11.11.2013 Views

Phylum Onychophora : Characteristics of the Onychophora Annelid ...

Phylum Onychophora : Characteristics of the Onychophora Annelid ...

Phylum Onychophora : Characteristics of the Onychophora Annelid ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Phylum</strong> <strong>Onychophora</strong> :<br />

• 80 or so species <strong>of</strong> rare animals<br />

• 1.5 to 15 cm in length<br />

• Found in moist places, tropical and So. temperate regions<br />

• Evolved by <strong>the</strong> Cambrian<br />

<strong>Characteristics</strong><br />

<strong>of</strong> <strong>the</strong><br />

<strong>Onychophora</strong><br />

No external segmentation<br />

Hallucigenia<br />

<strong>Annelid</strong>-Like<br />

Extensible Walking legs<br />

Arthropod-like<br />

-Thin flexible outer cuticle - Growth by ecdysis<br />

- Continuous muscles - Chitinous claws on leg tips<br />

- Fluid filled body cavity - Chitinous jaws<br />

- Appendages unsegmented - Open circulatory system<br />

- Segmental excretory - Trachea, spiracular system<br />

tubes like metanephridia<br />

Is <strong>Onychophora</strong> <strong>the</strong> “missing link”<br />

between Arthropods and <strong>Annelid</strong>s?<br />

Is segmentation homologous in arthropods and annelids?<br />

PanArthropoda<br />

<strong>Phylum</strong> Arthropoda<br />

Chelicerata<br />

(75,000)<br />

Insecta<br />

~ 1 million<br />

Crustacea<br />

45,000<br />

Myriapoda<br />

(13,000)<br />

I. Extant Arthropod Diversity<br />

Sub <strong>Phylum</strong> Mandibulata<br />

Crustacea<br />

Insecta<br />

Myriapoda<br />

Sub <strong>Phylum</strong> Chelicerata<br />

<strong>Phylum</strong> probably contains 5 million species<br />

<strong>of</strong> which 1 million have been described<br />

1


Class Crustacea<br />

Sub Class Malacostraca<br />

Class Insecta<br />

Class Myriapoda<br />

Sub Class Chilopoda<br />

Sub Class<br />

Copepoda<br />

Sub Class Cirripidea<br />

Sub Class Branchiopoda<br />

Sub Class Diplopoda<br />

Sub <strong>Phylum</strong> Chelicerata<br />

Most Significant Character: Exoskeleton<br />

Epicuticle is <strong>of</strong><br />

lipids and<br />

lipoproteins<br />

Class Merostomata<br />

Class Arachnida<br />

endocuticle<br />

Chitin is high MW<br />

Nitrogenous<br />

mucopolysaccheride<br />

Class Pycnogonida<br />

Fig 14.1<br />

Hardness from<br />

scleratized<br />

proteins or from<br />

calcium carbonate<br />

in Crustacea<br />

Advantages and constraints <strong>of</strong><br />

<strong>the</strong> exoskeleton<br />

Advantages:<br />

But <strong>the</strong>re are some constraints<br />

Limitations on movement?<br />

• Protection from injury and physiological stress<br />

• Barrier against osmotic and ionic gradients<br />

• Support<br />

• Attachment for muscles<br />

• Elaborated as a variety <strong>of</strong> structures:<br />

wings, bristles, antennas, eyes, auditory organs,<br />

outer shields, jaws, beaks, pincers, paddles<br />

2


But <strong>the</strong>re are some constraints<br />

Hydrostatic skeleton is <strong>of</strong> no use<br />

Reduction <strong>of</strong> coelom: main body cavity is hemocoel<br />

But <strong>the</strong>re are some constraints<br />

How to increase body size?<br />

Arthropod<br />

Growth pattern<br />

Tissue<br />

growth<br />

Growth is by molting<br />

(ecdysis) with tissue<br />

size gains occurring<br />

during <strong>the</strong> intermolt<br />

period<br />

Blood flow:<br />

tissue sinuses venous blood gills<br />

aortas heart<br />

III. Structural/neurobiochemical aspects <strong>of</strong> molting<br />

Review <strong>of</strong> <strong>the</strong> molting process in insects<br />

all arthropods<br />

have “molt lines”<br />

I.e. a line <strong>of</strong><br />

weakness<br />

on <strong>the</strong> shell<br />

Control <strong>of</strong> Molting: Crustacea (Insects Later)<br />

X-organ produces <strong>the</strong><br />

molting inhibition hormone<br />

MIH stored in sinus gland<br />

Control <strong>of</strong> Molting in Crustacea<br />

Appropriate Stimulus<br />

CNS inhibits MIH<br />

Production by X-organ<br />

Sinus<br />

gland<br />

X organ<br />

Y- organ in <strong>the</strong> head <strong>of</strong> <strong>the</strong><br />

animal produces ecdysone<br />

Ecdysone initiates molting<br />

Drop in<br />

Blood MIH<br />

Y-organ produces ecdysone<br />

Molting Initiated<br />

X organ exercises a negative control on molting<br />

3


IV. Tendencies in Evolution <strong>of</strong><br />

Arthropod Body Plan<br />

• Segmentation- when pronounced it is generally<br />

considered an ancestral condition<br />

O<strong>the</strong>r Tendencies in Evolution <strong>of</strong><br />

Arthropod Body Plan<br />

• Segmentation- when pronounced it is generally<br />

considered an ancestral condition<br />

• Tagmosis - tendency to organize segments into regions<br />

having similar structure, function and appendages<br />

Remipidea: blind Crustacea that live in sea caves head<br />

followed by trunk with about 32 identical segments<br />

O<strong>the</strong>r Tendencies in Evolution <strong>of</strong><br />

Arthropod Body Plan<br />

• Segmentation- when pronounced it is generally<br />

considered an ancestral condition<br />

• Tagmosis - tendency to organize segments into regions<br />

having similar structure, function and appendages<br />

• Cephalization - in early arthropods <strong>the</strong> head was scarcely<br />

distinguishable; <strong>the</strong> development <strong>of</strong> a strong sensory,<br />

feeding, cephalic region is a common <strong>the</strong>me in <strong>the</strong> various<br />

groups.<br />

Model<br />

Ancestor<br />

was<br />

trilobite<br />

like<br />

The elaboration <strong>of</strong> <strong>the</strong><br />

head has taken<br />

different courses in <strong>the</strong><br />

major groups but are<br />

still considered to show<br />

“serial homology”<br />

A=antenna<br />

a=acron<br />

C=chelicera<br />

Ci= Chilarum<br />

L = leg<br />

Mnd =Mandible<br />

Mx = maxilla<br />

P= pedipalp<br />

0 =nephridia<br />

Serial homology is <strong>the</strong> concept that initially existing structures<br />

were gradually modified via discrete intermediary steps until such<br />

time as an evolutionary novelty (e.g., jaws) appeared.<br />

Many examples <strong>of</strong> serial homology, e.g. <strong>the</strong> body segments <strong>of</strong> many<br />

animals (vertebrates, arthropods etc), are examples <strong>of</strong> gene<br />

duplication on regulatory genes such as homeobox genes, followed<br />

by evolution differentiating <strong>the</strong> duplicated genes.<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!