09.11.2013 Views

Holocene vegetational history of the Apuseni ... - geo.edu.ro

Holocene vegetational history of the Apuseni ... - geo.edu.ro

Holocene vegetational history of the Apuseni ... - geo.edu.ro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Quaternary Science Reviews 21 (2002) 1465–1488<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>vegetational</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains,<br />

central Romania<br />

A. Bodnariuc a,b , A. Bouchette a , J.J. Dedoubat a , T. Otto a , M. Fontugne c , G. Jalut a, *<br />

a Laboratoire d’Ecologie Terrestre, Universit!e Paul Sabatier, UMR 5552, 39, All!ees. Jules Guesde, 31062 Toulouse Cedex 4, France<br />

b Faculty <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Geology, Babes-Bolyai University, 1Kogalniceanu str., Cluj Napoca 3400, Romania<br />

c Laboratoire des Sciences du Climat et de l’Envi<strong>ro</strong>nment, Laboratoire mixte CNRS - CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France<br />

Received 17 October 2000; accepted 30 September 2001<br />

Abstract<br />

F<strong>ro</strong>m palynological investigations in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains (Transylvania, Romania), a ch<strong>ro</strong>nology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> forest development is<br />

p<strong>ro</strong>posed. The data are compared with o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rs f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Romanian Carpathians and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>unding countries. After <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir<br />

appearance between 11,200 and 10,190 cal BP, Picea and Corylus were dominant up to 6450 cal BP. The extension phases <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Carpinus, Fagus and Abies, respectively, began at ca 6450 BP, 4500 BP and 4100 cal BP. Occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir pollen are recorded<br />

f<strong>ro</strong>m about 7800 cal BP. First evidence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> human impact appeared during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> 7800–7425 cal BP period and first cultivations at<br />

ca 6820 cal BP. Between 4500 and 2750 cal BP deforestation and agriculture were limited, but increased a<strong>ro</strong>und 1935 and<br />

695–660 cal BP. r 2002 Elsevier Science Ltd. All rights reserved.<br />

1. Int<strong>ro</strong>duction<br />

In Eastern Eu<strong>ro</strong>pe, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> region <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> contact between<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subcontinental, mediterranean and steppic regions,<br />

Romania represents a particularly interesting field <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

investigation for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lateglacial and <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

vegetation and climate. Geomorphomogical studies<br />

show that despite <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir altitude (maximum 2500 m),<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathians and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains (Fig. 1)<br />

were not st<strong>ro</strong>ngly affected by glaciers during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last<br />

glacial episode (Ficheux, 1996). Only traces <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> nivation<br />

niches oriented to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> east, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lee <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> dominant winds<br />

f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west, exist on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> crests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Biharia or Vladeasa<br />

(Ficheux, 1996).<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last cold and<br />

dry periods, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> complexity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relief partly linked to<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> karstic zones, p<strong>ro</strong>bably favoured <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

persistence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> sheltered areas favourable for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> trees<br />

that form <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present forests.<br />

This country was also occupied early by humans<br />

(communities <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carcea-Gura Baciuli-Ocna Sibiului<br />

type), moving into <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Transylvanian highlands, f<strong>ro</strong>m<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Neolithic (ca 8000 cal BP) onwards<br />

(Laza<strong>ro</strong>vici, 1993; Mantu, 1998).<br />

*Corresponding author. Tel.: +33-5-61-55-80-37; fax: +33-5-61-32-<br />

83-82.<br />

E-mail address: jalut@cict.fr (G. Jalut).<br />

Nume<strong>ro</strong>us palynological studies have been carried out<br />

in Romania starting with those <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pop (1929, 1934,<br />

1942, 1962) <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Ciobanu (1948, 1958, 1965). They were<br />

based on fundamental studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> plant distribution<br />

(Donita et al., 1960; Donita, 1964, 1965; Georgescu<br />

and Donita, 1965) and peat bogs and humid zones (Pop,<br />

1960). These studies were compared with nume<strong>ro</strong>us<br />

o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r works on Eastern and Western Eu<strong>ro</strong>pe, and a<br />

general schema for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lateglacial and <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> forest<br />

and climate <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> was p<strong>ro</strong>posed (Pop, 1929, 1932,<br />

1934, 1942). Unfortunately, until <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> recent works <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Farcas et al. (1999) and R.osch and Fischer (2000), no<br />

14 C dates were available, and in most cases, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sampling<br />

intervals were too large to allow ch<strong>ro</strong>nological p<strong>ro</strong>blems<br />

to be solved. Except <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> study <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> R.osch and Fisher,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>re are no references to human impact.<br />

The goal <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present palynological studies is to<br />

establish a ch<strong>ro</strong>nology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> forest <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

western Romanian Carpathians. This is a key zone for<br />

fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r comparison with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathian mountains and<br />

Transylvania.<br />

2. The studied area<br />

Romania occupies a transitional position in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>vegetational</st<strong>ro</strong>ng> pattern <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> south-east <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Eu<strong>ro</strong>pe. Except in<br />

0277-3791/02/$ - see f<strong>ro</strong>nt matter r 2002 Elsevier Science Ltd. All rights reserved.<br />

PII: S 0277-3791(01)00117-2


1466<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Fig. 1. Location <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> studied area. Cited sites: Romania 1 Mluha, 2 Mohos, 3 Taul Zanogutii, 4 Rachitis, 5 Cica Mica 1, 6 Calimani Exploatare, 7<br />

Iezerul Calimani, 8 Poiana Boilor, 9 Poiana Stiol, 10 Dupa Lunca–Voslobeni, 11 Banat; Bulgaria: 12 Sucho Eze<strong>ro</strong>, 13 Kupena, 14 Tschokljovo;<br />

Ukraina: 15 Dorjok, 16 Ogreev, 17 Kardashinski; Slovakia & Czech Republic; 18 Zlatnicka doline, 19 Toj<strong>ro</strong>he Pleso, 20 Vracov; Poland: 21 Tarnawa<br />

Wyzna, 22 Szymbark; Hungary: 23 Batorliget; Slovenia: 24 Kaznarice.<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountains, its forests are characterised by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

presence and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dominance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> deciduous and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rmophilous<br />

trees (Ozenda, 1994). To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> east and north-east<br />

are steppes, mixed conife<strong>ro</strong>usFdeciduous forests, deciduous<br />

forest and forestFsteppe which characterise <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Eurasiatic Steppic Region (Lavrenko in Walter and<br />

Straka, 1970) also called Steppic and Sarmatic Domains<br />

(Ozenda, 1994). To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west is <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Atlantic Domain<br />

dominated by deciduous b<strong>ro</strong>ad leaved trees. To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Romania, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean Domain is mainly<br />

characterised by scle<strong>ro</strong>phylous evergreen trees and shrubs.<br />

To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> north, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> east and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathian<br />

mountains (Fig. 1) form a natural limit to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hungarian<br />

plain f<strong>ro</strong>m which emerge, in its eastern part, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains. (Romanian Western Carpathians).<br />

Formerly called Bihor (Ozenda, 1994), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng><br />

mountains form a massif about 100 km in diameter, <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

medium elevation (maximum 1848 m), and occupy a<br />

central position in Transylvania (Ficheux, 1996). Flat<br />

surfaces are rare in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

rivers are deeply incised. Four morphological units can<br />

be distinguished: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> high Bihor, above 1000 m, which<br />

has a complex <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>logical structure including <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> karstic<br />

region <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Padis; <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Metaliferi mountains; <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> massifs<br />

and gulfs <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> western slopes, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> depression <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Huedin and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hungarian plain to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west.<br />

Acold continental climate characterises <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> studied<br />

area. Rainfall is abundant f<strong>ro</strong>m spring to autumn with a<br />

marked maximum in summer. Mean annual precipitation<br />

is about 1400 mm and mean annual temperature<br />

about 4.11C. Winters are cold with absolute minimum<br />

temperature p 301C and summers cool. Due to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

complexity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relief <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains,<br />

important local climatic differences exist. To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west,


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1467<br />

annual precipitation is about 300 mm higher than to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

east. The maximum precipitation is concentrated in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

centre-west part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountains where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites studied<br />

are located. The present climate conditions allow <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> mountain forests in which favourable<br />

topographic and <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>logical conditions permit Sphagnum<br />

peat bogs to develop.<br />

3. The present vegetation<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, forests are essentially<br />

composed by Fagus silvatica and Picea abies. The latter<br />

is concentrated in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> central part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> massif while<br />

Fagus silvatica is mainly found a<strong>ro</strong>und it. However, due<br />

to lumbering in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> spruce forest, large areas are now<br />

colonised by beech which temporarily replaces spruce.<br />

Abies is rare. The st<strong>ro</strong>ng human impact on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountain<br />

forests has determined <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> meadows where<br />

Festuca rubra, Nardus stricta, Calluna and Calamag<strong>ro</strong>stis<br />

arundinacea are represented (Donita et al., 1960).<br />

Meadows with some o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r species occur on certain high<br />

areas. Low altitudes, depressions and corridors are<br />

covered with oak-horbeam forest composed <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus<br />

petraea, Quercus <strong>ro</strong>bur, Carpinus betulus, Fagus sylvatica,<br />

Tilia cordata, Acer pseudoplatanus, A. platanoides,<br />

Corylus avellana and Fraxinus excelsior. The abundance<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus, Fagus and Carpinus depends on local<br />

ecological and historical factors. Distant f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

massif, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rmophilous oak forests with Quercus petraea,<br />

Q. cerris, Q. pubescens, Q. fraineto, Fraxinus ornus,<br />

Prunus mahaleb occur on limestone.<br />

4. The selected sites<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, five cores were<br />

obtained using a Russian sampler (Fig. 2). The altitude<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites ranged between 1000 and 1300 m a.s.l. All are<br />

now omb<strong>ro</strong>genic Sphagnum peat bogs.<br />

The site <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ic Ponor (alt. 1020 m a.s.l.) (Fig. 2) lies on<br />

schists, at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> foot <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a slope. After a relatively short<br />

lacustrine phase during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>, peat began<br />

to develop. The site now corresponds to a Sphagnum<br />

peat bog which covers 7 ha on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> right side <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Somesul<br />

Cald river, near its confluence with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> river Batrana. To<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south, an inundated zone is colonised by Carex<br />

<strong>ro</strong>strata. The peat bog is sur<strong>ro</strong>unded by spruce, and<br />

scattered stands <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> birch (Betula pubescens and Betula<br />

pendula) are present in deforested zones. Picea and<br />

Betula are also abundant on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog. At its surface,<br />

Vaccinium myrtillus and V. vitis ideae form dense<br />

communities and Eriophorum vaginatum is abundant.<br />

Sphagnum sp. covers <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> whole surface <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog<br />

but Polytrichum is also present as well as Empetrum<br />

nigrum, cited by Pop (1960). Because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> large size <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog, two cores were taken: Ic Ponor I (295 cm<br />

length) (Fig. 3) at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> summit <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

deepest zone, and Ic Ponor II (165 cm length) (Fig. 4) in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW margin.<br />

Fig. 2. Location <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local cited and studied sites: 1 Mlastina lui Neag, 2 Izbucu I, 3 Izbucu II, 4 La Lacuri, 5 Pietrele Onachii, 6 La Mlastina, 7 La<br />

Mol, 8 Molhasu de la Calatele, 9 Dealu Negru, 10 Dambu Negru, 11 Ciurtuci, 12 Baita, 13 Ic Ponor I & II, 14 Bergerie, 15 Cimeti"ere, 16 Padis.


1468<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Fig. 3. Pollen diagram f<strong>ro</strong>m Ic Ponor 1.


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1469<br />

Fig. 4. Pollen diagram f<strong>ro</strong>m Ic Ponor 2.


1470<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

The three o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r sites are situated to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

karstic zone <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Padis.<br />

Padis (alt. 1240 m a.s.l.) (Fig. 2) is a Sphagnum peat<br />

bog in one <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nume<strong>ro</strong>us sink holes present on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

karstic plateau. Some <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se sink holes are small ponds<br />

colonised by hyd<strong>ro</strong>philous communities. O<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rs, such as<br />

that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Padis, have been transformed into Sphagnum<br />

peat bogs colonised by stands <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> spruce. The dominant<br />

shrubs are Vaccinium myrtillus and V. vitis idae.<br />

Dechampsia fluxosa, Carex echinata and C. <strong>ro</strong>strata<br />

are also well represented. Sphagnum and Polytricum are<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dominant mosses. Flat surfaces with meadows<br />

sur<strong>ro</strong>und <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> site. Picea forest occupies <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> hills. In<br />

cleared areas, stands <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus frequently occupy <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> hill<br />

tops. The core was collected at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> centre <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat<br />

bog. The bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sequence is clay poor in organic<br />

matter (Fig. 5).<br />

The peat bog <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cimeti"ere (alt. 1280 m a.s.l.) (Fig. 2)<br />

is situated on a slope. It has a NW exposure and is<br />

located near a ridge in a zone st<strong>ro</strong>ngly affected by<br />

forestry. It was sur<strong>ro</strong>unded by old spruce partly<br />

dest<strong>ro</strong>yed by a storm. The peat bog belongs to a large<br />

peaty complex where Sphagnum is dominant in most<br />

places. O<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r species such as Eriophorum vaginatum,<br />

Deschampsia flexuosa and Vaccinum myrtillus are<br />

abundant or frequent while Vaccinium vitis ideae,<br />

Homogyne alpina and Carex echinata are present but<br />

rare. The base <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> core is formed <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> coarse gravel with<br />

a low pollen content and cor<strong>ro</strong>ded grains <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> uncertain<br />

origin (Fig. 6). For <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se reasons, only <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Sphagnum<br />

peat deposit was taken into account for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> interpretation<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen data.<br />

The peat bog <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Bergerie (alt. 1400 m a.s.l.) (Fig. 2) is<br />

a Sphagnum peat bog. Locally Sphagnum sp. dominates,<br />

in association with Carex <strong>ro</strong>strata, Eriophorum vaginatum,<br />

Carex echinata, Juncus effusus and J. conglomeratus.<br />

The bore was performed under 25 cm <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> water. The<br />

bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sequence is argilous and poor in organic<br />

matter (Fig. 7). The site is situated above but near to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

present upper limit <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> spruce forest. The sur<strong>ro</strong>unding<br />

area is devoted to pasture. Juniper (Juniperus communis)<br />

and young Picea abies colonise <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>unding<br />

meadows.<br />

5. Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cores<br />

5.1. Ic Ponor I and II (Figs. 3 and 4)<br />

Despite <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir different depths, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two cores show<br />

similar sedimentary facies. The bottom is composed <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a<br />

sandy-clay deposit showing thin intercalated peat layers.<br />

This lacustrine phase corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> period 10,190–<br />

9660 cal BP (levels 298–280, Ic Ponor I; 170–140, Ic<br />

Ponor 2). Then, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediments are covered by a charcoal<br />

layer with some bark fragments, leaves and seeds. The<br />

abrupt transition corresponds to synch<strong>ro</strong>nous changes<br />

in pollen percentages: decrease in Betula, increase in<br />

Corylus, particularly at Ic Ponor I (Fig. 3). F<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

available radiocarbon dates and linear interpolations,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> age <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this transition can be estimated at ca 9650–<br />

9550 cal BP.<br />

Above, up to ca 4500 cal BP (levels 280–36, Ic Ponor I;<br />

145–38, Ic Ponor II) a Sphagnum peat is observed. At Ic<br />

Ponor 1, at level 44, charcoal is present. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two<br />

sequences, between levels 36–27 (Ic Ponor 1) and 38–20<br />

(Ic Ponor 2), mineral deposits with sand and clay<br />

indicate a flooded phase. At levels 22 (Ic Ponor 1) and<br />

15 (Ic Ponor 2), a poorly decomposed Sphagnum peat<br />

contains charcoals. Then a recent Sphagnum peat covers<br />

this charcoal layer. The comparison <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cores as well<br />

as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> palynological data shows that deposits between<br />

levels 36–27 (Ic Ponor 1) and 38–20 (Ic Ponor 2) are<br />

contemporaneous. However, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> radiocarbon dates <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

levels 34 (56807110 BP, Ic Ponor 1) and 35<br />

(64607110 BP, Ic Ponor 2) are different (Table 1). In<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two cores, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this lacutrine deposit<br />

correspond to a synch<strong>ro</strong>nous increase in Fagus<br />

and Abies pollen percentages. At Bergerie (Fig. 7) and<br />

Padis (Fig. 5), such increases are not synch<strong>ro</strong>nous and<br />

dated 4050780 BP (4500 cal BP) and 37507100 BP<br />

(4100 cal BP), respectively (Table 1). Out <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> area,<br />

in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> southwestern Carpathians (Banat mountains), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

two events seem synch<strong>ro</strong>nous and are dated<br />

3880760 BP (R.osch and Fischer, 2000). In all cases,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se events occurred a<strong>ro</strong>und 4500–4370 cal BP. Consequently,<br />

it can be assumed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> levels 34 and<br />

35 <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ic Ponor 1 and 2 are too old. These dates, ageing<br />

as well as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary facies, suggests that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dated<br />

plant remains contained in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediments were reworked<br />

and that a<strong>ro</strong>und levels 35–30 <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>re is a hiatus which<br />

might be <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> about 2000yr. At Ic Ponor 1, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> estimated<br />

age <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> level 40 obtained by linear interpolation (6000 BP:<br />

6820 cal BP) reinforces this hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis as does palynological<br />

data. By comparison with pollen data f<strong>ro</strong>m<br />

Bergerie and Padis, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> age <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> layer 35–12 can be<br />

estimated. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se sites, between 4200 cal BP and<br />

680 cal BP, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpinus percentages are frequently<br />

>10%. At Ic Ponor, above level 35, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y do not exceed<br />

5–6%. For this reason, it can be assumed that in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two<br />

cores, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> deposits between 35 and 12 cm are younger<br />

than 680 cal BP. Above, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen content <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Sphagnum corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present and recent<br />

periods.<br />

5.2. Padis (Fig. 5)<br />

Between levels 95 and 80, we observe a clay deposit<br />

with gravel and sand. It is covered, up to level 27, by a<br />

Sphagnum peat, poorly decomposed between levels 27<br />

and 9. Sphagnum covers <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> site.


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1471<br />

Fig. 5. Pollen diagram f<strong>ro</strong>m Padis.


1472<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Fig. 6. Pollen diagram f<strong>ro</strong>m Cimeti"ere.


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1473<br />

Fig. 7. Pollen diagram f<strong>ro</strong>m Bergerie.


1474<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Table 1<br />

Radicarbon dates used in pollen diagrams a<br />

Depth (cm)<br />

Material<br />

14 C BP, sigma Ref. Lab. Ages (cal BP) d 13 C(%)<br />

Berg.<br />

95–100 Sphagnum peat 725785 Gif-11130 793–538 25.9<br />

145–150 Sphagnum peat 3720760 Gif-11131 4240–3891 26.19<br />

157–160 Plant mac<strong>ro</strong>-remains 4050780 GifA-99221 4825–4379<br />

165–170 Sphagnum peat 56657120 Gif-11133 6691–6272 26.88<br />

190–200 Plant mac<strong>ro</strong>-remains 6680780 GifA-99475 7664–7430<br />

215–230 Plant mac<strong>ro</strong>-remains 70107182 GifA-99476 8177–7562<br />

Pad.<br />

10–15 Sphagnum peat modern Gif-11127 26.27<br />

30–35 Sphagnum peat 445780 Gif-11128 560–308 25.8<br />

75–80 Sphagnum peat 37507100 Gif-11135 4411–3864 26.98<br />

85–95 Sphagnum peat 4595765 Gif-11129 5470–4046 26.8<br />

Ic I<br />

34 Plant mac<strong>ro</strong>-remains 56807110 GifA-100143 6686–6281<br />

70 Plant mac<strong>ro</strong>-remains 6190790 GifA-100146 7270–6854<br />

190 Plant mac<strong>ro</strong>-remains 6870790 GifA-100148 7865–7570<br />

292–295 Plant mac<strong>ro</strong>-remains 8990780 GifA-99669 10268–9888<br />

Ic II<br />

35 Plant mac<strong>ro</strong>-remains 64607110 GifA-100144 7571–7177<br />

55 Plant mac<strong>ro</strong>-remains 6980790 GifA-100145 7964–7659<br />

160 Plant mac<strong>ro</strong>-remains 8770790 GifA-100147 9969–9550<br />

C<br />

90–100 Plant mac<strong>ro</strong>-remains 78107110 GifA-99220 8814–8406<br />

a Ic I: Ic Ponor 1; Ic II: Ic Ponor 2; Pad.: Padis; C: Cimeti"ere; Berg.: Bergerie.<br />

5.3. Cimeti"ere (Fig. 6)<br />

White clay with gravel and poor in organic matter<br />

forms <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sequence. Plant mac<strong>ro</strong>-remains<br />

are observed at levels 125 and 118. Between levels 90 and<br />

53 <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> content in organic matter slowly increases and<br />

some undetermined plant mac<strong>ro</strong>-remains occur. Between<br />

levels 53 and 42.5 a sandy sediment is observed<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> content in organic matter slowly increases. After<br />

a thin grey sand layer present between levels 42.5 and 40,<br />

Sphagnum peat appears between levels 40 and 15. It is<br />

covered by Sphagnum. This diversity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> facies suggests<br />

frequent changes in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation and e<strong>ro</strong>sion<br />

p<strong>ro</strong>cesses. The st<strong>ro</strong>ng variations in percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus<br />

and Corylus between levels 130 and 80 are not observed<br />

in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r sites and support this hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis.<br />

5.4. Bergerie (Fig. 7)<br />

Between levels 230 and 90, a lacustrine deposit<br />

presents three facies: 230–190, sandy clay deposit with<br />

some gravel; 190–145: clay with somes gravel; 145–90:<br />

clay with plant remains. Peat appears at level 90. The<br />

abrupt sedimentary transition does not correspond to<br />

st<strong>ro</strong>ng pollen percentages variations which might<br />

indicate a possible gap <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> sediment. If such an event<br />

did occur, it was short and without any major<br />

consequences on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen representation. Between<br />

levels 90 and 25 peat decomposition regularly. Sphagnum<br />

is observed between levels 20 and 12.<br />

6. Pollen counting and representation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen<br />

diagram<br />

To extract pollen grains and spores, samples <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> one<br />

cubic centimeter were taken using a calibrated sampler.<br />

Classical p<strong>ro</strong>c<st<strong>ro</strong>ng>edu</st<strong>ro</strong>ng>res were used to eliminate organic<br />

matter and mineral fraction. To calculate <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen<br />

concentration, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> slides were prepared according to<br />

Cour (1974). The pollen concentrations are expressed as<br />

number <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> pollen grains per cm 3 . For each level,<br />

between 300 and 400 grains were counted, which<br />

represents a statistically significant sample. After counting,<br />

each slide was checked for rare pollen grains.<br />

Thousands <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> pollen grains and spores were thus<br />

observed per slide.<br />

Percentages were calculated f<strong>ro</strong>m a pollen sum<br />

including <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen types <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> all <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> trees, shrubs and<br />

herbs in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> region. Local pollen grains <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> hyd<strong>ro</strong>philous<br />

and hyg<strong>ro</strong>philous taxa were excluded, including Cyperaceae,<br />

as well as spores <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ferns and Mosses whose


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1475<br />

representation is frequently high and irregular (Janssen,<br />

1973). The percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> excluded taxa were<br />

calculated f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sum <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r pollen grains. In<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen diagrams, only <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> most significant taxa are<br />

indicated.<br />

Each pollen diagram was divided into Local Pollen<br />

Assemblage Zones (LPAZ) as defined by Cushing<br />

(1963), Berglund and Ralska-Jasiewiczowa (1986).<br />

F<strong>ro</strong>m comparisons between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen diagrams, Regional<br />

Pollen Assemblage Zones (RPAZ) were <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n<br />

defined<br />

7. Radiocarborn dates<br />

In many cases, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dated samples were extracted f<strong>ro</strong>m<br />

Sphagnum peat, which excludes <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> possibility <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> ageing<br />

by hard water effect (Table 1). At Padis, Cimeti"ere and<br />

Bergerie, low level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> organic matter at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> base <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

cores required p15 cm <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> sediment per date (Table 1).<br />

Peat samples at Padis and Bergerie ranged between 3<br />

and 5 cm. At Ic Ponor, all <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dates were obtained by<br />

AMS using unidentified terrestrial plant mac<strong>ro</strong>-remains<br />

f<strong>ro</strong>m thin layers (Table 1).<br />

Additional estimated ages were obtained by comparing<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> neighbouring sites and f<strong>ro</strong>m linear interpolations.<br />

Radiocarbon dates were calibrated using <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

radiocarbon calibration p<strong>ro</strong>gram REV 4.3 (Stuiver<br />

et al., 1998). In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> text, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dates are expressed in<br />

cal yr BP. Their consistency is discussed in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> following<br />

chapters.<br />

8. The local and regional pollen assemblage zones<br />

The pollen diagrams are divided into LPAZ: Ic Ponor<br />

1, 13 LPAZ (Fig. 3, Table 2); Ic Ponor 2, 13 LPAZ<br />

(Fig. 4, Table 3); Padis, 12 LPAZ (Fig. 5, Table 4);<br />

Cimeti"ere, 13 LPAZ (Fig. 6, Table 5) and Bergerie, 13<br />

LPAZ (Fig. 7, Table 6).<br />

F<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ described above and using <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

sedimentary data, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local available radiocarbon dating<br />

and estimated ages obtained by interpolation, 9 RPAZ<br />

(RPAZ) were identified (Table 7):<br />

RPAZ I: Betula–Picea–Ulmus–Corylus–Pinus (10,190–<br />

9660 cal BP), only represented in Ic Ponor 1 and 2.<br />

RPAZ 2: Corylus–Picea–Ulmus–Fraxinus–Alnus<br />

(9660–7700 cal BP), only represented in Ic Ponor 1<br />

and 2.<br />

RPAZ 3: Picea–Corylus–Ulmus (7700–7250 cal BP),<br />

common to Ic Ponor 1 and 2 and Bergerie. Fagus pollen<br />

is rare but regularly present.<br />

RPAZ 4: Picea–Corylus–Ulmus–Alnus (7250–<br />

6600 cal BP), common to Ic Ponor 1 and 2 and Bergerie.<br />

Pollen <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus, Carpinus and Abies is rare but present.<br />

RPAZ 5: Picea–Corylus–Carpinus (6600–4500 cal BP),<br />

common to Cimeti"ere, Bergerie and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Padis.<br />

Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and Abies.<br />

RPAZ 6: Picea–Carpinus–Fagus (4500–4100 cal BP),<br />

not represented in Ic Ponor 1 and 2 but common to<br />

Padis, Cimeti"ere and Bergerie.<br />

RPAZ 7: Fagus–Picea–Carpinus–Abies (4100–1940<br />

cal BP), common to Padis, Cimeti"ere and Bergerie.<br />

RPAZ 8: Fagus–Picea–Carpinus–Abies–Poaceae<br />

(1940–480 cal BP), common to Padis, Cimeti"ere and<br />

Bergerie.<br />

RPAZ 9: Fagus–Picea–Carpinus–Abies–Cerealia (480<br />

cal BPFPresent), common to Ic Ponor 1 and 2, Padis,<br />

Cimeti"ere and Bergerie.<br />

9. Discussion<br />

The comparison <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> five pollen diagrams shows<br />

that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lateglacial and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Postglacial<br />

period between 11,000 BP and 10,290 cal BP are not<br />

represented in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites studied. This does not allow us to<br />

describe <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <strong>ro</strong>le <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus and Betula or to date <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea curve.<br />

The present data concern <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last 10,200yr. At Ic<br />

Ponor, between about 10,200 and 9700–9600 BP, during<br />

RPAZ 1 (Table 7), Betula played a major <strong>ro</strong>le. Then,<br />

during RPAZ 2, it regressed and was replaced by<br />

Corylus and Picea. This Betula extension might be <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

consequence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> fires which occurred a<strong>ro</strong>und 10,200–<br />

9650 cal BP as indicated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> charcoal (Ic<br />

Ponor I: levels 290–285; Ic Ponor 2: level 165). Charcoal<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea is present (M. Thinon, pers. comm.) which<br />

demonstrates <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this tree at that time.<br />

The sur<strong>ro</strong>unding Picea–Corylus forest was p<strong>ro</strong>bably<br />

st<strong>ro</strong>ngly modified and birch colonised. Then Corylus<br />

and Picea recovered. Except in RPAZ 1 and 2, Pinus<br />

and Betula were poorly represented everywhere. At a<br />

lower stage, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> oak forest was regularly represented<br />

with Ulmus values reaching 10%. But at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> altitude <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> site, between 10,200 and 6800 cal BP (mid RPAZ 4,<br />

Table 2), Corylus and Picea were <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regional dominant<br />

species. This period corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea–Corylus–<br />

Quercetum mixtum defined by Pop (1932). Good<br />

correlations exist between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two cores <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ic Ponor,<br />

particularly f<strong>ro</strong>m 10,200 to 6800 cal BP, and a reference<br />

level is recorded ca 7700 cal BP (6870790 BP Ic Ponor 1;<br />

6980790 BP, Ic Ponor 2) when <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> continuous Fagus<br />

curve begins.<br />

Athat time, comparisons with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen diagram <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Bergerie becomes possible. The bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this sequence,<br />

dated 7010780 BP (7800 cal BP), does not contain<br />

pollen grains <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus. For this reason it might belong<br />

to upper RPAZ 2. Fagus pollen appears above, before<br />

7600–7500 cal BP (6680780 BP) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first centimeters<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> core belong to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> transition between


1476<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Table 2<br />

Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local pollen assemblage zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Ic Ponor 1 pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

LPAZ/Depth (cm) LPAZ name Main features <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ<br />

Ic 1–13 0–5 Picea–Poaceae–Betula–Cerealia Decrease in Poaceae and Picea, slight increase in Pinus and<br />

Fabaceae, presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Centaurea cyanus<br />

Ic 1–12 5–15 Picea–Poaceae–Cerealia Decrease in Picea and Fagus, increase in Fabaceae.<br />

Upper limit: decrease in Poaceae and Picea<br />

Ic 1–11 15–20 Picea–Fagus–Corylus–Poaceae–Cerealia Decrease in Corylus and Alnus, increase in Picea, Fagus,<br />

Poaceae, small increase in Carpinus. First presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cerealia<br />

Upper limit: decrease in Fagus, Picea and Carpinus<br />

Ic 1–10 20–25 Picea–Corylus–Fagus–Poaceae Decrease in Picea, slight decrease in Abies, increase in Poaceae,<br />

maximum <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ericaceae<br />

Upper limit: increase in Poaceae, Fagus and Picea, decrease in<br />

Ericaceae<br />

Ic 1–9 25–35 Picea–Corylus–Fagus St<strong>ro</strong>ng decrease in Picea, increase in Fagus, Carpinus and Alnus.<br />

Increase in Poaceae and Ericaceae, occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Plantago<br />

lanceolata, decrease in Ulmus<br />

Upper limit: decrease in Picea and Abies, slight increase in<br />

Chenopodiaceae<br />

Ic 1–8 35–45 Picea–Corylus Increase in Picea, decrease in Corylus and Quercus. Small<br />

increase in Fagus and Abies<br />

Upper limit: decrease in Picea, increase in Carpinus and Fagus<br />

Ic 1–7 45–55 Corylus–Picea Increase in Corylus and Quercus, st<strong>ro</strong>ng decrease in Picea<br />

Upper limit: increase in Picea, decrease in Corylus and Quercus<br />

Ic 1–6 55–70 Picea–Corylus–Ulmus Increase in Picea, decrease in Fraxinus. Regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Carpinus and Abies with low values. Fagus regularly present but<br />

rare. Small increase in Artemisia and Humulus–Cannabis type<br />

Upper limit: decrease in Picea, increase in Corylus<br />

Ic 1–5 70–95 Picea–Corylus–Fraxinus Decrease in Corylus. Small increase in Fagus and decrease in<br />

Ericaceae<br />

Upper limit: regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus and Abies, increase in<br />

Picea<br />

Ic 1–4 95–190 Picea–Corylus–Ericaceae Dominance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea and Corylus. Regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

with low values. Occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies and Carpinus. Occurrences<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Chenopodiaceae, Urticaceae and Rumex. Increase in<br />

Humulus–Cannabis type at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase<br />

Upper limit: increase in Fagus, decrease in Corylus and<br />

Ericaceae.<br />

Ic 1–3 190–220 Corylus–Picea–Ulmus–Fraxinus–Ericaceae Dominance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Corylus and Picea, increase in Ericaceae and<br />

Humulus–Cannabis type. Decrease in AP/T values<br />

Upper limit: decrease in Corylus, regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

Ic 1–2 220–280 Corylus–Picea–Ulmus–Fraxinus Abrupt fall in Betula values, increase in Corylus and Picea,<br />

occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Rumex, sporadic presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and Carpinus<br />

Upper limit: fall in Corylus, increase in Ericaceae and Humulus–<br />

Cannabis type<br />

Ic 1–1 280–295 Betula–Picea–Ulmus–Corylus–Pinus Abundance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Betula, Picea between 10% and 18%, decrease in<br />

Pinus<br />

Upper limit: fall in Betula values, increase in Corylus and Betula<br />

RPAZ 2 and 3. In RPAZ 3 most <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> curves <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Bergerie are similar to those <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ic Ponor 1 and 2, except<br />

that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea. This tree is well developed at Ic Ponor<br />

f<strong>ro</strong>m 10,200 cal BP upward, but it extends to Bergerie<br />

only f<strong>ro</strong>m 7800 cal BP. This will be discussed below.<br />

Because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary characteristics <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cores<br />

at Ic Ponor a<strong>ro</strong>und 6600–6500 cal BP, comparisons<br />

between Bergerie and Ic Ponor 1 are limited to RPAZ<br />

3 and 4. Using estimated dates obtained f<strong>ro</strong>m interpolation<br />

at Ic Ponor 1 and Bergerie, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> limit between<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two phases might be situated a<strong>ro</strong>und 7250 cal BP,<br />

when Picea values increase at Bergerie and those <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus at Ic Ponor 1.<br />

At Bergerie, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lower and upper limits <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> RPAZ 4 are<br />

defined by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Carpinus at 7250<br />

and 6600–6400 cal BP (5665780 BP), respectively.<br />

The Carpinus extension is also a good reference event<br />

allowing a correlation to be established between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

sequences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cimeti"ere and Bergerie. At Cimeti"ere,<br />

before this event, in addition to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

core, several palynological observations suggest disturbances<br />

in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation p<strong>ro</strong>cesses: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> abrupt


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1477<br />

Table 3<br />

Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local pollen assemblage zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Ic Ponor 2 pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

LPAZ/Depth (cm) LPAZ name Main features <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ<br />

Ic 2–13 5–15 Fabaceae–Rosaceae–Picea–Corylus–Cerealia St<strong>ro</strong>ng decrease in Picea and Corylus. Slight decrease in<br />

Carpinus, Fagus and Poaceae. Abundance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fabaceae.<br />

Urticaceae and Centaurea cyanus well represented. Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Cerealia<br />

Ic 2–12 15–20 Picea–Corylus–Fagus–Carpinus St<strong>ro</strong>ng decrease in Corylus, increase in Picea and Carpinus,<br />

Poaceae and Ericaceae<br />

Upper limit: decrease in AP/T ratio, Picea, Betula and Corylus<br />

Ic 2–11 20–30 Picea–Corylus–Fagus–Alnus Increase in Alnus, slight increase in Cannabis–Humulus type,<br />

occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Urticaceae<br />

Upper limit: decrease in Corylus, increase in Carpinus and Picea<br />

Ic 2–10 30–35 Picea–Corylus–Fagus Increase in Fagus, Alnus, Betula and Picea, decrease in Corylus,<br />

Ulmus and Fraxinus. Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Carpinus and occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies. Increase in Plantago<br />

lanceolata, Chenopodiaceae and Poaceae<br />

Upper limit: increase in Alnus and Picea, decrease in Fagus<br />

Ic 2–9 35–40 Picea–Corylus–Ulmus–Quercus Decrease in Picea, increase in Corylus, Quercus, Ulmus and<br />

Betula<br />

Upper limit: decrease in Corylus, Ulmus and Quercus, increase in<br />

Fagus<br />

Ic 2–8 40–55 Picea–Corylus Picea dominant, regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus with low values.<br />

Slight increase in Poaceae <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Ericaceae, first occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Abies<br />

Upper limit: decrease in Picea, increase in Corylus<br />

Ic 2–7 55–75 Picea–Corylus–Ulmus–Fraxinus Increase in Picea, synch<strong>ro</strong>nous decrease in Corylus. Slight<br />

increase in Poaceae <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Artemisia. Occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

Upper limit: beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Fagus curve, decrease in Ulmus<br />

Ic 2–6 75–115 Corylus–Picea–Ulmus–Fraxinus Peaks <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> zone, Corylus stable, AP/T<br />

values at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir maximum<br />

Upper limit: increase in Picea, decrease in Corylus and Ulmus<br />

Ic 2–5 115–135 Corylus–Picea–Ulmus–Fraxinus Dominance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Corylus, Picea stable a<strong>ro</strong>und 20%, decrease in<br />

Poaceae. Peak <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase. First<br />

occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus and Fagus<br />

Upper limit: increase in Picea, small decrease in Betula<br />

Ic 2–4 135–145 Corylus–Picea–Ulmus–Betula Increase in Corylus, Fraxinus and Picea, decrease in Betula<br />

Upper limit: decrease in Poaceae and Fraxinus<br />

Ic 2–3 145–150 Corylus–Betula–Picea–Ulmus Increase in Corylus, decrease in Picea and Betula. Small<br />

increase in Alnus<br />

Upper limit: decrease in Betula, increase in Picea and Corylus<br />

Ic 2–2 150–160 Betula–Picea–Corylus Decrease in Betula, slight increase in Corylus, increase in Picea,<br />

small increase in Poaceae<br />

Upper limit: decrease in Betula and Picea, increase in Corylus<br />

Ic 2–1 160–165 Betula–Picea–Ulmus–Corylus–Pinus Increase in Betula, decrease in Picea and Pinus<br />

Upper limit: decrease in Betula, increase in Picea<br />

change in percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus, Corylus and Poaceae at<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> clay–peat transition; <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> st<strong>ro</strong>ng variations in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus and Corylus between levels 130 and<br />

90 and, at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sequence, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> high values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Carpinus and Fagus not observed at Bergerie and Ic<br />

Ponor. Both <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> situation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> summit<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a western slope exposed to st<strong>ro</strong>ng winds and rainfalls<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local human impact explain that run-<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>f has<br />

affected <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary p<strong>ro</strong>cesses. For <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se reasons,<br />

deposits f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bottom to level 40, were considered as<br />

unsuitable for radiocarbon dating and those between<br />

levels 130 and 80 were rejected for paleoecological<br />

reconstruction. The pollen diagram <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cimeti"ere was<br />

subdivided using data f<strong>ro</strong>m Bergerie and Padis.<br />

During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> represented by RPAZ 1–4,<br />

sporadic occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, Fagus and Abies are<br />

observed. At Ic Ponor, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first Carpinus pollen was<br />

noted near 9500–8900 cal BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n regularly observed ca<br />

7800 cal BP at Bergerie and 7700–7600 cal BP at Ic<br />

Ponor. At Ic Ponor and Bergerie, Abies pollen occurred<br />

a<strong>ro</strong>und 7600–7500 cal BP. Fagus is found a<strong>ro</strong>und 9400–<br />

9000 cal BP at Ic Ponor and f<strong>ro</strong>m 7800 cal BP at<br />

Bergerie.<br />

These occurrences suggest <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> existence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> scattered<br />

stands situated at low and mid elevation during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>. It can be assumed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y p<strong>ro</strong>bably<br />

originate f<strong>ro</strong>m regional Glacial and Lateglacial<br />

refuges.


1478<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Table 4<br />

Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local pollen assemblage zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Padis pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

LPAZ/Depth (cm) LPAZ name Main features <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ<br />

Pad. 12 5–11<br />

Poaceae–Fagus–Picea–Carpinus–Corylus–Quercus<br />

Small decrease in Poaceae, Picea and Carpinus, slight increase<br />

in Fagus, Quercus, Corylus and Pinus<br />

Pad. 11 11–15 Poaceae–Fagus–Picea–Carpinus–Cerealia Decrease in Poaceae and synch<strong>ro</strong>nous increase in Fagus, Picea,<br />

Carpinus, Quercus and Pinus<br />

Upper limit: decrease in Poaceae, increase in Fagus<br />

Pad. 10 15–20 Poaceae–Fagus–Picea–Cerealia Abrupt increase in Poaceae and synch<strong>ro</strong>nous decrease in Fagus<br />

and Picea. Cerealia, Plantago, Rumex and Chenopodiaceae well<br />

represented,<br />

Upper limit: decrease in Poaceae, increase in Fagus and Picea<br />

Pad. 9 20–25 Fagus–Poaceae–Picea–Corylus–Quercus Increase in Picea, decrease in Quercus, slight increase in Fagus,<br />

decrease in Chenopodiaceae<br />

Upper limit: increase in Poaceae, decrease in Fagus and Picea<br />

Pad. 8 25–30 Fagus–Poaceae–Picea Decrease in Picea and Abies, increase in Quercus and Betula,<br />

Poaceae, Chenopodiaceae, Rumex, Plantago and Cerealia<br />

Upper limit: slight increase in Fagus and Picea, decrease in<br />

Chenopodiaceae<br />

Pad. 7 30–40 Fagus–Picea–Abies Fall in Carpinus, decline in Fagus, increase <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n decline in Picea<br />

and Abies. Increase in Chenopodiaceae at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase<br />

Upper limit: decline in Picea and Abies, increase in Poaceae and<br />

Chenopodiaceae<br />

Pad. 6 40–50 Fagus–Picea–Carpinus–Poaceae–Abies Optimum <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus, small variations in Picea and Carpinus and<br />

increase in Poaceae and Corylus. Small increase in Artemisia<br />

Upper limit: decrease in Fagus and Carpinus, increase in Picea<br />

and Abies<br />

Pad. 5 50–55 Fagus–Picea–Carpinus–Abies Increase in Picea, Carpinus and Chenopodiaceae. Small<br />

decrease in Abies and small increase in Fagus<br />

Upper limit: decrease in Carpinus and Picea, increase in<br />

Poaceae<br />

Pad. 4 55–70 Fagus–Picea–Abies–Carpinus Small increase in Abies and Fagus, fluctuations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus and<br />

Corylus, small increase in Chenopodiaceae. Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

AP/T decline at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase<br />

Upper limit: Increase in Picea, Carpinus and Chenopodiaceae<br />

Pad. 3 70–80 Corylus–Carpinus–Fagus–Picea–Abies Decrease in Corylus, Carpinus Ulmus. Increase in Abies, Fagus<br />

and Picea. Small increase in Juglans<br />

Upper limit: decrease in Carpinus, small increase in Corylus<br />

Pad. 2 80–85 Corylus–Carpinus–Picea–Fagus Decrease in Corylus and increase in Carpinus and Fagus. Small<br />

increase in Quercus and Abies. Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Juglans<br />

Upper limit: increase in Abies and Fagus, decrease in Corylus<br />

and Carpinus<br />

Pad. 1 85–90 Corylus–Picea–Poaceae Increase in Corylus,decrease in Poaceae. Carpinus, Fagus and<br />

Abies present but rare<br />

Upper limit: decrease in Corylus, increase in Carpinus and<br />

Fagus<br />

F<strong>ro</strong>m RPAZ 5–9 (ca 6450 cal BP–Present), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen<br />

diagrams <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Bergerie, Padis and Cimeti"ere can be<br />

compared.<br />

At Padis, between 4650 and 4100 cal BP, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> upper<br />

part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> RPAZ 5, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus are low<br />

(2%) when comparing with Bergerie (near 5%) and<br />

Cimeti"ere (near 10%). At Padis, Cimeti"ere and Bergerie,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> increase in Fagus and Carpinus and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> synch<strong>ro</strong>nous<br />

decrease in Corylus characterise <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

RPAZ 6 dated ca 4500 cal BP (4050780 BP) at Bergerie.<br />

This age, d<st<strong>ro</strong>ng>edu</st<strong>ro</strong>ng>ced f<strong>ro</strong>m that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> levels 160–155 f<strong>ro</strong>m<br />

Bergerie (4050780 BP), was preferred to that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Padis (4595765 BP, 5300 cal BP) for three<br />

reasons: at Padis <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> thickness <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sample is 15 cm<br />

and at Bergerie only 5 cm; at Padis <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dated sediment<br />

concerns material situated below <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Fagus curve; comparison between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dates obtained for<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Fagus expansion at Bergerie (4050780 BP) and in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> southwestern Carpathians, in Banat mountains<br />

(3880760 BP; R.osch and Fischer, 2000), are close to<br />

4500 cal BP.<br />

The beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> RPAZ 7 corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Abies<br />

development dated ca 4200 cal BP (3720760 BP) at<br />

Bergerie. The end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> RPAZ 7 is not dated. The p<strong>ro</strong>posed<br />

limit at 1940 cal BP is based on an interpolation between<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> radiocarbon dating <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Bergerie (3720760 and


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1479<br />

Table 5<br />

Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local pollen assemblage zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Cimeti"ere pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

LPAZ/Depth (cm) LPAZ name Main features <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ<br />

Cim. 13 0–5 Poaceae–Fagus–Picea–Carpinus–Corylus St<strong>ro</strong>ng decrease in Poaceae. Slight increase in Fagus, Picea,<br />

Abies and Carpinus<br />

Cim. 12 5–10 Poaceae–Fagus–Picea–Carpinus Decrease in Picea, small increase in Fagus, increase in Poaceae,<br />

presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Vitis, decrease in Cerealia<br />

Upper limit: Fall in Poaceae, increase in Fagus, Abies, Carpinus<br />

and Corylus<br />

Cim. 11 10–15 Fagus–Picea–Carpinus–Abies–Cerealia Decrease in Fagus and synch<strong>ro</strong>nous increase in Picea, presence<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Olea and Cerealia<br />

Upper limit: decrease in Picea, increase in Poaceae<br />

Cim. 10 15–30 Fagus–Poaceae–Corylus–Cerealia Scarcity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, dominance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus, regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Juglans and Cerealia. Small increase in Poaceae, Chenopodiaceae,<br />

Urticaceae, Rumex, Plantago<br />

Upper limit: fall in Fagus, increase in Picea<br />

Cim. 9 30–50 Fagus–Poaceae–Picea–Abies Increase in Fagus, decrease in Carpinus. Increase in Artemisia,<br />

regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Chenopodiaceae, Rumex and Plantago<br />

lanceolata<br />

Upper limit: decline in Picea, beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Juglans<br />

Cim. 8 50–65 Corylus–Fagus–Carpinus–Abies Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Abies curve. St<strong>ro</strong>ng increase in Fagus (2–20%)<br />

and synch<strong>ro</strong>nous decrease in Corylus (30–10%). Decline in<br />

Ulmus. Small increase in Chenopodiaceae and Artemisia,<br />

presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Rumex<br />

Upper limit: increase in Fagus, Artemisia and Rumex, decrease<br />

in Corylus<br />

Cim. 7 65–70 Corylus–Carpinus–Picea Increase in Fagus and beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Chenopodiaceae and Urticaceae. Decrease in Corylus<br />

Upper limit: increase in Abies and Fagus, decrease in Corylus<br />

Cim 6 70–80 Corylus–Picea–Poaceae–Carpinus–Ulmus Increase in Carpinus and Alnus, decrease in Ulmus and Poaceae.<br />

Small increase in Picea<br />

Upper limit: increase in Fagus, decrease in Corylus<br />

Cim. 5 80–90 Pinus–Corylus–Poaceae–Picea–Ulmus St<strong>ro</strong>ng decrease in Pinus (50–2%) and Filicales, increase in<br />

Corylus, Ulmus, Tilia and Poaceae. Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> curve <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Cannabis–Humulus type<br />

Upper limit: increase in Carpinus, decrease in Poaceae<br />

Cim. 4 90–95 Pinus–Corylus–Picea St<strong>ro</strong>ng increase in Pinus, decline in Corylus, Ulmus, Alnus, Picea<br />

and Poaceae<br />

Upper limit: abrupt decrease in Pinus, increase in Corylus and<br />

Poaceae<br />

Cim. 3 95–105 Corylus–Picea–Ulmus Abrupt decrease in Pinus and increase in Corylus. Increase in<br />

Picea and Poaceae. High values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ulmus (16%)<br />

Upper limit: increase in Pinus, decrease in Corylus Ulmus and<br />

Picea<br />

Cim. 2 105–115 Pinus–Picea Decrease in Picea and Pinus. Increase in Ulmus and high values<br />

(15%) at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase, increase in Poaceae<br />

Upper limit: decrease in Pinus and Filicales, increase in Corylus<br />

and Picea<br />

Cim. 1 115–130 Corylus–Pinus–Picea–Poaceae Picea at 15%, decrease in Corylus, increase in Pinus<br />

Upper limit: decrease in Pinus and Picea<br />

725785 BP) and Padis (37507100 and 445780 BP).<br />

At Bergerie, Cimeti"ere and Padis this limit corresponds<br />

to a decrease in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> AP/T ratio and Corylus values.<br />

At Bergerie it is also marked by a decrease in<br />

Carpinus percentages. At that time, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> human impact,<br />

described below, is <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> determining factor <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

landscape <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng>. The limits <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> RPAZ 8 and 9<br />

correspond to major changes observed in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> three<br />

sites. However, because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> difference in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local<br />

human impact, complete analogies are difficult to be<br />

found.<br />

RPAZ 8 begins with a decrease in AP/T and an<br />

increase in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> anth<strong>ro</strong>pogenic indicators. It ends when<br />

Poaceae values increase. According to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites, Juglans<br />

is regularly present (Cimeti"ere and Padis) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, Fagus and Picea decrease. At<br />

Padis, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> upper limit <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> RPAZ 8 is dated ca 500 cal BP<br />

(445780 BP).


1480<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Table 6<br />

Description <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> local pollen assemblage zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Bergerie pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

LPAZ/Depth (cm) LPAZ name Main features <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> LPAZ<br />

Berg. 13 25–30 Poaceae–Picea–Fagus Abrupt increase in Poaceae, increase in Chenopodiaceae,<br />

Cichorioideae, Rumex, Plantago lanceolata and Cerealia<br />

Berg. 12 30–70 Poaceae–Fagus–Picea–Abies–Carpinus St<strong>ro</strong>ng increase in Abies at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase. Increase<br />

in Poaceae, Plantago, Humulus–Cannabis type and Rumex.<br />

Regular decrease in Carpinus. Decrease <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n stabilization in<br />

AP/T. First occurrence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cerealia at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase<br />

Upper limit: fall in Fagus, Picea,Abies and Carpinus. St<strong>ro</strong>ng<br />

increase in Poaceae<br />

Berg. 11 70–90 Poaceae–Fagus–Picea–Carpinus–Abies Increase in Poaceae, Rumex and Artemisia. Slight decrease in<br />

Fagus and AP/T<br />

Upper limit: increase in Abies, decrease in Fagus and Picea<br />

Berg. 10 90–100 Fagus–Poaceae–Picea–Carpinus Small increase in Carpinus, decrease in Picea and Fagus.<br />

Increase in Artemisia<br />

Upper limit: increase in Poaceae, decrease in Carpinus<br />

Berg. 9 95–110 Fagus–Picea–Poaceae–Carpinus–Abies Increase in Poaceae <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Artemisia at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase.<br />

Small increase in Abies, Betula and Chenopodiaceae, regular<br />

occurrence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Humulus–Cannabis type and Plantago lanceolata.<br />

Decrease in AP/T<br />

Upper limit: decrease in Picea, Fagus and Poaceae<br />

Berg. 8 110–120 Fagus–Picea–Carpinus–Poaceae–Abies Fall in Carpinus, increase in Poaceae, Rumex and Urticaceae.<br />

Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Plantago lanceolata. Small<br />

increase in Pinus<br />

Upper limit: increase in Poaceae and Humulus–Cannabis type,<br />

decrease in Picea<br />

Berg. 7 120–145 Carpinus–Picea–Fagus–Corylus–Abies Regular increase in Fagus, small decline in Picea, decrease in<br />

Ulmus. Small but regular increase in Abies and Poaceae.<br />

Beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular occurrence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Chenopodiaceae and<br />

Cichorioideae. First occurrence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Plantago lanceolata<br />

Upper limit: fall in Carpinus, increase in Ranunculaceae, Rumex<br />

and Urticaceae<br />

Berg. 6 145–160 Corylus–Carpinus–Picea–Fagus Decrease in Corylus, increase in Fagus, Carpinus and Picea.<br />

Small decrease in Aste<strong>ro</strong>ideae, small increase in Poaceae.<br />

Regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase<br />

Upper limit: increase in Abies, Fagus and Alnus, decrease in Corylus<br />

Berg. 5 160–170 Corylus–Picea–Carpinus–Ulmus Increase in Carpinus and Salix, decrease in Corylus except at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase. Small decrease in Poaceae and Aste<strong>ro</strong>ideae.<br />

Increase in Pinus at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies<br />

Upper limit: increase in Fagus, Carpinus and Picea, decrease in<br />

Corylus and Pinus<br />

Berg. 4 170–184 Corylus–Picea–Aste<strong>ro</strong>ideae–Ulmus Increase in Picea, small decrease in Aste<strong>ro</strong>ideae, Cichorioideae,<br />

Poaceae, Rumex, Humulus–Cannabis type. Decline in Corylus<br />

with abrupt changes. Increase in Poaceae, Fraxinus and Betula<br />

at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase. Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies<br />

Upper limit: increase in Carpinus and Salix, decrease in Poaceae<br />

Berg. 3 184–195 Corylus–Aste<strong>ro</strong>ideae–Picea–Ulmus Decrease in Corylus at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase, increase in<br />

Ulmus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Pinus at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase. Small increase in<br />

Cannabis–Humulus type. Picea stable<br />

Upper limit: increase in Picea, abrupt fall in Corylus, beginning<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Betula<br />

Berg. 2 195–205 Corylus–Aste<strong>ro</strong>ideae–Picea Increase in Picea, decline in Corylus, small increase in<br />

Cichorioideae and Rumex <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n Artemisia. First presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies<br />

Upper limit: increase in Ulmus, decrease in Artemisia<br />

Berg. 1 205–220 Corylus–Aste<strong>ro</strong>ideae–Poaceae–Picea–Ulmus High values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Corylus and Aste<strong>ro</strong>ideae. Values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ulmus and<br />

Picea a<strong>ro</strong>und 5%. Presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and Carpinus<br />

Upper limit: increase in Picea, Quercus and Cichorioideae<br />

RPAZ 9 corresponds to a phase <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> intensive human<br />

activity well characterised by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> anth<strong>ro</strong>pogenic indicators.<br />

The AP/T value falls and st<strong>ro</strong>ng deforestation are<br />

recorded.<br />

10. Human impact<br />

The first evidence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> humans is<br />

visible at Ic Ponor a<strong>ro</strong>und 7800 cal BP. At that time


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1481<br />

Table 7<br />

Time-space correlation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> local and regional pollen assemblage zones a<br />

a A=Abies, Al=Alnus, Ast=Aste<strong>ro</strong>ideae, Be=Betula, Ca=Carpinus, Ce=Cerealia, Co=Corylus, E=Ericaceae, Fab=Fabaceae, F=Fagus,<br />

Fr=Fraxinus, P=Pinus, Pi=Picea, Po=Poaceae, Q=Quercus, Ro=Rosaceae, U=Ulmus.


1482<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Chenopodiaceae and Aste<strong>ro</strong>ideae became more frequent.<br />

This early impact is not surprising when<br />

considering <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> situation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> site along a valley<br />

allowing easy access to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> flat areas <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> mid elevation.<br />

F<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> available archaeoch<strong>ro</strong>nological data, this first<br />

presence might be attributed to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first Neolithic<br />

occupations in Transylvania (Gura Baciului, Ocna<br />

Sibiului, Starcevo–Cris III–IV Cultures) dated between<br />

7850 and 7350 cal BP (Laza<strong>ro</strong>vici, 1993; Demoulle, 1998;<br />

Mantu, 1998). Settlements <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se people were present<br />

o100 km f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> studied area, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> anth<strong>ro</strong>pogenic<br />

indicators suggesting that, at that time, g<strong>ro</strong>ups had<br />

already begun to travel over <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountain. At Bergerie,<br />

during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same period, anth<strong>ro</strong>pogenic indicators such<br />

as increases in Cichorioideae and Rumex are also found<br />

near 7600 cal BP. The local impact seems limited. The<br />

sedimentation rate which was 0.6 mm/yr between ca<br />

7800 and 7600 cal BP was only 0.17 mm/yr between 7600<br />

and 4570 cal BP.<br />

The age <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this first palynological evidence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Romanian Neolithic husbandry agrees with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> nume<strong>ro</strong>us dated archaeological sites in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans<br />

between 8900 and 6800 cal BP (Willis, 1994; Willis and<br />

Bennett, 1994) and with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> earliest Neolithic 14 C dates<br />

f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Balkans (8350–7800 cal BP) (Edwards<br />

et al., 1996).<br />

The first Cerealia pollen is noticed at Ic Ponor I<br />

during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Neolithic, a<strong>ro</strong>und 7100 cal BP (6190790 BP).<br />

At <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time Artemisia and Poaceae are more<br />

abundant. During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same period, several g<strong>ro</strong>ups are<br />

known in Transylvania near <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> studied zone: Cheile<br />

Turzii-Lumea Noua Complex and Turdas G<strong>ro</strong>ups<br />

(Mantu, 1998).<br />

A<strong>ro</strong>und 5200–4500 cal BP at Cimeti"ere and Bergerie,<br />

percentages <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Poaceae and ruderal communities (Chenopodiaceae,<br />

Rumex, Urticaceae) increase as well as<br />

Carpinus and Fagus. At Bergerie during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> period<br />

4570–4100 cal BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation rate is 0.71 mm/yr<br />

which is higher than during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> periods 7600–<br />

4570 cal BP (0.17 mm/yr) and 4100–1935 cal BP<br />

(0.14 mm/yr). The interpretation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se changes is<br />

difficult. The changes might be due to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> climatic<br />

variations which concerned this period in Eu<strong>ro</strong>pe and<br />

determined <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> beech (Huntley and<br />

Prentice, 1988; Huntley et al., 1989; Huntley, 1990a, b;<br />

Kelly and Huntley, 1991; Gardner and Willis, 1999). But<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> consequences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> human impact should not be<br />

underestimated. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Pyrenees, at mid and low<br />

altitudes (Jalut et al., 1982, 1998; Jalut, 1984; Kenla<br />

and Jalut, 1979) as well as in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> plains <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> central<br />

Eu<strong>ro</strong>pe (K.uster, 1997) and in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Romanian mountains,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> abundance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> forests may be partly<br />

related to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> successive cuttings <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> fir, oak or spruce<br />

forests. At Bergerie, when deforestation increases f<strong>ro</strong>m<br />

4100 to 1935 cal BP, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation rate decreases<br />

(0.143 mm/yr) <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n increases between ca 1935 and<br />

680 cal BP (0.24 mm/yr) which renders <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> interpretation<br />

difficult.<br />

At Padis, despite very favourable topographic conditions,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>re is no clear palynological evidence for an<br />

early st<strong>ro</strong>ng local human impact and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentological<br />

study <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> core is not informative. The<br />

sedimentation rate stays low all along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> core (between<br />

0.09 and 0.14 mm/yr f<strong>ro</strong>m level 90 to level 35). Only <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

recent Sphagnum peat shows a higher rate (0.78 mm/yr).<br />

At Cimeti"ere, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> use <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentological data<br />

might be more informative but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lack <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> dates does not<br />

allow calculation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation rate. However,<br />

a<strong>ro</strong>und 1935 cal BP a relationship exists between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

abundance in anth<strong>ro</strong>pogenic indicators, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> decrease in<br />

AP/T values and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> thin layers <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> sand in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat. They might be <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> consequence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> e<strong>ro</strong>sion<br />

p<strong>ro</strong>cesses related to deforestations. The contemporaneous<br />

decline in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen concentration reinforces<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a st<strong>ro</strong>ng human impact on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

landscape.<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> three sites, between ca 4500 and 3200–<br />

2750 cal BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> forest cover remained stable. Then it<br />

began to regress. The decrease in AP values is correlated<br />

to a rise in Poaceae, Chenopodiaceae and Plantago<br />

species.<br />

At Padis and Bergerie, a<strong>ro</strong>und 2750–2550 cal BP, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Poaceae and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> increase in ruderal<br />

communities (Artemisia, Chenopodiaceae, Rumex, Urticaceae,<br />

Plantago) demonstrate increased human activities.<br />

They <strong>ro</strong>se a<strong>ro</strong>und 1935 BP and 695–660 cal BP<br />

(presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cerealia at Cimeti"ere). These periods<br />

correspond to decreases in AP values (Bergerie, Cimeti-<br />

"ere, Padis). Humans gradually spread into <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountain<br />

(Obelic et al., 1998).<br />

At <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time, human impact affected both<br />

elevations between 1000 and 1400 m and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lower<br />

zones. Thus, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> decrease in percentages and pollen<br />

concentration <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, Quercus, Ulmus and Tilia, is<br />

synch<strong>ro</strong>nous with an increase in anth<strong>ro</strong>pogenic indicators<br />

and possibly reflects <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> destruction <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Querceto–Carpinetum.<br />

The massive forest clearance during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last century is<br />

shown by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fall in AP values and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> greater Poaceae<br />

abundance in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> upper levels <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> most peat bogs. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

studied area <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present scarcity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

noticeable extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus are p<strong>ro</strong>bably <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> consequences<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this deforestation. In some places such as Ic<br />

Ponor, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen analysis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fifteen upper centimeters<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Sphagnum peat shows <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> correlation between<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> forest destruction and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cultivated<br />

areas. Cerealia pollen is regularly observed and, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

surface samples, pollen <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Secale, Fagopyrum, Centaurea<br />

cyanus, Plantago lanceolata, Plantago co<strong>ro</strong>nopus and<br />

Fabaceae are well represented. The abundance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Onobrychis pollen type indicates cultivated zones, fallow<br />

land and pathways in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> close vicinity (Figs. 3 and 4).


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1483<br />

11. Comparisons with published local data<br />

In a work focussed on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same area <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng><br />

mountains, Ciobanu (1965) studied five sites including<br />

Pietrele Onachii (2 cores) and La Ic (called here Ic<br />

Ponor). At <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bottom <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pietrele Onachii I, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fall <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Pinus and increase in Picea and Corylus values are<br />

recorded. At Pietrele Onachii II, Abies and Carpinus are<br />

present with low values during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea–Corylus phase,<br />

before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Fagus and Carpinus extension. Then Carpinus,<br />

Fagus and Abies seem to extend at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time<br />

while Picea decreases. The apparent synch<strong>ro</strong>nism in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, Fagus and Abies is due to<br />

excessively long sampling intervals.<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Ic Ponor sequence (La Ic <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ciobanu, 1965)<br />

Fagus, Abies and Carpinus appear sporadically during<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> phase with a maximum <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea. This confirms our<br />

observations at Ic Ponor, where sporadic occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus, Abies and Carpinus occur during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>.<br />

In o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r sites <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains (Fig. 2), La<br />

Mlastina and La Mol (Ciobanu, 1967), Calatele<br />

(Ciobanu, 1968), Dealul Negru (2 cores) (Lupsa,<br />

1972), Dimbul Negru (4 cores; Lupsa, 1973), Baita<br />

(Ratiu and Boscaiu, 1971) and Mluha (2 cores)<br />

(Ciobanu, 1958) (Fig. 2), a first extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus<br />

followed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> beech and fir is<br />

observed. This corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ch<strong>ro</strong>nology described<br />

at Padis, Cimeti"ere and Bergerie. The same succession is<br />

also recorded at Dimbul Negru-La Pod and at Dealul<br />

Negru I. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> latter site, at level 270, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first<br />

percentage <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus (about 8%) indicates that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> curve is situated lower, between levels<br />

280 and 270, which agrees with our data. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

diagrams, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> curves <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies and Fagus<br />

are indistinct because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> size <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sampling<br />

interval.<br />

At Ciurtuci (Fig. 2) (Lupsa, 1971, 1974) several cores<br />

were extracted in different peat bogs. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> earliest work<br />

(Lupsa, 1971), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Abies curve is lacking in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen<br />

diagrams but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> decrease <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Picea are synch<strong>ro</strong>nous. F<strong>ro</strong>m our results, it can be<br />

assumed that this event p<strong>ro</strong>bably occurred a<strong>ro</strong>und<br />

4500 cal BP. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> second study, (Ciurtuci I, Lupsa,<br />

1974) <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> decline <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Corylus and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first increases in<br />

Carpinus and Fagus values are observed. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen<br />

diagram, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se events seem to be simultaneous, both<br />

occurring between 6450 and 4500 cal BP. Then, a second<br />

and greater extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus and Fagus occurred,<br />

correlated with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> decline <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> development<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Abies which reached 17%. At Bergerie and Padis <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se<br />

events are dated 4030 BP.<br />

In conclusion, most <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites studied in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng><br />

mountains, including Padis, Cimeti"ere and Bergerie,<br />

show a comparable <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea, Carpinus, Fagus<br />

and Abies.<br />

The present and past studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Ic Ponor confirm <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, Fagus and Abies during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>, between 10,190 and 6820 BP.<br />

Beyond <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern<br />

Carpathians (Iezerul Calimani, alt. 1650 m, Calimani<br />

Mts.) and Central Carpathians (Fig. 1) (Taul Zanogutii,<br />

alt. 1840 m, Retezat Mts.) (Pop and Lupsa, 1971;<br />

Mit<strong>ro</strong>escu-Farcas, 1995; Farcas, 1996; Farcas and<br />

Tantau, 1998; Farcas et al., 1999) <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lateglacial period<br />

is well represented with a st<strong>ro</strong>ng development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Artemisia and Chenopodiaceae followed by successive<br />

extensions <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pinus and Picea. The fall in Artemisia<br />

values and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> increase in Picea values<br />

are dated ca 13,140 cal BP (11,140775 BP) and latter,<br />

Younger Dryas seems to be represented (Farcas et al.,<br />

1999).<br />

For <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> period 10,190 cal BP–Present, noticeable<br />

differences are observed with our data f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng><br />

mountains. At Iezerul Calimani Pinus remains abundant<br />

up to about 5110 cal BP. At Taul Zanogutii (1840 m) it<br />

stops being well represented a<strong>ro</strong>und 9660 cal BP due to<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> competition between Corylus and Picea. Asimilar,<br />

but un-dated evolution, is recorded in Banat mountains,<br />

to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Taul Zanogutii (R.osch and Fischer, 2000)<br />

(Fig. 1). During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lateglacial and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>, Betula is poorly represented and, as previously<br />

discussed, its abundance at Ic Ponor is <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

consequence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> forest fires favouring heliophilous<br />

species. During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>, frequent natural<br />

fires were also noticed by R.osch and Fischer (2000) in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains.<br />

During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>, at Iezerul Calimani and<br />

Taul Zanogutii (Farcas and Tantau, 1998), low-altitude<br />

oak forest is represented with Ulmus percentages<br />

frequently higher than that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus. Such high<br />

Ulmus percentages are also noticed in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng><br />

mountains (Ic Ponor) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains. In<br />

Eastern and Central Carpathians as at <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains,<br />

Corylus and Picea are <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two dominant trees in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountains. After which, Picea declines, while<br />

Carpinus, Fagus and Abies expand. On <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> contrary,<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains, only Corylus is well represented<br />

during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea stay<br />

low (ca 5%).<br />

During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> at Taul Zanogutii (Farcas<br />

and Tantau, 1998) as well as in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains<br />

(R.osch and Fischer, 2000), Carpinus is sporadically<br />

present and its curve becomes continuous before its<br />

extension phase. In a more recent study <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Taul<br />

Zanogutii (Farcas et al., 1999), occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> isolated<br />

hornbeam pollen are very rare during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus is dated<br />

7560 cal BP (6645765 BP). This date can be compared<br />

with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dating <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus at Ic Ponor I (7670 cal BP: 6870790 BP)<br />

and at Ic Ponor II (7800 cal BP: 6980790 BP). However,


1484<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

at Iezerul Calimani, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first regular occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Carpinus are noticed only between 5110 and 4500 BP<br />

and in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains, hornbeam spreads between<br />

7600 cal BP (6780760 BP) and 4350 cal BP (38807<br />

60 BP). In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se sites, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus is similar<br />

to that described at Bergerie, Cimeti"ere and Padis. To<br />

explain <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> different timing <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus colonisation,<br />

Diaconeasa and Farcas (1998) suggested <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> existence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

two simultaneous patterns <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpathian colonisation<br />

f<strong>ro</strong>m nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Yugoslavia, one via <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> west, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> east. This hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis is<br />

questionable because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus<br />

in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Central Carpathians and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat Mountains which suggests <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> existence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

glacial and Lateglacial refuges in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se areas and,<br />

consequently, a p<strong>ro</strong>cess <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> recolonisation<br />

f<strong>ro</strong>m nume<strong>ro</strong>us sheltered zones in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathians<br />

ra<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r than a single area. On <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> this latter<br />

hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE<br />

Carpathians might be explained not by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> absence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

refuges but by climate conditions. It was only during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

5110–4500 cal BP period that Calimani Mountains, close<br />

to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Ukraine forest-steppe and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern<br />

lowland Carpinus limit (Ozenda, 1994), experienced<br />

climatic conditions favourable for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

hornbeam f<strong>ro</strong>m isolated stands.<br />

Differences exist between our dates and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> previously<br />

published dates for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and Abies.<br />

Because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a hiatus, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extensions <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus and Abies are not dated at Taul Zanogutii. At<br />

Iezerul Calimani, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first regular occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

are observed during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> period 5110–4000 cal BP.<br />

Despite <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> inversion <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> two comparable radiocarbon<br />

dates, it can be assumed that this phase <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> development<br />

begins ca 4500 cal BP. It is contemporaneous with that<br />

observed at Padis, Cimeti"ere and Bergerie as well as in<br />

most <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r studied sites. Regular occurrences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Abies are also noticed f<strong>ro</strong>m about 4500 cal BP at Iezerul<br />

Calimani, but a real increase is only noticed a<strong>ro</strong>und<br />

2875 cal BP, later than in our western sites. The recent<br />

data f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains show a synch<strong>ro</strong>nous<br />

extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus and Abies dated a<strong>ro</strong>und 4350 cal BP<br />

(3880760 BP). Here, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> distinct interval between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

two events, visible in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains and at<br />

Iezerul Calimani, is not observed.<br />

Prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Farcas et al. (1999), palynological<br />

studies were devoted <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern Carpathians.<br />

They had concerned <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sites <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Poiana Stiolului, Dupa<br />

Lunca-Voslobeni, Mohos (Pop, 1962; Pop and Diaconeasa,<br />

1967; Ratiu, 1969; Farcas and Tantau, 1998);<br />

Calimani Exploatare II, alt. 1700 m; Poiana Boilor, alt.<br />

1300 m; Rachitis, alt. 1700 m (Mit<strong>ro</strong>escu-Farcas, 1995)<br />

and Cica Mica 1; alt. 1700 m (Farcas, 1995). The<br />

observation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> related pollen diagrams shows that<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> representation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> trees is dependent on local<br />

ecological conditions or pollen transport but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> most<br />

important ch<strong>ro</strong>nological data agree with our present<br />

results.<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eastern Carpathians (Poiana Stiolului, Dupa<br />

Lunca–Voslobeni, Mohos) (Pop, 1962; Pop and Diaconeasa,<br />

1967; Ratiu, 1969; Farcas and Tantau, 1998), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

pollen data show <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same succession: Pinus phase,<br />

Pinus–Picea phase, Picea–Quercetum mixtum–Corylus<br />

phase, Picea–Carpinus phase, Picea–Fagus phase. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

first two sites Abies is not represented. At Mohos it<br />

appears after Fagus development but it stays rare.<br />

Concerning human impact, by comparison with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

available pollen data f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Romanian Carpathians,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> data f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains reveal an early<br />

human impact on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountain. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern<br />

Carpathians, at Iezerul Calimani (Farcas et al., 1999),<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Plantago is only noticed f<strong>ro</strong>m ca<br />

3430 cal BP and is synch<strong>ro</strong>nous with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus. High values <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Juglans are dated a<strong>ro</strong>und<br />

1580 cal BP, after a st<strong>ro</strong>ng decrease in Pinus values and<br />

an increase in Poaceae, Aste<strong>ro</strong>ideae and Carpinus<br />

pollen. The latter might have been favoured by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

local deforestations.<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> humans<br />

is recorded earlier, a<strong>ro</strong>und 4450 cal BP. It is characterised<br />

by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> grains <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Triticum-type and<br />

Plantago lanceolata and by an increase in charred<br />

particles (R.osch and Fischer, 2000). Then, during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

I<strong>ro</strong>n Age a<strong>ro</strong>und 4650–4250 cal BP, increases in Plantago,<br />

Cereals and charcoal are recorded. Increases in<br />

charcoal are noticed f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late medieval to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

modern period.<br />

12. Regional comparisons<br />

The forest <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains described<br />

above is similar to that <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>unding countries<br />

(Ukraine, Bulgaria, Hungary, Czechia, Slovakia, Poland<br />

and Slovenia) (Fig. 1) There is no difference concerning<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus and Ulmus. They were present in<br />

all <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se countries f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>.<br />

Their abundance at 10,190 BP in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains<br />

suggests that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y were also present.<br />

Picea, present in Romania a<strong>ro</strong>und 11,165–<br />

10,870 cal BP (Farcas et al., 1999) is also regularly<br />

observed f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> in Czechia<br />

and Slovakia (Zlatnicka dolina, Toj<strong>ro</strong>he Pleso, Vracov:<br />

Rybnickova and Rybnicek, 1996), Slovenia (Sercelj,<br />

1996; Culiberg and Sercelj, 1996), and Poland (Ralska-<br />

Jasiewiczowa and Latalowa, 1996). However, f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

observation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pollen diagrams it seems that its<br />

maximum values are not synch<strong>ro</strong>nous.<br />

Carpinus is regularly observed f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> in Bulgaria (Kupena, Lake Sucho Eze<strong>ro</strong> 2,<br />

Tschokljovo: Bozilova and Smit, 1979; Bozilova et al.,<br />

1990, 1989; Tshchalova et al., 1990; Tonkov and


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1485<br />

Bozilova, 1992; Willis, 1994; Bozilova et al., 1996;<br />

Tonkov et al., 1998) and Hungary (Batorliget: Willis<br />

et al., 1995) and sporadically present before 7800 cal BP<br />

in Ukraine (Dovjok, Orgeev, Kardashinski: Kremenetski,<br />

1991, 1995; Kremenetski et al., 1999). These early<br />

occurrences support <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> hypo<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> existence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

nume<strong>ro</strong>us regional glacial and Lateglacial refuges. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, hornbeam occurrs sporadically<br />

a<strong>ro</strong>und 9450–8875 cal BP (Ic Ponor). Its pollen is<br />

regularly present at Bergerie f<strong>ro</strong>m ca 7800 cal BP and<br />

its percentages increase st<strong>ro</strong>ngly ca 6400 cal BP. This<br />

ch<strong>ro</strong>nology is coherent with data f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans<br />

(Willis, 1994), but in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>unding countries, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Carpinus extension phase is not always synch<strong>ro</strong>nous.<br />

Fagus appears in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains ca 9450–<br />

9200 cal BP (Ic Ponor), as well as in Hungary, Slovenia,<br />

Czechia and Slovakia where it is observed a<strong>ro</strong>und<br />

10,435, 8900 and before 7800 cal BP, respectively. At<br />

Padis, Cimeti"ere and Bergerie its extension occurred ca<br />

4500 cal BP, as in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> western Mediterranean (Jalut,<br />

1984; Jalut et al., 1982, 1998; Reille and Lowe, 1993). In<br />

Slovenia, Czechia, Slovakia and Poland, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension<br />

phases were not synch<strong>ro</strong>nous. They occurred a<strong>ro</strong>und<br />

8340, 7800, 6820 and 5360 cal BP, respectively.<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains, Abies is present a<strong>ro</strong>und<br />

6820 cal BP (Ic Ponor) as well as in Czechia and<br />

Slovakia (Rybnickova and Rybnicek, 1996) and Poland<br />

(Ralska-Jasiewiczowa and Latalowa, 1996), but earlier<br />

in Slovenia (>7800 cal BP) (Sercelj, 1996; Culiberg and<br />

Sercelj, 1996). The extension phases dated 4030 cal BP at<br />

Bergerie and Padis, a<strong>ro</strong>und 4500 cal BP in Czechia and<br />

Slovakia (Rybnickova and Rybnicek, 1996), and 5110–<br />

4500 BP at Iezerul Calimani and Taul Zanogutii (Farcas<br />

et al., 1999), as well as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> contemporaneous extension<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus, emphasises <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> importance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> 5110–<br />

4030 cal BP period for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> installation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mountain<br />

forests. Comparisons with vegetation changes occurring<br />

at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western Mediterranean (Jalut<br />

et al., 1997, 2000) area show that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se changes were<br />

essentially cont<strong>ro</strong>lled by climate. When considering that<br />

human impact increased a<strong>ro</strong>und 5100–4500 cal BP, we<br />

can consider, like Willis (1994) that, for Romania and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>unding areas, it was a critical period for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present day landscape.<br />

At a <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic scale which includes a large part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkan region (Willis, 1994) and covers a great<br />

diversity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> ecological situations, correspondences between<br />

major vegetation changes in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans and in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains can be observed. Between 10,190<br />

and 8875 cal BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>re was expansion <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Pistacia in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Balkans and development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus and Ulmus in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains. Between 7800 and 5730 cal BP,<br />

Carpinus betulus and Fagus appeared in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans<br />

with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> regular presence <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus<br />

in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains. A<strong>ro</strong>und 5100 cal BP, important<br />

changes occurred in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> landscape in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans,<br />

contemporaneous with: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

increase in Poaceae and ruderal communities in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains. This correlation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> natural envi<strong>ro</strong>nmental<br />

and vegetation changes suggests that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y<br />

were determined by climatic changes and possibly that<br />

such changes influenced human activities.<br />

13. Conclusions<br />

Studies in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains date <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> classical<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> phases described in earlier palynological<br />

investigations. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> study area Pinus and Betula were<br />

never important forest components between<br />

10,190 cal BP and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Present. At Ic Ponor, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peak<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Betula near 9850 cal BP corresponds to a local<br />

development associated to natural forest fires. The<br />

beginning <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea extension occurred prior to<br />

10,190 cal BP and a<strong>ro</strong>und 11,180 cal BP (Farcas et al.,<br />

1999).<br />

Between 10,190 and 6450 cal BP, Corylus and Picea<br />

were dominant at mid altitude (<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea–Corylus–<br />

Quercetum mixtum phase. Carpinus occurred at low and<br />

medium elevation ca 6450 cal BP. The Picea–Carpinus<br />

phase ended a<strong>ro</strong>und 4500 cal BP when Fagus spread.<br />

The Abies development occurred slightly later ca<br />

4100 cal BP. Then <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Picea–Carpinus–Fagus–Abies<br />

phase began.<br />

A<strong>ro</strong>und 2540–1935 cal BP Carpinus, decreased and<br />

a<strong>ro</strong>und 680–660 BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> montane forest was submitted to<br />

st<strong>ro</strong>ng human impact. Before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir extension phases, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

regional presence <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Carpinus, and Fagus is attested by<br />

sporadic presence a<strong>ro</strong>und 8875 cal BP <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n by noticeable<br />

occurrences f<strong>ro</strong>m about 7800 cal BP. Abies is observed<br />

later at 7545–7425 cal BP. These occurrences suggest <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

existence, during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last cold phases, <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> regional refuges<br />

situated in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> deep valleys <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> mountains.<br />

They might have favoured <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> survival <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> some <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

present tree species during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> glaciation.<br />

More generally, it can be assumed that during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Last Glacial and Lateglacial period nume<strong>ro</strong>us refuges<br />

existed in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathians. These isolated stands<br />

favoured colonisation during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng>. Local<br />

climate conditions were major limiting factors and<br />

explain many <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ch<strong>ro</strong>nological differences.<br />

These new palynological investigations demonstrate<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early <strong>ro</strong>le <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> humans on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> forest. The first<br />

evidences for settlements is recorded a<strong>ro</strong>und 7800 cal BP<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n 7570 and 7425 cal BP.<br />

The first Cerealia pollen is found ca 6820 cal BP.<br />

During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> B<strong>ro</strong>nze Age, between about 5100 and 3200–<br />

2750 cal BP, human impact seems stable and limited.<br />

Then it increased at all elevations, particularly a<strong>ro</strong>und<br />

1935 and 695–660 BP. It is during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Last Century that<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> most extensive forest destructions occurred. At


1486<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

medium elevation, beech was favoured at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> expense <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Picea during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> recent recolonisation phases.<br />

Acknowledgements<br />

This research was supported by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Minist"ere Fran-<br />

-cais de l’Education Nationale, de la Recherche et de la<br />

Technologie ‘‘R!eseau Formation Recherche Pays Eu<strong>ro</strong>pe<br />

Centrale et Orientale–R!eseau Franco–Roumain’’<br />

(Contract 4778836 A), Coordinator Dr. Ch. Causse, and<br />

by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Minist"ere Fran-cais des Affaires Etrang"eres<br />

(Grant no. 268230C). We express our gratitude to Dr.<br />

E. Silvestru (Emil Racovita Speological Institute, Cluj<br />

Napoca, Romania), for his determining help during <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

field work; to Pr. L. Ghergari, for her support at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Babes-Bolyai University <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Cluj Napoca; to Pr. Dr. C.<br />

Radulescu, Speological Institute <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Bucharest for his<br />

support and his welcome; Dr. M. Bakalowicz and Dr. A.<br />

Mangin for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir helpful comments on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> field; to Dr.<br />

M. Thinon for determination <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Picea charcoal, Ms D.<br />

Dejean for her help in bibliography.<br />

Thanks are due to M. Arnold, head <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> UMS 2004<br />

Tandet<strong>ro</strong>n, L.S.C.E., Gif sur Yvette and to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> L.S.C.E.<br />

Radiocarbon team, especially M. Paterne, N. Tisnerat,<br />

E. Kaltnecker, C. Noury and C. Hatt!e.<br />

We thank Dr K. Willis, Dr M. Magny and Pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>. J.<br />

Rose for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir helpful comments on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> manuscript.<br />

References<br />

Berglund, B.E., Ralska-Jasiewiczowa, M., 1986. Pollen analysis and<br />

pollen diagrams. In: Berglund, B.E. (Ed.), Handbook <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng><br />

Paleoecology and Paleohyd<strong>ro</strong>logy. Wiley, Chichester, pp. 455–484.<br />

Bozilova, E., Smit, A., 1979. Palynology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Lake ‘Sucho Eze<strong>ro</strong>’ f<strong>ro</strong>m<br />

South Rila mountain (Bulgaria). Fitologija 11, 54–67.<br />

Bozilova, E., Panovska, H., Tonkov, Sp., 1989. Pollenanalytical<br />

investigations in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kupena National Reserve, West Rhodopes.<br />

Geographica Rhodopica 1, 186–190.<br />

Bozilova, E., Tonkov, Sp., Pavlova, D., 1990. Pollen and plant<br />

macr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ossil analyses <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Lake Sucho Eze<strong>ro</strong> in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> South Rila<br />

mountain. Annuaire de l’Universit!e de S<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ia, Facult!e de Biologie<br />

80 (2), 48–57.<br />

Bozilova, E., Filipova, L., Filipovich, L., Tonkov, S., 1996. Bulgaria.<br />

In: Berglund, B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M.,<br />

Wright, H.E. (Eds.), Palaeoecological Events During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Last<br />

15 000 years, Regional syn<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ses <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Palaeoecological Studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Lakes and Mires in Eu<strong>ro</strong>pe. Wiley, New York, pp. 701–728.<br />

Ciobanu, I., 1948. Analize de polen #ın turba Masivului Semenic din<br />

Banat. Editura Laboratorului de Anatomie si Fiziologie Vegetala a<br />

Universitatii Cluj, 144pp.<br />

Ciobanu, I., 1958. Analiza polinica a turbei de la Mluha (M. <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>).<br />

Contributii Botanice, Cluj, pp. 239–255.<br />

Ciobanu, I., 1965. Analize de polen #ın turba unor mlastini de pe cursul<br />

superior al Somesului Cald. Contributii Botanice, Cluj, pp.<br />

283–297.<br />

Ciobanu, I., 1967. Doua mlastini noi din Muntii <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>. Contributii<br />

Botanice, Cluj, pp. 77–82.<br />

Ciobanu, I., 1968. Analiza polinica a turbei din Molhasul de la<br />

Calatele. Contributii Botanice, Cluj, pp. 385–391.<br />

Cour, P., 1974. Nouvelles techniques de d!etection des flux et des<br />

retomb!ees polliniques: ! Etude de la s!edimentation des pollens et des<br />

spores "a la surface du sol. Pollen et Spores 16 (1), 130–141.<br />

Culiberg, M., Sercelj, A., 1996. Slovenia. In: Berglund, B.E., Birks,<br />

H.J.B., Ralska-Jasiewiczowa, M., Wright, H.E. (Eds.), Palaeoecological<br />

Events During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Last 15 000 Years, Regional Syn<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ses <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Palaeoecological Studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Lakes and Mires in Eu<strong>ro</strong>pe. Wiley,<br />

New York, pp. 687–700.<br />

Cushing, E.J., 1963. Late-Winsconsian pollen stratigraphy in east<br />

central Minnesota, Ph.D. Thesis, University <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Minnesota, 165p.<br />

Demoulle, J.P., 1998. La Neolithisation de l’Eu<strong>ro</strong>pe sud-orientale, In:<br />

Rapports du G<strong>ro</strong>upe de travail sur la Neolithisation, M!emoires de<br />

la Soci!et!e Pr!ehistorique Fran-caise, T. XXVI, 1999. Suppl. 1999,<br />

Revue d’Arch!eom!etrie, Actes du colloque ‘‘C14-Arch!eologie’’, 6<br />

avril 1998, pp. 453–454.<br />

Diaconeasa, A., Farcas, S., 1998. Contributia carpenului in constructiile<br />

silvestre cuaternare din Romania. Studia Universitatis<br />

Babes-Bolyai, Biologia XLIII (1–2), 11–26.<br />

Donita, N., 1964. Zonality <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> vegetation in Romania and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> p<strong>ro</strong>blem<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subdivision <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> zone <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> deciduous forests in Central<br />

Eu<strong>ro</strong>pe. Revue Roumaine de G!eologie, G!eophysique et G-<br />

!eographie, S!erie G!eographie 8, 97–101.<br />

Donita, N., 1965. Vegetationsstufen der Karpaten Rumananiens.<br />

Revue Roumaine de Biologie, S!erie Botanique 10, 455–468.<br />

Donita, N., Leandru, V., Puscaru-So<strong>ro</strong>ceanu, E., 1960.HartaGeobotanica<br />

R.P.R. Bucuresti, Academia Republicii Populare Rom#ıne<br />

(Geobotanical map, 4 pl.).<br />

Edwards, K.J., Halstead, P., Zvelebil, M., 1996. The Neolithic<br />

transition in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> BalkansFarchaeological perspectives and palaeoecological<br />

evidence: a comment on Willis and Bennett. The<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> 6, 120–122.<br />

Farcas, S., 1995. The palynological analysis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bogs complex<br />

in Cica Mica, Calimani Mountains. Studia Universitatis Babes-<br />

Bolyai, Geologia XL (2), 83–94.<br />

Farcas, S., 1996. Istoria vegetatiei din Carpatii <strong>ro</strong>manesti, in analizele<br />

palinologice de la Iezerul Caliman, Muntii Caliman. Contributii<br />

Botanice, 1995–1996, 83–92.<br />

Farcas, S., Tantau, I., 1998. Analize palinologice in ariile p<strong>ro</strong>tejate si<br />

semnificatia lor fitoistorica, in contextul conservarii biodiversitatii<br />

si a cadrului natural. Studia Scientia Cercetari (Studia Naturii),<br />

Bistrita 4, 189–200.<br />

Farcas, S., de Beaulieu, J.-L., Reille, M., Coldea, Gh., Diaconeasa, B.,<br />

Goeury, C., Goslar, T., Jull, T., 1999. First 14 C datings <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> late-<br />

Glacial and <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> pollen sequences f<strong>ro</strong>m Romanian Carpa<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>s.<br />

Comptes Rendus de l’ Acad!emie des Sciences, Paris, Sciences de la<br />

Vie, s!erie II, 322, 799–807.<br />

Ficheux, R., 1996. Les Monts <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng> (Bihor)FVall!ees et aplanissements,<br />

Editura Academiei Romane, 353pp.<br />

Gardner, A.R., Willis, K.J., 1999. Comment on: Prehistoric farming<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> postglacial expansion <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> beech and hornbeam. Author’s<br />

reply. The <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> 9, 119–122.<br />

Georgescu, N., Donita, N., 1965. La division floristique des Carpates<br />

de Roumanie, I. Revue Roumaine de Biologie, S!erie Botanique 10<br />

(5), 357–369.<br />

Huntley, B., 1990a. Dissimilarity mapping between fossil and<br />

contemporary pollen spectra in Eu<strong>ro</strong>pe for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last 13000 years.<br />

Quaternary Research 33, 360–376.<br />

Huntley, B., 1990b. Eu<strong>ro</strong>pean postglacial forests: compositional<br />

changes in response to climatic change. Journal <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Vegetation<br />

Science 1, 507–518.<br />

Huntley, B., Prentice, I.C., 1988. July temperatures in Eu<strong>ro</strong>pe f<strong>ro</strong>m<br />

pollen data, 6000 years before present. Science 241, 687–690.


A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488 1487<br />

Huntley, B., Bartlein, P.J., Prentice, I.C., 1989. Climatic cont<strong>ro</strong>l <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

distribution and abundance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> beech (Fagus L.) in Eu<strong>ro</strong>pe and<br />

North America. Journal <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Bio<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy 16, 551–560.<br />

Jalut, G., 1984. L’action de l’homme sur la f#oret montagnarde des<br />

Pyr!en!ees ari"e<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>ises et orientales depuis 4000 BP d’apr"es l’analyse<br />

pollinique. Actes 106e Congr"es National des Soci!et!es Savantes,<br />

section G!eographie. Perpignan 198, 163–172.<br />

Jalut, G., Delibrias, G., Dagnac, J., Mardones, M., Bouhours, M.,<br />

1982. Apalaeoecological app<strong>ro</strong>ach to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last 21 000 years in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Pyrenees: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> peat bog <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Freychinede (alt. 1350 m, Ari"ege, South<br />

France). Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy, Palaeoclimatology, Palaeoecology 40,<br />

321–359.<br />

Jalut, G., Esteban Amat, A., Riera i Mora, S., Fontugne, M., Mook,<br />

R., Bonnet, L., Gauquelin, T., 1997. <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> climatic changes in<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western Mediterranean: installation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean<br />

climate. Comptes Rendus de l’Acad!emie des Sciences, Paris, Earth<br />

Planetary Sciences 325, 327–334.<br />

Jalut, A., Galop, D., Belet, J.M., Aubert, S., Esteban Amat, A.,<br />

Bouchette, A., Dedoubat, J.J., Fontugne, M., 1998. Histoire des<br />

for#ets du versant nord des Pyr!en!ees au cours des 30 000 derni"eres<br />

ann!ees. Journal de Botanique de la Soci!et!e botanique de France 5,<br />

73–84.<br />

Jalut, G., Esteban Amat, A., Bonnet, L., Gauquelin, T., Fontugne, M.,<br />

2000. <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> climatic changes in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western Mediterranean,<br />

f<strong>ro</strong>m south-east France to south-east Spain. Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy,<br />

Palaeoclimatology, Palaeoecology 160, 255–290.<br />

Janssen, C.R., 1973. Local and regional pollen deposition. In: H.J.B.<br />

Birks, R.G. West (Eds.), Quaternary Plant Ecology. The 14th<br />

Symposium <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> British Ecological Society, University <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Cambridge, 28–30 March 1972, Blackwell, Oxford UK. pp. 31–42.<br />

Kelly, M.G., Huntley, B., 1991. An 11,000-year record <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> vegetation<br />

and envi<strong>ro</strong>nment f<strong>ro</strong>m Lago di Martignano, Latium, Italy. Journal<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quaternary Science 6 (3), 209–224.<br />

Kenla, J.V., Jalut, G., 1979. D!eterminisme anth<strong>ro</strong>pique du d-<br />

!eveloppement du h#etre dans la sapini"ere du Couserans (Pyr!en!ees<br />

ari"e<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>ises, France) durant le subatlantique. Geobios, 12 (5),<br />

735–738.<br />

Kremenetski, C.V., 1991. Palaeoecology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> earliest farmers and<br />

herders <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Russian plain. Thesis, Moscow, 193pp (in Russian).<br />

Kremenetski, C.V., 1995. <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> vegetation and climate <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

southwestern Ukraine. Review <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Palaeobotany and Palynology<br />

85, 289–301.<br />

Kremenetski, C.V., Chichagova, O.A., Shishlina, N.A., 1999. Palaeoecological<br />

evidence for <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> vegetation, climate and land-use<br />

change in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> low Don basin and Kalmuk area, sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Russia.<br />

Vegetation History and Archaeobotany 8 (4), 233–246.<br />

K.uster, H., 1997. The <strong>ro</strong>le <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> farming in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> postglacial expansion <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

beech and hornbeam in <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> oak woodlands <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> central Eu<strong>ro</strong>pe. The<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> 7, 239–242.<br />

Laza<strong>ro</strong>vici, G., 1993. Les Carpates M!eridionales et la Transylvanie. In:<br />

Kozlowski, J., Van Berg, P.L. (Eds.), Atlas du N!eolithique<br />

eu<strong>ro</strong>p!een. L’Eu<strong>ro</strong>pe orientale. Etudes et Recherches Arch-<br />

!eologiques de l’Universit!e deLi"ege, Marcel Otte publisher, Li"ege,<br />

pp. 243–284.<br />

Lupsa, V., 1971. Evolutia si structura tinovului de la Ciurtuci (Muntii<br />

<st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>). P<strong>ro</strong>grese in palinologia <strong>ro</strong>maneasca, Bucuresti, 227–229.<br />

Lupsa, V., 1972. Cercetari palinologice in tinovul de la Dealul Negru<br />

(Muntii <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>). Studia Scientia Cercetari Biologia, Seria<br />

Botanica 24 (6), 540–637.<br />

Lupsa, V., 1973. Analiza spo<strong>ro</strong>-polinica a mlastinilor de turba de pe<br />

Dambul Negru (M. <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>). Studia Universitatis Babes Bolyai<br />

Cluj-Napoca, Biologia 18 (2), 21–27.<br />

Lupsa, V., 1974. Cercetari palinologice in mlastinile de turba de la<br />

Ciurtuci (Muntii <st<strong>ro</strong>ng>Apuseni</st<strong>ro</strong>ng>). Studia Universitatis Babes Bolyai Cluj-<br />

Napoca, Biologia 19 (1), 19–23.<br />

Mantu, C.-M., 1998. The Absolute Ch<strong>ro</strong>nology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Romanian<br />

Neolithic and Aneolitic/Chalcolitic Periods. The State <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Research.<br />

M!emoires de la Soci!et!e Pr!ehistorique Fran-caise, T. XXVI, 1999.<br />

Suppl. 1999 Revue d’Arch!eom!etrie, Actes du colloque ‘‘C14–<br />

Arch!eologie’’, 6 avril 1998, pp. 225–231.<br />

Mit<strong>ro</strong>escu-Farcas, S., 1995. Analiza palinologica a unor mlastini de<br />

turba din Muntii Caliman. Studia Universitatis Babes Bolyai Cluj-<br />

Napoca, Biologia XL, 58–70.<br />

Obelic, B., Horvatincic, N., Durman, A., 1998. Radiocarbon<br />

Ch<strong>ro</strong>nology <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Archaeological sites in south-eastern Eu<strong>ro</strong>pe.<br />

M!emoires de la Soci!et!e Pr!ehistorique Fran-caise, T. XXVI, 1999.<br />

Suppl. 1999 Revue d’Arch!eom!etrie, Actes du colloque ‘‘C14-<br />

Arch!eologie’’, 6 avril 1998, pp. 233–238.<br />

Ozenda, P., 1994. La v!eg!etation du continent eu<strong>ro</strong>p!een. Delachaux et<br />

Niestl!e, 271pp.<br />

Pop, E., 1929. Analize de polen in turba Carpatilor Orientali (Dorna-<br />

Lucina). Buletinul Gradinii Botanice Cluj 9 (3–4), 29–102.<br />

Pop, E., 1932. Contributii la istoria vegetatiei cuaternare din<br />

Transilvania. Buletinul Gradinii Botanice Cluj 12 (1–2), 29–102.<br />

Pop, E., 1934. Analize de polen in turba din Bucegi si Ceahlau.<br />

Buletinul Gradinii Botanice Cluj 12 (1–2), 29–102.<br />

Pop, E., 1942. Contributii la istoria padurilor din nordul Transilvaniei.<br />

Buletinul Gradinii Botanice Cluj 22 (1–2), 101–177.<br />

Pop, E., 1960. Mlastinile de turba din Republicii Socialiste Rom#ania.<br />

Editura Academiei Republicii Populare Rom#ania, Bucuresti,<br />

515pp.<br />

Pop, E., 1962. P<strong>ro</strong>blema vechimii tinovului Mohos de langa Tusnad-<br />

Bai. Studia Scientia Cercetari Biologia, Cluj 13 (1), 7–21.<br />

Pop, E., Diaconeasa, B., 1967. Analiza palinologica a turbei din<br />

tinovul Mohos (Tusnad). Contributii Botanice, Cluj, 297–303.<br />

Pop, E., Lupsa, V., 1971. Diagrama spo<strong>ro</strong>-polinica de la Taul<br />

Zanogutii (Muntii Retezat). P<strong>ro</strong>grese in palinologia <strong>ro</strong>maneasca.<br />

Editura Academiei Republicii Socialiste Rom#ania, pp. 219–225.<br />

Ralska-Jasiewiczowa, M., Latalowa, M., 1996. Poland. In: Berglund,<br />

B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M., Wright, H.E. (Eds.),<br />

Palaeoecological Events During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Last 15 000 Years, Regional<br />

Syn<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ses <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Palaeoecological Studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Lakes and Mires in<br />

Eu<strong>ro</strong>pe. Wiley, New York, pp. 403–472.<br />

Ratiu, F., 1969. Cercetari palinologice in complexul mlastinos eutr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Voslabeni (jud. Harghita). Contributii Botanice, Cluj, pp. 307–316.<br />

Ratiu, O., Boscaiu, N. 1971. Aspecte ale evolutiei florei si vegetatiei in<br />

bazinul Stana de Vale. Contributii Botanice, Cluj-Napoca, 15–19.<br />

Reille, M., Lowe, J.J., 1993. Are-evaluation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> vegetation <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eastern Pyrenees (France), f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> last Glacial to<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present. Quaternary Science Reviews 12, 47–77.<br />

R.osch, M., Fischer, E., 2000. Aradiocarbon dated <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> pr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ile<br />

f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Banat mountains (Southwestern Carpathians, Romania).<br />

Flora 195, 277–286.<br />

Rybnickova, E., Rybnicek, K., 1996. Czech and Slovak Republics. In:<br />

Berglund, B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M., Wright,<br />

H.E. (Eds.), Palaeoecological Events During <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Last 15 000 Years,<br />

Regional Syn<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ses <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Palaeoecological Studies <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Lakes and Mires<br />

in Eu<strong>ro</strong>pe. Wiley, New York, pp. 473–506.<br />

Sercelj, A., 1996. Zacetki in razvoj gozdov v SlovenijiF<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> origins and<br />

development <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> forest in Slovenia. Ljubljana, Academia Scientiarium<br />

et Artium Slovenica, Classis IV, Historia Naturalis, Vol. 35,<br />

142pp.<br />

Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hugen,<br />

K.A., K<strong>ro</strong>mer, B., McCormac, F.G., v.d. Plicht, J. et Spurk, M.,<br />

1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP.<br />

Radiocarbon 40, 1041–1083.<br />

Tschakalova, E., Stojanova, D., Tonkov, Sp., 1990. Plant macr<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ossil<br />

remains f<strong>ro</strong>m Tschokljovo marsh (Konjavska mountain). Annuaire<br />

de l’Universit!e de S<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ia, Facult!e de Biologie 80 (2), 41–47.


1488<br />

A. Bodnariuc et al. / Quaternary Science Reviews 21 (2002) 1465–1488<br />

Tonkov, Sp., Bozilova, E., 1992. Palaeoecological investigation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Tschokljovo marsh (Konjavska mountain). Annuaire de<br />

l’Universit!e de S<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ia, Facult!e de Biologie 83 (2), 5–16.<br />

Tonkov, S., Atanassova, J., Bozilova, E., Skog, G., 1998. A Late<br />

<st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng> pollen diagram f<strong>ro</strong>m lake Suho Eze<strong>ro</strong>, Rila Mts,<br />

Southwestern Bulgaria). Phytologia Balcanica 4/3(S<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>ia), 31–38.<br />

Walter, H., Straka, H., 1970. Arealkunde. Floristisch-historische<br />

Geobotanik, E. Ulmer Verlag, Stuttgart, 478pp.<br />

Willis, K.J., 1994. The <st<strong>ro</strong>ng>vegetational</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans. Quaternary<br />

Science Reviews 13, 769–788.<br />

Willis, K.J., Bennett, K.D., 1994. The Neolitic trnsitionFfact or<br />

fiction? Palaeoecological evidence f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Balkans. The <st<strong>ro</strong>ng>Holocene</st<strong>ro</strong>ng><br />

4, 326–330.<br />

Willis, K.J., Sumegi, P., Braun, M., T!oth, A., 1995. The late<br />

Quaternary <st<strong>ro</strong>ng>history</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Batorliget, N.E. Hungary. Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy,<br />

Palaeoclimatology, Palaeoecology 118, 25–47.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!