14.11.2013 Views

gully erosion modelling

gully erosion modelling

gully erosion modelling

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

23.06.2006 Bejing<br />

Response Units<br />

• and their application in soil<br />

<strong>erosion</strong> <strong>modelling</strong><br />

INWAMA<br />

Beijing 06.06.2006


State of the art in<br />

<strong>erosion</strong> <strong>modelling</strong><br />

INWAMA<br />

Beijing 06.06.2006


Conceptual model of aquatic <strong>erosion</strong> processes<br />

Soil particles<br />

from upslope<br />

soil particle<br />

detachment by<br />

precipitation<br />

Soil particle<br />

deatchment by runoff<br />

transport<br />

capacity<br />

precipitation<br />

transport<br />

capacity<br />

runoff<br />

total eroded soil<br />

(E)<br />

ET<br />

total transport<br />

capacity (T)<br />

soil particles carried<br />

downslope<br />

INWAMA<br />

Beijing 06.06.2006


Erosion models and <strong>modelling</strong> concepts<br />

degree of causality<br />

Conceptual<br />

grey-box-models<br />

physically based<br />

process oriented<br />

white-box-models<br />

Empiric<br />

black-boxmodels<br />

complexity / parameter requirement<br />

INWAMA<br />

Beijing 06.06.2006


Dilemma:<br />

Parameterization of <strong>erosion</strong> models<br />

• We are able to describe correctly the major part of <strong>erosion</strong><br />

processes (physics and mathematics)<br />

• Together with the degree of complexity the data requirement is<br />

growing<br />

Parameterization problems:<br />

• precipitation (spatial and temporal distribution)<br />

• soil complex (three dimensional dynamic)<br />

• socio economic complex<br />

limiting factor for <strong>erosion</strong> <strong>modelling</strong> data input<br />

INWAMA<br />

Beijing 06.06.2006


Scales in <strong>erosion</strong> <strong>modelling</strong><br />

scale integrative concepts ?<br />

Plot or field<br />

models<br />

Modelling entities<br />

distributed or aggregated<br />

Slope models<br />

spatial scale<br />

Catchment<br />

models<br />

Event based<br />

models<br />

Seasonal<br />

models<br />

Yearly average<br />

models<br />

time scale<br />

INWAMA<br />

Beijing 06.06.2006


Discretization approaches in <strong>erosion</strong> <strong>modelling</strong> to<br />

describe and subdivide a catchment<br />

aggregated<br />

<strong>modelling</strong><br />

entities<br />

catchment is<br />

characterized by average<br />

values<br />

process dynamic within<br />

the <strong>modelling</strong> entity is not<br />

described<br />

INWAMA<br />

Beijing 06.06.2006


Discretization approaches in <strong>erosion</strong> <strong>modelling</strong> to<br />

describe and subdivide a catchment<br />

distributed<br />

<strong>modelling</strong> units<br />

Catchment is divided into<br />

subunits which can be<br />

characterized specifically<br />

Process dynamics within<br />

the catchment can be<br />

simulated more accurately<br />

distributive approach:<br />

• allows the process based characterization of <strong>erosion</strong> dynamics on<br />

larger spatial scales<br />

• allows the application of modular <strong>modelling</strong> systems such like<br />

WEPP; LISEM<br />

INWAMA<br />

Beijing 06.06.2006


Regionalization and model coupling<br />

raster based<br />

approach<br />

allows the application<br />

of GIS<br />

each raster cell can be<br />

seen as a separate<br />

<strong>modelling</strong> unit<br />

Fix resolution:<br />

physiographic heterogeneity is sometimes not considered correctly<br />

INWAMA<br />

Beijing 06.06.2006


Regionalization and model coupling<br />

Response Units<br />

approach<br />

aggregated spatial<br />

objects with homogeneous<br />

process<br />

dynamics<br />

resolution is process<br />

based<br />

different processes can<br />

be exactly differentiated<br />

RU concept with the subdivision into sub entities with homogeneous<br />

process dynamics shows advantages in <strong>erosion</strong> <strong>modelling</strong><br />

INWAMA<br />

Beijing 06.06.2006


Aquatic <strong>erosion</strong> processes and forms depend on:<br />

• hydro-meteorologic dynamic of the catchment<br />

• characteristics of physiographical properties of the ecological<br />

subsystems (e.g. soil; vegetation)<br />

Suitable approaches in Hydrological Modelling<br />

Process oriented Response Units Approach allow:<br />

• identification,<br />

• characterization,<br />

• and <strong>modelling</strong> of the hydrologic dynamic of a catchment<br />

process oriented structure of the RU Approach allows<br />

the application to processes that are related to the<br />

hydrologic dynamic<br />

dynamics of <strong>erosion</strong> processes<br />

INWAMA<br />

Beijing 06.06.2006


Erosion Response Units (ERU) Concept<br />

represents a fully distributed <strong>modelling</strong> approach<br />

ERUs are:<br />

• heterogeneously structured terrain units<br />

• having homogeneous <strong>erosion</strong> process dynamics<br />

• that are controlled by the physiographic<br />

properties and the management of the human<br />

environment<br />

INWAMA<br />

Beijing 06.06.2006


Application of ERUs<br />

to identify the spatial distribution of <strong>erosion</strong> forms and –<br />

processes<br />

4. as <strong>modelling</strong> entity within the <strong>erosion</strong> <strong>modelling</strong><br />

5. in regional <strong>erosion</strong> <strong>modelling</strong> for spatial scale transfer<br />

With the ERU - concept it is possible to model separately<br />

heterogeneously distributed <strong>erosion</strong> processes<br />

INWAMA<br />

Beijing 06.06.2006


Erosion Response Units (ERU) Concept<br />

Reference units<br />

present <strong>erosion</strong><br />

forms and processes<br />

remote sensing<br />

erosivity<br />

System input<br />

Erosion Response Units<br />

system response<br />

Overlay analysis<br />

reclassification<br />

terrain characteristrics<br />

System characteristics<br />

Regionalization<br />

& <strong>modelling</strong><br />

atmosphere<br />

vegetation<br />

SVAT interface<br />

soil<br />

geomorphology<br />

geology<br />

INWAMA<br />

Beijing 06.06.2006


Delineation of reference units by stereo aerial photo interpretation<br />

Stereo aerial<br />

photos 1:30.000<br />

Analyses after Van Zuidam (1985)<br />

INWAMA<br />

Beijing 06.06.2006


Overlay procedure and classification of parameters<br />

• expert knowledge approach using defined rules<br />

• statistical approach e.g. CART<br />

INWAMA<br />

Beijing 06.06.2006


Derived ERU sequence by overlay analysis<br />

Layer 1 2 3 4<br />

Class ERefU Exposition<br />

Land cover Slope morphology Geology + soils<br />

1 no <strong>erosion</strong> North Unimproved<br />

grassland<br />

Convex/ concave<br />

slope 60m<br />

Alluvium Sand Loam<br />

Clay<br />

2 Slight rillinterrill;<br />

shallow<br />

<strong>gully</strong> <strong>erosion</strong><br />

East<br />

Shrub; bush &<br />

forests<br />

convex slope 1-5° & ><br />

60m<br />

partly consolidated<br />

Sediments<br />

(masotcheni)<br />

3 Rill-interrill;<br />

shallow -<br />

medium deep<br />

<strong>gully</strong> <strong>erosion</strong><br />

4 Rill; mediumdeep<br />

<strong>gully</strong><br />

<strong>erosion</strong><br />

South<br />

West<br />

Wetland/ water<br />

body<br />

Cultivated<br />

commercial/<br />

subsistence<br />

Concave slope 1-5° &<br />

> 60m<br />

Convex slope 5-10°&<br />

> 30m<br />

Basalts Dolerite Shales<br />

Mud-, Siltstone<br />

Diamectites Loam /Clay<br />

Basalts Dolerite Shales<br />

Mud-, Siltstone<br />

Diamectites Sand<br />

5 Rill; mediumdeep<br />

to, deep<br />

<strong>gully</strong> <strong>erosion</strong>,<br />

landslides<br />

6 Rill; deep <strong>gully</strong>;<br />

badlands;<br />

severe mass<br />

movements<br />

Urban<br />

Degraded<br />

unimproved<br />

grass-,<br />

bushland<br />

Concave slope 5-10°&<br />

> 30m<br />

Concave/convex<br />

slope >10° < 60m<br />

Gneiss Granite Diorite<br />

Sandstone Loam<br />

Gneiss Granite<br />

DioriteSandstone Sand/<br />

Clay<br />

INWAMA<br />

Beijing 06.06.2006


CART approach<br />

INWAMA<br />

Beijing 06.06.2006


Delineation and Regionalisation of ERUs<br />

Prediction model<br />

existing <strong>erosion</strong><br />

forms & processes<br />

INWAMA<br />

Beijing 06.06.2006


Delineation and Regionalisation of ERUs<br />

ERU<br />

related to<br />

a certain<br />

<strong>erosion</strong> intensity<br />

and specific<br />

<strong>erosion</strong> forms and<br />

processes<br />

INWAMA<br />

Beijing 06.06.2006


INWAMA<br />

Beijing 06.06.2006


Erosion <strong>modelling</strong><br />

ERU<br />

<strong>modelling</strong> unit<br />

Application of<br />

different inter-rill, rill <strong>erosion</strong> <strong>erosion</strong><br />

ACRU<br />

models<br />

<strong>modelling</strong> ERU unit<br />

Interface choosing model<br />

<strong>gully</strong> <strong>erosion</strong><br />

Gully models<br />

RUSLE dynamic <strong>gully</strong> model stable <strong>gully</strong> model<br />

system output<br />

Sediments in t/ha<br />

or mm<br />

routing of sediments<br />

(transport)<br />

INWAMA<br />

Beijing 06.06.2006


Modelling Structure<br />

(E)RU<br />

<strong>modelling</strong> unit<br />

Deep linear <strong>erosion</strong><br />

Gully <strong>erosion</strong><br />

Aquatic Erosion<br />

Rill-interrilll Erosion<br />

Deep linear <strong>erosion</strong><br />

Gully <strong>erosion</strong><br />

Process<br />

RUSLE<br />

Gully model<br />

Modelling<br />

Sediment routing and<br />

deposition module<br />

Integration<br />

Integrated catchment response<br />

Sediment yield<br />

INWAMA<br />

Beijing 06.06.2006


interrill-rill <strong>erosion</strong><br />

<strong>modelling</strong><br />

<strong>gully</strong> <strong>erosion</strong><br />

<strong>modelling</strong><br />

R-<br />

Faktor<br />

K-<br />

Faktor<br />

LS-<br />

Faktor<br />

C-<br />

Faktor<br />

P-Faktor<br />

1<br />

R<br />

*<br />

K<br />

*<br />

LS<br />

*<br />

C<br />

*<br />

P<br />

Soil loss per<br />

<strong>modelling</strong> unit<br />

1. Initial phase (5%) 2. Static phase (95%)<br />

Sidorchuk models<br />

INWAMA<br />

Beijing 06.06.2006


Mittel 8,1 to/ ha * Jahr<br />

Mittel 10,4 to/ ha * Jahr<br />

Mittel 15,0 to/ ha * Jahr<br />

INWAMA<br />

Beijing 06.06.2006


INWAMA<br />

Beijing 06.06.2006


<strong>gully</strong> <strong>modelling</strong><br />

initial phase<br />

static phase<br />

<strong>gully</strong> <strong>erosion</strong> model<br />

dynamic <strong>gully</strong><br />

<strong>erosion</strong> model<br />

(DIMGUL)<br />

static <strong>gully</strong> <strong>erosion</strong><br />

model (STABGUL)<br />

complete description of <strong>gully</strong> growth dynamics<br />

SIDORCHUK, et al. (2003); Sidorchuk et al. (2001), Sidorchuk & Sidrochuk (1999), Sidorchuk (1998)<br />

INWAMA<br />

Beijing 06.06.2006


DEM information<br />

hydrologic<br />

parameters<br />

dynamic &<br />

static <strong>gully</strong> models<br />

lithologic<br />

parameter<br />

Model output<br />

• <strong>gully</strong> profiles<br />

(longitudinal and cross scections)<br />

• eroded volume<br />

Gully <strong>erosion</strong> rates<br />

• <strong>gully</strong> drainage network<br />

timesteps/ final<br />

SIDORCHUK, et al. (2003); Sidorchuk et al. (2001), Sidorchuk & Sidrochuk (1999), Sidorchuk (1998)<br />

INWAMA<br />

Beijing 06.06.2006


<strong>gully</strong> <strong>erosion</strong> <strong>modelling</strong><br />

<strong>gully</strong> development after KOSOV et al. (1978)<br />

1. Initial phase<br />

(5% <strong>gully</strong> live time)<br />

1. Static phase<br />

(95% <strong>gully</strong> live time)<br />

90% <strong>gully</strong> length<br />

60% <strong>gully</strong> area<br />

35% <strong>gully</strong> volume<br />

INWAMA<br />

1: <strong>gully</strong> length<br />

2: <strong>gully</strong> depth<br />

3: <strong>gully</strong> area<br />

4: <strong>gully</strong> volume (Source: Sidorchuk 1999)<br />

Beijing 06.06.2006


dynamic <strong>gully</strong> <strong>erosion</strong> model<br />

dynamic <strong>gully</strong> <strong>erosion</strong> model (DIMGUL)<br />

• equation of mass conservation<br />

• equation for <strong>gully</strong> bed deformation<br />

∂Z/∂t – a(∂Z/∂x) – V f<br />

C=0<br />

Gully bed height<br />

SIDORCHUK, et al. (2003); Sidorchuk et al. (2001), Sidorchuk & Sidrochuk (1999), Sidorchuk (1998)<br />

INWAMA<br />

Beijing 06.06.2006


static <strong>gully</strong> <strong>erosion</strong> model<br />

static <strong>gully</strong> <strong>erosion</strong> model (STABGUL)<br />

hypothesis:<br />

• a final morphological equilibrium is existing<br />

- <strong>gully</strong> bed<br />

- <strong>gully</strong> side walls<br />

∂Z/∂t=0<br />

∂Wb/∂t=0<br />

V′ cr<br />


• Critical velocity V“ cr<br />

, for <strong>erosion</strong> initiation;<br />

• Roughness coefficient after MANNING n<br />

∀ φ angle of repose of stable <strong>gully</strong> side walls & <strong>gully</strong>bed<br />

Calibration with existing stable <strong>gully</strong> system<br />

INWAMA<br />

Beijing 06.06.2006


INWAMA<br />

Beijing 06.06.2006


Stereo aerial photo analyses<br />

with Zeiss Planicomp<br />

1961<br />

DEM with 1m X 1m<br />

resolution<br />

1977<br />

1990<br />

INWAMA<br />

Beijing 06.06.2006


Gully survey and Planicomp stereoscope analyses<br />

1944<br />

1977<br />

1984<br />

1996<br />

1998<br />

INWAMA<br />

Beijing 06.06.2006


validating of remotely<br />

sensed data<br />

INWAMA<br />

1998<br />

Beijing 06.06.2006


Results of <strong>gully</strong> <strong>erosion</strong> modeling<br />

• morphometric parameters follow Kosov- pattern<br />

• modelled and measured values show high conformity<br />

• final <strong>gully</strong> stadium can be simulated with dynamic model<br />

• high prediction goodness<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Erosion rates for<br />

different stages<br />

1960 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110<br />

Gullytiefe Gullylänge Gullyfläche Gullyvolumen<br />

Kosov et al. 1978<br />

INWAMA<br />

Beijing 06.06.2006


static <strong>gully</strong> model<br />

INWAMA<br />

Beijing 06.06.2006


1990 2020 2050 2080 2110 1960<br />

2915000.00<br />

dynamic <strong>gully</strong> model<br />

2914800.00<br />

2914600.00<br />

2914400.00<br />

2914200.00<br />

38200.00 38400.00 38600.00 38800.00<br />

INWAMA<br />

Beijing 06.06.2006


Regionalisation of <strong>gully</strong> <strong>erosion</strong> results using Landsat TM and GIS<br />

analyses<br />

Transformed Soil Adjusted<br />

Vegetation Index (TSAVI)<br />

Mhlambanyoni river catchment<br />

TSAVI +ERU<br />

NIR<br />

INWAMA<br />

Red<br />

ca. 30 ha (0,75% of catchment area)<br />

Beijing 06.06.2006


Integration of distributed <strong>erosion</strong> modellling results<br />

Erosion<br />

models<br />

soil loss per unit<br />

area or pixel<br />

DEM +<br />

Rainfall<br />

Overlandflow<br />

per pixel<br />

Transport<br />

capacity<br />

Sediment<br />

routing<br />

Total sediment<br />

yield of catchment<br />

Integration over the<br />

catchment area<br />

INWAMA<br />

Beijing 06.06.2006


Sequential nesting of ERUs for sediment yield calculations<br />

Catchments are characterized by:<br />

2. Homogeneous geological structure<br />

3. Produced sediments show high silt and fine sand fractions<br />

4. Intensive precipitation with high runoff energy<br />

First approximation:<br />

no deposition<br />

eroded sediments are completely washed off the catchment<br />

Integrated sediment yield can be calculated<br />

with a simple sediment routing routine<br />

INWAMA<br />

Beijing 06.06.2006


Map of accumulated sediments along flowlines<br />

Percentage of sediments caused by<br />

<strong>gully</strong> <strong>erosion</strong> is up to 30% !<br />

<strong>gully</strong> areas

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!