15.11.2013 Views

Scanning Gate Microscopy (SGM) of semiconductor ... - GDR Meso

Scanning Gate Microscopy (SGM) of semiconductor ... - GDR Meso

Scanning Gate Microscopy (SGM) of semiconductor ... - GDR Meso

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Scanning</strong> <strong>Gate</strong> <strong>Microscopy</strong> (<strong>SGM</strong>)<br />

<strong>of</strong> <strong>semiconductor</strong> nanostructures<br />

H. Sellier, P. Liu, B. Sacépé, S. Huant<br />

Dépt NANO, Institut NEEL, Grenoble, France<br />

B. Hackens, F. Martins, V. Bayot<br />

UCL, Louvain-la-Neuve, Belgique<br />

M. Pala<br />

IMEP, Minatec, Grenoble, France<br />

L. Desplanque, X. Wallart<br />

IEMN, Lille, France<br />

<strong>GDR</strong> 2426 Physique Quantique Mésoscopique<br />

Session thématique « Champ proche »<br />

2 - 4 novembre 2010<br />

1


Outline<br />

1. Description <strong>of</strong> <strong>SGM</strong> technique<br />

- context<br />

- potential<br />

- operation<br />

2. Review <strong>of</strong> <strong>SGM</strong> experiments<br />

- contributors<br />

- microscopes<br />

- quantum point contact<br />

- quantum dot<br />

- quantum Hall effect<br />

- quantum ring<br />

3. ANR project on electron interactions<br />

- objectives<br />

- strategy<br />

2


Introduction to <strong>SGM</strong><br />

Local probe <strong>of</strong> electron properties in <strong>semiconductor</strong> heterostructures<br />

where electrons are several tens <strong>of</strong> nanometers below the surface<br />

thus not accessible by <strong>Scanning</strong> Tunneling <strong>Microscopy</strong><br />

2DEG<br />

• Quantum Point Contact<br />

• Quantum Wire<br />

• Quantum Dot<br />

• Quantum Ring<br />

• Quantum Hall Effect<br />

V<br />

I<br />

V<br />

3


<strong>SGM</strong> versus STM<br />

STM<br />

<strong>Scanning</strong> Tunneling <strong>Microscopy</strong><br />

<strong>SGM</strong><br />

<strong>Scanning</strong> <strong>Gate</strong> <strong>Microscopy</strong><br />

I<br />

e -<br />

V<br />

Φ<br />

+ +<br />

+<br />

V tip<br />

• conducting surface<br />

• surfaces, nano-objects, defects<br />

• tunneling current<br />

• local density <strong>of</strong> state<br />

I<br />

V<br />

• insulating surface<br />

• high mobility 2DEG heterostructure<br />

• conductance <strong>of</strong> device<br />

• local gate effect<br />

4


Tip induced scattering potential<br />

Low density electron gas ⇒ imperfect screening <strong>of</strong> the tip potential<br />

⇒ local potential change ⇒ modified electron scattering<br />

V tip<br />

< 0<br />

equipotential lines - -<br />

-<br />

V contact<br />

= 0<br />

V 2DEG, local<br />

< 0<br />

Other ingredients :<br />

Contact potential<br />

Dielectric constants<br />

Etched trenches<br />

Surface gates<br />

Charged defects<br />

5


Tip induced scattering potential<br />

Examples in the <strong>SGM</strong> literature :<br />

Crook et al, Phys. Rev. B (2000)<br />

Aidala et al, Nat. Phys. (2007)<br />

Another model :<br />

based on Krcmar et al, Phys. Rev. B (2002)<br />

z 0<br />

+ ε r1<br />

ε r2<br />

6


Tip induced scattering potential<br />

<strong>SGM</strong> = scattering method<br />

(STM = intrinsic LDOS)<br />

E = E C<br />

- e V<br />

E = E C<br />

- e V<br />

E F<br />

x tip<br />

x<br />

E F<br />

x<br />

Medium electron density (N ~ 10 12 cm -2 )<br />

- small perturbation<br />

x tip<br />

Low electron density (N ~ 10 11 cm -2 )<br />

- strong back-scattering<br />

Leroy, 2003<br />

PhD thesis<br />

7


<strong>SGM</strong> operation<br />

Device:<br />

High mobility 2DEG<br />

Device patterning<br />

(surface gate and/or etching)<br />

Instrument:<br />

Low temperature AFM<br />

( 4 He, 3 He, dilution)<br />

with magnetic field<br />

Positioning:<br />

AFM topographic image<br />

to locate the device<br />

<strong>Scanning</strong>:<br />

Tip scan at constant distance<br />

with applied voltage V tip<br />

while measuring conductance G<br />

2DEG<br />

doped barrier<br />

undoped channel<br />

buffer layer<br />

substrate<br />

I<br />

V<br />

Result:<br />

Image <strong>of</strong> the local gate effect<br />

on the global device conductance<br />

8


Outline<br />

1. Description <strong>of</strong> <strong>SGM</strong> technique<br />

- context<br />

- potential<br />

- operation<br />

2. Review <strong>of</strong> <strong>SGM</strong> experiments<br />

- contributors<br />

- microscopes<br />

- quantum point contact<br />

- quantum dot<br />

- quantum Hall effect<br />

- quantum ring<br />

3. ANR project on electron interactions<br />

- objectives<br />

- strategy<br />

9


<strong>SGM</strong> around the world<br />

Start Place Group 2DEG<br />

1996 US - Harvard Westervelt, Eriksson, Topinka,<br />

Leroy, Bleszinski, Aidala,...<br />

US - Santa-Barbara<br />

1999 US - Berkeley McEuen, Bachtold, Woodside,... US - Stanford<br />

US - Santa-Barbara<br />

2000 UK - Cambridge Ritchie, Smith, Crook,... UK - Cambridge<br />

2004 CH - Zürich Ensslin, Ihn, Pioda, Gildemeister,<br />

Baumgartner,...<br />

D - Regensburg<br />

US - Santa-Barbara<br />

2005 US - Arizona Ferry, Aoki, DaCunha,... JAP ? (InGaAs)<br />

2006 F - Grenoble Huant, Bayot, Hackens, Martins,<br />

Sellier,...<br />

2007 US - Stanford Goldhaber-Gordon, Jura,<br />

Topinka,...<br />

F - IEMN (InGaAs)<br />

US - Bell Labs<br />

2010 I - Pisa Heun, Paradiso,... US - Bell Labs<br />

2010 B - Louvain Bayot, Hackens, Martins,... F - IEMN (InGaAs)<br />

10


<strong>SGM</strong> tips<br />

Piezoresistive AFM cantilevers<br />

Tortonese, APL (1993)<br />

ThermoMicroscopes, CA<br />

not produced any more ...<br />

Piezoelectric quartz tuning fork<br />

Karrai (1995) Giessibl (1996)<br />

SNOM, AFM, STM, <strong>SGM</strong><br />

Example :<br />

Harvard<br />

Example :<br />

Grenoble<br />

11


<strong>SGM</strong> microscopes<br />

Grenoble<br />

4<br />

He 4K<br />

9T<br />

Heun<br />

3<br />

He 400mK<br />

9T<br />

12


<strong>SGM</strong> microscopes<br />

Westervelt<br />

3<br />

He 400mK<br />

7T<br />

Ensslin<br />

3<br />

He 4 He 100mK<br />

8T<br />

13


Quantum Point Contact<br />

Harvard (Westervelt)<br />

Imaging electron flow<br />

Creates interferences<br />

Topinka et al, Nature (2001)<br />

1.7 K<br />

n = 4.5 x 10 11 cm -2<br />

µ = 1 000 000 cm 2 /Vs<br />

2DEG 57 nm below surface<br />

tip at 13 nm<br />

V tip<br />

= -3 V<br />

14


Quantum Point Contact<br />

Harvard (Westervelt)<br />

Imaging electron flow<br />

and cyclotron orbit<br />

under magnetic field<br />

Aidala et al, Nat. Phys. (2007)<br />

4.2 K<br />

n = 3.8 x 10 11 cm -2<br />

µ = 500 000 cm 2 /Vs<br />

2DEG 47 nm below surface<br />

15


Quantum Point Contact<br />

Arizona (Ferry)<br />

Universal Conductance Fluctuations<br />

DaCunha, Aoki, et al, Appl. Phys. Lett. (2006)<br />

280 mK<br />

16


Quantum Point Contact<br />

Cambridge (Ritchie)<br />

Tuning QPC conductance<br />

« 0.7 anomaly »<br />

Erasable Electrostatic Lithography<br />

Crook et al, Science (2006)<br />

150 mK<br />

n = 3.1 x 10 11 cm -2<br />

µ = 5 000 000 cm 2 /Vs<br />

2DEG 97 nm below surface<br />

17


ETH Zürich (Ensslin)<br />

Coulomb blockade resonances<br />

Analysis <strong>of</strong> tip potential<br />

(AFM nanolithography)<br />

Quantum Dot<br />

Pioda et al, Phys. Rev. Lett. (2004)<br />

300 mK<br />

n = 5 x 10 11 cm -2<br />

µ = 450 000 cm 2 /Vs<br />

2DEG 34 nm below surface<br />

18


Quantum Dot<br />

Harvard (Westervelt)<br />

Spectroscopy <strong>of</strong> single electron dot<br />

Tip potential width >> dot size...<br />

Fallahi et al, NanoLetters (2005)<br />

1.7 K<br />

n = 3.8 x 10 11 cm -2<br />

µ = 470 000 cm 2 /Vs<br />

2DEG 52 nm below surface<br />

19


Quantum Dot<br />

Harvard (Westervelt)<br />

Image Coulomb blockade centers<br />

InAs nanowire with Ti/Al contacts<br />

Bleszinski et al, NanoLetters (2007)<br />

4.2 K<br />

20


Quantum Dot<br />

Berkeley (McEuen)<br />

Carbon nanotube with kinks<br />

Image Coulomb blockade centers<br />

+ Single Electron Force <strong>Microscopy</strong><br />

Woodside et al, Science (2002)<br />

<strong>SGM</strong> @ 6 K<br />

EFM @ 0.6 K<br />

21


Quantum Hall Effect<br />

<strong>SGM</strong> at high magnetic field :<br />

- Berkeley (McEuen)<br />

- ETH Zürich (Ensslin)<br />

Transmission by edge states : no back scattering<br />

⇒ <strong>SGM</strong> images only at the transition between plateaus<br />

See talk by B. Hackens, Louvain-la-Neuve (Belgium)<br />

22


Quantum Rings<br />

Grenoble 2 + Louvain + Lille<br />

<strong>SGM</strong> experiments (NEEL)<br />

MBE growth (IEMN)<br />

E-beam lithography (UCL)<br />

600 nm<br />

Theory and simulation (IMEP)<br />

N s<br />

~ 2 x 10 12 cm -2<br />

µ ~ 100 000 cm 2 /Vs [4K]<br />

L e<br />

~ 2 µm [4K] ballistic<br />

L φ<br />

≥ µm [4K] coherent<br />

23


Quantum Rings<br />

Aharonov-Bohm interferences by <strong>SGM</strong><br />

B. Hackens et al., Nature Physics (2006)<br />

Dephasing by tip potential<br />

electrostatic A-B effect<br />

e<br />

= 2π ∫ ( V1<br />

− V ) dt<br />

h<br />

Δϕ<br />

2<br />

Dephasing by magnetic field<br />

magnetic A-B effect<br />

iso-phase lines<br />

=<br />

information<br />

on electron<br />

wave function<br />

interferences<br />

24


Quantum Rings<br />

Experiment<br />

Local Density <strong>of</strong> State by <strong>SGM</strong><br />

Simulation (Marco Pala, IMEP, Grenoble)<br />

F. Martins et al, Phys. Rev. Lett. (2007)<br />

Influence <strong>of</strong> defects and magnetic field :<br />

Analytical model for single channel :<br />

M. Pala et al., Phys. Rev. B. (2008), Nanotechnology (2009)<br />

25


Outline<br />

1. Description <strong>of</strong> <strong>SGM</strong> technique<br />

- context<br />

- potential<br />

- operation<br />

2. Review <strong>of</strong> <strong>SGM</strong> experiments<br />

- contributors<br />

- microscopes<br />

- quantum point contact<br />

- quantum dot<br />

- quantum Hall effect<br />

- quantum ring<br />

3. ANR project on electron interactions<br />

- objectives<br />

- strategy<br />

26


0.7 anomaly in QPC<br />

27


ANR ITEM<br />

ITEM = Interaction et Transport à l'Echelle Mésoscopique<br />

ITEM-Th (2008)<br />

J.L. Pichard, CEA, Saclay<br />

R. Jalabert, D. Weinmann, IPCMS, Strasbourg<br />

1D chain<br />

U = 0 U = 1.7<br />

Freyn et al, Phys. Rev. Lett. (2008)<br />

28


ITEM = Interaction et Transport à l'Echelle Mésoscopique<br />

ITEM-Exp (2010)<br />

H. Sellier et al, Néel, Grenoble<br />

M. Sanquer et al, CEA, Grenoble<br />

A. Ouerghi et al, LPN, Marcoussis<br />

ANR ITEM<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!