16.11.2013 Views

Full Waveform Tomography - Part 1 Theory

Full Waveform Tomography - Part 1 Theory

Full Waveform Tomography - Part 1 Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Full</strong> <strong>Waveform</strong> <strong>Tomography</strong><br />

- <strong>Part</strong> 1 <strong>Theory</strong><br />

Daniel Köhn, Denise De Nil, André Kurzmann<br />

December 8, 2011


<strong>Full</strong> <strong>Waveform</strong> <strong>Tomography</strong><br />

- <strong>Part</strong> 1 <strong>Theory</strong><br />

1 References<br />

2 Motivation<br />

3 Nonlinear optimization using the gradient method<br />

4 Calculate gradients for elastic full waveform tomography


References<br />

Aki, K. and Richards, P. (1980).<br />

Quantitative seismology.<br />

W.H. Freeman and Company.<br />

Brossier, R. (2009).<br />

Imagerie sismique á deux dimensions des milieux visco-élastiques par inversion<br />

des formes d’ondes : développements méthodologiques et applications.<br />

PhD thesis, Universite de Nice - Sophia Antipolis.<br />

http://users.isterre.fr/brossier/Documents/PhD/brossier_these.pdf.<br />

Köhn, D. (2011).<br />

Time Domain 2D Elastic <strong>Full</strong> <strong>Waveform</strong> <strong>Tomography</strong>.<br />

PhD thesis, Kiel University.<br />

http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-67866.<br />

Nocedal, J. and Wright, S. (1999).<br />

Numerical Optimization.<br />

Springer, New York.<br />

Tarantola, A. (2005).<br />

Inverse Problem <strong>Theory</strong>.<br />

SIAM.


Motivation<br />

Resolution: Traveltime <strong>Tomography</strong><br />

P−wave velocity (Traveltime <strong>Tomography</strong>)<br />

V p<br />

[m/s]<br />

y [km]<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

4500<br />

4000<br />

3500<br />

1 2 3 4 5 6 7 8 9 10<br />

P−wave velocity (true model)<br />

3000<br />

y [km]<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

1 2 3 4 5 6 7 8 9 10<br />

x [km]<br />

2500<br />

2000<br />

1500


Motivation<br />

Resolution: <strong>Waveform</strong> <strong>Tomography</strong><br />

P−wave velocity (<strong>Waveform</strong> <strong>Tomography</strong>)<br />

V p<br />

[m/s]<br />

y [km]<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

4500<br />

4000<br />

3500<br />

1 2 3 4 5 6 7 8 9 10<br />

P−wave velocity (true model)<br />

3000<br />

y [km]<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

1 2 3 4 5 6 7 8 9 10<br />

x [km]<br />

2500<br />

2000<br />

1500


Motivation: Estimate optimum model from data<br />

Seismic Section<br />

<strong>Waveform</strong> <strong>Tomography</strong><br />

← Time<br />

← Depth<br />

channel # →<br />

Distance →<br />

Problems<br />

1 What is an ”optimum” model ?<br />

2 How can this model be found ?<br />

3 Is this model unique or are other models existing, which could<br />

explain the data equally well ?


What is an ”optimum” model ?<br />

Definition: data residuals and misfit function<br />

u mod<br />

−<br />

u obs<br />

=<br />

δ u<br />

← time<br />

channel →<br />

channel →<br />

channel →<br />

Data residuals: δu = u mod −u obs<br />

The L2-norm (Residual Energy) of the data residuals: E = 1 2 δuT δu


How to find an optimum model ?<br />

Parameter space<br />

Residual Energy E<br />

250<br />

200<br />

m true<br />

50<br />

Density ρ →<br />

150<br />

100<br />

P−wave velocity Vp →<br />

Minimize residual energy: E = 1 2 δuT δu → Min


How to find an optimum model ?<br />

Define starting point in the parameter space<br />

Residual Energy E<br />

250<br />

200<br />

Density ρ →<br />

150<br />

100<br />

m 1<br />

m true<br />

50<br />

P−wave velocity Vp →<br />

Start search with an initial guess m 1 .


How to find an optimum model ?<br />

Iterative model update<br />

Residual Energy E<br />

250<br />

m true<br />

200<br />

Density ρ →<br />

m 1<br />

m 2<br />

δm 1<br />

50<br />

150<br />

100<br />

P−wave velocity Vp →<br />

Update the model iteratively: m 2 = m 1 +µ 1 δm 1 .<br />

δm 1 denotes the direction and µ 1 the steplength.


How to find an optimum model ?<br />

Iterative model update<br />

Residual Energy E<br />

250<br />

200<br />

m true<br />

50<br />

Density ρ →<br />

150<br />

100<br />

P−wave velocity Vp →<br />

Which direction δm 1 should be choosen ?


How to find an optimum model ?<br />

Find optimum search direction ...<br />

Taylor series expansion:<br />

( ) ∂E<br />

E(m 1 +δm 1 ) ≈ E(m 1 )+δm 1<br />

∂m<br />

Set derivative to zero:<br />

... which leads to:<br />

∂E(m 1 +δm 1 )<br />

∂δm 1<br />

=<br />

1<br />

+ 1 ( ∂ 2<br />

2 δm E<br />

1<br />

∂m<br />

)1<br />

2 δm T 1<br />

( ) ( ∂E ∂ 2 E<br />

+δm 1<br />

∂m<br />

1<br />

∂m<br />

)1<br />

2 = 0<br />

( )<br />

−1 ∂E<br />

δm 1 = −H 1<br />

∂m<br />

where (∂E/∂m) 1 denotes the gradient direction of the objective<br />

function and H 1 −1 the inverse Hessian matrix.<br />

1


How to find an optimum model ?<br />

Pure Gradient Method<br />

Residual Energy E<br />

250<br />

200<br />

Density ρ →<br />

150<br />

100<br />

50<br />

P−wave velocity Vp →<br />

Gradient method: m n+1 = m n −µ n P n<br />

(∂E<br />

∂m<br />

)<br />

n


Calculation of the gradient direction ∂E<br />

∂m<br />

Gradient<br />

To estimate the gradient direction ∂E/∂m the residual energy is<br />

rewritten as:<br />

E = 1 2 δuT δu = 1 ∑<br />

∫<br />

dt ∑<br />

δu 2 (x r ,x s ,t)<br />

2<br />

sources<br />

receiver<br />

After derivation with respect to a model parameter m we get<br />

∂E<br />

∂m = ∑ ∫<br />

dt ∑ ∂δu<br />

∂m δu<br />

sources<br />

= ∑<br />

sources<br />

= ∑<br />

sources<br />

∫<br />

∫<br />

receiver<br />

dt ∑<br />

receiver<br />

dt ∑<br />

receiver<br />

∂(u mod (m)−u obs )<br />

δu<br />

∂m<br />

∂u mod (m)<br />

∂m<br />

δu


Calculation of the gradient direction ∂E<br />

∂m<br />

Mapping model space → data ←space (forward problem)<br />

Data Space<br />

Model Space<br />

← time<br />

← depth<br />

x−coordinate →<br />

x−coordinate →


Calculation of the gradient direction ∂E<br />

∂m<br />

Mapping model space → data ←space (forward problem)<br />

Data Space<br />

Model Space<br />

← time<br />

δũ<br />

← depth<br />

δm<br />

x−coordinate →<br />

x−coordinate →<br />

δũ(x s ,x r ,t) = ∂u<br />

∂m δm


Calculation of the gradient direction ∂E<br />

∂m<br />

Mapping model space → data ←space (Forward Problem)<br />

Data Space<br />

Model Space<br />

← time<br />

δũ<br />

← depth<br />

δm<br />

x−coordinate →<br />

∫<br />

δũ(x s ,x r ,t) =<br />

V<br />

dV ∂u<br />

∂m δm<br />

x−coordinate →


Calculation of the gradient direction ∂E<br />

∂m<br />

Mapping data space → model →space (Inverse Problem)<br />

Data Space<br />

Model Space<br />

← time<br />

δũ ′<br />

← depth<br />

δm ′<br />

x−coordinate →<br />

δm ′ = ∑ ∫<br />

sources<br />

dt ∑<br />

receiver<br />

x−coordinate →<br />

[ ] ∂u ∗<br />

δũ ′<br />

∂m


Calculation of the gradient direction ∂E<br />

∂m<br />

Properties of linear operators<br />

By introducing the linear operator ˆL the integrals can be written<br />

as:<br />

∫<br />

δũ = ˆLδm := dV ∂u<br />

∂m δm.<br />

and<br />

δm ′ = ˆL ∗ δũ ′ := ∑<br />

sources<br />

∫<br />

V<br />

dt ∑<br />

receiver<br />

[ ] ∂u ∗<br />

δũ ′ .<br />

∂m<br />

Because the operator ˆL is linear, the kernel of ˆL and it’s adjoint<br />

counterpart ˆL ∗ are identical (see chapter 5.4.2 in [Tarantola, 2005])<br />

[ ] ∂u ∗ [ ] ∂u<br />

=<br />

∂m ∂m


Calculation of the gradient direction ∂E<br />

∂m<br />

δm ′ = ∂E<br />

∂m<br />

Therefore the mapping from the data to the model space is equal<br />

to the gradient of the residual energy:<br />

δm ′ = ∑ ∫<br />

dt ∑ [ ] ∗ ∂ui<br />

δũ ′<br />

sources<br />

= ∑<br />

sources<br />

= ∂E<br />

∂m<br />

∫<br />

∂m<br />

receiver<br />

dt ∑ [ ∂ui<br />

∂m<br />

receiver<br />

]<br />

δu<br />

if the perturbation of the data space δũ ′ is interpretated as data<br />

residuals δu.


Calculation of the gradient direction ∂E<br />

∂m<br />

General approach to estimate the gradient<br />

So the approach to estimate the gradient direction ∂E/∂m can be<br />

split into 3 parts<br />

1 Find a solution to the forward problem<br />

δu = ˆLδm.<br />

2 Identify the Frechét kernels ∂u/∂m<br />

3 Use the property, that a linear operator ˆL and it’s adjoint ˆL ∗<br />

have the same kernels and calculate the gradient direction by<br />

using:<br />

∂E<br />

∂m = δm′ = ˆL ∗ δu ′ .


Calculation of the gradient direction ∂E<br />

∂m<br />

Possible applications<br />

This approach is very general and can be applied to a wide range<br />

of physical problems<br />

Quantum Mechanics: Schrödingers Equation<br />

Hydrodynamics: Oceanography, Meteorology<br />

Electrodynamics: GPR<br />

Medical Diagnostics: Acoustic Wave Equation<br />

Magnetohydrodynamics: Astrophysics, Plasmaphysics<br />

General Relativity: Metric of the Space-Time


Calculation of the gradient direction ∂E<br />

∂m<br />

Elastic equations of motion for anisotropic media<br />

ρ ∂2 u i<br />

∂t 2 − ∂<br />

∂x j<br />

σ ij = f i ,<br />

σ ij −c ijkl ǫ kl = T ij ,<br />

ǫ ij = 1 ( ∂ui<br />

+ ∂u )<br />

j<br />

,<br />

2 ∂x j ∂x i<br />

+ initial and boundary conditions,<br />

where ρ denotes the density, u i the displacement, σ ij the stress<br />

tensor, ǫ ij the strain tensor, c ijkl the stiffness tensor, f i , T ij source<br />

terms for volume and surface forces, respectively.


Calculation of the gradient direction ∂E<br />

∂m<br />

First order perturbations<br />

In the next step every parameter and variable in the elastic wave<br />

equation is perturbated by a first order perturbation:<br />

u i → u i +δu i ,<br />

σ ij → σ ij +δσ ij<br />

ǫ ij → ǫ ij +δǫ ij<br />

ρ→ ρ+δρ<br />

c ijkl → c ijkl +δc ijkl


Calculation of the gradient direction ∂E<br />

∂m<br />

Pertubated elastic equations of motion<br />

ρ ∂2 δu i<br />

∂t 2 − ∂<br />

∂x j<br />

δσ ij = ∆f i<br />

δσ ij −c ijkl δǫ kl = ∆T ij<br />

δǫ ij = 1 ( ∂δui<br />

+ ∂δu )<br />

j<br />

2 ∂x j ∂x i<br />

+ perturbated initial and boundary conditions<br />

The new source terms are<br />

∆f i = −δρ ∂2 u i<br />

∂t 2 , ∆T ij= δc ijkl ǫ kl .


Calculation of the gradient direction ∂E<br />

∂m<br />

Definition: Green’s function<br />

If a unit impulse is applied as a source term at x = x ′ at time<br />

t = t ′ in the n-direction, then we denote the ith component of the<br />

displacement field at any point (x,t) as Green’s function<br />

G in (x,t;x ′ ,t ′ ) ([Aki and Richards, 1980]).<br />

ρ ∂2 G in<br />

∂t 2 − ∂σ ij<br />

∂x j<br />

= δ in δ(x−x ′ )δ(t−t ′ )<br />

σ ij = c ijkl ǫ kl .


Calculation of the gradient direction ∂E<br />

∂m<br />

Solution of the perturbated wave equation in terms of Green’s<br />

function<br />

The solution of the perturbated elastic equations of motion in<br />

terms of the elastic Green’s function G ij (x,t;x ′ ,t ′ ) can be written<br />

as:<br />

∫ ∫ T<br />

δu i (x,t)= dV dt ′ G ij (x,t;x ′ ,t ′ )∆f j (x ′ ,t ′ )<br />

∫<br />

−<br />

V<br />

V<br />

dV<br />

0<br />

∫ T<br />

0<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )∆T jk (x ′ ,t ′ ).<br />

k


Calculation of the gradient direction ∂E<br />

∂m<br />

Subsitute source terms of the perturbated equations of motion<br />

Substituting the force and traction source terms yields after some<br />

rearranging<br />

∫<br />

δu i (x,t)= −<br />

V<br />

∫<br />

− dV<br />

V<br />

dV<br />

∫ T<br />

0<br />

∫ T<br />

0<br />

dt ′ G ij (x,t;x ′ ,t ′ ) ∂2 u j<br />

∂t 2 (x′ ,t ′ )δρ<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )ǫ lm (x ′ ,t ′ )δc jklm<br />

k


Calculation of the gradient direction ∂E<br />

∂m<br />

Born approximation<br />

Introducing isotropy via<br />

leads to:<br />

∫<br />

δu i (x,t)= −<br />

∫<br />

−<br />

∫<br />

−<br />

V<br />

V<br />

[∫ T<br />

dV<br />

0<br />

[∫ T<br />

dV<br />

0<br />

c ijkl = δ ij δ kl δλ+(δ ik δ jl +δ il δ jk )δµ<br />

V<br />

[∫ T<br />

]<br />

dV dt ′ G ij (x,t;x ′ ,t ′ ) ∂2 u j<br />

0 ∂t 2 (x′ ,t ′ ) δρ<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )ǫ lm (x ′ ,t ′ )δ jk δ lm<br />

]δλ<br />

k<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )ǫ lm (x ′ ,t ′ )(δ jl δ lm +δ jm δ kl )<br />

k<br />

]<br />

δµ.<br />

This equation has the same form as the desired expression for the<br />

forward problem: ∫<br />

δu = dV ∂u<br />

∂m δm.<br />

V


Calculation of the gradient direction ∂E<br />

∂m<br />

Identify Frechét kernels<br />

Therefore the Frechét kernels<br />

parameters can be identified as:<br />

∫<br />

∂u T i<br />

∂ρ = −<br />

0<br />

∫<br />

∂u T i<br />

∂λ = −<br />

0<br />

∫<br />

∂u T i<br />

∂µ = −<br />

0<br />

∂u i<br />

∂m(x)<br />

dt ′ G ij (x,t;x ′ ,t ′ ) ∂2 u j<br />

∂t 2 (x′ ,t ′ )<br />

for the individual material<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )ǫ lm (x ′ ,t ′ )δ jk δ lm<br />

k<br />

dt ′∂G ij<br />

∂x ′ (x,t;x ′ ,t ′ )ǫ lm (x ′ ,t ′ )(δ jl δ lm +δ jm δ kl )<br />

k


Calculation of the gradient direction ∂E<br />

∂m<br />

Definition of the adjoint operator<br />

By definition the adjoint of the operator can be written as<br />

δm ′ (x) = ∑<br />

∫ T<br />

sources 0<br />

N∑<br />

rec<br />

[ ] ∗ ∂ui<br />

dt δu ′<br />

∂m<br />

i(x α ,t ′ ),<br />

α=1


Calculation of the gradient direction ∂E<br />

∂m<br />

Calculate adjoint operators<br />

Because a linear operator and its transpose have the same kernels<br />

∂u i /∂m, the only difference arise in the variables of<br />

sum/integration, which are complementary. Inserting the integral<br />

kernels yields<br />

δρ ′ = − ∑ ∫ T N∑<br />

rec ∫ T<br />

dt<br />

sources 0 α=1 0<br />

δλ ′ = − ∑ ∫ T N∑<br />

rec ∫ T<br />

dt<br />

sources 0 α=1 0<br />

δµ ′ = − ∑ ∫ T N∑<br />

rec ∫ T<br />

dt<br />

sources 0 α=1 0<br />

dt ′ G ij (x α,t ′ ;x,t) ∂2 u j<br />

∂t 2 (x,t)δu′ i (xα,t′ ),<br />

dt ′∂G ij<br />

∂x k<br />

(x α,t ′ ;x,t)ǫ lm (x,t)δ jk δ lm δu ′ i (xα,t′ ),<br />

dt ′∂G ij<br />

∂x k<br />

(x α,t ′ ;x,t)ǫ lm (x,t)(δ jl δ lm +δ jm δ kl )δu ′ i (xα,t′ ).


Calculation of the gradient direction ∂E<br />

∂m<br />

Some rearrangements ...<br />

The terms only depending on time t and the positions x can be<br />

moved infront of the sum over the receivers<br />

δρ ′ = − ∑ ∫ T<br />

dt ∂2 N<br />

u rec<br />

j<br />

sources 0 ∂t 2 (x,t) ∑<br />

∫ T<br />

dt ′ G ij (x α,t ′ ;x,t)δu ′ i (xα,t′ ),<br />

α=1 0<br />

δλ ′ = − ∑ ∫ T<br />

N∑<br />

rec ∫ T<br />

dtǫ lm (x,t)δ jk δ lm dt ′∂G ij<br />

(x α,t ′ ;x,t)δu ′ i<br />

sources 0<br />

α=1 0 ∂x (xα,t′ ),<br />

k<br />

δµ ′ = − ∑ ∫ T<br />

N∑<br />

rec ∫ T<br />

dtǫ lm (x,t)(δ jl δ lm +δ jm δ kl ) dt ′∂G ij<br />

(x α,t ′ ;x,t)δu ′ i<br />

sources 0<br />

α=1 0 ∂x (xα,t′ ).<br />

k


Calculation of the gradient direction ∂E<br />

∂m<br />

Introducing the wavefield Ψ j<br />

Defining the wavefield<br />

yields<br />

N∑<br />

rec<br />

Ψ j (x,t)=<br />

δρ ′ = − ∑<br />

δλ ′ = − ∑<br />

δµ ′ = − ∑<br />

α=1<br />

∫ T<br />

0<br />

∫ T<br />

sources 0<br />

∫ T<br />

sources 0<br />

∫ T<br />

sources<br />

0<br />

dt ′ G ij (x α ,t ′ ;x,t)δu ′ i(x α ,t ′ ),<br />

dt ∂2 u j<br />

∂t 2 (x,t)Ψ j,<br />

dtǫ lm (x,t)δ jk δ lm<br />

∂Ψ j<br />

∂x k<br />

,<br />

dtǫ lm (x,t)(δ jl δ lm +δ jm δ kl ) ∂Ψ j<br />

∂x k<br />

.


Calculation of the gradient direction ∂E<br />

∂m<br />

Calculate implicit sums ...<br />

Writing out the implicit sums in the gradients of the Lamé<br />

parameters δλ ′ and δµ ′<br />

δλ ′ = − ∑<br />

δµ ′ = − ∑<br />

∫ T<br />

sources 0<br />

∫ T<br />

sources<br />

0<br />

dt ∑ l<br />

dt ∑ l<br />

∑∑∑<br />

∂Ψ j<br />

ǫ lm (x,t)δ jk δ lm ,<br />

∂x k<br />

k<br />

k<br />

j<br />

j<br />

m<br />

∑∑∑<br />

ǫ lm (x,t)(δ jl δ lm +δ jm δ kl ) ∂Ψ j<br />

.<br />

∂x k<br />

m


Calculation of the gradient direction ∂E<br />

∂m<br />

... leads to<br />

Neglecting all wavefield components and derivatives in z-direction<br />

leads to<br />

δλ ′ = − ∑<br />

δµ ′ = − ∑<br />

(<br />

+2<br />

∫ T<br />

sources 0<br />

∫ T<br />

sources<br />

0<br />

ǫ xx<br />

∂Ψ x<br />

∂x +ǫ yy<br />

( )( ∂Ψx<br />

dt ǫ xx +ǫ yy<br />

[( )( ∂Ψx<br />

dt ǫ xy +ǫ yx<br />

)<br />

∂Ψ y<br />

.<br />

∂y<br />

)<br />

,<br />

∂x + ∂Ψ y<br />

∂y<br />

∂y + ∂Ψ )]<br />

y<br />

∂x


Calculation of the gradient direction ∂E<br />

∂m<br />

Introducing the strain tensor<br />

Using the definition of the strain tensor ǫ ij we get<br />

δλ ′ = − ∑<br />

δµ ′ = − ∑<br />

∫ T<br />

sources 0<br />

∫ T<br />

sources<br />

( ∂ux<br />

+2<br />

∂x<br />

0<br />

( ∂ux<br />

dt<br />

[( ∂ux<br />

dt<br />

∂Ψ x<br />

∂x + ∂u y<br />

∂y<br />

∂x + ∂u y<br />

∂y<br />

∂y + ∂u y<br />

∂x<br />

)<br />

.<br />

∂Ψ y<br />

∂y<br />

)( ∂Ψx<br />

∂x + ∂Ψ y<br />

∂y<br />

)( ∂Ψx<br />

∂y + ∂Ψ y<br />

∂x<br />

)<br />

,<br />

)]


Calculation of the gradient direction ∂E<br />

∂m<br />

Final gradients<br />

Finally the gradients for the Lamé parameters λ, µ and the density<br />

ρ can be written as<br />

δλ ′ = − ∑ ∫ ( ∂ux<br />

dt<br />

∂x + ∂u )(<br />

y ∂Ψx<br />

∂y ∂x + ∂Ψ )<br />

y<br />

∂y<br />

sources<br />

δµ ′ = − ∑ ∫ ( ∂ux<br />

dt<br />

∂y + ∂u )(<br />

y ∂Ψx<br />

∂x ∂y + ∂Ψ )<br />

y<br />

∂x<br />

sources<br />

( ∂ux ∂Ψ x<br />

+2<br />

∂x ∂x + ∂u )<br />

y ∂Ψ y<br />

∂y ∂y<br />

δρ ′ = ∑ ∫ ( ∂ 2 )<br />

u x<br />

dt<br />

∂t 2 Ψ x + ∂2 u y<br />

∂t 2 Ψ y<br />

sources

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!