04.11.2013 Views

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion Subtask C2-A, November 9, 2009<br />

After a temper<strong>at</strong>ure change of one of the external flows entering a vessel, the temper<strong>at</strong>ures<br />

of all components which are influenced either by the external he<strong>at</strong> carrier (external<br />

components such as the w<strong>at</strong>er headers) or by the refrigerant <strong>and</strong> sorbent (internal<br />

components such as the solution he<strong>at</strong> exchanger) change consecutively. This is, of course,<br />

connected with some he<strong>at</strong> being stored in all external <strong>and</strong> internal components which are<br />

involved in he<strong>at</strong> transfer mechanisms. The temper<strong>at</strong>ure change of these components is a<br />

complex three-dimensional he<strong>at</strong> transfer problem. One simplified approach to modelling it is<br />

the assumption th<strong>at</strong> some components or parts of components follow internal temper<strong>at</strong>ures<br />

<strong>and</strong> others follow external temper<strong>at</strong>ures. To account for the accordingly different he<strong>at</strong><br />

transfer r<strong>at</strong>es the total thermal mass has been divided into an external <strong>and</strong> an internal part.<br />

The external part follows the mean external temper<strong>at</strong>ure ϑ<br />

X<br />

, the internal part follows the<br />

mean internal temper<strong>at</strong>ure<br />

T<br />

X<br />

. Also, different he<strong>at</strong> transfer coefficients <strong>and</strong> exchange areas<br />

have been assumed for the internal <strong>and</strong> external parts. The external <strong>and</strong> internal<br />

components th<strong>at</strong> have been incorpor<strong>at</strong>ed for thermal storage are listed in Table 1.<br />

Table 1. External <strong>and</strong> internal components involved in he<strong>at</strong> transfer.<br />

He<strong>at</strong><br />

Mass<br />

Mass<br />

Mass<br />

Mass<br />

Loc<strong>at</strong>ion<br />

Component<br />

capacity<br />

in E<br />

in C<br />

in G<br />

in A<br />

[kJ/kgK]<br />

[kg]<br />

[kg]<br />

[kg]<br />

[kg]<br />

external<br />

Vessel wall (10% of total weight)<br />

External w<strong>at</strong>er header<br />

W<strong>at</strong>er in external parts<br />

He<strong>at</strong> exchanger tube bundles<br />

(50%)<br />

0.48<br />

0.48<br />

4.19<br />

0.38<br />

2.0<br />

7.6<br />

8.5<br />

5.7<br />

2.0<br />

7.3<br />

7.4<br />

5.1<br />

1.9<br />

9.8<br />

12.6<br />

8.9<br />

1.9<br />

10.6<br />

11.9<br />

8.0<br />

He<strong>at</strong> exchanger tube bundles<br />

(50%)<br />

0.38<br />

5.7<br />

5.1<br />

8.9<br />

8.0<br />

LiBr/w<strong>at</strong>er solution (50% each)<br />

3.70<br />

-<br />

-<br />

19.0<br />

19.0<br />

internal<br />

Refrigerant w<strong>at</strong>er (50% each)<br />

Solution he<strong>at</strong> exchanger (50%<br />

4.19<br />

0.38<br />

7.5<br />

-<br />

7.5<br />

-<br />

-<br />

4.1<br />

-<br />

4.1<br />

each)<br />

0.48<br />

-<br />

-<br />

5.0<br />

5.0<br />

Solution pump (50% each)<br />

0.48<br />

10.0<br />

10.0<br />

9.5<br />

9.5<br />

Vessel walls (50% of total weight)<br />

Figures 3 <strong>and</strong> 4 illustr<strong>at</strong>e the assumptions for the he<strong>at</strong> transfer from the external he<strong>at</strong> carrier<br />

to the he<strong>at</strong> exchanger <strong>and</strong> further on to solution or refrigerant. For gener<strong>at</strong>or <strong>and</strong> absorber<br />

the tube bundle is divided into two virtual parts, one being <strong>at</strong> mean external temper<strong>at</strong>ure, ϑ ,<br />

<strong>and</strong> one being <strong>at</strong> mean internal temper<strong>at</strong>ure, T<br />

X<br />

. The mean vessel temper<strong>at</strong>ure T<br />

X<br />

is<br />

shown as a virtual crossover temper<strong>at</strong>ure between internal <strong>and</strong> external temper<strong>at</strong>ure levels.<br />

X<br />

page 70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!