12.11.2013 Views

Topological Insulators - GDR Meso

Topological Insulators - GDR Meso

Topological Insulators - GDR Meso

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Some Transport properties of<br />

<strong>Topological</strong> Insulator Surface States<br />

(...or Some Charge Transport Properties of Dirac Fermions)<br />

P. Adroguer, D. Carpentier, A. Fedorenko, E. Orignac (Lyon)<br />

J. Cayssol (Berkeley)<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

A. Fedorenko, D. Carpentier, and E. Orignac, unpublished<br />

Posters of P. Adroguer and A. Fedorenko<br />

Aussois, Déc. 2011<br />

mardi 3 janvier 12


Surface States of 3D <strong>Topological</strong> <strong>Insulators</strong><br />

• The Z2 topological order in the bulk<br />

(band inversion induced by strong spin orbit)<br />

• Robust edge (surface) states : Dirac fermions (odd number)<br />

«strong» topological insulator,<br />

ν0 =1, not layered<br />

Z2 Top. Ins.<br />

Empty Top. Band Insulator<br />

E<br />

Filled Band<br />

mardi 3 janvier 12


Surface States of 3D <strong>Topological</strong> <strong>Insulators</strong><br />

• The Z2 topological order in the bulk<br />

(band inversion induced by strong spin orbit)<br />

• Robust edge (surface) states : Dirac fermions (odd number)<br />

• First proposed candidate : Bi1-xSbx<br />

Fu and Kane PRB 76 (2007)<br />

«strong» topological insulator,<br />

ν0 =1, not layered<br />

• Second generation 3D <strong>Topological</strong> <strong>Insulators</strong><br />

Bi2Se3, Bi2Te3, Sb2Te3, ...<br />

• Reference material : Bi2Se3<br />

‣ single Dirac cone at the surface, stoichiometric, large band gap : 0.3 eV<br />

• «Third generation» 3D <strong>Topological</strong> <strong>Insulators</strong><br />

‣ TlBiTe2, Bi2Te3 ·(GeTe)0.5<br />

‣ strained HgTe : Ideal material ?<br />

L. Molenkamp group, PRL (2011)<br />

T. Meunier et L. Lévy : cf talk by C. Bouvier<br />

How to probe experimentally these 3D Top. <strong>Insulators</strong> ?<br />

‣ existence of surface states (Dirac fermions) :<br />

‣ (spin resolved) ARPES<br />

‣ STM<br />

‣ transport ... problem : get rid of bulk contribution<br />

mardi 3 janvier 12<br />

Checkelsky et al., PRL. 103, 246601 (2009)<br />

Zhang H. et al., Nat. Phys. 5, 438 (2009)<br />

ARPES of topological insulator<br />

First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.<br />

This is later data on Bi2Se3 from the same group in 2009:<br />

The states shown are in the “energy gap” of the bulk material--in general n


Probing Surface States : ARPES<br />

Difficulty : doping of bulk / edge<br />

Momentum - Spin locking : helical Dirac fermions<br />

Not exactly a perfect cone :<br />

Hexagonal warping<br />

Measure as many properties as possible of the outgoing electron<br />

to deduce the momentum, energy, and spin it had while still in the solid<br />

This is “angle-resolved photoemission spectroscopy”, or ARPES.<br />

Y.L.Chen etal., Science 325,178(2009)<br />

K. Kuroda et al., PRL 105, 076802 (2010)<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

Undoped versus doped samples<br />

Gi,Mi : Various Ca doping<br />

bulk sample (2x2x0.05 mm)<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

Anti-localization cusp at low field<br />

mardi 3 janvier 12


Transport measurement on TI<br />

Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

2<br />

es of ρ vs. H in Sample G4 at 0.3< T


Transport measurement on TI<br />

‣ Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

2<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

‣ Thin Films (reduction of bulk)<br />

mardi 3 janvier 12<br />

FIG. 2: Curves of ρ vs. H in Sample G4 at 0.3< T


Transport measurement on TI<br />

‣ Bi2Se3 : good candidate<br />

‣Large band gap : 300 meV<br />

‣Single Dirac surface state<br />

Checkelsky et al. PRL, 103 (2010)<br />

2<br />

... but μb in the conduction band<br />

➡ chemical bulk doping by Ca (CaxBi2-xSe3)<br />

Pb of residual transport by bulk states ?<br />

‣ Thin Films (reduction of bulk)<br />

‣ New Materials : strained HgTe ?<br />

mardi 3 janvier 12<br />

FIG. 2: Curves of ρ vs. H in Sample G4 at 0.3< T


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

See Talk by M. Monteverde, A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


2D Dirac Matter<br />

A<br />

B<br />

H = ~v F ( y .k x x .k y )<br />

<strong>Topological</strong> <strong>Insulators</strong> surface states<br />

‣ strong spin-orbit : momentum-spin locking<br />

➡ real spin in Dirac equation (Zeeman effect, spintronic)<br />

‣ no additional degeneracy : a single cone<br />

‣ 1 cone + real spin : strong constraint by T-symmetry<br />

‣ 2 independant cones<br />

(Nielsen-Ninomyia Theorem)<br />

‣ necessity to include hexagonal warping at high<br />

doping<br />

H W = 2<br />

z(k 3 + + k 3 )<br />

k ± = k x ± ik y<br />

Graphene<br />

‣ pseudo spin (AB) in Dirac<br />

‣ 4-fold degeneracy : valley x spin<br />

‣ T-symmetry relates both cones<br />

also : α-(BEDT-TTF)2I3 under pressure<br />

A. Kobayashi et al., Phys. Rev. B 84,075450 (2011)<br />

mardi 3 janvier 12


Diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

mardi 3 janvier 12


Diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

• Transport in near Dirac point:<br />

k F apple 1/l e<br />

(high doping)<br />

F<br />

k F apple 1/l e<br />

l e<br />

Mirlin et al. PRB, (2009)<br />

Fedorenko et al. (unpublished)<br />

mardi 3 janvier 12


Study of diffusion of 2D Dirac states<br />

• Transport in metallic regime :<br />

k F<br />

1/l e<br />

(high doping)<br />

k F<br />

1/l e<br />

F<br />

l e<br />

weak (anti-)localization<br />

(long wires)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

2.10 - 5<br />

B<br />

690 mK<br />

-2000 0 2000<br />

conductance<br />

universal conductance fluctuations<br />

(short wire)<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

Flux Through the Sample<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.)<br />

O<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

O<br />

mardi 3 janvier 12


(Weak) Localization<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

B<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

O ⇤ C,C =2⇥ C,C / 0<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

2.10 - 5 690 mK<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

-2000 0 2000<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

Flux Through the Sample<br />

mardi 3 janvier 12


(Weak) Localization / Quantum transport<br />

• Probability to diffuse from ⇥r to ⇥r<br />

⇥<br />

P (⌅r ⌅r ⇥ ) ⇥<br />

path C ⇥r<br />

• Phase variation along a diffusion path :<br />

• Average interferences vanish,<br />

except if ”C = C ” (reversed ring)<br />

⇥r ⇥<br />

A C<br />

2<br />

= ⇥ |A C | 2 + ⇥ A C A C ⇥<br />

C<br />

C⇤=C ⇥<br />

⌅ C =2⇤ L C<br />

⇥ F<br />

Classical<br />

Interferences<br />

random in a metal<br />

O ⇤ C,C =2⇥ C,C / 0<br />

• Phase coherent corrections<br />

‣ loop contributions<br />

➡Effective diffusion of «pseudo particles» Diffuson (same dir.) / Cooperon (opp. dir.)<br />

‣ Universality properties of (weak) localization<br />

➡ numbers of Cooperon/Diffuson (symmetry)<br />

mardi 3 janvier 12


Weak localization : Universality classes<br />

Diagrammatic techniques<br />

Kubo formula<br />

↵ = ~<br />

2⇡V Re Tr ⇥ j ↵ G R j G A⇤<br />

Coherent Diffusive Regime<br />

Perturbative expension in<br />

1/k F l e<br />

Correlate sequences of scatterers in same / opposite order<br />

➡Diffusons / Cooperon propagators<br />

Average conductance<br />

H C<br />

Γ C ( ⃗ Q)<br />

Fluctuations of conductance<br />

⃗ k<br />

⃗ Q − ⃗ k, EF − Ω<br />

Γ C (Ω, ⃗ Q)<br />

⃗Q − ⃗K ′ ,<br />

EF − Ω<br />

⃗K ′<br />

⃗ k<br />

⃗ k − ⃗q, EF − Ω<br />

Γ D (Ω, ⃗q)<br />

⃗K ′ − ⃗q,<br />

EF − Ω<br />

⃗K ′<br />

H C Γ C (−Ω, ⃗ Q)<br />

H C<br />

H D<br />

H D<br />

⃗k ′<br />

⃗ Q − ⃗ k ′ ,EF − Ω<br />

⃗Q − K, ⃗<br />

EF − Ω<br />

⃗K<br />

⃗k ′<br />

⃗ k ′ − ⃗q, EF − Ω<br />

Γ D (−Ω, −⃗q)<br />

⃗K − ⃗q,<br />

EF − Ω<br />

⃗K<br />

Corrections of Hikami boxes (anisotropic scattering !)<br />

⃗k ′ k ⃗′<br />

⃗ k ⃗ k k ⃗′ k ⃗′<br />

⃗ k<br />

k ⃗′<br />

⃗<br />

⃗ k ⃗ k ⃗ k ⃗ k k ⃗ k<br />

H D = + +<br />

H0 D H1 D H2<br />

D<br />

⃗k ′<br />

⃗ k<br />

⃗k ′<br />

⃗k ′<br />

⃗ k<br />

⃗ k<br />

End Formula depends only on number of<br />

Cooperons / Diffusons : How many Singlet / Triplets ?<br />

Based on microscopic Hamiltonian<br />

mardi 3 janvier 12<br />

See e.g. Book by Akkermans and Montambaux


Weak localization : Universality classes<br />

Diagrammatic techniques<br />

Kubo formula<br />

↵ = ~<br />

2⇡V Re Tr ⇥ j ↵ G R j G A⇤<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 g<br />

Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

Perturbative expension in<br />

1/k F l e<br />

Correlate sequences of scatterers in same / opposite order<br />

➡Diffusons / Cooperon propagators<br />

Average conductance<br />

Fluctuations of conductance<br />

⃗k ′<br />

⃗ k<br />

⃗ Q − ⃗ k, EF − Ω<br />

Γ C (Ω, ⃗ Q)<br />

H C ⃗Q − K, ⃗<br />

Q ⃗ − k ⃗′ ,EF − Ω<br />

EF − Ω<br />

Γ C (−Ω, Q) ⃗<br />

Based on microscopic Hamiltonian<br />

⃗Q − ⃗K ′ ,<br />

EF − Ω<br />

⃗k ′ k ⃗′<br />

⃗ k ⃗ k k ⃗′ k ⃗′<br />

⃗ k<br />

k ⃗′<br />

⃗<br />

⃗ k ⃗ k ⃗ k ⃗ k k ⃗ k<br />

H C<br />

⃗K<br />

⃗K ′<br />

⃗k ′<br />

⃗ k<br />

H C<br />

H D<br />

⃗ k − ⃗q, EF − Ω<br />

⃗ k ′ − ⃗q, EF − Ω<br />

Γ D (Ω, ⃗q)<br />

Γ D (−Ω, −⃗q)<br />

Corrections of Hikami boxes (anisotropic scattering !)<br />

mardi 3 janvier 12<br />

Γ C ( ⃗ Q)<br />

H D = + +<br />

⃗k ′<br />

⃗ k<br />

H0 D H1 D H2<br />

D<br />

End Formula depends only on number of<br />

Cooperons / Diffusons : How many Singlet / Triplets ?<br />

See e.g. Book by Akkermans and Montambaux<br />

⃗K ′ − ⃗q,<br />

EF − Ω<br />

⃗K − ⃗q,<br />

EF − Ω<br />

⃗k ′<br />

H D<br />

⃗k ′<br />

⃗K<br />

⃗K ′<br />

⃗ k<br />

⃗ k<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

Based on symmetry arguments<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffuson / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

(encoded in field Q(x) )<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

with magnetic disorder : +J~. V ~ m<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffuson / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Weak localization : Universality classes<br />

Coherent Diffusive Regime<br />

Non-Linear Sigma Model<br />

S = 1 g<br />

Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

Dirac Fermions Classification : what is the target manifold<br />

➡ i.e. : how many Cooperon / Diffuson<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

(encoded in field Q(x) )<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

Based on symmetry argument (T-reversal / C conjugation)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

with magnetic disorder : +J~. V ~ m<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

But wait : what about<br />

topological robustness ???<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

Based on symmetry arguments<br />

mardi 3 janvier 12<br />

Hikami, PRB (1981)<br />

Altshuler, Kravtsov and Lerner, (1991)<br />

Altland, Zirnbauer, PRB (1997)


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

mardi 3 janvier 12


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Not <strong>Topological</strong>ly Protected <strong>Topological</strong>ly Protected<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ AII Class in d=2 : <strong>Topological</strong> Term allowed<br />

➡ Prevents Anderson localization<br />

➡ 2 subclasses<br />

- top. term (cf Berry Phase) : Top. Protection<br />

from d+1 Bulk<br />

- no top. term : standard AII class<br />

‣ Classification of all (d+1) topological phases from their d-<br />

surface states properties<br />

S. Ryu et al., NJP 12 (2010)<br />

mardi 3 janvier 12


Anderson Univ. classes and <strong>Topological</strong> Order<br />

Non-Linear Sigma Model<br />

S = 1 Z<br />

d d x Tr [@ µ Q(x)@ µ Q(x)]<br />

g<br />

Not <strong>Topological</strong>ly Protected <strong>Topological</strong>ly Protected<br />

Dirac Fermions<br />

↵ = ~ + scalar<br />

2⇡V Re Tr ⇥ potential<br />

j ↵ G R j G A⇤<br />

:<br />

H = ~v F ( y .k x x .k y )+V (x)<br />

Electrons + random spin orbit :<br />

1/k F l e<br />

H = (~k)2<br />

‣ Orthogonal / AI Class (T 2 =+1,C=0)<br />

- spin and T symmetries<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1,C=0)<br />

- no spin symmetry / T symmetry<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0,C=0)<br />

- no spin and no T symmetries<br />

- 1 Diffusion / 0 Cooperon<br />

SO(2n)/SO(n)xSO(n)<br />

Sp(4n)/Sp(2n)xSp(2n)<br />

U(2n)/U(n)xU(n)<br />

2m + iV SO ~ .ˆk ⇥ ˆk 0 ‣ AII Class in d=2 : <strong>Topological</strong> Term allowed<br />

But : <strong>Topological</strong> Term does not contribute to the weak<br />

localization of surface states<br />

➡ both AII / Symplectic classes equivalent<br />

➡ known results for electrons + random SO sufficient<br />

➡ Prevents Anderson localization<br />

➡ 2 subclasses<br />

- top. term (cf Berry Phase) : Top. Protection<br />

from d+1 Bulk<br />

- no top. term : standard AII class<br />

‣ Classification of all (d+1) topological phases from their d-<br />

surface states properties<br />

S. Ryu et al., NJP 12 (2010)<br />

mardi 3 janvier 12


Universality classes and weak localization<br />

Localization Universality Classes (for metals)<br />

‣ Orthogonal / AI Class (T 2 =+1)<br />

- electrons + scalar disorder<br />

- 4 Diffuson + 4 Cooperon<br />

‣ Symplectic / AII Class (T 2 =-1)<br />

- electrons + spin orbit disorder / Dirac + scalar disorder<br />

- 1 Diffuson + 1 Cooperon<br />

‣ Unitary / A Class (T=0)<br />

- electrons + magnetic disorder / Dirac + magnetic disorder<br />

- 1 Diffuson + 0 Cooperon<br />

For 1 flavor of carrier with spin<br />

(In graphene : treat spin x valley degeneracy !)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

2.10 - 5<br />

690 mK<br />

conductance<br />

Weak Localization (d=2)<br />

hgi = hgi(B) hgi(0)<br />

"<br />

!#<br />

= ↵ e 2 ~<br />

ln<br />

1 ⇡ h 4Bel 2 2 + ~<br />

4Bel 2<br />

weak (anti-)localization<br />

↵ =1(Orthogonal), ↵ = 1/2 (Symplectic), ↵ =0(Unitary)<br />

↵ =(N C,T N C,S )/2<br />

-0.8<br />

-2000 0 2000<br />

B<br />

Conductance, same sample, different spins config.<br />

12.4<br />

12.2<br />

12<br />

11.8<br />

11.6<br />

11.4<br />

11.2<br />

11<br />

10.8<br />

0 20 40 60 80 100<br />

Flux Through the Sample<br />

Universal Conductance Fluctuations (d=2)<br />

h( g) 2 i = h(g hgi) 2 i<br />

= N ✓<br />

C + N S e<br />

2<br />

15 h<br />

◆ 2<br />

h( g) 2 i = 2 15<br />

h( g) 2 i = 1 15<br />

✓ e<br />

2<br />

h<br />

✓ e<br />

2<br />

h<br />

◆ 2<br />

◆ 2<br />

Symplectic : Dirac + scalar impurities<br />

Unitary : Dirac + magnetic impurities<br />

mardi 3 janvier 12<br />

Symplectic


Anisotropic Scattering of Dirac states<br />

Consider Dirac surface states with<br />

‣ phase coherence (small sample, low T)<br />

Hexagonal warping :<br />

‣ scalar disorder<br />

‣ semi-classical limit<br />

H W = 2<br />

z k 3 + + k 3 k ± = k x ± ik y<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k)<br />

+V (~r )<br />

(high doping in the gap)<br />

L. Fu, PRL 103 (2009)<br />

‣ allowed by Time Reversal Symmetry (same univ. class)<br />

‣ experimentally extracted value in TI : bw=0.4-0.6<br />

‣ important at high kF (weak localization regime)<br />

‣ Perturbative parameter (deformation of Fermi surface) bw<br />

➡ depends on EF<br />

k min<br />

kmax<br />

b w =<br />

E2 F<br />

2~ 3 v 3 F<br />

w = w max<br />

1<br />

k min<br />

k max<br />

1+ k min<br />

k max<br />

Z. Alpichshev et al., PRL 104 (2010)<br />

S.Y. Xu et al., (2011)<br />

mardi 3 janvier 12


Anisotropic Scattering of Dirac states<br />

Consider Dirac surface states with<br />

‣ phase coherence (small sample, low T)<br />

‣ scalar disorder<br />

‣ semi-classical limit<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k)<br />

+V (~r )<br />

(high doping in the gap)<br />

Hexagonal warping :<br />

L. Fu, PRL 103 (2009)<br />

H W = z 2<br />

k+ 3 + k 3 k ± = k x ± ik y<br />

b w = E2 F<br />

‣ allowed by Time Reversal Symmetry (same univ. class)<br />

‣ experimentally extracted value in TI : bw=0.4-0.6<br />

‣ important at high kF (weak localization regime)<br />

‣ Perturbative parameter (deformation of Fermi surface) bw<br />

➡ depends on EF<br />

Anisotropic scattering :<br />

‣ comes from pure (Dirac) Hamiltonian, not disorder<br />

‣ strongly increased by warping term<br />

k min<br />

2~ 3 v 3 F<br />

kmax<br />

Scattering amplitude<br />

bw=0.6 bw=0.0<br />

f(✓, ✓ 0 ✓)=|h ~ k|V | ~ k 0 i|<br />

✓ =0 ✓ = ⇡/6<br />

mardi 3 janvier 12


Anisotropic Scattering of Dirac states<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k) +V (~r ) H W = 2<br />

z k 3 + + k 3<br />

k ± = k x ± ik y<br />

Diagrammatic<br />

Boltzmann equation<br />

b w =<br />

‣ Double perturbation<br />

E2 F<br />

2~ 3 v 3 F<br />

‣ Anisotropic scattering<br />

‣ warped Fermi surface<br />

e ~ E.@ ~k ñ =<br />

Z<br />

~ k 0<br />

|h ~ k 0 | ~ ki| 2 (E ~k E ~k 0) ñ ~k 0 ñ ~k<br />

L i = p D⌧ i<br />

k min<br />

kmax<br />

H C<br />

Γ C ( ⃗ Q)<br />

Classical Conductivity<br />

‣ Renormalized density of states<br />

‣ Renormalized Transport time<br />

+ Univ. Class (AII) :<br />

‣ Various quantum contributions<br />

‣ All dephasing lengths depends on bw<br />

mardi 3 janvier 12


Warping + (in plane) Zeeman<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

H 0 = ~v F ẑ ⇥ (~ ⇥ ~ k) +V (~r ) H W = 2<br />

z k 3 + + k 3<br />

k ± = k x ± ik y<br />

Zeeman field :<br />

H Z = gµ B ~ . ~ B<br />

‣ in plane without warping : no effect on transport<br />

‣ + Warping : modifies the scattering amplitude, and the transport<br />

k min<br />

kmax<br />

No Warping<br />

Fermi Surface<br />

Increasing B<br />

Zeeman Field<br />

+ Warping<br />

Zeeman field = Constant Gauge field = Shift of momenta<br />

Transport unchanged<br />

Zeeman field ≠ Constant Gauge field<br />

Transport modified<br />

Modification of UCF, weak loc, etc<br />

mardi 3 janvier 12


Conclusion<br />

‣ New playground for unusual transport<br />

‣ 1 Dirac cone as opposed to graphene<br />

‣ hexagonal warping term<br />

‣ spin degree of freedom ?<br />

P. Adroguer, D. Carpentier, J. Cayssol and E. Orignac, unpublished<br />

Poster by P. Adroguer<br />

‣ Experimental progress<br />

‣ improve existing materials ?<br />

‣ new systems : strained HgTe (Würzburg, Grenoble)<br />

Talk by C. Bouvier<br />

‣ Algebraic correlation of disorder A. Fedorenko, D. Carpentier, and E. Orignac, unpublished<br />

Poster by A. Fedorenko<br />

‣ ripples in graphene<br />

‣ atomic steps (extended scatterers) for TI<br />

mardi 3 janvier 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!