10.11.2013 Views

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 H. T. Banks, S. H. Hu <strong>and</strong> Z. R. Kenz / Adv. Appl. Math. Mech., 3 (2011), pp. 1-51<br />

Since the above equality holds <strong>for</strong> an arbitrary domain Ω t , we obtain the pointwise<br />

equation <strong>of</strong> continuity<br />

∂ρ<br />

∂t + ∂ρv x<br />

∂x<br />

+ ∂ρv y<br />

∂y<br />

+ ∂ρv z<br />

= 0, (2.17)<br />

∂z<br />

which can be written concisely as<br />

2.2.3 The Reynolds transport theorem<br />

∂ρ<br />

+ ∇ · (ρv) = 0.<br />

∂t<br />

In this subsection, we will use the material derivative (2.16) as well as the equation <strong>of</strong><br />

continuity (2.17) to derive the celebrated Reynolds transport theorem. By (2.16) we find<br />

that<br />

∫<br />

∫<br />

d<br />

( ∂(ρvz )<br />

ρv z dΩ =<br />

+ ∂ρv zv x<br />

+ ∂ρv zv y<br />

dt Ω t Ω t ∂t ∂x ∂y<br />

+ ∂ρv )<br />

zv z<br />

dΩ.<br />

∂z<br />

Then using the equation <strong>of</strong> continuity (2.17), we find that the integr<strong>and</strong> <strong>of</strong> the right<br />

side <strong>of</strong> the above equation is equal to<br />

∂ρ<br />

∂t v z + ρ ∂v (<br />

z<br />

∂t + v ∂ρvx<br />

z<br />

∂x<br />

+ ∂ρv y<br />

∂y<br />

( ∂ρ<br />

=v z<br />

∂t + ∂ρv x<br />

∂x<br />

+ ∂ρv y<br />

∂y<br />

+ ∂ρv )<br />

z<br />

+ ρ<br />

∂z<br />

( ∂vz<br />

=ρ<br />

∂t + v x<br />

Hence, we have<br />

∂v z<br />

∂x + v y<br />

∂v z<br />

∂y + v z<br />

∂v<br />

) z<br />

.<br />

∂z<br />

+ ∂ρv z<br />

∂z<br />

( ∂vz<br />

∂t + v x<br />

)<br />

∂v z<br />

+ ρv x<br />

∂x + ρv ∂v z<br />

y<br />

∂y + ρv ∂v z<br />

z<br />

∂z<br />

)<br />

∂v z<br />

∂x + v ∂v z<br />

y<br />

∂y + v z<br />

∫<br />

∫<br />

d<br />

( ∂vz<br />

ρv z dΩ = ρ<br />

dt Ω t Ω t ∂t + v ∂v z<br />

x<br />

∂x + v ∂v z<br />

y<br />

∂y + v ∂v<br />

) z<br />

z dΩ. (2.18)<br />

∂z<br />

Eq. (2.18) is the Reynolds transport theorem, which is usually written concisely as<br />

∫<br />

∫<br />

d<br />

ρv z dΩ = ρ Dv z<br />

dt Ω t Ω t Dt dΩ,<br />

where Dv z /Dt is the total derivative <strong>of</strong> v z , <strong>and</strong> is given by<br />

D<br />

Dt v z(x, y, z, t) = ∂v z<br />

∂t + v ∂v z<br />

x<br />

∂x + v ∂v z<br />

y<br />

∂y + v ∂v z<br />

z<br />

∂z .<br />

We note that the above is independent <strong>of</strong> any coordinate system <strong>and</strong> depends only on<br />

the rules <strong>of</strong> calculus <strong>and</strong> the assumptions <strong>of</strong> continuity <strong>of</strong> mass in a time dependent<br />

volume <strong>of</strong> particles.<br />

∂v z<br />

∂z

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!