Superconducting proximity effect in graphene: Injecting ... - GDR Meso

Superconducting proximity effect in graphene: Injecting ... - GDR Meso Superconducting proximity effect in graphene: Injecting ... - GDR Meso

gdr.meso.phys.ens.fr
from gdr.meso.phys.ens.fr More from this publisher
11.11.2013 Views

Superconducting proximity effect in graphene: Injecting Cooper pairs into quantum Hall regime Katsuyoshi Komatsu, Chuan Li, Sandrine Autier-Laurent, Alik Kasumov, Sophie Gueron and Helene Bouchiat Theory: Lih-King Lim, Jean-Noel Fuchs, and Mark-Oliver Goerbig LPS University Paris Sud XI

<strong>Superconduct<strong>in</strong>g</strong> <strong>proximity</strong> <strong>effect</strong> <strong>in</strong> <strong>graphene</strong>:<br />

Inject<strong>in</strong>g Cooper pairs <strong>in</strong>to quantum Hall regime<br />

Katsuyoshi Komatsu, Chuan Li, Sandr<strong>in</strong>e Autier-Laurent,<br />

Alik Kasumov, Sophie Gueron and Helene Bouchiat<br />

Theory: Lih-K<strong>in</strong>g Lim, Jean-Noel Fuchs, and Mark-Oliver Goerbig<br />

LPS University Paris Sud XI


Outl<strong>in</strong>e<br />

- Introduction and purpose<br />

- <strong>Superconduct<strong>in</strong>g</strong> <strong>proximity</strong> <strong>effect</strong> <strong>in</strong><br />

<strong>graphene</strong> with long junction<br />

- <strong>Superconduct<strong>in</strong>g</strong> <strong>proximity</strong> <strong>effect</strong> <strong>in</strong><br />

quantum Hall regime<br />

- Summary and outlook


What is the superconduct<strong>in</strong>g<br />

<strong>proximity</strong> <strong>effect</strong>?<br />

Andreev reflection (S/N <strong>in</strong>terface)<br />

N<br />

e<br />

h<br />

Super<br />

conductor<br />

An electron from N is reflected on the N/S <strong>in</strong>terface as a hole.<br />

A Cooper pair is <strong>in</strong>jected <strong>in</strong>to S.<br />

Supercurrent (SNS junction)<br />

S<br />

N<br />

e<br />

h<br />

L < L T , L φ


What material?<br />

INSULATOR<br />

S<br />

S<br />

Insulator (~1nm)<br />

NORMAL METAL<br />

LONG!!<br />

S<br />

Normal metal (~ 1µm)<br />

Au, Cu, Ag, etc<br />

S<br />

MOLECULE<br />

S S S S S S<br />

Carbon nanotube DNA Fullerene<br />

GRAPHENE?<br />

S<br />

S<br />

Morpurgo (2007)<br />

E. Andrei (2009)<br />

C. Ojeda (2010)


Special Andreev reflection <strong>in</strong> <strong>graphene</strong><br />

Doped <strong>graphene</strong><br />

Close to Dirac po<strong>in</strong>t<br />

ε<br />

ε<br />

E F<br />

ε < E F<br />

ε > E F<br />

δk∝-v hole <strong>in</strong> conduction band δk∝v hole <strong>in</strong> valence band<br />

ky and ε are conserved ε = ⎮⎮E F ±(δkx 2 +δky 2 ) 1/2 ⎮⎮<br />

v y<br />

v y<br />

x<br />

y<br />

v y<br />

v y<br />

Andreev retroreflection<br />

Specular Andreev reflection<br />

Not observed yet<br />

Charge <strong>in</strong>homogeneity


<strong>Superconduct<strong>in</strong>g</strong> <strong>proximity</strong><br />

<strong>effect</strong> <strong>in</strong> <strong>graphene</strong><br />

Previous work: <br />

Morpurgo (2007), Andrei (2008): Ti/Al<br />

L = 200 to 500 nm<br />

Ojeda-­‐ArisHzabal (2010): Pt/Ta<br />

Joeng (2011): PbIn, Borzenets (2011): Pd/Pb<br />

Our work: Long juncHon, L=1.2 µm, Pd/Nb (Tc ≈ 8K)<br />

L >> ξ Nb ≈100nm (ξ Al ≈300nm)<br />

More than two times longer than those <strong>in</strong><br />

previous works<br />

Long junction limit may be<br />

a way to observe specular<br />

reflection...


Results (Nb electrodes, 1.2 μm distance)<br />

V (V)<br />

I (µA)<br />

dV/dI<br />

Ic<br />

Ic*<br />

Idc<br />

Supercurrent (~200 nA) was<br />

observed at 200 mK<br />

Supercurrent is “tunable”<br />

by back gate


Question:<br />

Why does Ic fall off too fast?<br />

Theory for long junction Ic=10ETh/Rn ETh=Dħ/L 2<br />

Ic, ETh/Rn (A) Ic, ETh∕Rn<br />

dV/dI<br />

Ic<br />

Ic*<br />

Idc<br />

Ic is much smaller than expectation<br />

and decreases faster than ETh/Rn


Possible explanation<br />

Role of charge <strong>in</strong>homogeneity<br />

Carrier density<br />

distribution is gausian<br />

and has a maximum<br />

at zero carrier density<br />

A. Yacoby et al, 2008


Possible explanation<br />

Doped<br />

Super<br />

conductor<br />

W > LT<br />

Zero dop<strong>in</strong>g<br />

S<br />

L < LT<br />

S


Possible explanation<br />

Undoped<br />

W > LT<br />

ε ≈ k B T<br />

Zero dop<strong>in</strong>g<br />

S<br />

S<br />

Coherent propagation of Andreev pairs destroyed by<br />

charge <strong>in</strong>homogeneity Ic suppressed at CNP


Can Cooper pairs go through<br />

the Quantum Hall regime?<br />

Bz<br />

Edge states<br />

e<br />

h<br />

Edge states<br />

Theory<br />

A. Ma and A. Yu Zyuz<strong>in</strong>, Europhys. Lett. 21, 941 (1993).<br />

A. Yu Zyuz<strong>in</strong> Phys. Rev. B 50, 323 (1994).<br />

Experiments <strong>in</strong> 2DEG systems<br />

H. Takayanagi and T. Akazaki, Physica B 249-251, 462 (1998).<br />

T. D. Moore and D. A. Williams, Phys. Rev. B 59, 7308 (1999).<br />

High Hc superconductor is required!!<br />

Bz<br />

Bz<br />

S<br />

Retroreflection<br />

S<br />

Specular reflection


Prelim<strong>in</strong>ary result of a sample<br />

with high Hc superconductor<br />

electrodes<br />

Electrodes: ReW (Hc > 7T, Tc ~ 5K),<br />

contact distance ~ 0.7μm<br />

ReW<br />

<strong>graphene</strong><br />

ReW wire resistance<br />

2 wire measurement


Results (ReW, 0.7μm distance)<br />

Ic ~ 130 nA with Vg=-25V at 55mK <strong>in</strong> H=0T<br />

Ic can be tuned by back gate similar to the<br />

sample with Nb electrodes


QHE with S electrodes<br />

H=7.5T<br />

No obvious sign of<br />

supercurrent <strong>in</strong> QHE<br />

regime<br />

Is this because ρ xy is<br />

mixed with ρ xx ? (2wire<br />

measurement)<br />

H=0T


QHE with S electrodes<br />

H=7.5T<br />

No obvious sign of<br />

supercurrent <strong>in</strong> QHE<br />

regime<br />

Is this because ρ xy is<br />

mixed with ρ xx ? (2wire<br />

measurement)<br />

Takayanagi (2002),<br />

AlGaAs/GaAs<br />

NS<br />

G N (2e 2 ∕h)∑2t 2 ∕(2-t) 2<br />

H=0T


Is shape of plateaux<br />

differenet with S electrodes?<br />

H=7.5T<br />

No obvious sign of<br />

supercurrent <strong>in</strong> QHE<br />

regime<br />

Is this because ρ xy is<br />

mixed with ρ xx ? (2wire<br />

measurement)<br />

H=0T<br />

Small oscillations are<br />

related to supercurrent?


Andreev reflection <strong>in</strong> QH regime<br />

Most of dV/dI show peak<br />

at Idc = 0 A.<br />

But three Vgs give dips<br />

at Idc = 0 A.<br />

H=7.5T at 55 mK<br />

These dips may be sign of<br />

constructive <strong>in</strong>terference <strong>in</strong><br />

Andreev reflection.


Look<strong>in</strong>g for signature of <strong>in</strong>terference<br />

d 3 V/dI 3 (x10 -6 a.u.)<br />

200<br />

100<br />

0<br />

Vg = 0<br />

T=55mK<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

Magnetic field (x10 3 G)<br />

2000<br />

150<br />

d 3 V/dI 3 (x10 -6 a.u.)<br />

100<br />

50<br />

0<br />

-50<br />

42.5<br />

43.0<br />

43.5<br />

Mag<strong>in</strong>etic field (x10 3 G)<br />

44.0<br />

d 3 V/dI 3 < 0 gives a dip <strong>in</strong> dV/dI<br />

AB type <strong>effect</strong> <strong>in</strong> the edge state?<br />

dV/dI (Ohm)<br />

1950<br />

1900<br />

M<strong>in</strong> Harm3 Vg=0V h=42806G<br />

Max Harm3 Vg=0V h=42498G<br />

iac=2nA<br />

-100<br />

0<br />

Idc (x10 -9 A)<br />

e<br />

100<br />

h<br />

Edge states<br />

BEdge states


Summary<br />

- We succeeded to observe supercurrent with both<br />

Nb and ReW electrodes <strong>in</strong> long junctions (~1µm).<br />

- Andreev reflection <strong>in</strong> QH regime was observed.


Open questions<br />

- Which configuration is the best to observe<br />

supercurrent <strong>in</strong> QH regime?<br />

A. Yu Zyuz<strong>in</strong> geometry<br />

Edge states<br />

Bz<br />

e<br />

h<br />

Edge states<br />

small contact < ξs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!