IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

nachhaltigwirtschaften.at
from nachhaltigwirtschaften.at More from this publisher
04.11.2013 Views

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C2-A, November 9, 2009 References [1] Bian J, Radermacher R, Moran D. Transient simulation of an absorption chiller in a CHP system. In Proceedings of the International Sorption Heat Pump Conference, June 22-24, 2005, Denver, CO, USA. [2] Jeong S, Kang BH, Karng SW. Dynamic simulation of an absorption heat pump for recovering low grade waste heat. Applied Thermal Engineering 1998; 18 (1-2); 1-12 [3] Kohlenbach P. Solar cooling systems with absorption chillers: Control strategies and transient chiller performance. 2006; PhD Thesis; Technical University of Berlin, Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins; Nr. 74, Erding, Germany [4] Ziegler F. Sorptionswärmepumpen. 1997; Habilitation Thesis; Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins; Nr. 57, Erding, Germany. [5] Feuerecker G. Entropieanalyse für Wärmepumpensysteme: Methoden und Stoffdaten. 1994; PhD thesis; Faculty of Physics; Technical University of Munich; Germany. [6] Urroz GE. Solution of non-linear equations. 2004; Lecture handout; Utah State University; U.S.A. [7] Kohlenbach P, Ziegler F. A dynamic simulation model for transient absorption chiller performance. Part II: Numerical results and experimental verification. 2007; Int J Refrigeration, this issue. page 78

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C2-A, November 9, 2009 2. A dynamic simulation model for transient absorption chiller performance: Numerical results and experimental verification This section describes the performance and experimental verification of a dynamic absorption chiller model. In [1] the model itself was described with regard to dynamic effects, such as transport delays in the solution circuit, thermal storage and mass storage. In detail, the size of the solution sumps in absorber and generator, the time for the solution to flow from absorber to generator and vice-versa and the thermal mass of the main components has been accounted for. As a special feature, the thermal mass of the components has been split into two parts, one which responds to the temperature of the external fluids, and the other which responds to the temperature of the solution and the refrigerant (internal fluids). These are the main parameters which determine the dynamic behaviour of the chiller. This second section is looking at internal consistency, sensitivity and accuracy of the model. Results of a performance analysis using ideal conditions to prove correct model behaviour are shown. A sensitivity analysis on thermal storage and solution transport delay has been performed to investigate the influence of the dynamic parameters on the chiller performance. Finally, a model verification using experimental results is also given in this paper. Nomenclature Symbols A area, (m 2 ) A Duehring factor (deg C) B Duehring factor (-) c specific heat capacity (kJkg -1 K -1 ) c number of simulation steps representing time constants for transport delay (-) D dew point temperature (deg C) g gravity constant (Nm 2 kg -2 ) h height difference between generator outlet and absorber inlet (m) h enthalpy (kJkg -1) l specific heat of solution (kJkg -1 ) m, m& mass flow rate (kgs -1 ) M p mass (kg) pressure (Pa) Q & ,Q heat flux (kW) r evaporation enthalpy (kJkg -1 ) R gas constant for water vapour (Jkg -1 ) T temperature (deg C) t time (s) UA heat transfer coefficient (kWK -1 ) x Solution mass fraction (kg Salt kg -1 Sol ) X mole ratio (-) z solution level in generator sump (m) page 79

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion Subtask C2-A, November 9, 2009<br />

References<br />

[1] Bian J, Radermacher R, Moran D. Transient simul<strong>at</strong>ion of an absorption chiller in a<br />

CHP system. In Proceedings of the Intern<strong>at</strong>ional Sorption He<strong>at</strong> Pump Conference,<br />

June 22-24, 2005, Denver, CO, USA.<br />

[2] Jeong S, Kang BH, Karng SW. Dynamic simul<strong>at</strong>ion of an absorption he<strong>at</strong> pump for<br />

recovering low grade waste he<strong>at</strong>. Applied Thermal Engineering 1998; 18 (1-2); 1-12<br />

[3] Kohlenbach P. <strong>Solar</strong> cooling systems with absorption chillers: Control str<strong>at</strong>egies <strong>and</strong><br />

transient chiller performance. 2006; PhD Thesis; Technical University of Berlin,<br />

Forschungsberichte des Deutschen Kälte- und Klim<strong>at</strong>echnischen Vereins; Nr. 74,<br />

Erding, Germany<br />

[4] Ziegler F. Sorptionswärmepumpen. 1997; Habilit<strong>at</strong>ion Thesis; Forschungsberichte<br />

des Deutschen Kälte- und Klim<strong>at</strong>echnischen Vereins; Nr. 57, Erding, Germany.<br />

[5] Feuerecker G. Entropieanalyse für Wärmepumpensysteme: Methoden und<br />

Stoffd<strong>at</strong>en. 1994; PhD thesis; Faculty of Physics; Technical University of Munich;<br />

Germany.<br />

[6] Urroz GE. Solution of non-linear equ<strong>at</strong>ions. 2004; Lecture h<strong>and</strong>out; Utah St<strong>at</strong>e<br />

University; U.S.A.<br />

[7] Kohlenbach P, Ziegler F. A dynamic simul<strong>at</strong>ion model for transient absorption chiller<br />

performance. Part II: Numerical results <strong>and</strong> experimental verific<strong>at</strong>ion. 2007; Int J<br />

Refriger<strong>at</strong>ion, this issue.<br />

page 78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!