09.11.2013 Views

longitudinal slope of brahmaputra

longitudinal slope of brahmaputra

longitudinal slope of brahmaputra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1625 KM IN TIBET<br />

918 KM IN INDIA<br />

354 KM IN BANGLADESH


Aerial View<br />

AN AERIAL VIEW OF UPPER BASIN OF BRAHMAPUTRA<br />

5300m<br />

Total Drainage Basin<br />

580,000 sq.km<br />

Total river<br />

Length 2880 km<br />

Neuromorphic study <strong>of</strong> Longitudinal Pr<strong>of</strong>ile <strong>of</strong> the river Brahmaputra


BRAHMAPUTRA IN SPATE


Erosion near Kaniagaon, Majuli<br />

Erosion <strong>of</strong> tea garden in<br />

Dibrugarh area, 2002


Kanglung Kang<br />

Glacier<br />

LONGITUDINAL SLOPE OF BRAHMAPUTRA<br />

Dhubri


PROMINENT CHARACTERISTICS OF THE<br />

BRAHMAPUTRA<br />

FLUVIAL<br />

<br />

<br />

<br />

Large energy environment max.<br />

Large & highly variable discharge regime<br />

Heavy sediment load with fluctuating competence<br />

Av. annual sediment = 735 million tonne


MORPHOLOGICAL<br />

Highly braided plan form<br />

Few constricted nodal points<br />

Cycle <strong>of</strong> aggradation, bank erosion &<br />

channel widening<br />

Channel avulsion propensity at vulnerable<br />

points<br />

Large alluvial braid-plain <strong>of</strong> high instability


HYDROLOGICAL<br />

High precipitation on a relatively narrow valley<br />

High ratio between minimum to maximum discharges<br />

(3000 to 77000 m3/sec)<br />

Max. flood lift = 10.39 m<br />

Progressive degradation <strong>of</strong> watershed area


TECTONICS<br />

Presence <strong>of</strong> several active fault zones High<br />

seismicity<br />

Epicentres <strong>of</strong> two major earthquakes <strong>of</strong> 8.7<br />

magnitude on the richter scale<br />

Watershed areas comprise highly friable<br />

sedimentary deposits


TECTONIC FAULT ZONE MAP IN BRAHMAPUTRA REGION


MAJOR FLUVIAL HAZARDS IN THE<br />

BRAHMAPUTRA<br />

<br />

<br />

<br />

<br />

<br />

<br />

Occurrence <strong>of</strong> channel avulsion<br />

Stream bank erosion<br />

Occurrence <strong>of</strong> embankment breaches<br />

Occurrence <strong>of</strong> debilitating urban floods<br />

Occurrence <strong>of</strong> relentless streambed rise<br />

Encroachment <strong>of</strong> flood-plain, wetlands


G. Behera et al (2006), (Jalvigyan Sameeksha, Vol. 21)


G. Behera et al (2006), (Jalvigyan Sameeksha, Vol. 21)


Water<br />

Very High Vegetation<br />

High Vegetation<br />

Medium vegetation<br />

Low vegetation<br />

Sand/bars


Water<br />

Very High Vegetation<br />

High Vegetation<br />

Medium vegetation<br />

Low vegetation<br />

Sand/bars


ENCROACHMENTS ON FLOOD PLAIN &<br />

WETLANDS<br />

Rampant encroachments taking place over the<br />

flood – plains<br />

3,513 Wetlands are degenerated due to<br />

encroachments, bottom deposits, blockade <strong>of</strong><br />

feeder channels, pollution by industrial wastes.


ATTEMPTS FOR MODELLING RIVER<br />

BRAHMAPUTRA<br />

Purpose: Flood Forecasting & Channel Improvements<br />

<br />

Hydrodynamic Modelling<br />

No distinct mathematical relationship for braided<br />

streams<br />

- Sediment discharge predictor<br />

- Flow resistance function<br />

<br />

ANN Modeling<br />

Making use <strong>of</strong> huge data base


Governing Equations<br />

Water continuity equation<br />

Momentum equation<br />

(...<br />

)2<br />

(...<br />

)2<br />

(...<br />

)2<br />

(...<br />

)2<br />

..........<br />

..........<br />

..........<br />

..........<br />

)<br />

.........<br />

)<br />

.........<br />

)<br />

.........<br />

)<br />

.........<br />

D<br />

S<br />

ρgA<br />

(<br />

S<br />

ρgA<br />

(<br />

S<br />

ρgA<br />

(<br />

S<br />

ρgA<br />

(<br />

S<br />

δX<br />

δX<br />

δX<br />

δX<br />

δρY<br />

δρY<br />

δρY<br />

δρY<br />

gA<br />

gA<br />

gA<br />

gA<br />

δX<br />

δX<br />

δX<br />

δX<br />

δρQV<br />

δρQV<br />

δρQV<br />

δρQV<br />

δt<br />

δt<br />

δt<br />

δt<br />

δρQ<br />

δρQ<br />

δρQ<br />

δρQ<br />

1<br />

f<br />

0 +<br />

−<br />

=<br />

+<br />

+<br />

(...<br />

)1<br />

(...<br />

)1<br />

(...<br />

)1<br />

(...<br />

)1<br />

..........<br />

..........<br />

..........<br />

.......... ..........<br />

..........<br />

..........<br />

.......... ..........<br />

..........<br />

..........<br />

.......... ..........<br />

..........<br />

..........<br />

0......... ..........<br />

0.........<br />

0.........<br />

0.........<br />

q<br />

δt<br />

δt<br />

δt<br />

δt<br />

δA<br />

δA<br />

δA<br />

δA<br />

δx<br />

δx<br />

δx<br />

δx<br />

δQ<br />

δQ<br />

δQ<br />

δQ<br />

`1<br />

`1<br />

`1<br />

`1 =<br />

−<br />

+<br />

(..<br />

)3<br />

(..<br />

)3<br />

(..<br />

)3<br />

(..<br />

)3<br />

..........<br />

..........<br />

..........<br />

....................<br />

..........<br />

..........<br />

....................<br />

..........<br />

..........<br />

....................<br />

..........<br />

..........<br />

0...................<br />

0.........<br />

0.........<br />

0.........<br />

q<br />

δt<br />

δt<br />

δt<br />

δt<br />

δA<br />

δA<br />

δA<br />

δA<br />

δt<br />

δt<br />

δt<br />

δt<br />

δA<br />

δA<br />

δA<br />

δA<br />

p<br />

δx<br />

δx<br />

δx<br />

δx<br />

δQs<br />

δQs<br />

δQs<br />

δQs<br />

s<br />

s<br />

c<br />

=<br />

−<br />

+<br />

+<br />

Sediment continuity equation<br />

THE MATHEMATICAL MODEL


Supplementary Relationships<br />

Aggradation Simulation<br />

To simulate aggradation or sediment deposition in<br />

the model, a simple but rational approach is<br />

formulated to distribute sediment deposition bed<br />

area sub-section wise in inverse proportion to<br />

conveyance as below.<br />

ΔA<br />

ΔA<br />

bk<br />

b<br />

=<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

1<br />

−<br />

∑i<br />

=<br />

k<br />

1<br />

A<br />

k<br />

A<br />

k<br />

D<br />

2/3<br />

k<br />

.D.D<br />

2/3<br />

k<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />


Degradation Simulation<br />

To simulate degradation or bed lowering, changes in<br />

bed area lowering is distributed sub-section wise in<br />

direct proportion to effective tractive force as below.<br />

⎡ τ τ<br />

Zs<br />

⎤<br />

0<br />

ocr<br />

⎢ − ΔAc<br />

= τ τ<br />

Δy<br />

⎥<br />

⎢ [ − ] ⎥<br />

⎢⎣<br />

∑<br />

0<br />

0cr<br />

W<br />

⎥⎦<br />

Channel width Adjustments<br />

Simplified search procedure <strong>of</strong> Chang satisfying<br />

minimum stream power criterion as given below is used<br />

subject to site constraints.<br />

S<br />

ΔX<br />

S ΔX<br />

S i 1 1 i 1 i<br />

i − 2 ΔX<br />

+<br />

+ ΔX<br />

−<br />

=<br />

i 1+<br />

( ) i<br />

−<br />

1


Stimulus<br />

Receptors<br />

(Dendrites)<br />

Neural<br />

net<br />

Effectors<br />

(Synapses)<br />

Response<br />

ILLUSTRATION OF BIOLOGICAL NEURON<br />

Input<br />

Hidden neurons<br />

Output<br />

ILLUSTRATION OF ARTIFICIAL NEURON<br />

x 1<br />

Weights<br />

w 1<br />

Summation Unit<br />

Sigmoidal unit<br />

x 2<br />

x n<br />

x 3<br />

w 2<br />

w 3<br />

w n<br />

Inputs<br />

(Simple structure <strong>of</strong> an ANN model)<br />

Output<br />

Sigmoidal function


0<br />

α 1 = a 1 /A<br />

0


Total Length<br />

The Study Length and Associated details<br />

640.07 km<br />

Kobo<br />

Xs-65<br />

Xs-2<br />

17.34 km<br />

tributaries<br />

442.7 km<br />

Guwahati<br />

Dhubri<br />

Ganga<br />

589,000<br />

MCM/yr+735 MT/yr<br />

Dhaka<br />

898.71 km<br />

The bay <strong>of</strong> Bangal<br />

1150 km<br />

Neuromorphic study <strong>of</strong> Longitudinal Pr<strong>of</strong>ile <strong>of</strong> the river Brahmaputra


RIVER AVULSION AND SHIFTING PROCESS AT<br />

CONFLUENCE ZONE OF MAINSTREAMS OF THE<br />

BRAHMAPUTRA NEAR SADIYA<br />

21.74 km<br />

SATELLITE IMAGERY OF YEAR 2002<br />

SATELLITE IMAGERY OF YEAR 1990


Kobo<br />

Noa Dihing<br />

Mesakimukh<br />

AVULSION<br />

15.77 km<br />

Avulsion <strong>of</strong> Brahmaputra near Saikhowa


16.88 km<br />

Saikhowa<br />

RF<br />

Oaklands<br />

Tea state<br />

Dinjangaon<br />

8.85 km<br />

Dibrugarh<br />

Mohanbari<br />

Chabua<br />

Barbari<br />

LISS III 2002


RADARSAT SATELLITE PLAN FORM OF MAJULI ISLAND 2002<br />

(Largest River Island in the World)<br />

Kherkutia<br />

Suti<br />

Haldibari<br />

Subansiri<br />

44.23 km<br />

Kamalabari<br />

20.13 km<br />

M A J U L I<br />

Dakhinpat<br />

Threat to<br />

JORHAT<br />

Serious<br />

erosion zone


EROSION OF MAJULI ISLAND AREA<br />

9.44%LOSS OF AREA<br />

DUE TO EROSION


Jia Bhareli<br />

Agnigarh Hills<br />

Gabharu<br />

Tezpur<br />

10.6 km<br />

2.7 km<br />

Koliabor Area<br />

Rock<br />

Outcrops<br />

1.2 km<br />

Silghat<br />

Kamakhya Hill<br />

Kaliabhomora<br />

Bridge<br />

Kolong<br />

21 km<br />

Radarsat satellite image near Tezpur, 2002


View <strong>of</strong> narrowest width 1.2 km <strong>of</strong> Bramhaputra at Guwahati


Barpeta<br />

Sualkuchi<br />

Nagarbera<br />

18.13 km<br />

Hatimura<br />

Hill<br />

1.20 km<br />

Chimpa<br />

Palasbari<br />

Dakhoa<br />

Hills<br />

Saraighat<br />

Bridge<br />

Gumi<br />

35.687 km<br />

IRS 1D LISS III satellite image D/S <strong>of</strong> Guwahati


Beki<br />

Manas<br />

15.67 km<br />

IRS 1D LISS III satellite image U/S Pancharatna


RADARSAT SATELLITE PLAN FORM NEAR DHUBRI 2002<br />

DHUBRI<br />

DHUBRI<br />

17.30 km<br />

PHULBARI<br />

Avulsion <strong>of</strong> Jinjiram<br />

Year 1990


RIVER CHANGES AT KEY POINTS FROM<br />

SATELLITE IMAGE (1990-2002)<br />

River flow area<br />

increased by<br />

Mean width change<br />

Overall migration<br />

Bank area lost to<br />

erosion<br />

12.10%<br />

7.99 km to 8.94<br />

km<br />

0.47(north)<br />

0.48 (south)<br />

20 sq.km/year


SOME COST EFFECTIVE SOLUTIONS<br />

<br />

Management & development <strong>of</strong> watershed<br />

areas to arrest soil erosion & reduce surface<br />

run-<strong>of</strong>f volume


PRESENT APPROACH OF RIVER<br />

MANAGEMENT<br />

Land spur Concept<br />

Efficacious in Dibrugarh,Gumi- Palasbari<br />

Fails in the event <strong>of</strong> frontal river attack as in Gumi<br />

Costly due to requirement <strong>of</strong> low Arc/Chord ratio<br />

High maintenance


EMBANKMENT SYSTEM<br />

Efficacious as palliative measure<br />

Progressive morphological changes requires<br />

recurring raising <strong>of</strong> embankment height<br />

Regular occurrence <strong>of</strong> breaches<br />

High maintenance<br />

Porcupine<br />

Very effective in relatively shallower channels<br />

to induce siltation


Porcupine<br />

Porcupine


Bank Revetment<br />

Efficacious but very costly<br />

Difficulties in apron laying in deeper channels<br />

<br />

<br />

Emergency Temporary Measures<br />

Bamboo Crib<br />

Leat Fencing<br />

Catalyst for channel closure


BANDALLING<br />

For navigation during low flows from<br />

December to April – Limited temporary use<br />

CHANNELISATION BY ATTEMPTING<br />

SUBSIDIARY CHANNEL CLOSURE<br />

Bottom Panels :<br />

Deployed in the 1969 –72 period with the<br />

help <strong>of</strong> French experts through ECAFE<br />

(ESCAP)<br />

Out <strong>of</strong> five sites, fairly good results at two<br />

sites reported


DREDGING<br />

Tried out at Gumi site during 1973-75 period by<br />

Assam Flood Control Deptt.<br />

Results not satisfactory due to quick<br />

redeposits


TRIALS ON EXPERIMENTAL METHODS<br />

Submerged Vane<br />

<br />

Board –fencing


SUBMERGED VANE TECHNIQUE


Sediment deposited on vanes after floods in river


Trapezoidal vanes with and without collar<br />

installed in river


BOARD-FENCING


Ecological Responses to Environmental Changes:


(Ref: Dr. Sanchita Boruah & Pr<strong>of</strong>. S. P. Biswas)<br />

Distribution <strong>of</strong> dolphins in relation to the depth <strong>of</strong><br />

the river Brahmaputra<br />

Percentage<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

7m<br />

River depth<br />

Percentage<br />

composition <strong>of</strong><br />

dolphins


Status <strong>of</strong> aquatic habitat<br />

* Extreme fluctuation <strong>of</strong> water level


Status <strong>of</strong> aquatic habitat<br />

* Extreme fluctuation <strong>of</strong> water level


Status <strong>of</strong> aquatic habitat<br />

* Extreme fluctuation <strong>of</strong> water level


* Water cover and aquatic biota<br />

Dolphin


Siltation


Erosion


Erosion


* Raised river beds


* Braided channels


* Siltation <strong>of</strong> channel mouths


* Shrinkage <strong>of</strong> wetlands


(Ref: Post Doctoral Study By Dr. Sanchita Boruah)


(Ref: Post Doctoral Study By Dr. Sanchita Boruah)


(Ref: Post Doctoral Study By Dr. Sanchita Boruah)


(Ref: Post Doctoral Study By Dr. Sanchita Boruah)


Some Salient Findings<br />

Unabated channel widening along with aggradation process <strong>of</strong> the<br />

Brahmaputra river due to bank erosion has gradually reduced the lean<br />

period water depth.<br />

Reduced water depth has deprived the mega fauna like Dolphin, turtle,<br />

etc. <strong>of</strong> the required water cover for sustenance, causing their habitat<br />

shrinkage.<br />

Sporadic bed sedimentation has disturbed the organic matter at the bed<br />

and sides which is part <strong>of</strong> food chain <strong>of</strong> fish.<br />

Intermittent radical channel changes like avulsion has caused higher<br />

velocities with reduced transparency detrimental to aquatic biota.<br />

Blockage <strong>of</strong> feeder channels <strong>of</strong> wetlands due to silting has inhibited<br />

conducive spawing activities <strong>of</strong> fish.<br />

More interdisciplinary research required to evolve solutions to preserve<br />

ecosystem vis-à-vis morphology changes.


Thank You For Listening!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!