14.11.2013 Views

Detecting urbanization effects on surface and subsurface thermal ...

Detecting urbanization effects on surface and subsurface thermal ...

Detecting urbanization effects on surface and subsurface thermal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

ava i l a b l e a t w w w. s c i e n c e d i r e c t . c o m<br />

w w w. e l s ev i e r. c o m / l o c a t e / s c i t o t e n v<br />

<str<strong>on</strong>g>Detecting</str<strong>on</strong>g> <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>surface</strong> <strong>and</strong> sub<strong>surface</strong><br />

<strong>thermal</strong> envir<strong>on</strong>ment — A case study of Osaka<br />

Shaopeng Huang a, ⁎, Makoto Taniguchi b , Makoto Yamano c , Chung-ho Wang d<br />

a Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA<br />

b Research Institute for Humanity <strong>and</strong> Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan<br />

c Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-0032, Japan<br />

d Institute of Earth Sciences, Academia Sinica, P.O.B. 1-55, Taipei Nanking, 11529, Taiwan, ROC<br />

A R T I C L E I N F O<br />

Available <strong>on</strong>line 2 June 2008<br />

Keywords:<br />

Surface air temperature<br />

Diurnal temperature range<br />

Borehole temperature<br />

Urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

Sub<strong>surface</strong> <strong>thermal</strong> envir<strong>on</strong>ment<br />

A B S T R A C T<br />

Tremendous efforts have been devoted to improve our underst<strong>and</strong>ing of the anthropogenic<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the atmospheric temperature change. In comparis<strong>on</strong>, little has been d<strong>on</strong>e in the study<br />

of the human impacts <strong>on</strong> the sub<strong>surface</strong> <strong>thermal</strong> envir<strong>on</strong>ment. The objective of this study is to<br />

analyze <strong>surface</strong> air temperature records <strong>and</strong> borehole sub<strong>surface</strong> temperature records for a better<br />

underst<strong>and</strong>ing of the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> across the ground <strong>surface</strong>. The annual <strong>surface</strong> air<br />

temperature time series from six meteorological stati<strong>on</strong>s <strong>and</strong> six deep borehole temperature<br />

profiles of high qualities show that Osaka has been undergoing excess warming since late 19th<br />

century. The mean warming rate in Osaka <strong>surface</strong> air temperature is about 2.0 °C/100a over the<br />

period from 1883 to 2006, at least half of which can be attributed to the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

However, this <strong>surface</strong> air temperature warming is not as str<strong>on</strong>g as the ground warming recorded<br />

in the sub<strong>surface</strong> temperature profiles. The <strong>surface</strong> temperature anomaly from the Osaka<br />

meteorological record can <strong>on</strong>ly account for part of the temperature anomaly recorded in the<br />

borehole temperature profiles. Surface air temperature is c<strong>on</strong>venti<strong>on</strong>ally measured around 1.5 m<br />

above the ground; whereas borehole temperatures are measured from rocks in the sub<strong>surface</strong>.<br />

Heat c<strong>on</strong>ducti<strong>on</strong> in the sub<strong>surface</strong> is much less efficient than the heat c<strong>on</strong>vecti<strong>on</strong> of the air above<br />

the ground <strong>surface</strong>. Therefore, the anthropogenic <strong>thermal</strong> impacts <strong>on</strong> the sub<strong>surface</strong> can be more<br />

persistent <strong>and</strong> profound than the impacts <strong>on</strong> the atmosphere. This study suggests that the<br />

<strong>surface</strong> air temperature records al<strong>on</strong>e might underestimate the full extent of urban heat isl<strong>and</strong><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the sub<strong>surface</strong> envir<strong>on</strong>ment.<br />

© 2008 Elsevier B.V. All rights reserved.<br />

1. Introducti<strong>on</strong><br />

20th century global warming is well documented in the<br />

instrumental record (Brohan et al., 2006) <strong>and</strong> a wide range of<br />

proxies including borehole temperatures (e.g., Huang, 2004). It<br />

has been recognized that anthropogenic forcing is at least<br />

partially resp<strong>on</strong>sible for the recent warming (IPCC, 2007). The<br />

human influences <strong>on</strong> climate change are particularly significant<br />

in urban areas. Urbanizati<strong>on</strong> alters the <strong>thermal</strong> properties of the<br />

l<strong>and</strong>, changes the energy budget at the ground <strong>surface</strong>, changes<br />

the surrounding atmospheric circulati<strong>on</strong> characteristics, generates<br />

a great amount of anthropogenic waste heat, <strong>and</strong> leads to<br />

a series of changes in the urban envir<strong>on</strong>mental system.<br />

The impacts of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>thermal</strong> envir<strong>on</strong>ment are<br />

generally termed as urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Those <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

mostly originate near the ground <strong>surface</strong> <strong>and</strong> first result in<br />

<strong>surface</strong> temperature anomalies. The anomalous urban ground<br />

<strong>surface</strong> temperature anomalies will unavoidably propagate<br />

both upward into the atmosphere (J<strong>on</strong>es et al., 1990; Kalnay<br />

<strong>and</strong> Cai, 2003; Kim <strong>and</strong> Baik, 2004; Zhou et al., 2004; Brazel et al.,<br />

⁎ Corresp<strong>on</strong>ding author.<br />

E-mail address: shaopeng@umich.edu (S. Huang).<br />

0048-9697/$ – see fr<strong>on</strong>t matter © 2008 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.scitotenv.2008.04.019


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

3143<br />

2007; Liu et al., 2007; Stathopoulou <strong>and</strong> Cartalis, 2007) <strong>and</strong><br />

downward into the sub<strong>surface</strong> (Bodri <strong>and</strong> Cermak, 1999;<br />

Changn<strong>on</strong>, 1999; Baker <strong>and</strong> Baker, 2002; Fergus<strong>on</strong> <strong>and</strong> Woodbury,<br />

2004; Taniguchi et al., 2005).<br />

With the increasing trend in <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> worldwide,<br />

tremendous efforts have been devoted to improve our underst<strong>and</strong>ing<br />

of the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. However, most of the<br />

research efforts so far have been focused <strong>on</strong> the atmospheric<br />

aspects of the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (J<strong>on</strong>es et al., 1990; Kalnay<br />

<strong>and</strong> Cai, 2003; Peters<strong>on</strong>, 2003; Trenberth, 2004; Zhou et al., 2004;<br />

Brohan et al., 2006; Parker, 2006; Jenerette et al., 2007). The urban<br />

heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the sub<strong>surface</strong> temperature <strong>and</strong> their<br />

envir<strong>on</strong>mental c<strong>on</strong>sequences are poorly understood.<br />

The objective of this study is to analyze meteorological<br />

records <strong>and</strong> <strong>surface</strong> temperature data for the detecti<strong>on</strong> of the<br />

<str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the <strong>thermal</strong> envir<strong>on</strong>ment across the<br />

ground <strong>surface</strong> in Osaka metropolitan area in Japan.<br />

Osaka is the sec<strong>on</strong>d largest metropolis in the country <strong>and</strong><br />

has a populati<strong>on</strong> growing from 8.67 milli<strong>on</strong> in 1985 to<br />

8.82 milli<strong>on</strong> in 2006 (http://www.citypopulati<strong>on</strong>.de/). We<br />

analyze the trends in the annual mean temperature, the<br />

mean maximum <strong>and</strong> minimum temperatures, <strong>and</strong> the mean<br />

diurnal temperature range recorded in 6 meteorological<br />

stati<strong>on</strong>s around Osaka. We use a high quality subset of<br />

borehole temperature data reported in two previous studies<br />

(Taniguchi <strong>and</strong> Uemura, 2005; Taniguchi et al., 2005) to detect<br />

the sub<strong>surface</strong> warming in Osaka. We calculate the transient<br />

impacts of the urban annual time series <strong>on</strong> sub<strong>surface</strong><br />

temperature distributi<strong>on</strong>, <strong>and</strong> compare the calculated sub<strong>surface</strong><br />

temperatures to the borehole measurements.<br />

Although borehole temperatures can be used for a rec<strong>on</strong>structi<strong>on</strong><br />

of <strong>surface</strong> temperature history (e.g., Huang et al., 2000),<br />

climate rec<strong>on</strong>structi<strong>on</strong> is the focus of the paper by Yamano et al.<br />

(this issue) in this special issue. Readers interested in climate<br />

rec<strong>on</strong>structi<strong>on</strong> based <strong>on</strong> borehole temperatures from Osaka <strong>and</strong><br />

several other Asian cities are referred to Yamano et al. (this<br />

issue) for additi<strong>on</strong>al informati<strong>on</strong> <strong>and</strong> results.<br />

This study is part of an <strong>on</strong>-going effort of the multidisciplinary<br />

research project “Human impacts <strong>on</strong> urban<br />

sub<strong>surface</strong> envir<strong>on</strong>ment” which has Tokyo, Osaka, Bangkok,<br />

Seoul, Taipei, Manila, <strong>and</strong> Jakarta as its target research areas.<br />

2. Meteorological records<br />

In additi<strong>on</strong> to the <strong>surface</strong> air temperature time series from the<br />

Osaka meteorological stati<strong>on</strong>, we select meteorological<br />

records from two urban stati<strong>on</strong>s (Kyoto <strong>and</strong> Kobe) <strong>and</strong> <strong>on</strong>e<br />

suburban stati<strong>on</strong> (Nara) around Osaka, <strong>and</strong> two rural stati<strong>on</strong>s<br />

(Tsurugisan <strong>and</strong> Ibukiyama) in more remote areas for this<br />

study (Fig. 1). All the selected meteorological stati<strong>on</strong>s are the<br />

member stati<strong>on</strong>s of the Global Historical Climatological Network<br />

(GHCN) (Peters<strong>on</strong> <strong>and</strong> Vose, 1997).<br />

The Osaka meteorological observatory is located in the<br />

downtown area of the Osaka city. The Kyoto, Kobe, <strong>and</strong> Nara<br />

stati<strong>on</strong>s are the GHCN stati<strong>on</strong>s closest to Osaka, located<br />

respectively in the northern Kyoto city, the shore area of the<br />

Kobe city, <strong>and</strong> the hilly area of the Nara city. The two rural<br />

stati<strong>on</strong>s selected for comparis<strong>on</strong> are the rural stati<strong>on</strong>s closest<br />

to Osaka am<strong>on</strong>g the 167 Japanese meteorological stati<strong>on</strong>s<br />

included in the GHCN. Unfortunately, there are no other rural<br />

stati<strong>on</strong>s in the GHCN that are located within the immediate<br />

vicinity of the Osaka metropolitan area.<br />

For this study, we analyze the trends in annual mean<br />

temperature, annual mean maximum temperature, annual<br />

mean minimum temperature, <strong>and</strong> the diurnal temperature<br />

range for the selected stati<strong>on</strong>s. The m<strong>on</strong>thly mean temperature,<br />

mean maximum temperature, <strong>and</strong> mean minimum temperature<br />

time series of the selected GHCN stati<strong>on</strong>s are available at<br />

the Japan Meteorological Agency (JMA) website http://www.<br />

data.jma.go.jp/obd/stats/data/en/smp/index.html. These<br />

meteorological records have been aggregated to generate<br />

corresp<strong>on</strong>ding annual time series. We further derived the<br />

annual mean diurnal temperature range time series from the<br />

aggregated annual maximum <strong>and</strong> minimum records.<br />

All of the four urban/suburban stati<strong>on</strong>s are still in active<br />

service <strong>and</strong> have annual data up to 2006 by the time of this<br />

study. The Osaka time series started in 1883, <strong>and</strong> the Kyoto<br />

record started two years earlier in 1881. However, both of the<br />

two rural stati<strong>on</strong>s have been out of service since 2001. The<br />

temporal lengths covered by the selected meteorological<br />

records range from 52 years (Nara) to 125 years (Kyoto). All of<br />

the selected meteorological records show overall warming<br />

trends in the annual mean temperature, maximum temperature,<br />

<strong>and</strong> minimum temperature time series over their<br />

observati<strong>on</strong> periods (Fig. 2).<br />

The Osaka stati<strong>on</strong> shows a warming trend of 1.99 °C/100a<br />

over the 124 year period from 1883 to 2006, more than triple<br />

the 20th century global warming rate 0.6 °C/100a (IPCC, 2001).<br />

The anomalous urban warming is c<strong>on</strong>sistently recorded in the<br />

records from the nearby urban/suburban stati<strong>on</strong>s, of which<br />

the warming rates are 2.24 °C/100a for Kyoto, 1.45 °C/100a for<br />

Kobe, <strong>and</strong> 1.96 °C/100a for Nara, respectively. In comparis<strong>on</strong>,<br />

the warming rates recorded in the two rural stati<strong>on</strong>s are more<br />

diverse. Over its 55-year life span, the Tsurugisan stati<strong>on</strong><br />

showed a warming rate of 0.47 °C/100a which is slightly lower<br />

than the global average; whereas the 82-year Ibukiyama<br />

record showed a 1.60 °C/100a warming rate that is much<br />

greater than the global average.<br />

To reduce the ambiguity of comparing records of different<br />

temporal lengths, we have also analyzed the records over the<br />

1954–2000 period covered by all of the 6 selected stati<strong>on</strong>s. The<br />

trends derived from the records over the entire observati<strong>on</strong><br />

periods <strong>and</strong> over the 1954–2000 comm<strong>on</strong>-period are summarized<br />

in Table 1 for comparis<strong>on</strong>. A more vigorous yet c<strong>on</strong>sistent<br />

urban warming trend <strong>and</strong> a more moderate yet diverse rural<br />

warming are rec<strong>on</strong>firmed by the comm<strong>on</strong>-period data<br />

analysis.<br />

The change in the diurnal temperature range appears to be<br />

another important indicator of urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in<br />

this regi<strong>on</strong>. In both entire-period <strong>and</strong> comm<strong>on</strong>-period analyses,<br />

Osaka <strong>and</strong> the other two urban stati<strong>on</strong>s show a<br />

decreasing trend in the diurnal temperature range, apparently<br />

due to nighttime warming being more significant than<br />

daytime warming in urban areas (Kalnay <strong>and</strong> Cai, 2003; Zhou<br />

et al., 2004). In c<strong>on</strong>trast, the trends in the diurnal temperature<br />

range for the two rural stati<strong>on</strong>s are mild over their entire<br />

observati<strong>on</strong> periods, <strong>and</strong> positive over the 1954–2000 period<br />

(Table 1). In these two rural sites, the nighttime (minimum<br />

temperature) warming trends are comparable to or less


3144 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

Fig. 1 – Satellite photos showing the locati<strong>on</strong> of the six selected meteorological stati<strong>on</strong>s. The locati<strong>on</strong>s of the individual stati<strong>on</strong>s<br />

are detailed in the six smaller photos. Each small photo covers an area of about 5 km×7 km. The photos are generated with<br />

<strong>on</strong>line mapping tool Google Earth.


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

3145<br />

Fig. 2 – The annual mean (green dot), maximum (purple diam<strong>on</strong>d), minimum (blue cross), <strong>and</strong> annual temperature range (red<br />

triangle) time series <strong>and</strong> the linear regressi<strong>on</strong> trends for the selected meteorological stati<strong>on</strong>s. The equati<strong>on</strong>s for the trend lines<br />

are shown with the same color scheme. The meteorological data were retrieved from the Japan Meteorological Agency website<br />

at http://www.data.jma.go.jp/obd/stats/data/en/smp/index.html. (For interpretati<strong>on</strong> of the references to color in this figure<br />

legend, the reader is referred to the web versi<strong>on</strong> of this article.)<br />

significant than the daytime (maximum temperature) warming<br />

trends.<br />

The record from the Nara stati<strong>on</strong> embraces a str<strong>on</strong>g<br />

warming trend in the annual mean temperature that is<br />

similar to the urban stati<strong>on</strong>s <strong>and</strong> a positive trend in the<br />

diurnal temperature range that is characteristic of the two<br />

rural stati<strong>on</strong>s. The Nara stati<strong>on</strong> is classified in the GHCN<br />

inventory as an urban stati<strong>on</strong> based <strong>on</strong> the populati<strong>on</strong> of Nara


3146 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

Table 1 – Characteristics of the selected meteorological records.<br />

Stati<strong>on</strong><br />

name<br />

Setting Latitude L<strong>on</strong>gitude Period<br />

covered<br />

Trends (°C/100a) over entire<br />

observati<strong>on</strong> period<br />

Trends (°C/100a) over the<br />

1954–2000 period<br />

North East Mean Max Min Range Mean Max Min Range<br />

Osaka Urban 34°40.9′ 135°31.1′ 1883–2006 1.99 1.35 2.71 −1.36 2.90 1.58 4.17 −2.59<br />

Kyoto Urban 35°0.9′ 135°43.9′ 1881–2006 2.24 0.94 3.55 −2.61 2.43 0.68 3.25 −2.57<br />

Kobe Urban 34°41.8′ 135°12.7′ 1897–2006 1.45 0.66 1.95 −1.29 1.81 1.49 1.57 −0.08<br />

Nara Suburban 34°41.6′ 135°49.6′ 1954–2006 1.96 1.93 1.43 0.50 1.81 1.69 1.13 0.55<br />

Tsurugisan Rural 33°51.2′ 134°5.8′ 1946–2000 0.47 0.71 0.11 0.41 0.18 0.89 −0.33 1.22<br />

Ibukiyama Rural 35°25′ 136°24.4′ 1919–2000 1.60 1.72 1.88 −0.17 1.62 1.95 0.89 1.06<br />

city it is associated with. The GHCN uses a tripartite<br />

classificati<strong>on</strong> of stati<strong>on</strong>s by populati<strong>on</strong>, with less than 10,000<br />

as Rural, 10,000 to 50,000 as Small Town <strong>and</strong> over 50,000 as Urban.<br />

The city of Nara has a populati<strong>on</strong> of over 300,000. However, in<br />

c<strong>on</strong>trast to Osaka, Kyoto, <strong>and</strong> Kobe, the Nara meteorological<br />

stati<strong>on</strong> is not within an urban center. We reclassify Nara stati<strong>on</strong><br />

as suburban for its locati<strong>on</strong> in the hilly area near the margin of the<br />

city (see Fig. 1). The positive trend in the diurnal temperature<br />

range is c<strong>on</strong>sistent with this reclassificati<strong>on</strong>.<br />

3. Borehole data<br />

The six boreholes from which temperature measurements are<br />

analyzed in this study are located within the densely<br />

populated Osaka urban area (Fig. 3). Osaka city occupies an<br />

area of 220 km 2 of the 1600 km 2 Osaka alluvial plain which is<br />

open to the Osaka Bay to the west, <strong>and</strong> surrounded by<br />

Hokuetsu <strong>and</strong> Rokko Mountains to the north, Ikoma Mountain<br />

to the east, <strong>and</strong> Izumi Mountain to the south. The plain is<br />

covered by Pleistocene Osaka group <strong>and</strong> the later sediments to<br />

a thickness over 600 m in the central part of the plain. The<br />

underlying bedrocks of the Osaka plain are Mesozoic volcanic<br />

rocks <strong>and</strong> granites. All the boreholes were drilled at least<br />

20 years ago in the Quaternary sedimentary rocks.<br />

The borehole temperature profiles (Fig. 4) used in this<br />

analysis are selected from the borehole temperatures measured<br />

during the field campaign from August to October 2003.<br />

Sub<strong>surface</strong> temperatures from these boreholes were measured<br />

at 1 m intervals with a logger of 0.01 K accuracy.<br />

Additi<strong>on</strong>al informati<strong>on</strong> regarding the geological settings of the<br />

borehole sites <strong>and</strong> the technical aspects of the temperature<br />

measurements can be found in Taniguchi <strong>and</strong> Uemura (2005).<br />

In principle, the distributi<strong>on</strong> of temperature in the sub<strong>surface</strong><br />

is c<strong>on</strong>trolled in part by the heat flowing from deep interior<br />

of Earth, <strong>and</strong> in part by the temperature history at the ground<br />

<strong>surface</strong> (Cermak et al., 1992; Huang et al., 2000; Pollack <strong>and</strong><br />

Huang, 2000; Harris <strong>and</strong> Chapman, 2001; Smerd<strong>on</strong> et al., 2006). If<br />

the <strong>surface</strong> temperature never changes, the distributi<strong>on</strong> of the<br />

sub<strong>surface</strong> temperature would be a linear functi<strong>on</strong> of depth<br />

with the geo<strong>thermal</strong> gradient as its slope (Fig. 5). However, if the<br />

<strong>surface</strong> temperature changes with time, the distributi<strong>on</strong> of the<br />

sub<strong>surface</strong> temperature would depart from linearity. A progressive<br />

cooling at the ground <strong>surface</strong> would result in a<br />

temperature profile bending towards lower temperature as<br />

illustrated in Fig. 5 in blue. C<strong>on</strong>versely, a warming at the ground<br />

<strong>surface</strong> would force a temperature profile to bow towards higher<br />

temperature at shallow depths (red curve in Fig. 5).<br />

In the field, however, sub<strong>surface</strong> temperature is also<br />

subject to other perturbati<strong>on</strong>s related to site-specific envir<strong>on</strong>mental<br />

settings including l<strong>and</strong> cover, l<strong>and</strong> use, <strong>and</strong> groundwater<br />

movement (Pollack <strong>and</strong> Huang, 2000; Goto et al., 2005;<br />

Taniguchi <strong>and</strong> Uemura, 2005; Bartlett et al., 2006). 6 out of the<br />

34 borehole temperature profiles obtained by Taniguchi<br />

project team over the 2003 field campaign (Taniguchi <strong>and</strong><br />

Uemura, 2005) in Osaka meet the basic data requirements for<br />

the objective of detecting urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Borehole drilling is very expensive <strong>and</strong> is generally unaffordable<br />

to researchers from an academic instituti<strong>on</strong>. Temperature<br />

logging for scientific research has to rely mostly <strong>on</strong> the boreholes<br />

drilled for industrial or civil purposes. As such, many borehole<br />

temperature measurements from undesired settings may be not<br />

useful to the specific research purpose due to high level of noise.<br />

The boreholes available for logging in Osaka at the time are<br />

groundwater m<strong>on</strong>itoring wells. Many borehole temperature<br />

data are excluded from the analysis of this study due to severe<br />

perturbati<strong>on</strong>s from groundwater flows (Taniguchi <strong>and</strong> Uemura,<br />

2005; Taniguchi et al., 2005). Temperature changes at the ground<br />

<strong>surface</strong> can <strong>on</strong>ly impose smooth transient perturbati<strong>on</strong>s to the<br />

sub<strong>surface</strong> temperature field. However, groundwater flows can<br />

cause both smooth <strong>and</strong> abrupt changes to a temperature profile.<br />

In our borehole data selecti<strong>on</strong>, an abrupt change is taken as an<br />

identifier of ground water perturbati<strong>on</strong>.<br />

Another factor leading to the rejecti<strong>on</strong> of some borehole<br />

temperature profiles is the borehole depth. Temperature measurements<br />

from shallow boreholes would not allow separati<strong>on</strong> of<br />

the steady steady-state geo<strong>thermal</strong> gradient from the climate/<br />

<str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> related transient comp<strong>on</strong>ents. In this study, we <strong>on</strong>ly<br />

use temperature profiles that extend to the depth of 180 m.<br />

Although the temperature profiles selected for this study<br />

comprise a high quality subset of the Osaka borehole data archive,<br />

they are not free of n<strong>on</strong>-climate perturbati<strong>on</strong>s, as evidenced in the<br />

irregular variati<strong>on</strong> in the profiles. Nevertheless, the level of the<br />

noise is much lower than the transient signals in the selected<br />

profiles. All six profiles bend towards higher temperature at<br />

shallower depths, a clear signature of ground warming in Osaka.<br />

4. Urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in <strong>surface</strong> air<br />

temperature<br />

A wide range of the <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in <strong>surface</strong> air<br />

temperature have been reported by different groups, from<br />

negligible (Peters<strong>on</strong>, 2003; Parker, 2004; Peters<strong>on</strong> <strong>and</strong> Owen,<br />

2005; Parker, 2006) to very significant (Kato, 1996; Kalnay <strong>and</strong><br />

Cai, 2003; Li et al., 2004; Zhou et al., 2004; Kalnay et al., 2006).


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

3147<br />

Fig. 3 – Satellite photos showing the locati<strong>on</strong> of the six selected boreholes. The locati<strong>on</strong> of the Osaka (o), Kobe (b), <strong>and</strong> Nara (n)<br />

meteorological stati<strong>on</strong>s are shown <strong>on</strong> the top map for reference. The locati<strong>on</strong>s of the individual borehole sites are detailed in the<br />

five smaller photos. Each small photo covers an area of about 5 km×7 km. The photos are generated with <strong>on</strong>line mapping tool<br />

Google Earth.


3148 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

Fig. 4 – Temperature - depth profiles selected for this study.<br />

Included in the legend labels are the borehole ID numbers<br />

followed by borehole names <strong>and</strong> logging dates.<br />

The Osaka stati<strong>on</strong> documented a str<strong>on</strong>g warming trend of<br />

about 2.0 °C/100a over the period from 1883 to 2006, <strong>and</strong> 2.9 °C/<br />

100a over the 1954–2000 period, much greater than the 20th<br />

century global warming rate 0.6 °C/100a (IPCC, 2001). The<br />

anomalous urban warming is c<strong>on</strong>sistently recorded in the records<br />

from the nearby urban/suburban Kyoto, Kobe, <strong>and</strong> Nara stati<strong>on</strong>s.<br />

This excess warming rate in Osaka <strong>and</strong> its surrounding urban<br />

areas is also substantially greater than the regi<strong>on</strong>al warming rate<br />

estimated by the Japan Meteorological Agency (JMA).<br />

The JMA carefully selected 17 meteorological stati<strong>on</strong>s<br />

across the country that are c<strong>on</strong>sidered not to have been<br />

much influenced by <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> have c<strong>on</strong>tinuous records<br />

for the regi<strong>on</strong>al climate trend. The mean <strong>surface</strong> temperature<br />

in Japan is estimated to have been rising at a rate of about<br />

1.06 °C per 100 years since 1898 (JMA, 2006). This Japanese<br />

regi<strong>on</strong>al mean is close to the average of the warming trends of<br />

the two rural stati<strong>on</strong>s Tsurugisan <strong>and</strong> Ibukiyama, despite that<br />

the warming rates of these two stati<strong>on</strong>s are more diverse.<br />

The JMA (JMA, 2006) cauti<strong>on</strong>s that its regi<strong>on</strong>al estimate<br />

might be not entirely free of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> perturbati<strong>on</strong>. Based<br />

<strong>on</strong> the records from the urban stati<strong>on</strong>s around Osaka <strong>and</strong> the<br />

JMA regi<strong>on</strong>al estimate, a c<strong>on</strong>servative estimate of the urban<br />

heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in Osaka would be in the range of 1–2 °C/<br />

100a. This estimate agrees in general with the early analysis of<br />

Kato (1996). Based <strong>on</strong> principal comp<strong>on</strong>ent score analysis of<br />

m<strong>on</strong>thly mean temperature data for the period from 1920 to<br />

1992 from 51 meteorological stati<strong>on</strong>s in Japan, Kato suggests<br />

that the maximum urban <str<strong>on</strong>g>effects</str<strong>on</strong>g> with a populati<strong>on</strong> of over<br />

100,000 in 1993 were 1.0–2.5 °C/100a in Japan (Kato, 1996).<br />

It is worthy of pointing out that climate change is not<br />

homogenous, temporally <strong>and</strong> spatially. Based <strong>on</strong> l<strong>and</strong>-<strong>on</strong>ly<br />

meteorological records, for example, Huang (2006a,b) show that<br />

<strong>on</strong> a global scale, the 20th century warming comprised two<br />

warming phases <strong>and</strong> a slightly cooling transiti<strong>on</strong> phase, with the<br />

first warming phase over the earlier four decades <strong>and</strong> the sec<strong>on</strong>d<br />

warming phase started in around the beginning of the 1970s.<br />

However, <strong>on</strong> a c<strong>on</strong>tinental scale, a two-phase warming was more<br />

typical of North America, Europe, <strong>and</strong> Africa than Asia, Australia,<br />

<strong>and</strong> South America (see Fig. 1 of Huang, 2006b). The mean <strong>surface</strong><br />

air temperature appeared to be flat over the first half of the 20th<br />

century in Asia. Am<strong>on</strong>g the three l<strong>on</strong>g l<strong>on</strong>g-term urban records<br />

analyzed in this study, Osaka <strong>and</strong> Kobe show no significant trend<br />

over the first half of the 20th century, which is c<strong>on</strong>sistent with the<br />

Asian c<strong>on</strong>tinental record. However, due to the shortage of l<strong>on</strong>gterm<br />

rural records for comparis<strong>on</strong>, it is unclear at this point<br />

whether the missing of an early 20th century warming phase is<br />

characteristic of rural areas as well.<br />

In additi<strong>on</strong> to the warming rate substantially greater than the<br />

global <strong>and</strong> regi<strong>on</strong>al means, the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in Osaka<br />

appear to be reflected in a decreasing trend in the diurnal<br />

temperature range, as opposed to an increasing trend in the rural<br />

areas. The overall decreasing rate of 1.36 °C/100a in the diurnal<br />

range for the entire observati<strong>on</strong> period <strong>and</strong> 2.59 °C/100a for the<br />

later half of the 20th century also exceed the global mean of<br />

0.84 °C/100a (Easterling et al., 1997) <strong>and</strong> the rates in many areas in<br />

Asia-Pacific regi<strong>on</strong> (Zhou et al., 2004; Griffiths et al., 2005).<br />

The diurnal temperature range is an important climate<br />

parameter widely used in the study of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

(Easterling et al., 1997; Kalnay <strong>and</strong> Cai, 2003; Braganza et al.,<br />

2004; Zhou et al., 2004; Sun et al., 2006). L<strong>and</strong> use <strong>and</strong> l<strong>and</strong><br />

cover associated with roads <strong>and</strong> buildings tend to enhance<br />

daytime storage <strong>and</strong> nighttime release of <strong>thermal</strong> energy.<br />

Therefore, the diurnal temperature range is comm<strong>on</strong>ly<br />

expected to decrease with <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g>.<br />

It should be pointed out, however, that the spatial <strong>and</strong> temporal<br />

variati<strong>on</strong>s in the diurnal temperature range in the study<br />

areas are not always coherent. For examples, superimposed <strong>on</strong><br />

the l<strong>on</strong>g-term decreasing trends are decadal increasing trends in<br />

the Osaka <strong>and</strong> Kyoto series. Moreover, given a significantly decreasing<br />

trend in the urban areas, it seems logical to expect the<br />

diurnal temperature range to be greater in rural areas than in<br />

urban areas. But this is not the case for the meteorological records<br />

we analyzed in this study. Fig. 2 shows that the diurnal temperature<br />

ranges at the two rural sites are c<strong>on</strong>sistently smaller than<br />

the diurnal temperature ranges at the four urban/suburban sites.<br />

Over the 1954–2000 comm<strong>on</strong>-period, the average diurnal temperature<br />

ranges for the two rural stati<strong>on</strong>s are 5.58 (Ibukiyama)<br />

<strong>and</strong> 6.44 (Tsurugisan) °C, as opposed to the 8.1 (Osaka), 9.34<br />

(Kyoto), 7.54 (Kobe), <strong>and</strong> 9.96 (Nara) °C for the urban/suburban<br />

stati<strong>on</strong>s. The relati<strong>on</strong>ship between the diurnal temperature range<br />

<strong>and</strong> <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> process in Osaka remains to be further<br />

investigated.<br />

Fig. 5 – Scheme illustrating the distributi<strong>on</strong> of sub<strong>surface</strong><br />

temperature c<strong>on</strong>trolled in part by geo<strong>thermal</strong> gradient (G)<br />

<strong>and</strong> ground <strong>surface</strong> temperature c<strong>on</strong>diti<strong>on</strong>. (For interpretati<strong>on</strong><br />

of the references to color in this figure legend, the reader<br />

is referred to the web versi<strong>on</strong> of this article.)


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

3149<br />

5. Air warming <strong>and</strong> ground warming<br />

Both meteorological record <strong>and</strong> borehole temperature data<br />

show an <strong>on</strong>-going warming trend in Osaka which is expectable.<br />

However, when we compare the synthetic temperature<br />

profiles projected from the Osaka annual <strong>surface</strong> air temperature<br />

time series to the actual borehole temperature profiles,<br />

we also see discrepancies.<br />

For a comparis<strong>on</strong> of the meteorological projecti<strong>on</strong> <strong>and</strong> borehole<br />

observati<strong>on</strong>, we first used the Shen <strong>and</strong> Beck functi<strong>on</strong>al<br />

space inversi<strong>on</strong> method (Shen <strong>and</strong> Beck, 1991, 1992) to process the<br />

borehole data for the best estimates of the steady-state geo<strong>thermal</strong><br />

gradient <strong>and</strong> <strong>surface</strong> temperature for each of the boreholes<br />

(Table 2).<br />

The functi<strong>on</strong>al Space inversi<strong>on</strong> method of Shen <strong>and</strong> Beck<br />

(1991, 1992) allows for incorporati<strong>on</strong> of a priori informati<strong>on</strong> for<br />

the ground <strong>surface</strong> temperature history, sub<strong>surface</strong> temperature<br />

distributi<strong>on</strong>, <strong>thermal</strong> physical properties, <strong>and</strong> the steady<br />

steady-state basal heat flow (Shen et al., 1995). In additi<strong>on</strong> to<br />

the measured borehole temperatures, the a priori informati<strong>on</strong><br />

we incorporated in the estimati<strong>on</strong> of the steady steady-state<br />

comp<strong>on</strong>ents include a regi<strong>on</strong>al <strong>thermal</strong> gradient of 0.034 K/m<br />

(Taniguchi <strong>and</strong> Uemura, 2005) <strong>and</strong> a terrestrial heat flow of<br />

85 mW/m 2 .<br />

We then assumed that the ground <strong>surface</strong> temperature can be<br />

approximated by the <strong>surface</strong> air temperature (Harris <strong>and</strong> Chapman,<br />

1997; Smerd<strong>on</strong> et al., 2004; Huang, 2006a) <strong>and</strong> calculated the<br />

transient sub<strong>surface</strong> temperature anomalies that the Osaka<br />

<strong>surface</strong> air temperature series can be resp<strong>on</strong>sible for.<br />

Temperature variati<strong>on</strong> over time t at the ground <strong>surface</strong><br />

imposes a downward-propagating transient perturbati<strong>on</strong> to the<br />

steady-state background temperature field. In a semi-infinite<br />

solid medium, the sub<strong>surface</strong> transient temperature anomaly<br />

ΔT z at a given depth z due to a temperature anomaly history <strong>on</strong><br />

the <strong>surface</strong> T 0 (t) is given by (Carslaw <strong>and</strong> Jaeger, 1959)<br />

Z<br />

z<br />

DT z = p<br />

2 ffiffiffiffiffi T<br />

pa 0 ðtÞt − 3 = 2 e − z2 = ð4at<br />

Þ dt;<br />

where α is <strong>thermal</strong> diffusivity which is assumed to be<br />

0.8×10 − 6 m 2 /s, <strong>and</strong> the <strong>surface</strong> temperature anomaly T 0 (t) is<br />

referred to the pre-1900 mean of the Osaka meteorological<br />

record. The calculated sub<strong>surface</strong> temperature anomalies<br />

are superimposed <strong>on</strong> to the estimated steady-state comp<strong>on</strong>ents<br />

to synthesize the calculated temperature profiles.<br />

We note that the calculati<strong>on</strong> of the transient perturbati<strong>on</strong>s<br />

from a <strong>surface</strong> temperature time series is dependant <strong>on</strong> the<br />

choice of the initial temperature or the pre-observati<strong>on</strong>al<br />

mean (Harris <strong>and</strong> Chapman, 1997). In this analysis the pre-<br />

1900 mean is taken as the initial temperature for two major<br />

reas<strong>on</strong>s: it is the best estimate we can get from the<br />

meteorological data available; <strong>and</strong> it is c<strong>on</strong>sistent with our<br />

focus <strong>on</strong> the borehole data down to the depth of 180 m.<br />

We reiterate that the objective of this study is to detect<br />

possible <str<strong>on</strong>g>effects</str<strong>on</strong>g> of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>thermal</strong> envir<strong>on</strong>ment<br />

through comparative analyses of meteorological <strong>and</strong> borehole<br />

temperature records. Given that the Osaka meteorological time<br />

series started in 1883 <strong>and</strong> that the transient perturbati<strong>on</strong>s of a<br />

ground <strong>surface</strong> temperature history over the past <strong>on</strong>e <strong>and</strong> a<br />

quarter centuries or so are expected to be c<strong>on</strong>fined within the<br />

depth of 150 m, we zoom <strong>on</strong> the borehole temperatures down to<br />

a depth of 180 m. A slightly greater cutoff depth of the borehole<br />

data is to allow for the determinati<strong>on</strong> of the quasi steady state.<br />

Fig. 6 shows that the sub<strong>surface</strong> temperature anomaly<br />

calculated from the meteorological record is substantially<br />

smaller than the ground warming documented in the borehole<br />

temperature profiles in Osaka. Given that the meteorological<br />

observatory <strong>and</strong> the boreholes are all located within the urban<br />

area <strong>and</strong> that the daily mean temperature rarely falls below<br />

frozen point in Osaka, the discrepancy cannot be attributed to<br />

snow cover effect (Chapman et al., 2004; Bartlett et al., 2005;<br />

Smerd<strong>on</strong> et al., 2006). Instead, the apparent discrepancy<br />

between the meteorological <strong>and</strong> borehole records could be<br />

characteristic of an urban <strong>thermal</strong> envir<strong>on</strong>ment.<br />

As noted earlier, the anthropogenic urban warmth mainly<br />

originates <strong>on</strong> the ground <strong>surface</strong> <strong>and</strong> propagates upward to the<br />

atmosphere <strong>and</strong> downward to the earth. The so called <strong>surface</strong> air<br />

temperature from a meteorological observatory is c<strong>on</strong>venti<strong>on</strong>ally<br />

recorded at a height of around 1.5 m above the ground <strong>surface</strong>. A<br />

meteorological observatory is usually located in an open space<br />

where air can flow easily. The air flow around the observatory can<br />

prevent the measuring instruments from feeling the full extent of<br />

warming <strong>on</strong> the ground <strong>surface</strong>. This could explain partially that<br />

although the assembles of the <strong>surface</strong> air temperatures at<br />

regi<strong>on</strong>al <strong>and</strong> global scales include numerous urban records,<br />

they are not substantially c<strong>on</strong>tained by urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>,<br />

according to the world wide <strong>and</strong> US data analyses (Peters<strong>on</strong>, 2003;<br />

Brohan et al., 2006; Parker, 2006).<br />

On the c<strong>on</strong>trary, borehole temperatures are measurements<br />

of temperatures of rocks in the sub<strong>surface</strong>. It has l<strong>on</strong>g been<br />

recognized that the intensity of urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

decreases with increasing wind speed [e.g., see Arnfield, 2003<br />

for a review]. The influence of the large scale wind decreases<br />

to zero at the ground <strong>surface</strong>. The heat transfer below the<br />

ground <strong>surface</strong> is dominated by c<strong>on</strong>ducti<strong>on</strong> which is orders<br />

less efficient than air c<strong>on</strong>vecti<strong>on</strong> above the <strong>surface</strong>. Therefore,<br />

Table 2 – Estimated steady-sate comp<strong>on</strong>ents of the selected borehole temperature profiles.<br />

Borehole<br />

ID<br />

Borehole<br />

name<br />

Latitude L<strong>on</strong>gitude Geo<strong>thermal</strong><br />

North<br />

East<br />

gradient<br />

(°C/100m)<br />

Surface<br />

temperature<br />

(°C)<br />

1 Niwakubo2-3 34° 43′ 48″ 135° 34′ 00″ 2.72 15.12<br />

2 Minato2-B 34° 39′ 27″ 135° 26′ 56″ 3.57 15.99<br />

3 Sakai2 34° 34′ 39″ 135° 27′ 27″ 3.98 16.20<br />

4 Sakai3 34° 34′ 39″ 135° 27′ 27″ 4.49 15.28<br />

5 Izumiotu 34° 30′ 16″ 135° 24′ 37″ 2.69 14.46<br />

6 Kishiwada3 34° 28′ 30″ 135° 24′ 37″ 2.89 16.07


3150 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

Fig. 6 – Comparis<strong>on</strong> of the hypothetic temperature profiles<br />

projected from the Osaka meteorological time series (dashed<br />

purple curves) <strong>and</strong> the observed temperature profiles (solid<br />

red curves). Shown in green lines are the quasi-steady sate<br />

temperatures. The profiles are offset to avoid overlaps. (For<br />

interpretati<strong>on</strong> of the references to color in this figure legend,<br />

the reader is referred to the web versi<strong>on</strong> of this article.)<br />

the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> could be more persistent <strong>and</strong><br />

profound in the sub<strong>surface</strong> than in the atmosphere.<br />

6. C<strong>on</strong>clusi<strong>on</strong>s<br />

The analysis of the meteorological records from the six GHCN<br />

stati<strong>on</strong>s around Osaka shows that there is a str<strong>on</strong>g warming in<br />

the annual mean temperature <strong>and</strong> a decreasing trend in the<br />

diurnal temperature range in the urban areas, as opposed to a<br />

more moderate warming <strong>and</strong> an increasing trend in the<br />

diurnal range in rural areas. This general characterizati<strong>on</strong> is<br />

more obvious in the trends derived from the period from 1954–<br />

2000 comm<strong>on</strong>ly covered by all six stati<strong>on</strong>s. The mean warming<br />

rate in Osaka <strong>surface</strong> air temperature is about 2.0 °C/100a over<br />

the period from 1883 to 2006 <strong>and</strong> 2.6 °C/100a from 1954 to 2000.<br />

Based <strong>on</strong> the comparis<strong>on</strong> of the urban <strong>and</strong> regi<strong>on</strong>al trends, it is<br />

estimated that the urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are resp<strong>on</strong>sible for<br />

at least half of the observed <strong>surface</strong> air warming.<br />

The overall diurnal temperature range in Osaka–Kyoto–<br />

Kobe urban areas has decreased c<strong>on</strong>siderably over the past<br />

century. However, the spatial <strong>and</strong> temporal variati<strong>on</strong>s in the<br />

diurnal temperature range in the study areas are not always<br />

coherent. There are increasing trends of decadal scales superimposed<br />

<strong>on</strong> the l<strong>on</strong>g l<strong>on</strong>g-term decreasing trends in the Osaka<br />

<strong>and</strong> Kyoto diurnal temperature range records. Additi<strong>on</strong>ally,<br />

the fact that the diurnal temperature range is greater in urban<br />

areas than in rural areas seems to c<strong>on</strong>tradict the decreasing<br />

trend characteristic of urban stati<strong>on</strong>s. The relati<strong>on</strong>ship<br />

between the diurnal temperature range <strong>and</strong> the <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g><br />

process in Osaka remains to be further investigated.<br />

Six deep borehole temperature profiles obtained within the<br />

urban area of Osaka, a high quality subset of the borehole data<br />

used in the two previous studies (Taniguchi <strong>and</strong> Uemura, 2005;<br />

Taniguchi et al., 2005), are selected for the inspecti<strong>on</strong> of the<br />

urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the sub<strong>surface</strong> <strong>thermal</strong> envir<strong>on</strong>ment.<br />

All these borehole profiles comprise positive transient<br />

temperature comp<strong>on</strong>ent at shallower depths that can be<br />

attributed to an <strong>on</strong>-going l<strong>and</strong> warming in Osaka.<br />

Both meteorological records <strong>and</strong> borehole data show<br />

str<strong>on</strong>g positive temperature anomalies in Osaka. However,<br />

the urban warming in Osaka recorded in the sub<strong>surface</strong><br />

temperature profiles is significantly greater than what is<br />

recorded in the near <strong>surface</strong> air temperature time series. The<br />

air flow around a meteorological observatory might have<br />

prevented the measuring instrument from recording the full<br />

extent of anthropogenic warmth in the Osaka urban areas.<br />

Surface air temperature is c<strong>on</strong>venti<strong>on</strong>ally measured at a<br />

height of around 1.5 m above the ground while borehole<br />

temperatures are measured from rocks in the sub<strong>surface</strong>. The<br />

dominating heat transport mechanism in the sub<strong>surface</strong> is heat<br />

c<strong>on</strong>ducti<strong>on</strong>, which is much less efficient than the heat c<strong>on</strong>vecti<strong>on</strong><br />

of the air above the ground <strong>surface</strong>. Therefore, the anthropogenic<br />

<strong>thermal</strong> impacts <strong>on</strong> the sub<strong>surface</strong> are more persistent <strong>and</strong><br />

profound than the impacts <strong>on</strong> the atmosphere. This study<br />

suggests that the <strong>surface</strong> air temperature records al<strong>on</strong>e might<br />

underestimate the extent of urban heat isl<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Temperature is a fundamental parameter c<strong>on</strong>trolling<br />

various physical, chemical, <strong>and</strong> geological processes. The<br />

sub<strong>surface</strong> urban heat isl<strong>and</strong> can adversely impact a city's<br />

ecosystem, air quality, public health, energy dem<strong>and</strong>, <strong>and</strong><br />

metropolitan infrastructure costs. Recent studies of Knorr<br />

et al. (2005) <strong>and</strong> Knorr et al. (2007) <strong>on</strong> the possible effect of<br />

warming of soil <strong>on</strong> the microorganisms illustrates the<br />

importance of a better underst<strong>and</strong>ing of sub<strong>surface</strong> <strong>thermal</strong><br />

envir<strong>on</strong>ment. With the world wide <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> growing at an<br />

unprecedented pace, there is an urgent need to improve our<br />

underst<strong>and</strong>ing of the sub<strong>surface</strong> urban heat isl<strong>and</strong> <strong>and</strong> its<br />

envir<strong>on</strong>mental, social, <strong>and</strong> ec<strong>on</strong>omical c<strong>on</strong>sequences.<br />

Acknowledgements<br />

The project “Human impacts <strong>on</strong> urban sub<strong>surface</strong> envir<strong>on</strong>ment”<br />

is sp<strong>on</strong>sored by the Research Institute for Humanity<br />

<strong>and</strong> Nature in Kyoto. Huang is supported in part by the NOAA<br />

Climate Change Data <strong>and</strong> Detecti<strong>on</strong> Program (Award<br />

NA07OAR4310059) <strong>and</strong> the Knowledge Innovati<strong>on</strong> Program<br />

of the Chinese Academy of Sciences (Award KZCX2-YW-BR-<br />

03). This study is benefited from the c<strong>on</strong>structive comment<br />

from Henry Pollack. The authors thank Drs. Vladimir Cermak<br />

<strong>and</strong> Robert Harris for their c<strong>on</strong>structive comments that helped<br />

to improve the quality of this paper.<br />

R E F E R E N C E S<br />

Arnfield AJ. Two decades of urban climate research: a review of<br />

turbulence, exchanges of energy <strong>and</strong> water, <strong>and</strong> the urban heat<br />

isl<strong>and</strong>. Int J Climatol 2003;23:1–26.<br />

Baker JM, Baker DG. L<strong>on</strong>g-term ground heat flux <strong>and</strong> heat storage<br />

at a mid-latitude site. Clim Change 2002;54:295–303.


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

3151<br />

Bartlett MG, Chapman DS, Harris RN. Snow effect <strong>on</strong> North<br />

American ground temperatures, 1950–2002. J Geophys Res<br />

Earth Surf 2005;110.<br />

Bartlett MG, Chapman DS, Harris RN. A decade of ground-air<br />

temperature tracking at Emigrant Pass Observatory, Utah.<br />

J Climate 2006;19:3722–31.<br />

Bodri L, Cermak V. Climate change of the last millennium inferred<br />

from borehole temperatures: regi<strong>on</strong>al patterns of climatic<br />

changes in the Czech Republic — Part III. Glob Planet Change<br />

1999;21:225–35.<br />

Braganza K, Karoly DJ, Arblaster JM. Diurnal temperature range as<br />

an index of global climate change during the twentieth<br />

century. Geophys Res Lett 2004:31.<br />

Brazel A, Gober P, Lee SJ, Grossman-Clarke S, Zehnder J,<br />

Hedquist B, et al. Determinants of changes in the regi<strong>on</strong>al<br />

urban heat isl<strong>and</strong> in metropolitan Phoenix (Ariz<strong>on</strong>a, USA)<br />

between 1990 <strong>and</strong> 2004. Clim Res 2007;33:171–82.<br />

Brohan P, Kennedy JJ, Harris I, Tett SFB, J<strong>on</strong>es PD. Uncertainty<br />

estimates in regi<strong>on</strong>al <strong>and</strong> global observed temperature changes:<br />

a new data set from 1850. J Geophys Res Atmos 2006:111.<br />

Carslaw HS, Jaeger JC. C<strong>on</strong>ducti<strong>on</strong> of Heat in Solids. New York:<br />

Oxford Univ. Press; 1959.<br />

Cermak V, Bodri L, Saf<strong>and</strong>a J. Underground temperature-fields <strong>and</strong><br />

changing climate — evidence from Cuba. Glob Planet Change<br />

1992;97:325–37.<br />

Changn<strong>on</strong> SA. A rare l<strong>on</strong>g record of deep soil temperatures defines<br />

temporal temperature changes <strong>and</strong> an urban heat isl<strong>and</strong>. Clim<br />

Change 1999;42:531–8.<br />

Chapman DS, Bartlett MG, Harris RN. Comment <strong>on</strong> “Ground vs.<br />

<strong>surface</strong> air temperature trends: Implicati<strong>on</strong>s for borehole <strong>surface</strong><br />

temperature rec<strong>on</strong>structi<strong>on</strong>s” by M.E. Mann <strong>and</strong> G. Schmidt.<br />

Geophys Res Lett 2004:31.<br />

Easterling DR, Hort<strong>on</strong> B, J<strong>on</strong>es PD, Peters<strong>on</strong> TC, Karl TR, Parker DE, et al.<br />

Maximum <strong>and</strong> minimum temperature trends for the globe.<br />

Science 1997;277:364–7.<br />

Fergus<strong>on</strong> G, Woodbury AD. Sub<strong>surface</strong> heat flow in an urban<br />

envir<strong>on</strong>ment. J Geophys Research-Solid Earth 2004:109.<br />

Goto S, Hamamoto H, Yamano M. Climatic <strong>and</strong> envir<strong>on</strong>mental<br />

changes at southeastern coast of Lake Biwa over past<br />

3000 years, inferred from borehole temperature data. Phys<br />

Earth Planet Inter 2005;152:314–25.<br />

Griffiths GM, Chambers LE, Haylock MR, Mant<strong>on</strong> MJ, Nicholls N,<br />

Baek HJ, et al. Change in mean temperature as a predictor of<br />

extreme temperature change in the Asia-Pacific regi<strong>on</strong>. Int J<br />

Climatol 2005;25:1301–30.<br />

Harris RN, Chapman DS. Borehole temperatures <strong>and</strong> a baseline for<br />

20th-century global warming estimates. Science 1997;275:1618–21.<br />

Harris RN, Chapman DS. Mid-Latitude (30 degrees–60 degrees N)<br />

climatic warming inferred by combining borehole temperatures<br />

with <strong>surface</strong> air temperatures. Geophys. Res. Lett.<br />

2001;28:747–50.<br />

Huang S. L<strong>and</strong> warming as part of global warming. Eos. Trans Am<br />

Geophys Uni<strong>on</strong> 2006a;87:477–80.<br />

Huang SP. 1851–2004 annual heat budget of the c<strong>on</strong>tinental<br />

l<strong>and</strong>masses. Geophys Res Lett 2006b:33.<br />

Huang SP. Merging informati<strong>on</strong> from different resources for new<br />

insights into climate change in the past <strong>and</strong> future. Geophys<br />

Res Lett 2004:31.<br />

Huang SP, Pollack HN, Shen PY. Temperature trends ever the past<br />

five centuries rec<strong>on</strong>structed from borehole temperatures.<br />

Nature 2000;403:756–8.<br />

IPCC. Climate Change. In: Hought<strong>on</strong> JT, Ding Y, Griggs DJ,<br />

Noguer M, Linden PJvd, Dai X, et al, editors. The Scientific<br />

Basis: C<strong>on</strong>tributi<strong>on</strong> of Working Group I to the Third Assessment<br />

Report of the Intergovernmental Panel <strong>on</strong> Climate<br />

Change. Cambridge, U.K.; New York: Cambridge University<br />

Press; 2001.<br />

IPCC. Climate Change. The physical science basis. In: Solom<strong>on</strong><br />

S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al,<br />

editors. C<strong>on</strong>tributi<strong>on</strong> of Working Group I to the fourth<br />

assessment report of the intergovernmental panel <strong>on</strong><br />

climate change. Cambridge, U.K.; New York: Cambridge<br />

University Press; 2007. p. 996.<br />

Jenerette GD, Harlan SL, Brazel A, J<strong>on</strong>es N, Larsen L, Stefanov WL.<br />

Regi<strong>on</strong>al relati<strong>on</strong>ships between <strong>surface</strong> temperature, vegetati<strong>on</strong>,<br />

<strong>and</strong> human settlement in a rapidly urbanizing ecosystem.<br />

L<strong>and</strong>sc Ecol 2007;22:353–65.<br />

JMA. Climate Change M<strong>on</strong>itoring Report. Japan Meteorological<br />

Agency, Tokyo, Japan; 2005.<br />

J<strong>on</strong>es PD, Groisman PY, Coughlan M, Plummer N, Wang WC, Karl TR.<br />

Assessment of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> in time-series of <strong>surface</strong> airtemperature<br />

over l<strong>and</strong>. Nature 1990;347:169–72.<br />

Kalnay E, Cai M. Impact of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> l<strong>and</strong>-use change <strong>on</strong><br />

climate. Nature 2003;423:528–31.<br />

Kalnay E, Cai M, Li H, Tobin J. Estimati<strong>on</strong> of the impact of l<strong>and</strong><strong>surface</strong><br />

forcings <strong>on</strong> temperature trends in eastern United<br />

States. J Geophys Res Atmos 2006:111.<br />

Kato H. A statistical method for separating urban effect trends<br />

from observed temperature data <strong>and</strong> its applicati<strong>on</strong> to<br />

Japanese temperature records. J Meteorol Soc Jpn<br />

1996;74:639–53.<br />

Kim YH, Baik JJ. Daily maximum urban heat isl<strong>and</strong> intensity in<br />

large cities of Korea. Theor Appl Climatol 2004;79:151–64.<br />

Knorr W, Gobr<strong>on</strong> N, Scholze M, Kaminski T, Schnur R, Pinty B.<br />

Impact of terrestrial biosphere carb<strong>on</strong> exchanges <strong>on</strong> the<br />

anomalous CO 2 increase in 2002–2003. Geophys Res Lett<br />

2007:34.<br />

Knorr W, Prentice IC, House JI, Holl<strong>and</strong> EA. L<strong>on</strong>g-term sensitivity of<br />

soil carb<strong>on</strong> turnover to warming. Nature 2005;433:298–301.<br />

Li Q, Zhang H, Liu X, Huang J. Urban heat isl<strong>and</strong> effect <strong>on</strong> annual<br />

mean temperature during the last 50 years in China. Theor<br />

Appl Climatol 2004;79:165–74.<br />

Liu W, Ji C, Zh<strong>on</strong>g J, Jiang X, Zheng Z. Temporal characteristics of<br />

the Beijing urban heat isl<strong>and</strong>. Theor Appl Climatol<br />

2007;87:213–21.<br />

Parker DE. Climate — large-scale warming is not urban. Nature<br />

2004;432:290-290.<br />

Parker DE. A dem<strong>on</strong>strati<strong>on</strong> that large-scale warming is not urban.<br />

J Clim 2006;19:2882–95.<br />

Peters<strong>on</strong> TC. Assessment of urban versus rural in situ <strong>surface</strong><br />

temperatures in the c<strong>on</strong>tiguous United States: no difference<br />

found. J Clim 2003;16:2941–59.<br />

Peters<strong>on</strong> TC, Owen TW. Urban heat isl<strong>and</strong> assessment: metadata<br />

are important. J Clim 2005;18:2637–46.<br />

Peters<strong>on</strong> TC, Vose RS. An overview of the global historical<br />

climatology network temperature database. Bull Am Meteorol<br />

Soc 1997;78:2837–49.<br />

Pollack HN, Huang SP. Climate rec<strong>on</strong>structi<strong>on</strong> from sub<strong>surface</strong><br />

temperatures. Annu Rev Earth Planet Sci. 2000;28:339–65.<br />

Shen PY, Beck AE. Least-squares inversi<strong>on</strong> of borehole temperature-measurements<br />

in functi<strong>on</strong>al space. J Geophys Res Solid<br />

Earth 1991;96:19965–79.<br />

Shen PY, Beck AE. Paleoclimate change <strong>and</strong> heat-flow density<br />

inferred from temperature data in the superior province of<br />

the Canadian shield. Glob Planet Change 1992;98:143–65.<br />

Shen PY, Pollack HN, Huang S, Wang K. Effects of sub<strong>surface</strong><br />

heterogeneity <strong>on</strong> the inference of climate-change from<br />

borehole temperature data — model studies <strong>and</strong> field<br />

examples from Canada. J Geophys Res Solid Earth<br />

1995;100:6383–96.<br />

Smerd<strong>on</strong> JE, Pollack HN, Cermak V, Enz JW, Kresl M, Saf<strong>and</strong>a J, et<br />

al. Air–ground temperature coupling <strong>and</strong> sub<strong>surface</strong> propagati<strong>on</strong><br />

of annual temperature signals. J Geophys Res Atmos<br />

2004:109.<br />

Smerd<strong>on</strong> JE, Pollack HN, Cermak V, Enz JW, Kresl M, Saf<strong>and</strong>a J,<br />

et al. Daily, seas<strong>on</strong>al, <strong>and</strong> annual relati<strong>on</strong>ships between air<br />

<strong>and</strong> sub<strong>surface</strong> temperatures. J Geophys Res Atmos<br />

2006:111.


3152 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 4 0 7 ( 2 0 0 9 ) 3 1 4 2 – 3 1 5 2<br />

Stathopoulou M, Cartalis C. Daytime urban heat isl<strong>and</strong>s from<br />

L<strong>and</strong>sat ETM+ <strong>and</strong> Corine l<strong>and</strong> cover data: an applicati<strong>on</strong> to<br />

major cities in Greece. Sol Energy 2007;81:358–68.<br />

Sun DL, Pinker RT, Kafatos M. Diurnal temperature range over the<br />

United States: a satellite view. Geophys Res Lett 2006:33.<br />

Taniguchi M, Uemura T. Effects of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> groundwater<br />

flow <strong>on</strong> the sub<strong>surface</strong> temperature in Osaka, Japan. Phys<br />

Earth Planet Inter 2005;152:305–13.<br />

Taniguchi M, Uemura T, Sakura Y. Effects of <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong><br />

groundwater flow <strong>on</strong> sub<strong>surface</strong> temperature in three megacities<br />

in Japan. J Geophys Eng 2005;2:320–5.<br />

Trenberth KE. Climatology — rural l<strong>and</strong>-use change <strong>and</strong> climate.<br />

Nature 2004;427:213-213.<br />

Zhou LM, Dickins<strong>on</strong> RE, Tian YH, Fang JY, Li QX, Kaufmann RK, et al.<br />

Evidence for a significant <str<strong>on</strong>g>urbanizati<strong>on</strong></str<strong>on</strong>g> effect <strong>on</strong> climate in China.<br />

Proc Natl Acad Sci US Am 2004;101:9540–4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!