutia, H. Fadil,<br />

M. Grieser, K.-U. Kühnel, M. Lange, D. A. Orlov, R.<br />

Repnow, T. Sieber, D. Schwalm, J. Ullrich, A. Wolf,<br />

Max-Planck-Institute for Nuclear Physics; H. Quack,<br />

Ch. Haberstroh, Technische Universität Dresden; D.<br />

Zajfman, Weizmann Institute <strong>of</strong> Science.<br />

At the Max-Planck-Institute for Nuclear Physics <strong>in</strong> Heidelberg a nextgeneration<br />

electrostatic storage r<strong>in</strong>g for atomic and molecular ion<br />

beams is under construction. In contr<strong>as</strong>t to exist<strong>in</strong>g electrostatic<br />

storage r<strong>in</strong>gs our Cryogenic Storage R<strong>in</strong>g CSR will be cooled down to<br />

temperatures below 2 K. The low-temperature <strong>of</strong> the vacuum<br />

enclosure and all ion optical components decisively reduces the<br />

<strong>in</strong>fluence <strong>of</strong> the black-body radiation <strong>in</strong>cident onto the stored particles<br />

such that only the lowest rotational levels <strong>of</strong> radiatively active<br />

molecular ions will be occupied. Moreover, due to the excellent<br />

vacuum <strong>of</strong> up to 10E-15 mbar highly charged (radioactive) ions or<br />

antiprotons can be stored with sufficient life times. A concept for the<br />

cool<strong>in</strong>g <strong>of</strong> the storage r<strong>in</strong>g h<strong>as</strong> been developed and will soon be tested<br />

at a prototype with a length <strong>of</strong> 1/10 <strong>of</strong> the r<strong>in</strong>g. A commercial<br />

refrigerator h<strong>as</strong> been largely set up and is now <strong>in</strong> the commission<strong>in</strong>g<br />

ph<strong>as</strong>e. In this paper the refrigeration plant and first results <strong>of</strong> the testoperation<br />

will be presented.<br />

C1-P-03 The CERN LHC Refrigeration System<br />

P. Dauguet, G.M. Gistau-Baguer, P. Briend, B.<br />

Hilbert, E. Monneret, J.C. Villard, G. Marot, F.<br />

Delcayre, C. Mantileri, F. Hamber, J.C. Courty, P.<br />

Hirel, A. Cohu, H. Moussavi, Air Liquide.<br />

The LHC is the largest particle accelerator <strong>in</strong> the world. It is a<br />

superconduct<strong>in</strong>g mach<strong>in</strong>e over 27 kilometers. Its magnets and cavities<br />

require helium refrigeration and liquefaction <strong>in</strong> the temperature range<br />

1.8 K to 300 K. This is the largest cryogenic system <strong>in</strong> the world<br />

regard<strong>in</strong>g the needed cryogenic power : 144 kW equivalent power at<br />

4.5 K.<br />

The LHC cryogenic system is composed <strong>of</strong> 8 x 18 kW at 4.5 K<br />

refrigerators, 8 x 2.4 kW at 1.8 K refrigerators, 5 ma<strong>in</strong> valve boxes,<br />

more than 27 km <strong>of</strong> helium tranfer l<strong>in</strong>es and around 300 service<br />

modules connect<strong>in</strong>g the tranfer l<strong>in</strong>e to the magnet and cavity str<strong>in</strong>gs.<br />

Most <strong>of</strong> these components have been designed, manufactured,<br />

<strong>in</strong>stalled and started up by Air Liquide. Du to the huge size <strong>of</strong> the<br />

project, the eng<strong>in</strong>eer<strong>in</strong>g, construction and commissionn<strong>in</strong>g <strong>of</strong> the<br />

equipments have l<strong>as</strong>ted for 8 years, from first order <strong>of</strong> equipments <strong>in</strong><br />

1998 to l<strong>as</strong>t commissionn<strong>in</strong>g <strong>in</strong> 2006. Specifications, architecture and<br />

design <strong>of</strong> the major components <strong>of</strong> the LHC Refrigeration System will<br />

be presented <strong>in</strong> the present paper.<br />

Page 17 <strong>of</strong> 53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!