04.11.2013 Views

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion Subtask C2-A, November 9, 2009<br />

( cm i,<br />

j<br />

Td<br />

i,<br />

j<br />

− cm i−1,<br />

j<br />

Td<br />

i−1,<br />

j<br />

) + ( ca i,<br />

j<br />

Ta i,<br />

j<br />

− ca i−1,<br />

j<br />

Ta i−1,<br />

j<br />

) + ma<br />

' h<br />

fg<br />

( wa i,<br />

j<br />

− wa i−1,<br />

j<br />

)<br />

+ ( c * T − c * T ) + m * h ( w − w )<br />

a<br />

= −M<br />

i,<br />

j<br />

d<br />

' h<br />

a i,<br />

j<br />

fg<br />

∆λ<br />

k<br />

a<br />

i,<br />

j−1<br />

He<strong>at</strong> transfer equ<strong>at</strong>ion<br />

( c T − c T )<br />

m i,<br />

j<br />

= −M<br />

d i,<br />

j<br />

d<br />

' h<br />

fg<br />

a i,<br />

j−1<br />

( exp( −kW<br />

) − exp( −kW<br />

))<br />

m i−1,<br />

j<br />

di−1,<br />

j<br />

i,<br />

j<br />

− h'<br />

w<br />

a i,<br />

j<br />

a<br />

fg<br />

− h *<br />

i−1,<br />

j<br />

i,<br />

j<br />

T<br />

a i,<br />

j<br />

a i,<br />

j<br />

a i,<br />

j−1<br />

+ h S'<br />

T<br />

c<br />

d i,<br />

j<br />

(39)<br />

∆λ (40)<br />

( exp( −kWi,<br />

j<br />

) − exp( −kWi<br />

−1,<br />

j<br />

)) − h'<br />

weq i,<br />

j<br />

k<br />

With the following coefficients [19]<br />

M<br />

d<br />

π M<br />

d<br />

' =<br />

τ<br />

ro<br />

S = S ∆θ<br />

∆z<br />

∆z<br />

m<br />

' h '= hm<br />

S'<br />

h<br />

fg<br />

π m<br />

∆z<br />

a<br />

a<br />

' =<br />

m = m u ∆θ<br />

τ<br />

* a a<br />

ro<br />

= M<br />

d<br />

( c<br />

pd<br />

c<br />

pv<br />

Wi<br />

j<br />

)<br />

c<br />

a i, j<br />

= ma<br />

'( c<br />

pa<br />

+ c<br />

pv<br />

wa<br />

i,<br />

j<br />

)<br />

= m ( c c w )<br />

h = h S'<br />

c ( w − w ) h '<br />

c<br />

m i, j<br />

' +<br />

,<br />

c<br />

a<br />

*<br />

i, j a<br />

*<br />

pa<br />

+<br />

pv a i,<br />

j<br />

*<br />

i , j m pv a i,<br />

j eq i,<br />

j<br />

+<br />

c<br />

S<br />

For the details of the boundary conditions of the model please check the French<br />

version of [1].<br />

Model performance<br />

The above presented model of the desiccant was implemented in SPARK. The figure below<br />

shows the evolution of the air <strong>and</strong> the desiccant properties inside the wheel for an inlet<br />

temper<strong>at</strong>ure of 30°C, inlet humidity r<strong>at</strong>io of 12 g/k g, regener<strong>at</strong>ion temper<strong>at</strong>ure of 60°C <strong>and</strong><br />

regener<strong>at</strong>ion humidity r<strong>at</strong>io of 12 g/kg. The figures show the temper<strong>at</strong>ure <strong>and</strong> the humidity<br />

r<strong>at</strong>io distribution as a function of the angular position (0 to 180°) <strong>and</strong> as function of the width<br />

(0 to 0.2m) of the wheel for the process sector.<br />

page 51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!