Topological Insulators - GDR Meso

Topological Insulators - GDR Meso Topological Insulators - GDR Meso

gdr.meso.phys.ens.fr
from gdr.meso.phys.ens.fr More from this publisher
12.11.2013 Views

Some Transport properties of Topological Insulator Surface States (...or Some Charge Transport Properties of Dirac Fermions) P. Adroguer, D. Carpentier, A. Fedorenko, E. Orignac (Lyon) J. Cayssol (Berkeley) P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished A. Fedorenko, D. Carpentier, and E. Orignac, unpublished Posters of P. Adroguer and A. Fedorenko Aussois, Déc. 2011 mardi 3 janvier 12

Some Transport properties of<br />

<strong>Topological</strong> Insulator Surface States<br />

(...or Some Charge Transport Properties of Dirac Fermions)<br />

P. Adroguer, D. Carpentier, A. Fedorenko, E. Orignac (Lyon)<br />

J. Cayssol (Berkeley)<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

A. Fedorenko, D. Carpentier, and E. Orignac, unpublished<br />

Posters of P. Adroguer and A. Fedorenko<br />

Aussois, Déc. 2011<br />

mardi 3 janvier 12


Surface States of 3D <strong>Topological</strong> <strong>Insulators</strong><br />

• The Z2 topological order in the bulk<br />

(band inversion induced by strong spin orbit)<br />

• Robust edge (surface) states : Dirac fermions (odd number)<br />

«strong» topological insulator,<br />

ν0 =1, not layered<br />

Z2 Top. Ins.<br />

Empty Top. Band Insulator<br />

E<br />

Filled Band<br />

mardi 3 janvier 12


Surface States of 3D <strong>Topological</strong> <strong>Insulators</strong><br />

• The Z2 topological order in the bulk<br />

(band inversion induced by strong spin orbit)<br />

• Robust edge (surface) states : Dirac fermions (odd number)<br />

• First proposed candidate : Bi1-xSbx<br />

Fu and Kane PRB 76 (2007)<br />

«strong» topological insulator,<br />

ν0 =1, not layered<br />

• Second generation 3D <strong>Topological</strong> <strong>Insulators</strong><br />

Bi2Se3, Bi2Te3, Sb2Te3, ...<br />

• Reference material : Bi2Se3<br />

‣ single Dirac cone at the surface, stoichiometric, large band gap : 0.3 eV<br />

• «Third generation» 3D <strong>Topological</strong> <strong>Insulators</strong><br />

‣ TlBiTe2, Bi2Te3 ·(GeTe)0.5<br />

‣ strained HgTe : Ideal material ?<br />

L. Molenkamp group, PRL (2011)<br />

T. Meunier et L. Lévy : cf talk by C. Bouvier<br />

How to probe experimentally these 3D Top. <strong>Insulators</strong> ?<br />

‣ existence of surface states (Dirac fermions) :<br />

‣ (spin resolved) ARPES<br />

‣ STM<br />

‣ transport ... problem : get rid of bulk contribution<br />

mardi 3 janvier 12<br />

Checkelsky et al., PRL. 103, 246601 (2009)<br />

Zhang H. et al., Nat. Phys. 5, 438 (2009)<br />

ARPES of topological insulator<br />

First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.<br />

This is later data on Bi2Se3 from the same group in 2009:<br />

The states shown are in the “energy gap” of the bulk material--in general n


Probing Surface States : ARPES<br />

Difficulty : doping of bulk / edge<br />

Momentum - Spin locking : helical Dirac fermions<br />

Not exactly a perfect cone :<br />

Hexagonal warping<br />

Measure as many properties as possible of the outgoing electron<br />

to deduce the momentum, energy, and spin it had while still in the solid<br />

This is “angle-resolved photoemission spectroscopy”, or ARPES.<br />

Y.L.Chen etal., Science 325,178(2009)<br />

K. Kuroda et al., PRL 105, 076802 (2010)<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

Undoped versus doped samples<br />

Gi,Mi : Various Ca doping<br />

bulk sample (2x2x0.05 mm)<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

Anti-localization cusp at low field<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

2<br />

es of ρ vs. H in Sample G4 at 0.3< T


Transport measurement on TI<br />

‣ Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

2<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

‣ Thin Films (reduction of bulk)<br />

mardi 3 janvier 12<br />

FIG. 2: Curves of ρ vs. H in Sample G4 at 0.3< T


Transport measurement on TI<br />

‣ Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

2<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

‣ Thin Films (reduction of bulk)<br />

‣ New Materials : strained HgTe ?<br />

mardi 3 janvier 12<br />

FIG. 2: Curves of ρ vs. H in Sample G4 at 0.3< T


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

See Talk by M. Monteverde, A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ 2 independant cones<br />

(Nielsen-Ninomyia Theorem)<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


Diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

mardi 3 janvier 12


Diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

• Transport in near Dirac point:<br />

k F apple 1/l e<br />

(high doping)<br />

F<br />

k F apple 1/l e<br />

l e<br />

Mirlin et al. PRB, (2009)<br />

Fedorenko et al. (unpublished)<br />

mardi 3 janvier 12


Study of diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

weak (anti-)localization<br />

(long wires)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

2.10 - 5<br />

B<br />

690 mK<br />

-2000 0 2000<br />

conductance<br />

universal conductance fluctuations<br />

(short wire)<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

Flux Through the Sample<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.)<br />

O<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

O<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

B<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

O ⇤ C,C =2⇥ C,C / 0<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

2.10 - 5 690 mK<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

-2000 0 2000<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

Flux Through the Sample<br />

mardi 3 janvier 12


(Weak) Localization / Quantum transport<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

O ⇤ C,C =2⇥ C,C / 0<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

‣ Universality properties of (weak) localization<br />

➡ numbers of Cooperon/Diffuson (symmetry)<br />

mardi 3 janvier 12


Weak localization : Universality classes<br />

Diagrammatic techniques<br />

Kubo formula<br />

↵ = ~<br />

2⇡V Re Tr ⇥ j ↵ G R j G A⇤<br />

Coherent Diffusive Regime<br />

Perturbative expension in<br />

1/k F l e<br />

Correlate sequences of scatterers in same / opposite order<br />

➡Diffusons / Cooperon propagators<br />

Average conductance<br />

H C<br />

Γ C ( ⃗ Q)<br />

Fluctuations of conductance<br />

⃗ k<br />

⃗ Q − ⃗ k, EF − Ω<br />

Γ C (Ω, ⃗ Q)<br />

⃗Q − ⃗K ′ ,<br />

EF − Ω<br />

⃗K ′<br />

⃗ k<br />

⃗ k − ⃗q, EF − Ω<br />

Γ D (Ω, ⃗q)<br />

⃗K ′ − ⃗q,<br />

EF − Ω<br />

⃗K ′<br />

H C Γ C (−Ω, ⃗ Q)<br />

H C<br />

H D<br />

H D<br />

⃗k ′<br />

⃗ Q − ⃗ k ′ ,EF − Ω<br />

⃗Q − K, ⃗<br />

EF − Ω<br />

⃗K<br />

⃗k ′<br />

⃗ k ′ − ⃗q, EF − Ω<br />

Γ D (−Ω, −⃗q)<br />

⃗K − ⃗q,<br />

EF − Ω<br />

⃗K<br />

Corrections of Hikami boxes (anisotropic scattering !)<br />

⃗k ′ k ⃗′<br />

⃗ k ⃗ k k ⃗′ k ⃗′<br />

⃗ k<br />

k ⃗′<br />

⃗<br />

⃗ k ⃗ k ⃗ k ⃗ k k ⃗ k<br />

H D = + +<br />

H0 D H1 D H2<br />

D<br />

⃗k ′<br />

⃗ k<br />

⃗k ′<br />

⃗k ′<br />

⃗ k<br />

⃗ k<br />

End Formula depends only on number of<br />

Cooperons / Diffusons : How many Singlet / Triplets ?<br />

Based on microscopic Hamiltonian<br />

mardi 3 janvier 12<br />

See e.g. Book by Akkermans and Montambaux


Weak localization : Universality classes<br />

Diagrammatic techniques<br />

Kubo formula<br />

↵ = ~<br />

2⇡V Re Tr ⇥ j ↵ G R j G A⇤<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 g<br />

Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

Perturbative expension in<br />

1/k F l e<br />

Correlate sequences of scatterers in same / opposite order<br />

➡Diffusons / Cooperon propagators<br />

Average conductance<br />

Fluctuations of conductance<br />

⃗k ′<br />

⃗ k<br />

⃗ Q − ⃗ k, EF − Ω<br />

Γ C (Ω, ⃗ Q)<br />

H C ⃗Q − K, ⃗<br />

Q ⃗ − k ⃗′ ,EF − Ω<br />

EF − Ω<br />

Γ C (−Ω, Q) ⃗<br />

Based on microscopic Hamiltonian<br />

⃗Q − ⃗K ′ ,<br />

EF − Ω<br />

⃗k ′ k ⃗′<br />

⃗ k ⃗ k k ⃗′ k ⃗′<br />

⃗ k<br />

k ⃗′<br />

⃗<br />

⃗ k ⃗ k ⃗ k ⃗ k k ⃗ k<br />

H C<br />

⃗K<br />

⃗K ′<br />

⃗k ′<br />

⃗ k<br />

H C<br />

H D<br />

⃗ k − ⃗q, EF − Ω<br />

⃗ k ′ − ⃗q, EF − Ω<br />

Γ D (Ω, ⃗q)<br />

Γ D (−Ω, −⃗q)<br />

Corrections of Hikami boxes (anisotropic scattering !)<br />

mardi 3 janvier 12<br />

Γ C ( ⃗ Q)<br />

H D = + +<br />

⃗k ′<br />

⃗ k<br />

H0 D H1 D H2<br />

D<br />

End Formula depends only on number of<br />

Cooperons / Diffusons : How many Singlet / Triplets ?<br />

See e.g. Book by Akkermans and Montambaux<br />

⃗K ′ − ⃗q,<br />

EF − Ω<br />

⃗K − ⃗q,<br />

EF − Ω<br />

⃗k ′<br />

H D<br />

⃗k ′<br />

⃗K<br />

⃗K ′<br />

⃗ k<br />

⃗ k<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

Based on symmetry arguments<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffuson / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

with magnetic disorder : +J~. V ~ m<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffuson / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 g<br />

Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

Dirac Fermions Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

(encoded in field Q(x) )<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

with magnetic disorder : +J~. V ~ m<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

But wait : what about<br />

topological robustness ???<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

mardi 3 janvier 12


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Not <strong>Topological</strong>ly Protected <strong>Topological</strong>ly Protected<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ AII Class in d=2 : <strong>Topological</strong> Term allowed<br />

➡ Prevents Anderson localization<br />

➡ 2 subclasses<br />

- top. term (cf Berry Phase) : Top. Protection<br />

from d+1 Bulk<br />

- no top. term : standard AII class<br />

‣ Classification of all (d+1) topological phases from their d-<br />

surface states properties<br />

S. Ryu et al., NJP 12 (2010)<br />

mardi 3 janvier 12


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Not <strong>Topological</strong>ly Protected <strong>Topological</strong>ly Protected<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ AII Class in d=2 : <strong>Topological</strong> Term allowed<br />

But : <strong>Topological</strong> Term does not contribute to the weak<br />

localization of surface states<br />

➡ both AII / Symplectic classes equivalent<br />

➡ known results for electrons + random SO sufficient<br />

➡ Prevents Anderson localization<br />

➡ 2 subclasses<br />

- top. term (cf Berry Phase) : Top. Protection<br />

from d+1 Bulk<br />

- no top. term : standard AII class<br />

‣ Classification of all (d+1) topological phases from their d-<br />

surface states properties<br />

S. Ryu et al., NJP 12 (2010)<br />

mardi 3 janvier 12


Universality classes and weak localization<br />

Localization Universality Classes (for metals)<br />

‣ Orthogonal / AI Class (T 2 =+1)<br />

- electrons + scalar disorder<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1)<br />

- electrons + spin orbit disorder / Dirac + scalar disorder<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0)<br />

- electrons + magnetic disorder / Dirac + magnetic disorder<br />

- 1 Diffuson + 0 Cooperon<br />

For 1 flavor of carrier with spin<br />

(In graphene : treat spin x valley degeneracy !)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

2.10 - 5<br />

690 mK<br />

conductance<br />

Weak Localization (d=2)<br />

hgi = hgi(B) hgi(0)<br />

"<br />

!#<br />

= ↵ e 2 ~<br />

ln<br />

1 ⇡ h 4Bel 2 2 + ~<br />

4Bel 2<br />

weak (anti-)localization<br />

↵ =1(Orthogonal), ↵ = 1/2 (Symplectic), ↵ =0(Unitary)<br />

↵ =(N C,T N C,S )/2<br />

-0.8<br />

-2000 0 2000<br />

B<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

Flux Through the Sample<br />

Universal Conductance Fluctuations (d=2)<br />

h( g) 2 i = h(g hgi) 2 i<br />

= N ✓<br />

C + N S e<br />

2<br />

15 h<br />

◆ 2<br />

h( g) 2 i = 2 15<br />

h( g) 2 i = 1 15<br />

✓ e<br />

2<br />

h<br />

✓ e<br />

2<br />

h<br />

◆ 2<br />

◆ 2<br />

Symplectic : Dirac + scalar impurities<br />

Unitary : Dirac + magnetic impurities<br />

mardi 3 janvier 12<br />

Symplectic


Anisotropic Scattering of Dirac states<br />

Consider Dirac surface states with<br />

‣ phase coherence (small sample, low T)<br />

Hexagonal warping :<br />

‣ scalar disorder<br />

‣ semi-classical limit<br />

H W = 2<br />

z k 3 + + k 3 k ± = k x ± ik y<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k)<br />

+V (~r )<br />

(high doping in the gap)<br />

L. Fu, PRL 103 (2009)<br />

‣ allowed by Time Reversal Symmetry (same univ. class)<br />

‣ experimentally extracted value in TI : bw=0.4-0.6<br />

‣ important at high kF (weak localization regime)<br />

‣ Perturbative parameter (deformation of Fermi surface) bw<br />

➡ depends on EF<br />

k min<br />

kmax<br />

b w =<br />

E2 F<br />

2~ 3 v 3 F<br />

w = w max<br />

1<br />

k min<br />

k max<br />

1+ k min<br />

k max<br />

Z. Alpichshev et al., PRL 104 (2010)<br />

S.Y. Xu et al., (2011)<br />

mardi 3 janvier 12


Anisotropic Scattering of Dirac states<br />

Consider Dirac surface states with<br />

‣ phase coherence (small sample, low T)<br />

‣ scalar disorder<br />

‣ semi-classical limit<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k)<br />

+V (~r )<br />

(high doping in the gap)<br />

Hexagonal warping :<br />

L. Fu, PRL 103 (2009)<br />

H W = z 2<br />

k+ 3 + k 3 k ± = k x ± ik y<br />

b w = E2 F<br />

‣ allowed by Time Reversal Symmetry (same univ. class)<br />

‣ experimentally extracted value in TI : bw=0.4-0.6<br />

‣ important at high kF (weak localization regime)<br />

‣ Perturbative parameter (deformation of Fermi surface) bw<br />

➡ depends on EF<br />

Anisotropic scattering :<br />

‣ comes from pure (Dirac) Hamiltonian, not disorder<br />

‣ strongly increased by warping term<br />

k min<br />

2~ 3 v 3 F<br />

kmax<br />

Scattering amplitude<br />

bw=0.6 bw=0.0<br />

f(✓, ✓ 0 ✓)=|h ~ k|V | ~ k 0 i|<br />

✓ =0 ✓ = ⇡/6<br />

mardi 3 janvier 12


Anisotropic Scattering of Dirac states<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k) +V (~r ) H W = 2<br />

z k 3 + + k 3<br />

k ± = k x ± ik y<br />

Diagrammatic<br />

Boltzmann equation<br />

b w =<br />

‣ Double perturbation<br />

E2 F<br />

2~ 3 v 3 F<br />

‣ Anisotropic scattering<br />

‣ warped Fermi surface<br />

e ~ E.@ ~k ñ =<br />

Z<br />

~ k 0<br />

|h ~ k 0 | ~ ki| 2 (E ~k E ~k 0) ñ ~k 0 ñ ~k<br />

L i = p D⌧ i<br />

k min<br />

kmax<br />

H C<br />

Γ C ( ⃗ Q)<br />

Classical Conductivity<br />

‣ Renormalized density of states<br />

‣ Renormalized Transport time<br />

+ Univ. Class (AII) :<br />

‣ Various quantum contributions<br />

‣ All dephasing lengths depends on bw<br />

mardi 3 janvier 12


Warping + (in plane) Zeeman<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k) +V (~r ) H W = 2<br />

z k 3 + + k 3<br />

k ± = k x ± ik y<br />

Zeeman field :<br />

H Z = gµ B ~ . ~ B<br />

‣ in plane without warping : no effect on transport<br />

‣ + Warping : modifies the scattering amplitude, and the transport<br />

k min<br />

kmax<br />

No Warping<br />

Fermi Surface<br />

Increasing B<br />

Zeeman Field<br />

+ Warping<br />

Zeeman field = Constant Gauge field = Shift of momenta<br />

Transport unchanged<br />

Zeeman field ≠ Constant Gauge field<br />

Transport modified<br />

Modification of UCF, weak loc, etc<br />

mardi 3 janvier 12


Conclusion<br />

‣ New playground for unusual transport<br />

‣ 1 Dirac cone as opposed to graphene<br />

‣ hexagonal warping term<br />

‣ spin degree of freedom ?<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

Poster by P. Adroguer<br />

‣ Experimental progress<br />

‣ improve existing materials ?<br />

‣ new systems : strained HgTe (Würzburg, Grenoble)<br />

Talk by C. Bouvier<br />

‣ Algebraic correlation of disorder A. Fedorenko, D. Carpentier, and E. Orignac, unpublished<br />

Poster by A. Fedorenko<br />

‣ ripples in graphene<br />

‣ atomic steps (extended scatterers) for TI<br />

mardi 3 janvier 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!