IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

nachhaltigwirtschaften.at
from nachhaltigwirtschaften.at More from this publisher
04.11.2013 Views

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C2-A, November 9, 2009 NTU number of transfer unit [-] S area [m 2 ] t time [s] T a T eq T i T m air temperature [K] equilibrium temperature [K] air temperature in the section i (i=1;9) [K] matrix temperature [K] u fluid velocity (m.s -1 ) V volume (m 3 ) w a W d humidity ratio of moist air. [Kg.Kg -1 dryair] water content of desiccant [Kg.Kg -1 desiccant] x variable [arbitrary] z coordinate in the fluid flow direction [m] Greek letters ε emissivity [dimensionless] γ i parameter used in the reduction of desiccant wheel equations [-] ∆λ parameter in the desiccant enthalpy [-] µ ratio of matrix mass over air mass [-] η cf efficiency of the counter flow heat exchanger [-] τα transmission-absorptance coefficient σ Stefan Boltzmann constant [W.K -4 m -2 ] ρ density [kg.m -3 ] λ conductivity [W.K -1 m -1 ] τ ro half period of rotation of the desiccant wheel [s] θ cylindrical coordinate or angular position [rd] Subscripts a air b buffer c condenser d desiccant eq equilibrium f fluid g glass i inlet H heat pipe page 24

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C2-A, November 9, 2009 m p o reg sat matrix (sensible regenator) plate absorber outlet regeneration saturation Desiccant cooling principle A desiccant cooling installation operating under the conventional configuration (100% airchange rate), with corresponding changes in the air properties in the psychometric chart, is shown in Figure 1. 3 way valve m2 T1 Buffer 1 m1 Ti1 Heat exchanger Collectors m2 Ti2 i n m1 Tn 9 8 7 6 5 Regeneration Heat exchanger Evaporative coolers Building 1 2 3 4 Desiccant wheel Sensible heat regenerator Figure 1: Desiccant cooling system with corresponding evolution of air properties in the psychometric chart page 25

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion Subtask C2-A, November 9, 2009<br />

m<br />

p<br />

o<br />

reg<br />

s<strong>at</strong><br />

m<strong>at</strong>rix (sensible regen<strong>at</strong>or)<br />

pl<strong>at</strong>e absorber<br />

outlet<br />

regener<strong>at</strong>ion<br />

s<strong>at</strong>ur<strong>at</strong>ion<br />

Desiccant cooling principle<br />

A desiccant cooling install<strong>at</strong>ion oper<strong>at</strong>ing under the conventional configur<strong>at</strong>ion (100% airchange<br />

r<strong>at</strong>e), with corresponding changes in the air properties in the psychometric chart, is<br />

shown in Figure 1.<br />

3 way<br />

valve<br />

m2<br />

T1<br />

Buffer<br />

1<br />

m1<br />

Ti1<br />

He<strong>at</strong><br />

exchanger<br />

Collectors<br />

m2<br />

Ti2<br />

i<br />

n<br />

m1<br />

Tn<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Regener<strong>at</strong>ion<br />

He<strong>at</strong><br />

exchanger<br />

Evapor<strong>at</strong>ive<br />

coolers<br />

Building<br />

1<br />

2<br />

3<br />

4<br />

Desiccant<br />

wheel<br />

Sensible he<strong>at</strong><br />

regener<strong>at</strong>or<br />

Figure 1: Desiccant cooling system with corresponding evolution of air properties in the<br />

psychometric chart<br />

page 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!