09.11.2013 Views

1 The role of the mantle wedge in subduction zone dynamics and ...

1 The role of the mantle wedge in subduction zone dynamics and ...

1 The role of the mantle wedge in subduction zone dynamics and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong> <strong>dynamics</strong> <strong>and</strong> <strong>the</strong>rmal structure<br />

Peter E. van Keken<br />

Department <strong>of</strong> Geological Sciences<br />

University <strong>of</strong> Michigan<br />

425 East University Avenue<br />

Ann Arbor, MI 48109-1063<br />

USA<br />

Phone: 1-734-764-1497<br />

Fax: 1-734-763-4690<br />

keken@umich.edu<br />

Submitted to Earth <strong>and</strong> Planetary Science Letters - Frontiers, A.N. Halliday, editor.<br />

Number <strong>of</strong> words <strong>in</strong> ma<strong>in</strong> text: 4600<br />

Estimated number <strong>of</strong> pr<strong>in</strong>ted pages: 12<br />

1


Abstract<br />

A large amount <strong>of</strong> water is brought <strong>in</strong>to <strong>the</strong> Earth’s <strong>mantle</strong> at <strong>subduction</strong> <strong>zone</strong>s. Upon<br />

<strong>subduction</strong>, water is released from <strong>the</strong> subduct<strong>in</strong>g slab <strong>in</strong> a series <strong>of</strong> metamorphic<br />

reactions <strong>and</strong> <strong>the</strong> flux <strong>in</strong>to <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> modifies its chemical <strong>and</strong> physical<br />

properties, by hydration <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> with associated weaken<strong>in</strong>g, flux melt<strong>in</strong>g<br />

<strong>and</strong> changes <strong>in</strong> <strong>the</strong> <strong>dynamics</strong> <strong>and</strong> <strong>the</strong>rmal structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s. Water guides <strong>the</strong><br />

formation <strong>of</strong> volcanoes, earthquakes, cont<strong>in</strong>ent formation <strong>and</strong> <strong>the</strong> long-term chemical<br />

evolution <strong>of</strong> <strong>the</strong> Earth’s <strong>mantle</strong>. Recent observational advances <strong>in</strong>clude <strong>the</strong> better<br />

documentation <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> caus<strong>in</strong>g melt<strong>in</strong>g from m<strong>in</strong>or <strong>and</strong> trace elements <strong>in</strong><br />

arc lavas, improved structure <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> derived from seismic tomography, <strong>and</strong><br />

documentation <strong>of</strong> hydration <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> from converted phases. High pressure<br />

experiments allow for a quantification <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water on seismic velocities <strong>and</strong><br />

attenuation <strong>and</strong> rheological changes, which provide essential <strong>in</strong>put <strong>in</strong>to models <strong>of</strong><br />

<strong>subduction</strong> <strong>zone</strong>s. Computational models provide additional evidence for <strong>the</strong> importance<br />

<strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>dynamics</strong> <strong>and</strong> <strong>the</strong> need for rheological<br />

weaken<strong>in</strong>g by hydration.<br />

2


Introduction<br />

Subduction <strong>zone</strong>s are <strong>the</strong> dom<strong>in</strong>ant tectonic features <strong>of</strong> <strong>the</strong> Earth. <strong>The</strong>y form <strong>the</strong> location<br />

<strong>of</strong> <strong>the</strong> major underthrust<strong>in</strong>g earthquakes, explosive arc volcanism <strong>and</strong> are <strong>the</strong> only sites <strong>of</strong><br />

deep earthquakes <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong>. <strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>in</strong> <strong>the</strong> plate tectonic<br />

framework is reasonably well understood from <strong>the</strong> near-surface observations (Figure 1).<br />

Pressure-release melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> Earth’s <strong>mantle</strong> at mid-oceanic ridges causes a<br />

differentiation <strong>in</strong>to a basaltic crust overly<strong>in</strong>g depleted peridotite. Interaction with<br />

seawater by hydro<strong>the</strong>rmal circulation, potentially aided by deep fractures, <strong>and</strong> deposition<br />

<strong>of</strong> sediments derived from biogenic activity <strong>in</strong> <strong>the</strong> oceans <strong>and</strong> from cont<strong>in</strong>ental erosion<br />

add to <strong>the</strong> chemical diversity. While <strong>the</strong> mid-oceanic ridges are generally considered<br />

passive features, caused by <strong>the</strong> pull-apart <strong>of</strong> <strong>the</strong> surround<strong>in</strong>g oceanic lithosphere,<br />

<strong>subduction</strong> <strong>zone</strong>s form <strong>the</strong> ma<strong>in</strong> driv<strong>in</strong>g force for plate tectonics, through <strong>the</strong> s<strong>in</strong>k<strong>in</strong>g<br />

under its own weight <strong>of</strong> <strong>the</strong> old <strong>and</strong> <strong>the</strong>rmally contracted lithosphere. <strong>The</strong> deformation is<br />

accommodated by bend<strong>in</strong>g <strong>of</strong> <strong>the</strong> oceanic lithosphere <strong>and</strong> decoupl<strong>in</strong>g between subduct<strong>in</strong>g<br />

slab <strong>and</strong> overrid<strong>in</strong>g plate by large underthrust<strong>in</strong>g earthquakes <strong>in</strong> <strong>the</strong> seismogenic <strong>zone</strong> to<br />

a depth <strong>of</strong> about 40 km. Below this depth earthquakes occur with<strong>in</strong> <strong>the</strong> slab, ra<strong>the</strong>r than at<br />

<strong>the</strong> slab-<strong>mantle</strong> <strong>in</strong>terface. <strong>The</strong> Wadati-Beni<strong>of</strong>f <strong>zone</strong>s <strong>of</strong> earthquake seismicity are<br />

generally planar features follow<strong>in</strong>g <strong>the</strong> descent <strong>of</strong> <strong>the</strong> slab, but <strong>in</strong> some cases double<br />

Beni<strong>of</strong>f <strong>zone</strong>s occur, <strong>in</strong> which a second plane <strong>of</strong> seismicity is observed at a depth <strong>of</strong> 20-<br />

50 km below <strong>the</strong> first plane. Down-dip from <strong>the</strong> seismogenic <strong>zone</strong> <strong>the</strong> slab draws <strong>the</strong><br />

overly<strong>in</strong>g <strong>mantle</strong> down by viscous coupl<strong>in</strong>g, which <strong>in</strong> turn draws <strong>in</strong> <strong>mantle</strong> from below<br />

<strong>the</strong> overrid<strong>in</strong>g plate. This <strong>zone</strong> <strong>of</strong> viscous deformation between <strong>the</strong> descend<strong>in</strong>g slab <strong>and</strong><br />

rigid portion <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate def<strong>in</strong>es <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>.<br />

In addition to <strong>the</strong>ir dynamic <strong>and</strong> tectonic importance, <strong>subduction</strong> <strong>zone</strong>s have a<br />

crucial <strong>role</strong> <strong>in</strong> <strong>the</strong> chemical evolution <strong>of</strong> <strong>the</strong> Earth. Upon <strong>subduction</strong> <strong>the</strong> oceanic<br />

lithosphere encounters higher temperature <strong>and</strong> pressure, caus<strong>in</strong>g dehydration <strong>of</strong><br />

sediments <strong>and</strong> oceanic crust through a variety <strong>of</strong> metamorphic reactions. <strong>The</strong> flux <strong>of</strong><br />

water <strong>in</strong>to <strong>the</strong> overly<strong>in</strong>g hot <strong>mantle</strong> <strong>wedge</strong> causes melt<strong>in</strong>g by lower<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g<br />

temperature <strong>of</strong> peridotite. Partial melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> subducted sediments <strong>and</strong> oceanic crust<br />

<strong>and</strong> pressure-release melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> overly<strong>in</strong>g <strong>mantle</strong> also contribute to <strong>the</strong> magmatism,<br />

which is responsible for arc volcanism <strong>and</strong> for <strong>the</strong> modification <strong>and</strong> formation <strong>of</strong> <strong>the</strong><br />

cont<strong>in</strong>ental crust. <strong>The</strong> deep <strong>subduction</strong> <strong>of</strong> <strong>the</strong> oceanic lithosphere is <strong>the</strong> major <strong>in</strong>put <strong>of</strong><br />

differentiated material <strong>in</strong>to <strong>the</strong> Earth’s <strong>mantle</strong>. <strong>The</strong> recycl<strong>in</strong>g <strong>of</strong> oceanic crust expla<strong>in</strong>s <strong>in</strong><br />

part <strong>the</strong> observed chemical heterogeneity between basalts erupted at mid-oceanic ridges<br />

<strong>and</strong> those seen at hot spot isl<strong>and</strong>s.<br />

In this review I will discuss recent developments <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>, focus<strong>in</strong>g <strong>in</strong> particular on <strong>the</strong> <strong>role</strong> <strong>of</strong><br />

water <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> physical <strong>and</strong> chemical structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s.<br />

Water <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s<br />

Large amounts <strong>of</strong> water are carried <strong>in</strong>to <strong>the</strong> Earth upon <strong>subduction</strong>, both <strong>in</strong> <strong>the</strong> form <strong>of</strong><br />

free water <strong>in</strong> sediments <strong>and</strong> oceanic crust <strong>and</strong> with<strong>in</strong> hydrous m<strong>in</strong>erals. <strong>The</strong> release <strong>of</strong><br />

this water is thought to take place by near cont<strong>in</strong>uous dehydration reactions from <strong>the</strong><br />

3


subduct<strong>in</strong>g oceanic crust <strong>and</strong> sediments <strong>in</strong> a near cont<strong>in</strong>uous fashion to a depth <strong>of</strong> at least<br />

200 km [1]. However, it is not clear how this water is transported to <strong>the</strong> volcanic front<br />

(e.g., [2]). <strong>The</strong> water liberated to <strong>the</strong> overly<strong>in</strong>g <strong>mantle</strong> modifies <strong>the</strong> constitution <strong>and</strong><br />

<strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>and</strong> has an important <strong>role</strong> <strong>in</strong> generat<strong>in</strong>g arc volcanism [3].<br />

<strong>The</strong> dehydration reactions have been also considered as an important c<strong>and</strong>idate to expla<strong>in</strong><br />

<strong>in</strong>termediate depth earthquakes <strong>in</strong> <strong>the</strong> slab [4,5]. <strong>The</strong> dehydration reactions <strong>and</strong> processes<br />

lead<strong>in</strong>g to melt<strong>in</strong>g <strong>and</strong> earthquake formation are strongly dependent on pressure <strong>and</strong><br />

temperature. <strong>The</strong>se are governed by <strong>the</strong> constitution <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> subduct<strong>in</strong>g slab<br />

<strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>, which are strongly sensitive to temperature, composition <strong>and</strong><br />

rheology. <strong>The</strong>se <strong>in</strong> turn are strongly dependent on temperature <strong>and</strong> water content.<br />

<strong>The</strong> state <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>: observational constra<strong>in</strong>ts<br />

Several observational approaches have been used to better underst<strong>and</strong> <strong>the</strong> <strong>dynamics</strong> <strong>and</strong><br />

<strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> (Figure 2):<br />

Input <strong>in</strong>to <strong>the</strong> <strong>subduction</strong> <strong>zone</strong><br />

<strong>The</strong> hydration <strong>of</strong> <strong>the</strong> oceanic crust, <strong>mantle</strong> <strong>and</strong> overly<strong>in</strong>g sediments determ<strong>in</strong>es <strong>the</strong> flux <strong>of</strong><br />

water <strong>in</strong>to <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> [6]. It is <strong>the</strong>refore essential to underst<strong>and</strong> <strong>the</strong> chemical<br />

composition <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g sediments [7], <strong>the</strong> potential for hydration <strong>of</strong> <strong>the</strong> oceanic<br />

crust <strong>and</strong> uppermost <strong>mantle</strong> through hydro<strong>the</strong>rmal circulation <strong>and</strong> deep fractures [8,9]<br />

<strong>and</strong> shallow processes that modify <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>in</strong>put such as erosion along <strong>the</strong><br />

marg<strong>in</strong> <strong>and</strong> <strong>the</strong> formation <strong>of</strong> <strong>the</strong> accretionary prism (e.g., [10,11]).<br />

Plate k<strong>in</strong>ematics <strong>and</strong> paleogeography<br />

<strong>The</strong> age <strong>and</strong> speed <strong>of</strong> <strong>the</strong> <strong>subduction</strong> slab provides major controls on <strong>the</strong> <strong>the</strong>rmal structure<br />

<strong>of</strong> <strong>the</strong> subduct<strong>in</strong>g slab. Model comparisons <strong>of</strong> young <strong>and</strong> slow vs. old <strong>and</strong> fast subduct<strong>in</strong>g<br />

<strong>zone</strong>s show that slab-<strong>wedge</strong> temperatures at depth can differ by several hundreds <strong>of</strong><br />

degrees (e.g., [12]) with substantial consequences for <strong>the</strong> dehydration reactions <strong>in</strong> <strong>the</strong><br />

slab [13]. <strong>The</strong> temporal evolution <strong>of</strong> slabs <strong>in</strong>cludes <strong>the</strong> effects <strong>of</strong> trench rollback,<br />

cont<strong>in</strong>ent-cont<strong>in</strong>ent formation, trench jumps <strong>and</strong> slab tear<strong>in</strong>g which may have dramatic<br />

consequences on <strong>the</strong> near- <strong>and</strong> <strong>in</strong>-slab <strong>the</strong>rmal structure.<br />

Distribution <strong>of</strong> arc volcanism<br />

<strong>The</strong> geometry <strong>of</strong> <strong>the</strong> volcanic arc <strong>in</strong> many areas can be described by <strong>the</strong> distribution <strong>of</strong><br />

<strong>the</strong> distances between adjacent volcanoes, existence <strong>of</strong> volcanic gaps, <strong>and</strong> <strong>the</strong> possible<br />

existence <strong>of</strong> double arc cha<strong>in</strong>s (see [14], <strong>and</strong> references <strong>the</strong>re<strong>in</strong>). In addition, <strong>the</strong> depth to<br />

<strong>the</strong> Beni<strong>of</strong>f <strong>zone</strong> below volcanic arcs is typically around 100-125 km [3]. <strong>The</strong>se<br />

geometrical relationships provide important constra<strong>in</strong>ts on <strong>the</strong> pathways <strong>of</strong> fluid <strong>and</strong> melt<br />

migration from <strong>the</strong> slab to <strong>the</strong> volcanic arc.<br />

Composition <strong>of</strong> arc lavas<br />

Chemical analyses <strong>of</strong> arc lavas provide quantitative estimates for <strong>the</strong> temperature <strong>and</strong><br />

pressure conditions <strong>and</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s. Glass <strong>in</strong>clusions <strong>in</strong> mafic<br />

arc lavas exhibit a wide range <strong>in</strong> water contents [15,16] demonstrat<strong>in</strong>g <strong>the</strong> importance <strong>of</strong><br />

water assisted ‘flux’ melt<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>wedge</strong> [3] as well as <strong>the</strong> presence <strong>of</strong> dry<br />

4


decompression melt<strong>in</strong>g <strong>in</strong> some arcs [17]. <strong>The</strong> enrichment <strong>of</strong> large ion lithophile<br />

elements (e.g., Rb, K, Cs) <strong>and</strong> light rare earth elements (La, Ce, Nd) compared to midoceanic<br />

ridge basalts also demonstrates <strong>the</strong> importance <strong>of</strong> slab-derived hydrous fluids <strong>in</strong><br />

generat<strong>in</strong>g many arc lavas [18]. Equilibration temperatures <strong>of</strong> basaltic magmas provide<br />

constra<strong>in</strong>ts on pressure <strong>and</strong> temperature conditions <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> demonstrat<strong>in</strong>g,<br />

for example, hot conditions (T=1300-1450 °C) at pressures correspond<strong>in</strong>g to <strong>the</strong> quite<br />

shallow depth <strong>of</strong> 36-66 km <strong>in</strong> <strong>the</strong> Cascades [19]. Arc lavas conta<strong>in</strong> specific trace<br />

elements, such as B, Be, Th, <strong>and</strong> Pb, that are thought to derive from <strong>the</strong> slab. Elements<br />

such as B can be transported easily <strong>in</strong> aqueous solutions, but <strong>the</strong> efficient recycl<strong>in</strong>g <strong>of</strong> Be<br />

<strong>and</strong> Th from subduct<strong>in</strong>g sediments [20] appears to require sediment melt<strong>in</strong>g at<br />

temperatures <strong>in</strong> excess <strong>of</strong> 700 °C [21]. High temperatures at <strong>the</strong> slab <strong>wedge</strong> <strong>in</strong>terface are<br />

also necessary for <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> basalt or gabbro as <strong>in</strong>ferred from high Mg <strong>and</strong>esites [22,<br />

23] although this is generally limited to arcs that are formed by <strong>the</strong> slow <strong>subduction</strong> <strong>of</strong><br />

young oceanic lithosphere.<br />

Seismic studies<br />

<strong>The</strong> high seismicity <strong>of</strong> most <strong>subduction</strong> <strong>zone</strong>s provides ample data for high resolution<br />

seismic tomography which allows for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> spatial structure <strong>of</strong> seismic P (v p )<br />

<strong>and</strong> S wave velocities (v s ) <strong>and</strong> attenuation (Q -1 ). Reflection <strong>and</strong> refraction studies make it<br />

possible to <strong>in</strong>clude <strong>the</strong> location <strong>of</strong> boundaries with high velocity contrasts, such as <strong>the</strong><br />

slab-<strong>wedge</strong> <strong>in</strong>terface <strong>and</strong> <strong>the</strong> Moho <strong>and</strong> Conrad discont<strong>in</strong>uities, which greatly improves<br />

<strong>the</strong> quality <strong>of</strong> <strong>the</strong> tomographic <strong>in</strong>version (Figure 3) [24]. In most arcs, <strong>the</strong> seismic<br />

structure <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> is characterized by an extensive <strong>zone</strong> <strong>of</strong> low seismic<br />

velocity that connects <strong>the</strong> plate-<strong>wedge</strong> <strong>in</strong>terface between 150 <strong>and</strong> 200 km depth to <strong>the</strong><br />

volcanic front or back arc bas<strong>in</strong>s [25-30] although <strong>in</strong> some cases, such as <strong>in</strong> <strong>the</strong> Bolivian<br />

Andes, <strong>the</strong> velocity <strong>and</strong> Q anomalies <strong>in</strong> <strong>the</strong> <strong>wedge</strong> are much reduced [31]. Mapp<strong>in</strong>g<br />

attenuation is more complicated due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> geometrical effects on <strong>the</strong><br />

amplitude <strong>of</strong> seismic waves [32] but common observations <strong>of</strong> Q <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s<br />

po<strong>in</strong>t to high attenuation below <strong>the</strong> volcanic front [33,34] which are generally <strong>in</strong> good<br />

agreement with regions <strong>of</strong> low seismic velocities [35,36].<br />

<strong>The</strong> local conditions at <strong>the</strong> slab-<strong>wedge</strong> <strong>in</strong>terface can be <strong>in</strong>vestigated <strong>in</strong> detail us<strong>in</strong>g<br />

conversions <strong>of</strong> seismic phases <strong>in</strong> comb<strong>in</strong>ation with reflection <strong>and</strong> refraction seismics.<br />

<strong>The</strong>se tools can aid <strong>in</strong> mapp<strong>in</strong>g out <strong>the</strong> high-resolution structure <strong>of</strong> <strong>the</strong> crust <strong>of</strong> <strong>the</strong><br />

subduct<strong>in</strong>g <strong>and</strong> overrid<strong>in</strong>g plate. P-to-S conversions can be used to detect <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

slab <strong>in</strong> many occasions [37]. In some <strong>in</strong>stances complex conversions are observed that<br />

can be expla<strong>in</strong>ed by a th<strong>in</strong> (10 km) anisotropic layer at <strong>the</strong> top <strong>of</strong> <strong>the</strong> slab, which could be<br />

evidence for <strong>the</strong> presence <strong>of</strong> a shear <strong>zone</strong> [38]. Converted phases also <strong>in</strong>dicate <strong>the</strong><br />

presence <strong>of</strong> hydrated oceanic crust to a depth <strong>of</strong> 250 km below <strong>subduction</strong> <strong>zone</strong>s <strong>in</strong> <strong>the</strong><br />

NE Pacific, suggest<strong>in</strong>g that dehydration <strong>of</strong> <strong>the</strong> slab is not complete upon fast <strong>subduction</strong><br />

<strong>of</strong> old slabs [39,40]. <strong>The</strong> absence <strong>of</strong> a Moho <strong>in</strong> <strong>the</strong> tip <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> under Central<br />

Oregon, as seen <strong>in</strong> studies <strong>of</strong> teleseismic phases [41] <strong>and</strong> confirmed by reflection<br />

seismics [42] suggests wide spread serpent<strong>in</strong>ization <strong>of</strong> <strong>the</strong> forearc <strong>mantle</strong>. Similar<br />

conclusions are drawn for <strong>the</strong> Izu-Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> that is characterized by <strong>the</strong><br />

occurrence <strong>of</strong> serpent<strong>in</strong>e seamounts, which may be fed diapirically from <strong>the</strong> <strong>mantle</strong><br />

<strong>wedge</strong> [43]. <strong>The</strong> weaken<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>mantle</strong> associated with <strong>the</strong> serpent<strong>in</strong>ization provides<br />

lubrication between <strong>the</strong> slab <strong>and</strong> overrid<strong>in</strong>g plate <strong>and</strong> can <strong>the</strong>refore help expla<strong>in</strong> <strong>the</strong><br />

5


down-dip limit <strong>of</strong> large underthrust<strong>in</strong>g earthquakes <strong>in</strong> Cascadia <strong>and</strong> <strong>the</strong> near-absence <strong>of</strong><br />

large earthquakes at shallow depths <strong>in</strong> Izu-Bon<strong>in</strong>. Serpent<strong>in</strong>ite-aided decoupl<strong>in</strong>g between<br />

slab <strong>and</strong> <strong>wedge</strong> has also been suggested from <strong>the</strong> occurrence <strong>of</strong> exhumed eclogites <strong>in</strong> <strong>the</strong><br />

Himalayas [44].<br />

Observations <strong>of</strong> shear wave splitt<strong>in</strong>g have provided very <strong>in</strong>terest<strong>in</strong>g, though<br />

puzzl<strong>in</strong>g results for seismic anisotropy <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>. Experimental <strong>and</strong><br />

observational evidence suggests that oliv<strong>in</strong>e crystals align with <strong>mantle</strong> flow through <strong>the</strong><br />

development <strong>of</strong> lattice-preferred orientation <strong>and</strong> that <strong>the</strong>refore <strong>the</strong> seismically fast<br />

directions <strong>in</strong> <strong>the</strong> uppermost <strong>mantle</strong> record <strong>the</strong> direction <strong>of</strong> <strong>the</strong> flow (e.g., [45]). For <strong>the</strong><br />

simple configuration sketched <strong>in</strong> Figure 1 we would predict that <strong>the</strong> oliv<strong>in</strong>e crystals align<br />

perpendicular to <strong>the</strong> trench. Although this prediction is borne out <strong>in</strong> a few locations [46-<br />

49], a more common observation is that <strong>the</strong> fast axis is (nearly) parallel to <strong>the</strong> trench [49-<br />

53]. This could be due to oblique convergence, remnant anisotropy or crustal processes,<br />

but an <strong>of</strong>ten-cited explanation is that this represents <strong>the</strong> actual flow direction <strong>in</strong> <strong>the</strong> <strong>wedge</strong><br />

or <strong>the</strong> <strong>mantle</strong> underneath <strong>the</strong> slab. This may be caused by arc-parallel extension <strong>in</strong><br />

compressive back-arcs [54], slab roll-back <strong>and</strong> escape <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g <strong>mantle</strong> as<br />

suggested from observations from <strong>the</strong> Andes [49,50], or <strong>mantle</strong> flow around tears <strong>in</strong> <strong>the</strong><br />

subduct<strong>in</strong>g slab as suggested for Kamchatka [55, 56] <strong>and</strong> Tonga [57,58]. Interest<strong>in</strong>gly,<br />

<strong>zone</strong>s <strong>of</strong> low velocity <strong>and</strong> high attenuation <strong>in</strong> Japan are also highly anisotropic [46]<br />

possibly due to alignment <strong>of</strong> magma filled cracks.<br />

Electromagnetic studies<br />

Techniques us<strong>in</strong>g electromagnetic methods have been used to map high conductivity<br />

areas <strong>in</strong> convergent marg<strong>in</strong>s [59-62] that can be <strong>in</strong>terpreted as regions with high water<br />

<strong>and</strong>/or melt content. In general <strong>the</strong>se studies are limited to depths <strong>of</strong> about 40 km [63]. In<br />

some cases deeper images can be obta<strong>in</strong>ed, such as those <strong>of</strong> <strong>the</strong> fluid rich <strong>zone</strong> <strong>in</strong> or<br />

above <strong>the</strong> Cocos slab to 150 km depth [64] <strong>and</strong> <strong>the</strong> conductor <strong>in</strong> <strong>the</strong> Andean <strong>mantle</strong><br />

<strong>wedge</strong> between 80 <strong>and</strong> 180 km depth, which correlated well with models <strong>of</strong> seismic<br />

attenuation [65].<br />

Heatflow, topography, gravity <strong>and</strong> geoid<br />

<strong>The</strong> heat flow variations across <strong>subduction</strong> <strong>zone</strong>s provide important constra<strong>in</strong>ts on <strong>the</strong><br />

<strong>the</strong>rmal structure. In general <strong>the</strong> heatflow <strong>in</strong> <strong>the</strong> fore arc is low due to <strong>the</strong> <strong>subduction</strong> <strong>of</strong><br />

cold lithosphere, moderately high <strong>in</strong> <strong>the</strong> back arc <strong>and</strong> high <strong>in</strong> <strong>the</strong> volcanic arc (e.g., [66-<br />

68]). In <strong>the</strong> Cascades, <strong>the</strong> steep <strong>in</strong>crease <strong>in</strong> <strong>the</strong> arc correlates strongly with <strong>the</strong> presence <strong>of</strong><br />

volcanoes, hydro<strong>the</strong>rmal fields, <strong>and</strong> <strong>the</strong> presence <strong>of</strong> a pronounced negative gravity<br />

anomaly, which can be expla<strong>in</strong>ed by <strong>the</strong> presence <strong>of</strong> extensive melt<strong>in</strong>g at mid-crustal<br />

depths [67].<br />

<strong>The</strong> geoid <strong>and</strong> topography over <strong>subduction</strong> <strong>zone</strong>s provide additional, if <strong>in</strong>direct,<br />

constra<strong>in</strong>ts on <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> s<strong>in</strong>ce <strong>the</strong>y are sensitive to <strong>the</strong> distribution<br />

<strong>of</strong> buoyancy <strong>and</strong> viscosity <strong>in</strong> <strong>the</strong> Earth’s <strong>in</strong>terior (see [69,70] for recent overviews). In<br />

summary, <strong>the</strong> topography is <strong>in</strong>fluenced by <strong>the</strong> age <strong>of</strong> <strong>the</strong> oceanic lithosphere, crustal<br />

variations <strong>and</strong> <strong>dynamics</strong>, such as <strong>the</strong> s<strong>in</strong>k<strong>in</strong>g <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g <strong>mantle</strong><br />

deformation. At short wavelengths, <strong>the</strong> geoid shows a m<strong>in</strong>imum that corresponds with <strong>the</strong><br />

deep trench topography, but <strong>in</strong> most <strong>subduction</strong> <strong>zone</strong>s a positive anomaly is seen above<br />

6


<strong>the</strong> arc side. This can be attributed to resistance to slab <strong>subduction</strong> <strong>in</strong> <strong>the</strong> deep <strong>mantle</strong>,<br />

most likely due to an <strong>in</strong>crease <strong>of</strong> viscosity at <strong>the</strong> base <strong>of</strong> <strong>the</strong> <strong>mantle</strong> transition <strong>zone</strong>.<br />

Experimental approaches<br />

<strong>The</strong> <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> observations is greatly aided by experimental studies <strong>of</strong> Earth<br />

materials under high temperature <strong>and</strong> pressure. For example, melt<strong>in</strong>g experiments<br />

provide temperature <strong>and</strong> pressure constra<strong>in</strong>ts on <strong>the</strong> formation <strong>of</strong> melts that are observed<br />

with specific major or <strong>in</strong>compatible trace element compositions [18, 21, 71]. Predictions<br />

for <strong>the</strong> m<strong>in</strong>eralogy <strong>and</strong> related seismic properties based on laboratory measurements <strong>and</strong><br />

<strong>the</strong>oretical models allow an <strong>in</strong>terpretation <strong>of</strong> seismically observed velocity variations.<br />

Deformation experiments allow for <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> development <strong>of</strong> lattice-preferred<br />

orientation <strong>and</strong> provide <strong>the</strong> basis for <strong>the</strong> rheological description <strong>of</strong> dynamical models.<br />

Of particular <strong>in</strong>terest is <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> modify<strong>in</strong>g <strong>the</strong> physical properties <strong>of</strong><br />

<strong>mantle</strong> m<strong>in</strong>erals. Many hydrous m<strong>in</strong>erals significantly reduce friction coefficients [72]<br />

<strong>and</strong> <strong>subduction</strong> <strong>of</strong> clay m<strong>in</strong>erals can provide decoupl<strong>in</strong>g between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong>, at<br />

least <strong>in</strong> <strong>the</strong> depth <strong>and</strong> temperature ranges <strong>in</strong> which <strong>the</strong>se m<strong>in</strong>erals are stable.<br />

Temperatures are too high <strong>in</strong> <strong>the</strong> majority <strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>, but<br />

significant amounts <strong>of</strong> water can be dissolved <strong>in</strong> nom<strong>in</strong>ally anhydrous m<strong>in</strong>erals such as<br />

oliv<strong>in</strong>e [73,74]. <strong>The</strong> associated hydrogen-related defects <strong>and</strong> enhanced gra<strong>in</strong> boundary<br />

processes <strong>in</strong> m<strong>in</strong>erals cause important changes <strong>in</strong> electrical, seismic, <strong>and</strong> slow creep<br />

properties [75-78], which allows for <strong>the</strong> prospect<strong>in</strong>g <strong>of</strong> water <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong> us<strong>in</strong>g<br />

various observational techniques. A recent overview <strong>of</strong> this approach is provided by<br />

Karato [79] who observes that: 1) major element chemistry strongly <strong>in</strong>fluences seismic<br />

velocities (v p , v s , <strong>and</strong> v p /v s ) through <strong>the</strong> elastic properties; 2) attenuation <strong>and</strong> plastic<br />

deformation are coupled <strong>and</strong> both are strongly <strong>in</strong>fluenced by <strong>the</strong> concentration <strong>of</strong> water<br />

as has been described quantitatively by high pressure experiments [80]; 3) high water<br />

content <strong>of</strong> oliv<strong>in</strong>e can change <strong>the</strong> dom<strong>in</strong>ant slip system <strong>and</strong> substantially change <strong>the</strong><br />

formation <strong>of</strong> lattice-preferred orientation compared to dry oliv<strong>in</strong>e [78]; 4) <strong>the</strong> effects <strong>of</strong><br />

water <strong>and</strong> partial melt on seismic velocities are similar, but <strong>the</strong> effect <strong>of</strong> water on<br />

attenuation is much stronger than that <strong>of</strong> partial melt [81-83]; 5) it is unlikely that a<br />

sufficiently high melt fraction can be susta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> m<strong>in</strong>erals [84] <strong>and</strong> partial melt<strong>in</strong>g is<br />

not likely to strongly <strong>in</strong>fluence seismic velocities. Application <strong>of</strong> <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs to <strong>the</strong><br />

seismic observations confirm <strong>the</strong> low melt fraction <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>and</strong> suggest <strong>the</strong><br />

presence <strong>of</strong> high water concentrations, <strong>in</strong> excess <strong>of</strong> 1000 ppm H/Si [79]. In addition it is<br />

predicted that <strong>the</strong> change <strong>in</strong> dom<strong>in</strong>ant slip system <strong>in</strong> wet oliv<strong>in</strong>e causes trench-parallel<br />

SKS splitt<strong>in</strong>g, which is similar to that observed <strong>in</strong> many <strong>subduction</strong> <strong>zone</strong>s [78].<br />

<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> water on <strong>the</strong> seismic properties <strong>of</strong> <strong>mantle</strong> m<strong>in</strong>erals can also be<br />

<strong>in</strong>vestigated us<strong>in</strong>g phase diagrams <strong>of</strong> <strong>the</strong> major rock compositions computed from<br />

<strong>the</strong>oretical <strong>and</strong> experimental <strong>the</strong>rmo<strong>dynamics</strong> (e.g., [13, 85]). Application <strong>of</strong> <strong>the</strong>se<br />

techniques demonstrates, among o<strong>the</strong>r f<strong>in</strong>d<strong>in</strong>gs, that <strong>the</strong> lower oceanic crust worldwide is<br />

partially hydrated [13], that <strong>the</strong> high v p /v s ratio obta<strong>in</strong>ed from seismic tomography can be<br />

expla<strong>in</strong>ed by up to 20% alteration <strong>of</strong> <strong>the</strong> <strong>wedge</strong> to stable hydrous m<strong>in</strong>erals such as<br />

serpent<strong>in</strong>ite [13] <strong>and</strong> that <strong>the</strong> existence <strong>of</strong> a th<strong>in</strong> low velocity layer <strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g slab<br />

at a depth <strong>of</strong> 100-250 km can be expla<strong>in</strong>ed by <strong>the</strong> seismic properties <strong>of</strong> lawsonite eclogite<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> presence <strong>of</strong> hydrated m<strong>in</strong>erals at those depths [85]. In general, <strong>the</strong> high<br />

7


v p /v s ratio has been used to confirm <strong>the</strong> presence <strong>of</strong> water or fluid filled cracks<br />

[43,86,87].<br />

At <strong>the</strong> high pressures <strong>and</strong> temperatures below 50 km depth most m<strong>in</strong>erals are<br />

predicted to deform plastically <strong>and</strong> it is difficult to expla<strong>in</strong> earthquakes below that depth<br />

by brittle failure. In recent years it has become clear that dehydration <strong>of</strong> hydrated<br />

m<strong>in</strong>erals can cause embrittlement <strong>of</strong> <strong>the</strong> m<strong>in</strong>erals, which would allow a source<br />

mechanism for <strong>the</strong> generation <strong>of</strong> <strong>in</strong>termediate depth earthquakes [4]. <strong>The</strong> observation <strong>of</strong><br />

acoustic emissions <strong>of</strong> dur<strong>in</strong>g <strong>the</strong> dehydration <strong>of</strong> serpent<strong>in</strong>e under realistic slab conditions<br />

[88] streng<strong>the</strong>ns this suggestion. Similarly, <strong>the</strong> correlation <strong>of</strong> large earthquakes with low<br />

velocity <strong>zone</strong>s <strong>in</strong> Japan [89] <strong>and</strong> <strong>the</strong> presence <strong>of</strong> earthquake clusters <strong>in</strong> low Q areas [34]<br />

are <strong>in</strong>dicative <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> earthquake generation. Dehydration embrittlement<br />

has also been suggested as <strong>the</strong> source for double Beni<strong>of</strong>f <strong>zone</strong>s. For example, Peacock [5]<br />

suggests that <strong>the</strong> upper plane <strong>of</strong> seismicity can be expla<strong>in</strong>ed by dehydration <strong>of</strong> basalt<br />

dur<strong>in</strong>g <strong>the</strong> transformation to eclogite while <strong>the</strong> lower plane <strong>of</strong> seismicity is caused by<br />

serpent<strong>in</strong>ite dehydration. <strong>The</strong> pressure <strong>and</strong> temperature conditions that are predicted at<br />

<strong>the</strong> locations <strong>of</strong> <strong>the</strong> lower plan earthquakes are consistent with this proposal [5, 90].<br />

Subduction <strong>zone</strong> model<strong>in</strong>g<br />

Computational model<strong>in</strong>g <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> provide<br />

quantitative tests us<strong>in</strong>g <strong>the</strong> fundamental equations govern<strong>in</strong>g <strong>the</strong> conservation <strong>of</strong> mass,<br />

momentum <strong>and</strong> heat. In addition, attempts have been made to simulate <strong>the</strong> <strong>dynamics</strong> <strong>of</strong><br />

<strong>subduction</strong> <strong>zone</strong>s us<strong>in</strong>g analogue models <strong>of</strong> viscous flow <strong>in</strong> laboratory tanks. In<br />

comb<strong>in</strong>ation with <strong>the</strong> observational <strong>and</strong> experimental approaches, <strong>the</strong>se model<strong>in</strong>g studies<br />

provide important quantitative constra<strong>in</strong>ts to conceptual ideas (as expressed for example<br />

by <strong>the</strong> cartoons sketched <strong>in</strong> Figure 1). Models for <strong>subduction</strong> <strong>zone</strong>s are based on a<br />

description <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> ma<strong>in</strong> driv<strong>in</strong>g force (<strong>the</strong> negative buoyancy <strong>of</strong><br />

<strong>the</strong> subduct<strong>in</strong>g slab) <strong>and</strong> <strong>the</strong> rheological response <strong>of</strong> <strong>the</strong> slab, overrid<strong>in</strong>g plate <strong>and</strong><br />

underly<strong>in</strong>g <strong>mantle</strong>.<br />

<strong>The</strong> <strong>in</strong>corporation <strong>of</strong> <strong>the</strong>se physical processes <strong>in</strong> computational models is part <strong>of</strong><br />

<strong>the</strong> development towards a full underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>dynamics</strong> <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s,<br />

which is currently <strong>in</strong>complete. Major obstacles exists <strong>in</strong> <strong>the</strong> road to full self-consistent<br />

models <strong>of</strong> <strong>subduction</strong>, particularly because our lack <strong>of</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong><br />

rheology <strong>and</strong> <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> physical processes at short spatial <strong>and</strong> temporal scales<br />

with those <strong>of</strong> <strong>in</strong>terest at geological scales, although substantial progress has been made <strong>in</strong><br />

recent years. See [91] for a recent review <strong>of</strong> <strong>the</strong> approaches that may lead toward <strong>the</strong><br />

<strong>in</strong>tegration <strong>of</strong> plate tectonic processes <strong>in</strong> <strong>mantle</strong> convection models.<br />

<strong>The</strong> cornerflow model for <strong>wedge</strong> <strong>dynamics</strong><br />

As a consequence <strong>of</strong> <strong>the</strong> <strong>in</strong>complete dynamical description <strong>of</strong> <strong>subduction</strong> many<br />

researchers have focused on models that describe <strong>the</strong> slab k<strong>in</strong>ematically <strong>and</strong> focus on <strong>the</strong><br />

<strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>wedge</strong> <strong>and</strong> geometry <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate. In some cases analytical<br />

solutions describ<strong>in</strong>g <strong>the</strong> temperature distribution <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s can be found after a<br />

number <strong>of</strong> simplify<strong>in</strong>g assumptions (e.g., [92-94]). Due to <strong>the</strong> growth <strong>of</strong> computational<br />

8


esources, it has become common to use numerical methods, such as f<strong>in</strong>ite element or<br />

f<strong>in</strong>ite difference methods, which allow for accurate <strong>and</strong> consistent solution <strong>of</strong> <strong>the</strong> heat<br />

equation <strong>and</strong> solution <strong>of</strong> <strong>the</strong> dynamical equations <strong>in</strong> at least <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>.<br />

It is a common to associate <strong>mantle</strong> <strong>wedge</strong> <strong>dynamics</strong> with <strong>the</strong> cornerflow model as<br />

sketched <strong>in</strong> Figure 1. <strong>The</strong> ma<strong>in</strong> features <strong>of</strong> this model are <strong>the</strong> viscous coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

subduct<strong>in</strong>g plate below <strong>the</strong> seismogenic <strong>zone</strong>, <strong>the</strong> associated advection <strong>of</strong> <strong>mantle</strong> <strong>wedge</strong><br />

material to greater depth, <strong>and</strong> <strong>the</strong> result<strong>in</strong>g flow <strong>of</strong> <strong>mantle</strong> from under <strong>the</strong> overrid<strong>in</strong>g plate<br />

<strong>in</strong>to <strong>the</strong> corner formed by <strong>the</strong> base <strong>of</strong> <strong>the</strong> lithosphere <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate <strong>and</strong> <strong>the</strong> top <strong>of</strong><br />

<strong>the</strong> slab. If <strong>the</strong> boundaries <strong>of</strong> <strong>the</strong> flow are straight <strong>and</strong> <strong>the</strong> <strong>wedge</strong> flow is isoviscous an<br />

analytical solution exists [95], which has been conveniently exploited <strong>in</strong> various models<br />

<strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure (e.g., [12, 92; See 96 for a review].<br />

<strong>The</strong> isoviscous cornerflow model is conceptually <strong>in</strong>structive, but oversimplified<br />

because <strong>of</strong> its assumptions <strong>of</strong> <strong>the</strong> geometry, driv<strong>in</strong>g forces <strong>and</strong> rheology. <strong>The</strong> sketch <strong>in</strong><br />

Figure 4 <strong>in</strong>dicates a number <strong>of</strong> physical processes that should be taken <strong>in</strong>to account <strong>in</strong><br />

order to develop a better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>wedge</strong> <strong>dynamics</strong>. <strong>The</strong>se <strong>in</strong>clude: a) slab<br />

parameters such as geometry, age <strong>and</strong> speed; b) slab evolution, with particular emphasis<br />

on temporal variations <strong>in</strong> slab age <strong>and</strong> speed, trench migration <strong>and</strong> 3D effects such as slab<br />

tear<strong>in</strong>g <strong>and</strong> <strong>in</strong>flow <strong>of</strong> <strong>mantle</strong> material around slab edges; c) <strong>the</strong> nature <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g<br />

plate, <strong>in</strong> particular <strong>the</strong> rheology <strong>and</strong> buoyancy <strong>of</strong> <strong>the</strong> crust <strong>and</strong> uppermost <strong>mantle</strong>; d) <strong>the</strong><br />

rheology <strong>of</strong> <strong>the</strong> <strong>wedge</strong> which is <strong>in</strong>fluenced by temperature, pressure, stra<strong>in</strong>-rate, <strong>and</strong><br />

composition (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> hydrated m<strong>in</strong>erals, water, <strong>and</strong> melt); e)<br />

buoyancy forces <strong>in</strong> <strong>the</strong> <strong>wedge</strong>, which become important upon sufficient reduction <strong>of</strong><br />

<strong>mantle</strong> <strong>wedge</strong> viscosity.<br />

In recent years, several studies have addressed one or more <strong>of</strong> <strong>the</strong>se issues us<strong>in</strong>g<br />

k<strong>in</strong>ematically driven or fully dynamical models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s. For example, it has<br />

been shown that <strong>the</strong> rheology <strong>of</strong> <strong>the</strong> <strong>wedge</strong> asserts important controls on <strong>the</strong> <strong>the</strong>rmal<br />

structure <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> environment [97-101]. <strong>The</strong> strong temperature<br />

dependence <strong>of</strong> <strong>mantle</strong> silicates causes a dist<strong>in</strong>ct change <strong>in</strong> <strong>the</strong> <strong>mantle</strong> flow pattern<br />

compared to isoviscous calculations. Figure 5 shows <strong>the</strong> <strong>the</strong>rmal structure <strong>of</strong> <strong>the</strong> Izu-<br />

Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> as recalculated from [102] us<strong>in</strong>g <strong>the</strong> high resolution f<strong>in</strong>ite element<br />

approach described <strong>in</strong> [98]. <strong>The</strong> results for an isoviscous <strong>wedge</strong> (figure 5a) show <strong>the</strong><br />

<strong>in</strong>flow <strong>of</strong> hot material from <strong>the</strong> back-arc <strong>in</strong>to <strong>the</strong> tip <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>. <strong>The</strong> effects <strong>of</strong><br />

temperature-dependent viscosity (figure 5b) much enhance this flow <strong>in</strong>to <strong>the</strong> <strong>wedge</strong> tip as<br />

a non-l<strong>in</strong>ear, but logical, consequence <strong>of</strong> reduc<strong>in</strong>g viscosity <strong>in</strong> <strong>the</strong> hot regions. <strong>The</strong> strong<br />

<strong>in</strong>crease <strong>of</strong> <strong>the</strong> temperature at <strong>the</strong> slab-<strong>wedge</strong> <strong>in</strong>terface leads to high temperature<br />

gradients <strong>in</strong> <strong>the</strong> sediment <strong>and</strong> oceanic crust <strong>of</strong> <strong>the</strong> slab. This may expla<strong>in</strong> <strong>the</strong> apparent<br />

conflict between high slab temperatures derived from <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> sediments [21] <strong>and</strong><br />

<strong>the</strong> lower temperature estimates from <strong>the</strong> release <strong>of</strong> B [103] if we assume that <strong>the</strong> boron<br />

is release from dehydration reactions <strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g oceanic crust [98].<br />

<strong>The</strong>se steady-state results show <strong>the</strong> balance between heat advected <strong>in</strong>to <strong>the</strong> <strong>wedge</strong><br />

towards <strong>the</strong> slab <strong>and</strong> <strong>the</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> top <strong>and</strong> slab sides <strong>of</strong> <strong>the</strong> <strong>wedge</strong>. In this model <strong>the</strong><br />

effects <strong>of</strong> <strong>the</strong>rmal buoyancy <strong>in</strong> <strong>the</strong> <strong>wedge</strong> are ignored. Substantial low viscosity regions<br />

may develop because <strong>of</strong> high temperature, high stra<strong>in</strong>-rate, <strong>and</strong> high volatile content, <strong>in</strong><br />

which case <strong>the</strong>rmal buoyancy <strong>and</strong> related time-dependent convection may become<br />

important <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> [101]. <strong>The</strong> dist<strong>in</strong>ct upward component <strong>of</strong> flow towards <strong>the</strong><br />

9


trench side <strong>of</strong> <strong>the</strong> <strong>wedge</strong> could provide a moderate contribution <strong>of</strong> pressure-release<br />

melt<strong>in</strong>g to <strong>the</strong> arc lavas [99].<br />

<strong>The</strong> geometry <strong>of</strong> <strong>the</strong> <strong>wedge</strong> <strong>in</strong> figure 5 is controlled <strong>in</strong> part by fix<strong>in</strong>g <strong>the</strong> depth <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g plate (50 km) <strong>and</strong> decoupl<strong>in</strong>g <strong>the</strong> <strong>in</strong>terface between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> to<br />

a depth <strong>of</strong> 70 km. Both assumptions keep <strong>the</strong> <strong>wedge</strong> flow from ris<strong>in</strong>g to shallower depths<br />

towards <strong>the</strong> trench. If <strong>the</strong> overrid<strong>in</strong>g plate is described <strong>in</strong> a more consistent manner, by<br />

<strong>the</strong> formation <strong>of</strong> <strong>the</strong> cold lithosphere <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, <strong>the</strong> depth <strong>of</strong> decoupl<strong>in</strong>g<br />

between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> becomes dom<strong>in</strong>ant. A logical upper limit to this depth is <strong>the</strong><br />

down-dip extent <strong>of</strong> <strong>the</strong> seismogenic <strong>zone</strong> (typically at <strong>the</strong> Moho around 40 km depth<br />

[104]), which would cause <strong>the</strong> <strong>in</strong>flux <strong>of</strong> hot <strong>mantle</strong> close to <strong>the</strong> Earth’s surface [99, 101].<br />

This has been used to expla<strong>in</strong> <strong>the</strong> presence <strong>of</strong> pressure-release melt<strong>in</strong>g [99] or<br />

components <strong>of</strong> slab melt<strong>in</strong>g <strong>in</strong> arcs overly<strong>in</strong>g old oceanic lithosphere [101]. It should be<br />

noted that this type <strong>of</strong> model require an <strong>of</strong>fset <strong>in</strong> <strong>the</strong> maximum <strong>of</strong> heat flow away from<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> volcanic arc toward <strong>the</strong> trench <strong>and</strong> <strong>the</strong> assumption that <strong>the</strong> observed<br />

high heatflow over <strong>the</strong> volcanic arc is dom<strong>in</strong>ated by conductive, ra<strong>the</strong>r than magmatic<br />

processes [67]. <strong>The</strong> strong <strong>the</strong>rmal erosion that is predicted <strong>in</strong> <strong>the</strong>se models has been used<br />

to suggest that <strong>the</strong> compositional buoyancy <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, ra<strong>the</strong>r than its<br />

rheology, controls <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate [105]. <strong>The</strong> hydration <strong>of</strong> <strong>the</strong><br />

overly<strong>in</strong>g <strong>wedge</strong> provides ano<strong>the</strong>r important mechanism to reduce <strong>the</strong> <strong>the</strong>rmal erosion <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g plate by decoupl<strong>in</strong>g <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> to greater depths [97].<br />

Dynamically it can be shown that <strong>the</strong> decoupl<strong>in</strong>g is required <strong>in</strong> order to have any <strong>the</strong>rmal<br />

erosion <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, s<strong>in</strong>ce o<strong>the</strong>rwise <strong>the</strong> overrid<strong>in</strong>g plate is entra<strong>in</strong>ed <strong>and</strong> <strong>the</strong><br />

subduct<strong>in</strong>g becomes two-sided (e.g., [100]).<br />

Dynamic <strong>subduction</strong> models<br />

In recent years we have also seen a better development <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> models <strong>in</strong><br />

which <strong>the</strong> slab is not k<strong>in</strong>ematically prescribed but s<strong>in</strong>ks dynamically under its own<br />

weight. It is necessary to provide some form <strong>of</strong> decoupl<strong>in</strong>g between subduct<strong>in</strong>g <strong>and</strong><br />

overrid<strong>in</strong>g plate <strong>in</strong> order to allow for one-sided <strong>subduction</strong> to take place. Most recent<br />

work <strong>in</strong>cludes <strong>the</strong> use <strong>of</strong> weak <strong>zone</strong>s [69, 106] or special f<strong>in</strong>ite element formulations that<br />

allow for this decoupl<strong>in</strong>g <strong>in</strong> viscous models [107, 108].<br />

By <strong>the</strong>ir nature, dynamical models allow for <strong>the</strong> <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> trade-<strong>of</strong>f<br />

between driv<strong>in</strong>g <strong>and</strong> resistive forces <strong>and</strong> <strong>the</strong> time-dependent evolution <strong>of</strong> <strong>subduction</strong><br />

<strong>zone</strong>s. For example, models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> <strong>in</strong>itiation [106] suggested that <strong>the</strong> slab<br />

surface temperature reaches a steady state after some 500-600 km <strong>of</strong> <strong>subduction</strong> <strong>and</strong> that<br />

variable viscosity causes <strong>the</strong> stagnation <strong>of</strong> <strong>the</strong> slab <strong>wedge</strong> corner due to <strong>the</strong> cool<strong>in</strong>g from<br />

<strong>the</strong> <strong>in</strong>itial state, although it can be expected that <strong>the</strong> effect <strong>of</strong> volatilization <strong>of</strong> <strong>the</strong> <strong>wedge</strong><br />

will counteract this rheological effect. <strong>The</strong> <strong>subduction</strong> <strong>of</strong> oceanic plateaus provides<br />

additional chemical buoyancy. This may cause flat <strong>subduction</strong>, unless counteracted by<br />

<strong>the</strong> densification <strong>of</strong> <strong>the</strong> oceanic crust upon transformation to eclogite [108]. <strong>The</strong> observed<br />

flat <strong>subduction</strong> <strong>in</strong> for example <strong>the</strong> Andes or Shikoku (Nankai trough) suggest that <strong>the</strong><br />

basalt must rema<strong>in</strong> metastable <strong>in</strong> <strong>the</strong> eclogite stability field, which appears consistent<br />

with <strong>the</strong> seismic observations <strong>in</strong> Japan [109]. A study on <strong>the</strong> relative contribution <strong>of</strong> slab<br />

driv<strong>in</strong>g forces <strong>in</strong> <strong>the</strong> presence <strong>of</strong> trench roll back for start<strong>in</strong>g slabs shows <strong>the</strong> formation <strong>of</strong><br />

an eddy <strong>in</strong> <strong>the</strong> back-arc region which causes shallow slabs to be sucked up to <strong>the</strong><br />

10


overrid<strong>in</strong>g plate [110]. <strong>The</strong>se last few studies strongly suggest that <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> has<br />

to be weak.<br />

In contrast to <strong>the</strong> k<strong>in</strong>ematically driven cornerflow models <strong>the</strong>se dynamic models<br />

allow for <strong>the</strong> calculation <strong>of</strong> dynamic topography, which allows for use <strong>of</strong> <strong>the</strong> observed<br />

topography <strong>and</strong> geoid <strong>in</strong> validat<strong>in</strong>g <strong>the</strong> models [69,70,107,111]. Instantaneous 3D flow<br />

models for <strong>the</strong> Tonga <strong>subduction</strong> <strong>zone</strong> show that <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> has important<br />

consequences for <strong>the</strong> force balance is essential. A substantial viscosity reduction is<br />

necessary to expla<strong>in</strong> <strong>the</strong> gravity <strong>and</strong> geoid [111] as well as <strong>the</strong> observed back-arc<br />

extension, shallow slab compression <strong>and</strong> absence <strong>of</strong> deep back arc bas<strong>in</strong>s [70].<br />

Outlook<br />

In recent years, <strong>the</strong> comb<strong>in</strong>ed use <strong>of</strong> observational, experimental <strong>and</strong> <strong>the</strong>oretical work has<br />

yielded significant advances <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> environment. We<br />

can identify a number <strong>of</strong> key areas <strong>of</strong> future research <strong>in</strong> which <strong>the</strong> <strong>role</strong> <strong>of</strong> water is<br />

particularly important:<br />

(1) Input to <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> through <strong>the</strong> dehydration <strong>of</strong> <strong>the</strong> slab. This <strong>in</strong>cludes<br />

<strong>the</strong> <strong>role</strong> <strong>of</strong> metamorphic reactions <strong>in</strong> generat<strong>in</strong>g seismicity <strong>and</strong> volcanism, <strong>the</strong><br />

quantification <strong>of</strong> volume <strong>of</strong> flux melt<strong>in</strong>g compared to slab or decompression melt<strong>in</strong>g, <strong>and</strong><br />

<strong>the</strong> ability <strong>of</strong> water transport to <strong>the</strong> deep <strong>mantle</strong> [112, 113].<br />

(2) Transport <strong>of</strong> water <strong>and</strong> melt from <strong>the</strong> slab to <strong>the</strong> volcanic front [2]. It is still<br />

largely unknown whe<strong>the</strong>r melt is transported through cracks, <strong>in</strong> diapirs or by hydrological<br />

processes although recent laboratory models <strong>in</strong> conjunction with seismic observations <strong>of</strong><br />

<strong>the</strong> correlation between volcanoes <strong>and</strong> <strong>the</strong> velocity structure <strong>in</strong> <strong>the</strong> shallow <strong>mantle</strong> may<br />

suggest a revival <strong>of</strong> <strong>the</strong> diapiric transport model [14,114,115].<br />

(3) Role <strong>of</strong> water <strong>in</strong> chang<strong>in</strong>g rheological <strong>and</strong> seismological properties. This is<br />

essential for underst<strong>and</strong><strong>in</strong>g how geophysical tools can be used <strong>in</strong> prospect<strong>in</strong>g for water<br />

[79] <strong>and</strong> for improv<strong>in</strong>g dynamical models <strong>of</strong> <strong>subduction</strong>.<br />

(4) Fur<strong>the</strong>r development <strong>of</strong> 3D time-dependent <strong>subduction</strong> <strong>zone</strong> models that<br />

<strong>in</strong>corporate tectonic history. This will allow <strong>the</strong> use <strong>of</strong> more extensive data sets to tests<br />

dynamical hypo<strong>the</strong>sis such as, for example, <strong>the</strong> flow <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>in</strong> response to<br />

<strong>subduction</strong> [116-118].<br />

11


Acknowledgments<br />

This paper benefited greatly from conversations with <strong>and</strong> suggestions by Ge<strong>of</strong>f Abers,<br />

Magali Billen, Tim Grove, Shun Karato, Peter Kelemen, Scott K<strong>in</strong>g, Bill Leeman, Jason<br />

McKenna, Jason Phipps Morgan, Terry Plank, Lars Ruepke, Larry Ruff, Simon Peacock,<br />

Marc Spiegelman, Jeroen van Hunen, <strong>and</strong> Doug Wiens, both with<strong>in</strong> <strong>and</strong> outside <strong>the</strong><br />

context <strong>of</strong> <strong>the</strong> MARGINS workshop on <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>subduction</strong><br />

<strong>zone</strong>s (Ann Arbor, Michigan, October 2002). Magali Billen, Tim Grove, Shun Karato,<br />

Simon Peacock, <strong>and</strong> Jennifer Rill<strong>in</strong>g are thanked for provid<strong>in</strong>g advance copies <strong>of</strong> <strong>the</strong>ir<br />

papers <strong>in</strong> press. This research is supported by National Science Foundation (EAR-<br />

0111459 <strong>and</strong> EAR-0208310).<br />

References<br />

[1] M.W. Schmidt, S. Poli, What causes <strong>the</strong> position <strong>of</strong> <strong>the</strong> volcanic front?<br />

Experimentally based water budgets for dehydrat<strong>in</strong>g slabs <strong>and</strong> consequences for arc<br />

magma generation, Earth Planet. Sci. Lett. 163 (1998) 361-379.<br />

[2] H. Iwamori, Transportation <strong>of</strong> H 2 O <strong>and</strong> melt<strong>in</strong>g <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth Planet.<br />

Sci. Lett. 160 (1998) 65-80.<br />

[3] J. Gill, Orogenic Andesites <strong>and</strong> Plate Tectonics, Spr<strong>in</strong>ger-Verlag, New York (1981)<br />

390 pp.<br />

[4] S. Kirby, E.R. Engdahl, R. Denl<strong>in</strong>ger, Intermediate-depth <strong>in</strong>traslab earthquakes <strong>and</strong><br />

arc volcanism as physicaql expressions <strong>of</strong> crustal <strong>and</strong> uppermost <strong>mantle</strong><br />

metamorphism <strong>in</strong> subduct<strong>in</strong>g slabs (overview), <strong>in</strong>: Subduction, Top to Bottom, G.E.<br />

Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds), Geophysical Monograph 96,<br />

American Geophysical Union, Wash<strong>in</strong>gton DC (1996) 195-214.<br />

[5] S.M. Peacock, Are double seismic <strong>zone</strong>s caused by serpent<strong>in</strong>e dehydration reactions<br />

<strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g oceanic <strong>mantle</strong>? Geology 29 (2001) 299-302.<br />

[6] D.K. Rea, L.J. Ruff, Composition <strong>and</strong> mass flux <strong>of</strong> sediment enter<strong>in</strong>g <strong>the</strong> world’s<br />

<strong>subduction</strong> <strong>zone</strong>s: implications for global sediment budgets, great earthquakes, <strong>and</strong><br />

volcanism, Earth Planet. Sci. Lett. 140 (1996) 1-12.<br />

[7] T. Plank, H. Langmuir, <strong>The</strong> chemical composition <strong>of</strong> subduct<strong>in</strong>g sediment <strong>and</strong> its<br />

consequences for <strong>the</strong> crust <strong>and</strong> <strong>mantle</strong>, Chem. Geol. 145 (1998) 325-394.<br />

[8] H.J.B. Dick et al., A long <strong>in</strong> situ section <strong>of</strong> <strong>the</strong> lower oceanic crust: Results <strong>of</strong> ODP<br />

Leg 176 drill<strong>in</strong>g at <strong>the</strong> Southwest Indian Ridge, Earth Planet. Sci. Lett. 179 (2000)<br />

31-51.<br />

[9] J.C. Alt, D.A.H. Teagle, Hydro<strong>the</strong>rmal alteration <strong>and</strong> fluid fluxes <strong>in</strong> ophiolites <strong>and</strong><br />

oceanic crust, <strong>in</strong> Ophiolites <strong>and</strong> Oceanic Crust: New Insights from Field Studies<br />

<strong>and</strong> Ocean Drill<strong>in</strong>g Program, edited by Y. Dilek et al., Geol. Soc. Amer. Spec.<br />

Paper, 349 (2000) 273-282.<br />

[10] R. Von Huene, D.W. Scholl, Observations at convergent marg<strong>in</strong>s concern<strong>in</strong>g<br />

sediment <strong>subduction</strong>, <strong>subduction</strong> erosion, <strong>and</strong> <strong>the</strong> growth <strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental crust,<br />

Rev. Geophys. 29 (1991) 279-316.<br />

[11] C. Ranero, R. von Huene, Subduction erosion along <strong>the</strong> Middle America convergent<br />

marg<strong>in</strong>, Nature 404 (2000) 748-752.<br />

12


[12] S.M. Peacock, K. Wang, Seismic consequences <strong>of</strong> warm versus cool <strong>subduction</strong><br />

metamorphism: examples from southwest <strong>and</strong> nor<strong>the</strong>ast Japan, Science 286 (1999)<br />

937-941.<br />

[13] B.R. Hacker, G.A. Abers, S.M. Peacock, Subduction factory 1. <strong>The</strong>oretical<br />

m<strong>in</strong>eralogy, densities, seismic wave speeds, <strong>and</strong> H 2 O contents, J. Geophys. Res.<br />

108 (2003) 2029 doi:10.1029/2001JB001127.<br />

[14] Y. Tamura, Y. Tatsumi, D. Zhao, Y. Kido, H. Shukuno, Hot f<strong>in</strong>gers <strong>in</strong> <strong>the</strong> <strong>mantle</strong><br />

<strong>wedge</strong>: new <strong>in</strong>sights <strong>in</strong>to magma genesis <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth Planet. Sci.<br />

Lett. 197 (2002) 105-116.<br />

[15] S. Newman, E. Stolper, E. Stern, H 2 0 <strong>and</strong> CO 2 <strong>in</strong> magmas from <strong>the</strong> Mariana arc <strong>and</strong><br />

back arc systems, Geochem. Geophys. Geosys. 1 (2000).<br />

[16] T.L. Grove, S.W. Parman, S.A. Bowr<strong>in</strong>g, R.C. Prive, M.B. Baker, <strong>The</strong> <strong>role</strong> <strong>of</strong> an<br />

H 2 O-rich fluid component <strong>in</strong> <strong>the</strong> generation <strong>of</strong> primitive basaltic <strong>and</strong>esites <strong>and</strong><br />

<strong>and</strong>esites from <strong>the</strong> Mt Shasta region, N California, Contrib. M<strong>in</strong>eral. Petrol. 142<br />

(2002) 375-396.<br />

[17] T.W. Sisson, S. Bronto, Evidence for pressure-release melt<strong>in</strong>g beneath magmatic<br />

arcs from basalt at Galunggung, Indonesia, Nature 391 (1998) 883-886.<br />

[18] P. Ulmer, Partial melt<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> – <strong>the</strong> <strong>role</strong> <strong>of</strong> H 2 O <strong>in</strong> <strong>the</strong> genesis <strong>of</strong><br />

<strong>mantle</strong> derived ‘arc-related’ magmas, Phys. Earth Planet. Inter. 127 (2001) 215-232.<br />

[19] L.T. Elk<strong>in</strong>s Tanton, T.L. Grove, J. Donnelly-Nolan, Hot, shallow melt<strong>in</strong>g under <strong>the</strong><br />

Cascades volcanic arc, Geology 29 (2001) 631-634.<br />

[20] T. Elliott, T. Plank, A. Z<strong>in</strong>dler, W. White, B. Bourdon, Element transport from slab<br />

to volcanic front at <strong>the</strong> Mariana arc, J. Geophys. Res. 102 (1997) 14,991-15,019.<br />

[21] M.C. Johnson, T. Plank, Dehydration <strong>and</strong> melt<strong>in</strong>g experiments constra<strong>in</strong> <strong>the</strong> fate <strong>of</strong><br />

subducted sediments, Geochem. Geophys. Geosys. 1 (1999).<br />

[22] Y. Tatsumi, N. Ishikawa, K. Anno, K. Ishizaka, T. Itaya, Tectonic sett<strong>in</strong>g <strong>of</strong> high-<br />

Mg <strong>and</strong>esite magmatism <strong>in</strong> <strong>the</strong> SW Japan Arc: K-Ar chronology <strong>of</strong> <strong>the</strong> Setouchi<br />

volcanic belt, Geophys. J. Int. 144 (2001) 625-631.<br />

[23] G.M. Yogodz<strong>in</strong>ski, J.M. Lees, T.G. Churikova, F. Dorendorf, G. Woerner, O.N.<br />

Volynets, Geochemical evidence for <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> <strong>subduction</strong> oceanic lithosphere<br />

at plate edges, Nature 409 (2001) 500-504.<br />

[24] D.P. Zhao, Seismological structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>and</strong> its implications for arc<br />

magmatism <strong>and</strong> <strong>dynamics</strong>, Phys. Earth Planet. Inter. 127 (2001) 197-214.<br />

[25] D.P. Zhao, X. Y<strong>in</strong>gbiao, D.A. Wiens, L. Dorman, J. Hildebr<strong>and</strong>, S. Webb, Depth<br />

extent <strong>of</strong> <strong>the</strong> Lau back-arc spread<strong>in</strong>g center <strong>and</strong> its relation to <strong>subduction</strong> processes,<br />

Science (1997) 254-257.<br />

[26] A. Gorbatov, J. Dom<strong>in</strong>guez, G. Suarez, V. Kostoglodov, D. Zhao, E. Gordeev,<br />

Tomographic imag<strong>in</strong>g <strong>of</strong> <strong>the</strong> P-wave velocity structure beneath <strong>the</strong> Kamchatka<br />

pen<strong>in</strong>sula, Geophys. J. Int. 137 (1999) 269-279.<br />

[27] F. Graeber, G. Asch, Three-dimensional models <strong>of</strong> P wave velocity <strong>and</strong> P-to-S<br />

velocity ratio <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn central Andes by simultaneous <strong>in</strong>version <strong>of</strong> local<br />

earthquake data, J. Geophys. Res. 104 (1999) 20,237-20,256.<br />

[28] H. Iwamori, D.P. Zhao, Melt<strong>in</strong>g <strong>and</strong> seismic structure beneath <strong>the</strong> nor<strong>the</strong>ast Japan<br />

arc, Geophys. Res. Lett. 27 (2000) 425-428.<br />

[29] D.P. Zhao, K. Asamori, H. Iwamori, Seismic structure <strong>and</strong> magmatism <strong>of</strong> <strong>the</strong> young<br />

Kyushu <strong>subduction</strong> <strong>zone</strong>, Geophys. Res. Lett. 27 (2000) 2057-2060.<br />

13


[30] D.P. Zhao, K. Wang, G.C. Rogers, S.M. Peacock, Tomographic image <strong>of</strong> low P<br />

velocity anomalies above slab <strong>in</strong> nor<strong>the</strong>r Cascadia <strong>subduction</strong> <strong>zone</strong>. Earth Planets<br />

Space 53 (2001) 285-293.<br />

[31] S.C. Myers, S. Beck, G. Z<strong>and</strong>t, T. Wallace, Lithospheric scale structure across <strong>the</strong><br />

Bolivian Andes from tomographic images <strong>of</strong> velocity <strong>and</strong> attenuation for P <strong>and</strong> S<br />

waves, J. Geophys. Res. 103 (1998) 21,233-21,252.<br />

[32] B. Romanowicz, J.J. Durek, Seismological constra<strong>in</strong>ts on attenuation <strong>in</strong> <strong>the</strong> Earth: a<br />

review, In: Earth’s deep <strong>in</strong>terior: M<strong>in</strong>eral physics <strong>and</strong> tomography from <strong>the</strong> atomic<br />

to <strong>the</strong> global scale, edited by S. Karato, A.M. Forte, R.C. Liebermann, G. Masters,<br />

<strong>and</strong> L. Stixrude, American Geophysical Union, Wash<strong>in</strong>gton DC (2000) 161-179.<br />

[33] T. Takenami, S.I. Sacks, A. Hasegawa, Attenuation structure beneath <strong>the</strong> volcanic<br />

front <strong>in</strong> nor<strong>the</strong>astern Japan from broad-b<strong>and</strong> seismograms, Phys. Earth Planet. Inter.<br />

121 (2000) 339-357.<br />

[34] C. Haberl<strong>and</strong>, A. Rietbrock, Attenuation tomography <strong>in</strong> <strong>the</strong> western central Andes: a<br />

detailed <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> structure <strong>of</strong> a magmatic arc, J. Geophys. Res., 106 (2001)<br />

11,151-11,167.<br />

[35] E.G. Roth, D.A. Wiens, D.P. Zhao, An empirical relationship between seismic<br />

attenuation <strong>and</strong> velocity anomalies <strong>in</strong> <strong>the</strong> upper <strong>mantle</strong>, Geophys. Res. Lett. 27<br />

(2000) 601-604.<br />

[36] N. Tsumura, S. Matsumoto, S. Horiuchi, A. Hasegawa, Three-dimensional<br />

attenuation structure beneath <strong>the</strong> nor<strong>the</strong>astern Japan arc estimated from spectra <strong>of</strong><br />

small earthquakes, Tectonophysics 319 (2000) 241-260.<br />

[37] G. Bock, B. Schurr, G. Asch, High-resolution image <strong>of</strong> <strong>the</strong> oceanic Moho <strong>in</strong> <strong>the</strong><br />

subduct<strong>in</strong>g Nazca plate from P-S converted waves, Geophys. Res. Lett. 27 (2000)<br />

3929-3932.<br />

[38] V. Lev<strong>in</strong>, J. Park, M. Br<strong>and</strong>on, J. Lees, V. Peyton, E. Gordeev, A. Ozerov, Crust <strong>and</strong><br />

upper <strong>mantle</strong> <strong>of</strong> Kamchatka from teleseismic receiver functions, Tectonophysics<br />

358 (2002) 233-265.<br />

[39] G. Helffrich, G.A. Abers, Slab low-velocity layer <strong>in</strong> <strong>the</strong> eastern Aleutian <strong>subduction</strong><br />

<strong>zone</strong>, Geophys. J. Int. 130 (1997) 640-648.<br />

[40] G.A. Abers, Hydrated subducted crust at 100-250 km depth, Earth Planet. Sci. Lett.<br />

176 (2000) 323-330.<br />

[41] M.G. Bostock, R.D. Hyndman, S. Rondenay, S.M. Peacock, An <strong>in</strong>verted cont<strong>in</strong>ental<br />

Moho <strong>and</strong> <strong>the</strong> serpent<strong>in</strong>ization <strong>of</strong> <strong>the</strong> forearc <strong>mantle</strong>, Nature 417 (2002) 536-538.<br />

[42] T.M. Brocher, T. Parsons, A.M. Tréhu, C.M. Snelson, M.A. Fisher, Seismic<br />

evidence for widespread serpentenized forearc upper <strong>mantle</strong> along <strong>the</strong> Cascadia<br />

marg<strong>in</strong>, Geology 31 (2003) 267-270.<br />

[43] A. Kamimura, J. Kasahara, M. Sh<strong>in</strong>ohara, R. H<strong>in</strong>o, H. Shiobara, G. Fujie, T.<br />

Kanazawa, Crustal structure study at <strong>the</strong> Izu-Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> around 31N:<br />

implications <strong>of</strong> serpent<strong>in</strong>ized materials along <strong>the</strong> <strong>subduction</strong> plate boundary, Phys.<br />

Earth Planet. Inter. 132 (2002) 105-129.<br />

[44] S. Guillot, K.H. Hattori, J. de Sigoyer, Mantle <strong>wedge</strong> serpent<strong>in</strong>ization <strong>and</strong><br />

exhumation <strong>of</strong> eclogites: <strong>in</strong>sights from eastern Ladakh, northwest Himalaya,<br />

Geology 28 (2000) 199-202.<br />

[45] J. Park, V. Lev<strong>in</strong>, Seismic anisotropy: trac<strong>in</strong>g plate <strong>dynamics</strong> <strong>in</strong> <strong>the</strong> <strong>mantle</strong>, Science<br />

296 (2002) 485-489<br />

14


[46] T. Okada, T. Matsuzawa, A. Hasegawa, Shear-wave polarization anisotropy beneath<br />

<strong>the</strong> north-eastern part <strong>of</strong> Honshu, Japan, Geophys. J. Int., 123 (1995) 781-797.<br />

[47] M. Fouch, K.M. Fischer, Shear wave anisotropy <strong>in</strong> <strong>the</strong> Mariana <strong>subduction</strong> <strong>zone</strong>,<br />

Geophys. Res. Lett. 25 (1998) 1221-1224.<br />

[48] K.M. Fischer, M.J. Fouch, D.A. Wiens, M.S. Boettcher, Anisotropy <strong>and</strong> flow <strong>in</strong><br />

Pacific <strong>subduction</strong> <strong>zone</strong> back-arcs, Pure Appl. Geophys. 151 (1998) 463-475.<br />

[49] J. Polet, P.G. Silver, S. Beck, T. Wallace, G. Z<strong>and</strong>t, S. Rupper, R. K<strong>in</strong>d, A. Rudl<strong>of</strong>f,<br />

Shear wave anisotropy beneath <strong>the</strong> Andes from <strong>the</strong> BANJO, SEDA, <strong>and</strong> PISCO<br />

experiments, J. Geophys. Res. 105 (2000) 6287-6304.<br />

[50] R.M. Russo, P.G. Silver, Trench-parallel flow beneath <strong>the</strong> Nazca plate from seismic<br />

anisotropy, Science 263 (1994) 1105-1111.<br />

[51] S. Wiemer, G. Tytgat, M. Wyss, U. Duenkel, Evidence for shear wave anisotropy <strong>in</strong><br />

<strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> beneath south central Alaska, Bull. Seism. Soc. Amer., 89 (1999)<br />

1313-1322.<br />

[52] K. Marson-Pidgeon, M.K. Savage, K. Gledhill, G. Stuart, Seismic anisotropy<br />

beneath <strong>the</strong> lower half <strong>of</strong> <strong>the</strong> North Isl<strong>and</strong>, New Zeal<strong>and</strong>, J. Geophys. Res. 104<br />

(1999) 20,277-20,286.<br />

[53] M.K. Savage, Seismic anisotropy <strong>and</strong> <strong>mantle</strong> deformation: what have we learned<br />

from shear wave splitt<strong>in</strong>g? Rev. Geophys. 37 (1999) 65-106.<br />

[54] X.P. Yang, K.M. Fischer, G.A. Abers, Seismic anisotropy beneath <strong>the</strong> Shumag<strong>in</strong><br />

Isl<strong>and</strong>s segment <strong>of</strong> <strong>the</strong> Aleutian-Alaska <strong>subduction</strong> <strong>zone</strong>, J. Geophys. Res. 100<br />

(1995) 18,165-18,177.<br />

[55] V. Peyton, V. Lev<strong>in</strong>, J. Park, M.T. Br<strong>and</strong>on, J. Lees, E. Gordeev, <strong>and</strong> A. Ozerov,<br />

Mantle flow at a slab edge: seismic anisotropy <strong>in</strong> <strong>the</strong> Kamchatka region, Geophys.<br />

Res. Lett. 28 (2001) 379-382.<br />

[56] J. Park, V. Lev<strong>in</strong>, J. Lees, M.T. Br<strong>and</strong>on, V. Peyton, E. Gordeev, A. Ozerov,<br />

Seismic anisotropy <strong>and</strong> <strong>mantle</strong> flow <strong>in</strong> <strong>the</strong> Kamchatka-Aleutian corner, In: S. Ste<strong>in</strong><br />

(ed), Plate Boundary Zones, Geophysical Monograph, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC (2002).<br />

[57] G.P. Smith, D.A. Wiens, K.M. Fischer, L.M. Dorman, S.C. Webb, J.A. Hildebr<strong>and</strong>,<br />

A complex pattern <strong>of</strong> <strong>mantle</strong> flow <strong>in</strong> <strong>the</strong> Lau backarc, Science 292 (2001) 713-716.<br />

[58] D.A. Wiens, G.P. Smith, Seismological constra<strong>in</strong>ts on structure <strong>and</strong> flow patterns<br />

with<strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>, In: J. Eiler (ed) <strong>The</strong> Subduction Factory, Geophysical<br />

Monograph, American Geophysical Union, Wash<strong>in</strong>gton DC (<strong>in</strong> press)<br />

[59] G. Schwarz, D. Kruger, Resistivity cross section through <strong>the</strong> sou<strong>the</strong>rn central Andes<br />

as <strong>in</strong>ferred from magnetotelluric <strong>and</strong> geomagnetic deep sounds, J. Geophys. Res.<br />

102 (1997) 11,957-11,978.<br />

[60] Y. Fuj<strong>in</strong>awa, N. Kawakami, J. Inoue, T.H. Asch, S. Takasugi, Y. Honkura, 2-D<br />

georesistivity structure <strong>in</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern Japan arc, Earth<br />

Planets Space 51 (1999) 1035-1046.<br />

[61] M. Ichiki, N. Sumitomo, T. Kagiyama, Resistivity structure <strong>of</strong> high-angle<br />

<strong>subduction</strong> <strong>zone</strong> <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Kyushu district, southwestern Japan, Earth Planets<br />

Space 52 (2000) 539-548.<br />

[62] H. Brasse, P. Lezaeta, V. Rath, K. Schwalenberg, W. Soyer, V. Haak, <strong>The</strong> Bolivian<br />

Altiplano conductivity anomaly, J. Geophys. Res. 107 (2002) doi:<br />

10.1029/2001JB000391.<br />

15


[63] K. Schwalenberg, V. Rath, V. Haak, Sensitivity studies applied to a two-dimensional<br />

resistivity model from <strong>the</strong> Central Andes, Geophys. J. Int. 105 (2002) 673-686.<br />

[64] J.A. Arzate, M. Mareschal, D. Livelybrooks, Electrical image <strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong><br />

Cocos plate from magnetotelluric observations, Geology 23 (1995) 703-706.<br />

[65] P. Lezaeta, M. Munoz, H. Brasse, Magnetotelluric image <strong>of</strong> <strong>the</strong> crust <strong>and</strong> upper<br />

<strong>mantle</strong> <strong>in</strong> <strong>the</strong> back arc <strong>of</strong> <strong>the</strong> northwestern Argent<strong>in</strong>ean Andes, Geophys. J. Int. 142<br />

(2000) 841-854.<br />

[66] Y. Furukawa, S. Uyeda, <strong>The</strong>rmal state under <strong>the</strong> Tohoku Arc with consideration <strong>of</strong><br />

crust heat generation, Tectonophysics 164 (1989) 175-187.<br />

[67] D.D. Blackwell, J.L. Steele, M.K. Frohme, C.F. Murphey, G.R. Priest, G.L. Black,<br />

Heat flow <strong>in</strong> <strong>the</strong> Oregon Cascade Range <strong>and</strong> its correlation with regional gravity,<br />

Curie po<strong>in</strong>t depths, <strong>and</strong> geology, J. Geophys. Res. 95 (1990) 19,475-19,493.<br />

[68] R.D. Hyndman, K. Wang, <strong>The</strong> rupture <strong>zone</strong> <strong>of</strong> Cascadia great earthquakes from<br />

current deformation <strong>and</strong> <strong>the</strong> <strong>the</strong>rmal regime, J. Geophys. Res 100 (1995) 22,133-<br />

22,154.<br />

[69] S.D. K<strong>in</strong>g, Geoid <strong>and</strong> topography over <strong>subduction</strong> <strong>zone</strong>s: <strong>The</strong> effect <strong>of</strong> phase<br />

transformations, J. Geophys. Res. 107 (2002) doi: 10.1029/2000JB000141.<br />

[70] M.I. Billen, M. Gurnis, M. Simons, Multiscale <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> Tonga-Kermadec<br />

<strong>subduction</strong> <strong>zone</strong>, Geophys. J. Int. <strong>in</strong> press.<br />

[71] Y. Tatsumi, Geochemical model<strong>in</strong>g <strong>of</strong> partial melt<strong>in</strong>g <strong>of</strong> subduct<strong>in</strong>g sediments <strong>and</strong><br />

subsequent melt-<strong>mantle</strong> <strong>in</strong>teraction: generation <strong>of</strong> high-Mg <strong>and</strong>esites <strong>in</strong> <strong>the</strong><br />

Setouchi volcanic belt, southwest Japan, Geology 29 (2001) 323-326.<br />

[72] T. Shimamoto, J.M. Logan, Effects <strong>of</strong> simulated clay gauches on <strong>the</strong> slid<strong>in</strong>g<br />

behavior <strong>of</strong> <strong>the</strong> Tennessee s<strong>and</strong>stone, Tectonophysics 75 (1981) 243-255.<br />

[73] D.L. Kohlstedt, H. Keppler, D.C. Rubie, Solubility <strong>of</strong> water <strong>in</strong> <strong>the</strong> α, β, <strong>and</strong> γ phases<br />

<strong>of</strong> (Mg,Fe) 2 SiO 4 , Contrib. M<strong>in</strong>eral. Petrol. 123 (1996) 345-357.<br />

[74] J. Igr<strong>in</strong>, H. Skogby, Hydrogen <strong>in</strong> nom<strong>in</strong>ally anhydrous upper-<strong>mantle</strong> m<strong>in</strong>erals:<br />

concentration levels <strong>and</strong> implications, Eur. J. M<strong>in</strong>eral. 12 (2000) 543-570.<br />

[75] P.N. Chopra, M.S. Paterson, <strong>The</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>the</strong> deformation <strong>of</strong> dunite, J.<br />

Geophys. Res. 89 (1984) 7861-7876.<br />

[76] S. Mei, D.L. Kohlstedt, Influence <strong>of</strong> water on plastic deformation <strong>in</strong> oliv<strong>in</strong>e<br />

aggregates, 1. Diffusion creep regime, J. Geophys. Res. 105 (2000) 21,457-21,469.<br />

[77] S. Mei, D.L. Kohlstedt, Influence <strong>of</strong> water on plastic deformation <strong>in</strong> oliv<strong>in</strong>e<br />

aggregates, 2. Dislocation creep regime, J. Geophys. Res. 105 (2000) 21,471-<br />

21,481.<br />

[78] H. Jung, S. Karato, Water-<strong>in</strong>duced fabric transition <strong>in</strong> oliv<strong>in</strong>e, Science 293 (2001)<br />

1460-1463.<br />

[79] S. Karato, Mapp<strong>in</strong>g water content <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong>, In: J. Eiler (ed.) <strong>The</strong><br />

Subduction Factory, Geophysical Monograph, American Geophysical Union,<br />

Wash<strong>in</strong>gton DC, <strong>in</strong> press.<br />

[80] S. Karato, H. Jung, Effects <strong>of</strong> pressure <strong>of</strong> high-temperature dislocation creep <strong>in</strong><br />

oliv<strong>in</strong>e, Phil. Mag. 83 (2003) 401-414.<br />

[81] W.C. Hammond, E.D. Humphreys, Upper <strong>mantle</strong> seismic wave attenuation: effects<br />

<strong>of</strong> realistic partial melt geometries, J. Geophys. Res. 105 (2000) 10,987-10,999.<br />

[82] W.C. Hammond, E.D. Humphreys, Upper <strong>mantle</strong> seismic wave velocity: effects <strong>of</strong><br />

realistic partial melt geometries, J. Geophys. Res. 105 (2000) 10,975-10,986.<br />

16


[83] Y. Takei, Acoustic properties <strong>of</strong> partially molten media studied on a simple b<strong>in</strong>ary<br />

system with a controllable dihedral angle, J. Geophys. Res. 105 (2000) 16,665-<br />

16,682.<br />

[84] D.L. Kohlstedt, Structure, rheology <strong>and</strong> permeability <strong>of</strong> partially molten rocks at low<br />

melt fractions, In: Mantle flow <strong>and</strong> melt generation at mid-oceanic ridges (J.P.<br />

Morgan, D.K. Blackman, J.M. S<strong>in</strong>ton, eds) American Geophysical Union,<br />

Wash<strong>in</strong>gton DC (1992) 102-121.<br />

[85] J.A.D. Connolly, D.M. Kerrick, Metamorphic controls on seismic velocity <strong>of</strong><br />

subducted oceanic crust at 100-250 km depth, Earth Planet. Sci. Lett. 204 (2002)<br />

61-74.<br />

[86] S. Kamiya, Y. Kobayashi, Seismological evidence for <strong>the</strong> existence <strong>of</strong> serpent<strong>in</strong>ized<br />

<strong>wedge</strong> <strong>mantle</strong>, Geophys. Res. Lett. 27 (2000) 819-822.<br />

[87] J. Nakajima, T. Matsuzawa, A. Hasegawa, D. Zhao, Three-dimensional structure <strong>of</strong><br />

V p , V s , <strong>and</strong> V p /V s beneath nor<strong>the</strong>astern Japan: Implications for arc magmatism <strong>and</strong><br />

fluids, J. Geophys. Res. 106 (2001) 21,843-21857.<br />

[88] D.P. Dobson, P.G. Meredith, S.A. Boon, Simulation <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> seismicity<br />

by dehydration <strong>of</strong> serpent<strong>in</strong>e, Science 298 (2002) 1407-1410.<br />

[89] D.P. Zhao, O.P. Mishra, R. S<strong>and</strong>a, Influence <strong>of</strong> fluids <strong>and</strong> magma on earthquakes:<br />

seismological evidence, Phys. Earth Planet. Sci. 132 (2002) 249-267.<br />

[90] B.R. Hacker, S.M. Peacock, G.A. Abers, S.D. Holloway, Subduction factory 2. Are<br />

<strong>in</strong>termediate-depth earthquakes <strong>in</strong> subduct<strong>in</strong>g slabs l<strong>in</strong>ked to metamorphic<br />

dehydration reactions? J. Geophys. Res. 108 (2003) 2030 doi:<br />

10.1029/2001JB001129.<br />

[91] D. Bercovici, <strong>The</strong> generation <strong>of</strong> plate tectonics from <strong>mantle</strong> convection, Earth<br />

Planet. Sci. Lett. 205 (2003) 107-121.<br />

[92] D.P. McKenzie, Speculations on <strong>the</strong> consequences <strong>and</strong> causes <strong>of</strong> plate motions,<br />

Geophys. J. R. Astron. Soc. 18 (1969) 1-32.<br />

[93] D.L. Harry, N.L. Green, Slab dehydration <strong>and</strong> basalt petrogenesis <strong>in</strong> <strong>subduction</strong><br />

systems <strong>in</strong>volv<strong>in</strong>g very young oceanic lithosphere, Chem. Geol. 160 (1999) 309-<br />

333.<br />

[94] J.H. Davies, Simple analytic model for <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure, Geophys.<br />

J. Int. 139 (1999) 823-828.<br />

[95] G.K. Batchelor, An <strong>in</strong>troduction to fluid <strong>dynamics</strong>, Cambridge University Press,<br />

Cambridge, UK (1967) 615 pp.<br />

[96] S.M. Peacock, <strong>The</strong>rmal <strong>and</strong> petrological structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s, In: G.E.<br />

Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds), Subduction: Top to Bottom,<br />

Geophysical Monograph 96, American Geophysical Union, Wash<strong>in</strong>gton DC (1996)<br />

119-133.<br />

[97] Y. Furukawa, Depth <strong>of</strong> <strong>the</strong> decoupl<strong>in</strong>g plate <strong>in</strong>terface <strong>and</strong> <strong>the</strong>rmal structure under<br />

arcs, J. Geophys. Res. 98 (1993) 20,005-20,013.<br />

[98] P.E. van Keken, B. Kiefer, S. Peacock, High resolution models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s:<br />

implications for <strong>mantle</strong> dehydration reactions <strong>and</strong> <strong>the</strong> transport <strong>of</strong> water <strong>in</strong>to <strong>the</strong><br />

deep <strong>mantle</strong>, Geochem. Geophys. Geosys. 3 (2002) doi: 10.1029/2001GC000256.<br />

[99] J.A. Conder, D.A. Wiens, J. Morris, On <strong>the</strong> decompression melt<strong>in</strong>g structure at<br />

volcanic arcs <strong>and</strong> back-arc spread<strong>in</strong>g centers, Geophys. Res. Lett. 29 (2002) doi:<br />

10.1029/2002GL015390.<br />

17


[100] M.A. Eberle, O. Grasset, C. Sot<strong>in</strong>, A numerical study <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>the</strong><br />

<strong>mantle</strong> <strong>wedge</strong>, subduct<strong>in</strong>g slab, <strong>and</strong> overrid<strong>in</strong>g plate, Phys. Earth Planet. Inter. 134<br />

(2002) 191-202.<br />

[101] P.B. Kelemen, J.L. Rill<strong>in</strong>g, E.M. Parmentier, L. Mehl, B.R. Hacker, <strong>The</strong>rmal<br />

structure due to solid-state flow <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> beneath arcs, <strong>in</strong>: J. Eiler (ed)<br />

<strong>The</strong> Subduction Zone Factory, Geophysical Monograph, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC, <strong>in</strong> press.<br />

[102] S.M. Peacock, <strong>The</strong>rmal structure <strong>and</strong> metamorphic evolution <strong>of</strong> subduct<strong>in</strong>g slabs,<br />

In: J. Eiler (ed.) <strong>The</strong> Subduction Factory, Geophysical Monograph, American<br />

Geophysical Union, Wash<strong>in</strong>gton DC, (<strong>in</strong> press).<br />

[103] W.P. Leeman, Boron <strong>and</strong> o<strong>the</strong>r fluid-mobile elements <strong>in</strong> volcanic arc lavas:<br />

Implications for <strong>subduction</strong> processes, <strong>in</strong>: G.E. Bebout, D.W. Scholl, S.H. Kirby,<br />

J.P. Platt (eds), Subduction: Top to Bottom, Geophysical Monograph 96, American<br />

Geophysical Union, Wash<strong>in</strong>gton DC (1996) 269-276.<br />

[104] L.J. Ruff, B.W. Tichelaar, What controls <strong>the</strong> seismogenic plate <strong>in</strong>terface <strong>in</strong><br />

<strong>subduction</strong> <strong>zone</strong>s? In: G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds),<br />

Subduction: top to bottom, Geophysical Monograph 96, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC (1996) 105-111.<br />

[105] A. Rowl<strong>and</strong>, J.H. Davies, Buoyancy ra<strong>the</strong>r than rheology controls <strong>the</strong> thickness <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g mechanical lithosphere at <strong>subduction</strong> <strong>zone</strong>s, Geophys. Res. Lett. 26<br />

(1999) 3037-3040.<br />

[106] C. K<strong>in</strong>caid, I.S. Sacks, <strong>The</strong>rmal <strong>and</strong> dynamical evolution <strong>of</strong> <strong>the</strong> upper <strong>mantle</strong> <strong>in</strong><br />

<strong>subduction</strong> <strong>zone</strong>s, J. Geophys. Res. 102 (1997) 12,295-12,315.<br />

[107] S. Zhong, M. Gurnis, L. Moresi, Role <strong>of</strong> faults, nonl<strong>in</strong>ear rheology, <strong>and</strong> viscosity<br />

structure <strong>in</strong> generat<strong>in</strong>g plates from <strong>in</strong>stantaneous <strong>mantle</strong> flow models, J. Geophys.<br />

Res. 103 (1998) 15,255-15,268.<br />

[108] J. van Hunen, A.P. van den Berg, N.J. Vlaar, On <strong>the</strong> <strong>role</strong> <strong>of</strong> subduct<strong>in</strong>g oceanic<br />

plateaus <strong>in</strong> <strong>the</strong> development <strong>of</strong> shallow flat <strong>subduction</strong>, Tectonophysics 352 (2002)<br />

317-333.<br />

[109] T. Okhura, Structure <strong>of</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> Philipp<strong>in</strong>e Sea plate estimated by later<br />

phases <strong>of</strong> upper <strong>mantle</strong> earthquakes <strong>in</strong> <strong>and</strong> around Shikoku, Japan, Tectonophysics<br />

321 (2000) 17-36.<br />

[110] R.O. W<strong>in</strong>der, S.M. Peacock, Viscous forces act<strong>in</strong>g on subduct<strong>in</strong>g lithosphere, J.<br />

Geophys. Res. 106 (2001) 21,937-21,951.<br />

[111] M.I. Billen <strong>and</strong> M. Gurnis, A low viscosity <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth<br />

Planet. Sci. Lett. 193 (2001) 227-236.<br />

[112] D.M. Kerrick, J.A.D. Connolly, Metamorphic devolatilization <strong>of</strong> subducted oceanic<br />

metabasalts: implications for seismicity, arc magmatism <strong>and</strong> volatile recycl<strong>in</strong>g,<br />

Earth Planet. Sci. Lett. 189 (2001) 19-29.<br />

[113] L.H. Ruepke, J. Phipps Morgan, M. Hort, J.A.D. Connolly, Are <strong>the</strong> regional<br />

variations <strong>in</strong> Central American arc lavas due to differ<strong>in</strong>g basaltic versus peridotitic<br />

slab sources <strong>of</strong> fluids? Geology 30 (2002) 1035-1038.<br />

[114] P.S. Hall, C. K<strong>in</strong>caid, Diapiric flow at <strong>subduction</strong> <strong>zone</strong>s: A recipe for rapid<br />

transport, Science 292 (2001) 2472-2475.<br />

[115] M. Spiegelman, D. McKenzie, Simple 2D models for melt extraction at mid-ocean<br />

ridges <strong>and</strong> isl<strong>and</strong> arcs, Earth Planet. Sci. Lett. 83 (1987) 137-152.<br />

18


[116] J. Buttles <strong>and</strong> P. Olson, A laboratory model <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> anisotropy, Earth<br />

Planet. Sci. Lett. 164 (1998) 245-262.<br />

[117] K.M. Fischer, E.M. Parmentier, A.R. St<strong>in</strong>e, E.R. Wolf, Model<strong>in</strong>g anisotropy <strong>and</strong><br />

plate-driven flow <strong>in</strong> <strong>the</strong> Tonga <strong>subduction</strong> <strong>zone</strong> back arc, J. Geophys. Res. (2000)<br />

16,181-16,191.<br />

[118] C.E. Hall, K.M. Fischer, E.M. Parmentier, D.K. Blackman, <strong>The</strong> <strong>in</strong>fluence <strong>of</strong> plate<br />

motions on three-dimensional back arc <strong>mantle</strong> flow <strong>and</strong> shear wave splitt<strong>in</strong>g, J.<br />

Geophys. Res. 105 (2000) 28,009-28,033.<br />

.<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!