10.11.2013 Views

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

A Brief Review of Elasticity and Viscoelasticity for Solids 1 Introduction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

H. T. Banks, S. H. Hu <strong>and</strong> Z. R. Kenz / Adv. Appl. Math. Mech., 3 (2011), pp. 1-51 13<br />

Then the rate <strong>of</strong> change <strong>of</strong> Φ(t) with respect to t is given by (suppressing the multiple<br />

integral notation here <strong>and</strong> below when it is clearly understood that the integral is a<br />

volume or surface integral)<br />

∫<br />

∫<br />

dΦ<br />

dt = ∂ϕ<br />

Ω t ∂t dΩ +<br />

where on the boundary Γ t <strong>of</strong> Ω t , v = v(t) is the velocity<br />

v(t) =<br />

Eq. (2.15) can be written concisely as<br />

Γ t<br />

(ϕv x n x + ϕv y n y + ϕv z n z )dΓ, (2.15)<br />

( dx<br />

dt , dy<br />

dt , dz ) T.<br />

dt<br />

∫<br />

∫<br />

dΦ<br />

dt = ∂ϕ<br />

Ω t ∂t dΩ +<br />

Γ t<br />

ϕv · ndΓ.<br />

The first term on the right side corresponds to rate <strong>of</strong> change in a fixed volume, <strong>and</strong><br />

the second term corresponds to the convective transfer through the surface. By Gauss’<br />

theorem, Eq. (2.15) can also be written as<br />

or more concisely as<br />

dΦ<br />

dt = ∫<br />

( ∂ϕ<br />

Ω t ∂t + ∂ϕv x<br />

∂x<br />

+ ∂ϕv y<br />

∂y<br />

∫<br />

dΦ<br />

( ∂ϕ<br />

)<br />

dt = Ω t ∂t + ∇ · (ϕv) dΩ.<br />

+ ∂ϕv )<br />

z<br />

dΩ, (2.16)<br />

∂z<br />

This rate, called the material derivative <strong>of</strong> Φ, is defined <strong>for</strong> a given set <strong>of</strong> material particles<br />

in a moving volume. We note that when Ω t = Ω 0 <strong>for</strong> all t (i.e., the boundary Γ is<br />

not moving so that v = 0), this becomes simply<br />

∫<br />

∫<br />

d<br />

∂ϕ<br />

ϕ(x, y, z, t)dxdydz = (x, y, z, t)dxdydz.<br />

dt Ω 0 Ω 0<br />

∂t<br />

2.2.2 The equation <strong>of</strong> continuity<br />

We next derive the equation <strong>of</strong> continuity <strong>for</strong> an arbitrary mass <strong>of</strong> particles that may<br />

be changing in time. The mass contained in a domain Ω t at time t is<br />

∫<br />

m(t) = ρ(x, y, z, t)dxdydz.<br />

Ω t<br />

Conservation <strong>of</strong> mass requires that dm/dt = 0 <strong>and</strong> thus we have from (2.16)<br />

Hence, we obtain<br />

dm<br />

dt = ∫<br />

∫<br />

[ ∂ρ<br />

Ω t ∂t + ∂ρv x<br />

∂x<br />

[ ∂ρ<br />

Ω t ∂t + ∂ρv x<br />

∂x<br />

+ ∂ρv y<br />

∂y<br />

+ ∂ρv y<br />

∂y<br />

+ ∂ρv ]<br />

z<br />

dΩ.<br />

∂z<br />

+ ∂ρv ]<br />

z<br />

dΩ = 0.<br />

∂z

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!