17.11.2013 Views

Electron Microscopy: TEM, Immunogold Labeling, SEM, Correlative ...

Electron Microscopy: TEM, Immunogold Labeling, SEM, Correlative ...

Electron Microscopy: TEM, Immunogold Labeling, SEM, Correlative ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

26/06/2011<br />

<strong>Electron</strong> <strong>Microscopy</strong>: <strong>TEM</strong>, <strong>Immunogold</strong><br />

<strong>Labeling</strong>, <strong>SEM</strong>, <strong>Correlative</strong> <strong>Microscopy</strong><br />

Prof. Dr. Rainer Duden<br />

duden@bio.uni-luebeck.de<br />

1


Resolution<br />

Comparison<br />

Light vs <strong>Electron</strong><br />

<strong>Microscopy</strong>


Microscope Resolution<br />

• ability of a lens to separate or distinguish small<br />

objects that are close together<br />

• wavelength of light used is major factor in<br />

resolution<br />

shorter wavelength ⇒ greater resolution<br />

3


<strong>Electron</strong> <strong>Microscopy</strong><br />

• beams of electrons<br />

are used to produce<br />

images<br />

• wavelength of<br />

electron beam is<br />

much shorter than<br />

light, resulting in<br />

much higher<br />

resolution<br />

4


•Light microscopy<br />

• Glass lenses<br />

• Source of illumination is usually light of visible<br />

wavelengths<br />

•<strong>Electron</strong> microscopy<br />

• Electromagnetic lenses<br />

• Source of illumination is electrons<br />

• Hairpin tungsten filament (thermionic<br />

emission)<br />

• Pointed tungsten crystal (cold cathode field<br />

emission)


The Transmission <strong>Electron</strong><br />

Microscope<br />

• electrons scatter when they pass through thin<br />

sections of a specimen<br />

• transmitted electrons (those that do not scatter)<br />

are used to produce image<br />

• denser regions in specimen, scatter more electrons<br />

and appear darker


Comparison of LM and <strong>TEM</strong>


Specimen Preparation<br />

• analogous to procedures used for light microscopy<br />

• for transmission electron microscopy, specimens<br />

must be cut very thin<br />

• specimens are chemically fixed and stained with<br />

electron dense material


Transmission <strong>Electron</strong> <strong>Microscopy</strong> (<strong>TEM</strong>)<br />

Zeiss 10/A conventional<br />

<strong>TEM</strong><br />

Excellent for training<br />

Film only


Negative Staining<br />

Viruses, small<br />

particles, proteins,<br />

molecules<br />

No sectioning<br />

Same day results


negative staining<br />

particles<br />

<strong>Electron</strong> dense<br />

negative stain


negative staining<br />

• requires minimal interaction between particle & ‘stain’<br />

• to avoid binding, heavy metal ion should be of same<br />

charge +/- as the particle<br />

• positive staining usually destructive of bio-particles<br />

• biological material usually -ve charge at neutral pH<br />

• widely used negative contrast media include:<br />

anionic cationic<br />

phosphotungstate uranyl actetate/formate<br />

molybdate (ammonium) (@ pH ~ 4)


Negative Stain<br />

Ebola


Double <strong>Immunogold</strong> <strong>Labeling</strong> of<br />

Negatively Stained Specimens<br />

Bacterial pili<br />

serotypes dried onto<br />

grid and sequentially<br />

labeled with primary<br />

antibody, then<br />

Protein-A-5nm-gold<br />

and Protein-A-15-<br />

nm-gold before<br />

negative staining


metal shadowing - rotary


metal shadowing - rotary<br />

• Contrast usually inverted to give dark shadows<br />

> resolution 2 - 3 nm - single DNA strand detectable<br />

- historic use for ‘molecular biology’<br />

(e.g. heteroduplex mapping)<br />

> good preservation of shape, but enlargement of<br />

apparent dimensions<br />

> in very recent modification (MCD -<br />

microcrystallite<br />

decoration), resolution ~1.1 nm


Clathrin:<br />

a major and evolutionarily<br />

conserved coat protein<br />

200<br />

116<br />

97<br />

Crude membranes<br />

Purified CCVs<br />

clathrin<br />

heavy chain<br />

~100kD proteins<br />

66<br />

45<br />

31<br />

~50kD proteins<br />

clathrin<br />

light chains<br />

21.5<br />

~20kD proteins


Rotary shadowing<br />

EM images of purified Clathrin triskelia


Rotary shadowing<br />

EM images of purified Clathrin triskelia<br />

Kirchhausen and Harrison (1981). Cell 23, 755-761:<br />

see EM image above<br />

Ungewickell and Branton (1981). Nature 289, 420-422:<br />

- reversible dissassembly of Clathrin triskelions into clathrin - coats in vitro


Clathrin triskelions<br />

3 heavy chains<br />

3 light chains


Adaptors:<br />

essential for cargo sorting<br />

200<br />

116<br />

97<br />

Crude membranes<br />

Purified CCVs<br />

clathrin<br />

heavy chain<br />

~100kD proteins<br />

66<br />

45<br />

31<br />

~50kD proteins<br />

clathrin<br />

light chains<br />

21.5<br />

~20kD proteins


Protein pattern of<br />

Adaptor Complexes<br />

extracted from<br />

purified brain CCVs<br />

after SDS-PAGE<br />

β1<br />

γ<br />

AP-1 AP-2<br />

αA<br />

β2<br />

αC<br />

µ1<br />

µ2<br />

σ1<br />

σ2


Rotary shadowing<br />

EM images of purified AP-2 complex


Adaptor proteins mediate sorting of specific cargo<br />

from different compartments<br />

α<br />

µ2<br />

σ2<br />

β2<br />

γ<br />

µ1<br />

σ1<br />

β1<br />

δ<br />

µ3<br />

σ3<br />

β3<br />

ε<br />

µ4<br />

σ4<br />

β4<br />

AP-1 AP-2 AP-3 AP-4<br />

Margaret Robinson, Univ. Cambridge


Overview of Biological Specimen Preparation<br />

Killing & Fixation<br />

- Death; Molecular stabilization<br />

Dehydration<br />

- Chemical removal of H 2 O<br />

Infiltration<br />

- Replace liquid phase with resin<br />

Embedding & Polymerization<br />

- Make solid, sectionable block<br />

Sectioning<br />

- Ultramicrotome, mount, stain


Preparing for cutting sections for <strong>TEM</strong><br />

27


Estimating Section Thickness<br />

Interference reflection angle from Sjöstrand (1967)


Serial section 3-D reconstruction


The Freeze Fracture Technique


Gap Junctions in negative stain, freeze fracture & <strong>TEM</strong>


Tight Junction<br />

structure in<br />

<strong>TEM</strong>, freeze fracture, and<br />

live fluorescence<br />

microscopy


Cryotechniques<br />

Ultrarapid cryofixation<br />

Metal mirror impact<br />

Liquid propane plunge<br />

Freeze fracture with<br />

Balzers 400T<br />

Cryosubstitution<br />

Cryo-ultramicrotomy –<br />

Ultrathin frozen<br />

sections (primarily for<br />

antibody labeling)


Clathrin - coated vesicles - the minimal machinery<br />

Clathrin triskelions<br />

3 heavy chains<br />

3 light chains<br />

Adaptor (AP2)<br />

α<br />

- four adaptins<br />

β2<br />

σ2 µ2<br />

Tom Kirchhausen, Harvard Medical School


John Heuser’s Quick Freeze Deep Etch Technique


Quick freeze - deep etch<br />

technique<br />

John Heuser<br />

Washington<br />

University<br />

School of Medicine,<br />

USA


Clathrin - coated Vesicles<br />

J. Heuser<br />

Inner layer : membrane containing cargo<br />

Middle layer : adaptors and accessory proteins<br />

Outer layer : mechanical scaffold


Now please put on<br />

the 3-D glasses…


John Heuser, Washington Univ. School of Medicine


Immunolabeling for Transmission<br />

<strong>Electron</strong> <strong>Microscopy</strong><br />

Normally do Two-Step<br />

Method<br />

Primary antibody<br />

applied followed by<br />

colloidal gold-labeled<br />

secondary antibody<br />

May also be enhanced<br />

with silver<br />

Can also do for LM


Preparation of Biological Specimens for<br />

Immunolabeling<br />

The goal is to preserve tissue as closely as<br />

possible to its natural state while at the same time<br />

maintaining the ability of the antigen to react with<br />

the antibody<br />

Chemical fixation of whole mounts prior to labeling<br />

for LM<br />

Chemical fixation, dehydration, and embedment in<br />

paraffin or resin for sectioning for LM or <strong>TEM</strong><br />

Chemical fixation for cryosections for LM<br />

Cryofixation for LM or <strong>TEM</strong>


Chemical Fixation<br />

Antigenic sites are easily denatured or masked during<br />

chemical fixation<br />

Glutaraldehyde gives good fixation but may mask<br />

antigens, plus it is fluorescent<br />

Paraformaldehyde often better choice, but results in poor<br />

morphology , especially for electron microscopy<br />

May use e.g., 4% paraformaldehyde with 0.5%<br />

glutaraldehyde as a good compromise


Specimen Preparation for <strong>TEM</strong><br />

Chemical fixation with buffered glutaraldehyde<br />

Or 4% paraformaldehyde with >1% glutaraldehyde<br />

Postfixation with osmium tetroxide<br />

Or not, or with subsequent removal from sections<br />

Dehydration and infiltration with liquid epoxy or<br />

acrylic resin<br />

Polymerization of hard blocks by heat or UV<br />

Ultramicrotomy – 60-80nm sections<br />

<strong>Labeling</strong> and/or staining<br />

View with <strong>TEM</strong>


Approaches to Immunolabeling<br />

Direct Method: Primary antibody contains<br />

label<br />

Indirect Method: Primary antibody followed<br />

by labeled secondary antibody<br />

Amplified Method: Methods to add more<br />

reporter to labeled site<br />

Protein A Method: May be used as secondary<br />

reagent instead of antibody


• Colloidal gold of defined sizes, e.g., 5 nm,<br />

10 nm, 20 nm, easily conjugated to<br />

antibodies<br />

• Results in small, round, electron-dense<br />

label easily detected with EM<br />

• Can be enhanced after labeling to enlarge<br />

size for LM or EM


Immunolocalization<br />

LM<br />

Fluor/confocal<br />

<strong>TEM</strong><br />

<strong>SEM</strong> with<br />

backscatter<br />

detector


Preembedding or Postembedding<br />

<strong>Labeling</strong><br />

May use preembedding labeling for surface<br />

antigens or for permeabilized cells<br />

The advantage is that antigenicity is more likely<br />

preserved<br />

Postembedding labeling is performed on sectioned<br />

tissue, on grids, allowing access to internal<br />

antigens<br />

Antigenicity probably partially compromised by<br />

embedding


Steps in <strong>Labeling</strong> of Sections<br />

Chemical fixation<br />

Dehydration, infiltration, embedding and sectioning<br />

Optional etching of embedment, permeabilization<br />

Blocking<br />

Incubation with primary antibody<br />

Washing<br />

Incubation with secondary antibody congugated<br />

with reporter (fluorescent probe, colloidal gold)<br />

Washing, optional counterstaining<br />

Mount and view


Controls! Controls! Controls!<br />

Omit primary antibody<br />

Irrelevant primary antibody<br />

Pre-immune serum<br />

Perform positive control<br />

Check for autofluorescence<br />

Check for non-specific labeling<br />

Dilution series


Desmosomes and IFs in primary mouse keratinocytes<br />

Duden & Franke,<br />

988 (J. Cell Biol.)


Pre-embedding labelling of desmosomal vesicles<br />

in primary mouse keratinocytes<br />

Duden and Franke, 1988 (J. Cell Biol.)


Visualization of desmosomal vesicles in A431 cells<br />

grown on glass coverslips<br />

Duden and Franke, 1988 (J. Cell Biol.)


Pre-embedding labelling of desmosomal vesicles<br />

in A431 cells<br />

Duden &<br />

Franke, 1988<br />

(J. Cell Biol.)


Double-labeling Method<br />

Use primary antibodies<br />

derived from different<br />

animals (e.g., one<br />

mouse antibody and one<br />

rabbit antibody)<br />

Then use two secondary<br />

antibodies conjugated<br />

with reporters that can<br />

be distinguished from<br />

one another


George Palade<br />

1974 Nobel Prize for<br />

Physiology or Medicine<br />

Analysis of the secretory pathway<br />

by a combination of EM and<br />

autoradiography<br />

ER --> Golgi --> Vesicles --> PM


The Scanning <strong>Electron</strong><br />

Microscope<br />

• uses electrons reflected from the surface of a<br />

specimen to create image<br />

• produces a 3-dimensional image of specimen’s<br />

surface features


<strong>TEM</strong><br />

vs<br />

<strong>SEM</strong>


Scanning <strong>Electron</strong> <strong>Microscopy</strong>


<strong>SEM</strong>


<strong>Correlative</strong> Light/EM microscopy - <strong>SEM</strong>:<br />

visualization of virus particles on a cell surface


<strong>Correlative</strong> Light/EM microscopy<br />

& electron tomography<br />

Diaminobenzidine (DAB) photooxidation by GFP (GalT-GFP)<br />

Grabenbaur<br />

et al., 2005.<br />

Nat. Meth. 2.<br />

857-862


<strong>Correlative</strong><br />

Light/EM<br />

microscopy<br />

& electron<br />

tomography<br />

Grabenbaur<br />

et al., 2005.<br />

Nat. Meth. 2.<br />

857-862


miniSOG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!