10.11.2013 Views

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

H. T. Banks, S. H. Hu <strong>and</strong> Z. R. Kenz / Adv. Appl. Math. Mech., 3 (2011), pp. 1-51 15<br />

2.2.4 The Eulerian equations <strong>of</strong> motion <strong>of</strong> a continuum<br />

We are now ready to use the above rules <strong>of</strong> calculus <strong>and</strong> the continuity <strong>of</strong> mass as<br />

embodied in the Reynolds transport theorem to derive the equations <strong>of</strong> motion in<br />

an Eulerian coordinate system. Throughout we have Ω = Ω t <strong>and</strong> Γ = Γ t (we will<br />

suppress the subscripts) <strong>and</strong> we assume the coordinate system (x, y, z) is now moving<br />

(changing with the volume element) with a velocity v = (dx/dt, dy/dt, dz/dt) T <strong>of</strong> the<br />

de<strong>for</strong>mation <strong>of</strong> the material. The resultant <strong>for</strong>ce F z in the z-direction on an arbitrary<br />

volume Ω is<br />

∫<br />

∫<br />

F z = T (n)<br />

z dΓ + f z dΩ. (2.19)<br />

Γ<br />

Ω<br />

By Cauchy’s <strong>for</strong>mula (2.10) <strong>and</strong> Gauss’ theorem we have<br />

∫<br />

∫<br />

T (n)<br />

z dΓ =<br />

Γ<br />

Γ<br />

∫<br />

=<br />

Ω<br />

(σ xz n x + σ yz n y + σ zz n z<br />

)<br />

dΓ<br />

( ∂σxz<br />

∂x + ∂σ yz<br />

∂y + ∂σ )<br />

zz<br />

dΩ.<br />

∂z<br />

Hence, by the above equality <strong>and</strong> (2.19), we obtain<br />

∫<br />

F z =<br />

Newton’s law states that<br />

∫<br />

∫<br />

d<br />

ρv z dΩ =<br />

dt<br />

Ω<br />

Ω<br />

( ∂σxz<br />

∂x + ∂σ yz<br />

∂y + ∂σ zz<br />

∂z + f z<br />

Ω<br />

)<br />

dΩ.<br />

( ∂σxz<br />

∂x + ∂σ yz<br />

∂y + ∂σ )<br />

zz<br />

∂z + f z dΩ.<br />

Hence, by the Reynolds transport theorem we have<br />

∫ ( ∂vz<br />

ρ<br />

Ω ∂t + v ∂v z<br />

x<br />

∂x + v ∂v z<br />

y<br />

∂y + v ∂v z )<br />

∫<br />

z dΩ =<br />

∂z<br />

Ω<br />

( ∂σxz<br />

∂x + ∂σ yz<br />

∂y + ∂σ zz<br />

∂z + f z<br />

)<br />

dΩ.<br />

Note that because the above equality holds <strong>for</strong> an arbitrary domain Ω, the integr<strong>and</strong>s<br />

on both sides must be equal. Thus, we have<br />

( ∂vz<br />

ρ<br />

∂t + v ∂v z<br />

x<br />

∂x + v ∂v z<br />

y<br />

∂y + v ∂v<br />

) z<br />

z = ∂σ xz<br />

∂z ∂x + ∂σ yz<br />

∂y + ∂σ zz<br />

∂z + f z,<br />

or written concisely as<br />

ρ Dv z<br />

= ∇ · σ •,z + f z ,<br />

Dt<br />

which is the equation <strong>of</strong> motion <strong>of</strong> a continuum in the z-direction. The entire set <strong>for</strong> the<br />

equations <strong>of</strong> motion <strong>of</strong> a continuum in an Eulerian coordinate system is given as follows:<br />

( ∂vx<br />

ρ<br />

∂t + v ∂v x<br />

x<br />

∂x + v ∂v x<br />

y<br />

∂y + v ∂v<br />

) x<br />

z = ∂σ xx<br />

∂z ∂x + ∂σ yx<br />

∂y + ∂σ zx<br />

∂z + f x, (2.20a)<br />

( ∂vy<br />

ρ<br />

∂t + v ∂v y<br />

x<br />

∂x + v ∂v y<br />

y<br />

∂y + v ∂v ) y<br />

z = ∂σ xy<br />

∂z ∂x + ∂σ yy<br />

∂y + ∂σ zy<br />

∂z + f y, (2.20b)<br />

( ∂vz<br />

ρ<br />

∂t + v ∂v z<br />

x<br />

∂x + v ∂v z<br />

y<br />

∂y + v ∂v<br />

) z<br />

z = ∂σ xz<br />

∂z ∂x + ∂σ yz<br />

∂y + ∂σ zz<br />

∂z + f z. (2.20c)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!