10.11.2013 Views

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20 H. T. Banks, S. H. Hu <strong>and</strong> Z. R. Kenz / Adv. Appl. Math. Mech., 3 (2011), pp. 1-51<br />

where S ij is the (i, j) component <strong>of</strong> S. By (2.12) <strong>and</strong> (3.6) we find that the Cauchy stress<br />

tensor σ is given by<br />

σ = 1<br />

|A| A ∂W<br />

∂E AT .<br />

Strain energy function <strong>for</strong> isotropic elastic materials<br />

For an isotropic material, the configuration gradient A can be expressed uniquely in<br />

terms <strong>of</strong> the principal stretches (λ i , i = 1, 2, 3) or in terms <strong>of</strong> the invariants (I 1 , I 2 , I 3 )<br />

<strong>of</strong> the left Cauchy-Green configuration tensor or right Cauchy-Green configuration<br />

tensor (see Remark 2.3). Hence, we can express the strain energy function in terms <strong>of</strong><br />

principal stretches or in terms <strong>of</strong> invariants. Note that<br />

λ 1 = λ 2 = λ 3 = 1, I 1 = 3, I 2 = 3, <strong>and</strong> I 3 = 1,<br />

in the initial configuration where we choose W = 0. Thus a general <strong>for</strong>mula <strong>for</strong> the<br />

strain energy function can be expressed as<br />

or<br />

=<br />

W(λ 1 , λ 2 , λ 3 )<br />

∞<br />

∑<br />

i,j,k=0<br />

a ijk<br />

{[<br />

λ i 1 (λj 2 + λj 3 ) + λi 2(λ j 3 + λj 1 ) + λi 3(λ j 1 + λj 2 ) ](λ 1 λ 2 λ 3 ) k − 6<br />

W(I 1 , I 2 , I 3 ) =<br />

∞<br />

∑ c ijk (I 1 − 3) i (I 2 − 3) j (I 3 − 1) k .<br />

i,j,k=0<br />

}<br />

, (3.7a)<br />

(3.7b)<br />

Due to their ubiquitous approximation properties, polynomial terms are usually chosen<br />

in <strong>for</strong>mulating strain energy functions, but the final <strong>for</strong>ms are typically based on<br />

empirical observations <strong>and</strong> are material specific <strong>for</strong> the choice <strong>of</strong> coefficients <strong>and</strong> truncations.<br />

For incompressible materials (many rubber or elastomeric materials are <strong>of</strong>ten<br />

nearly incompressible), |A| = 1 (which implies that λ 1 λ 2 λ 3 = 1 <strong>and</strong> I 3 = 1), so (3.7a)<br />

can be reduced to<br />

W(λ 1 , λ 2 , λ 3 ) =<br />

∞ [<br />

∑ a ij λ1 i (λj 2 + λj 3 ) + λi 2(λ j 3 + λj 1 ) + λi 3(λ j 1 + λj 2<br />

], ) − 6 (3.8)<br />

i,j=0<br />

subject to<br />

<strong>and</strong> (3.7b) can be reduced to<br />

λ 1 λ 2 λ 3 = 1,<br />

W(I 1 , I 2 ) =<br />

Special cases <strong>for</strong> (3.9) include several materials:<br />

∞<br />

∑ c i,j (I 1 − 3) i (I 2 − 3) j . (3.9)<br />

i,j=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!