IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

nachhaltigwirtschaften.at
from nachhaltigwirtschaften.at More from this publisher
04.11.2013 Views

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C1 Report, 31 October 2010 2.10.4 Conclusions Today’s technology for thermally-driven domestic air-conditioning cannot compete with the cooling capacity of electric-powered air-cooled mechanical compression systems. Solar cooling systems use renewable energy, with a concomitant savings in fossil fuel. The initial investment is sizeable, however, while renewable energy is not always able to cover a building’s total demand and the power consumed by the ancillary equipment is excessive. As a result, cooling costs are higher than with the conventional system. Nonetheless, inasmuch as these technologies are environmentally friendly, a research effort should be made to solve the problems associated with their current state of development. Against this backdrop, the Subproject SP3, "Sustainable power generation in homes", part of a broader INVISO Project, proposes to modernize absorption cooling technology as a first move toward the development of viable solar-powered cooling systems, or systems fired by renewable energy in general, including waste heat. The first step was to design and build a new adiabatic absorber that increases the mass transfer coefficient of falling film absorbers 18-fold and the Warnakulasuriya and Worek apparatus (an improved version of the Ryan absorber) five-fold. This absorber was then built into a prototype for an air-cooled, direct-fired, lithium bromide double effect absorption chiller of 7 kW nominal cooling capacity that has been experimentally proven to be competitive with the air-cooled mechanical compression chillers used for domestic air-conditioning. A second prototype was also developed, consisting of a similarly air-cooled, combination single-double effect chiller. In this prototype the heat from a renewable (solar) source or waste heat is supplied to the single-effect chiller. When this heat source is depleted, double-effect, fossil fuel-fired operation is enabled. The high efficiency of this facility reduces cooling costs. The prototype can also operate simultaneously as a single and double effect chiller, for the two share essential components such as the absorber, condenser, evaporator, pumps and so on. The research group presently plans to experiment with this mode of operation. The experimental results set out above show that lithium bromide solutions are effective in very high outdoor temperatures, up to 44 ºC, at which temperature they do not crystallize. The conclusions that can be drawn from these results are: Air-cooled, natural gas-fired double-effect facilities can compete with electric-powered aircooled mechanical compression chillers. Single-double-effect chillers fired by waste heat from trigeneration systems are competitive with mechanical compression chillers. Integrated in a solar heating-cooling system, the present single-double effect chiller can significantly reduce cooling costs and is coming closer to being competitive with electric chillers. 2.10.5 Future Work The group’s future research will aim to: Reduce the cost of collector fields, increasing their performance to reduce the area needed and raising energy generation. Reduce the cost of auxiliary equipmentet used by absorption machines. Increase absorption chiller efficiency. 2.10.6 Acknowledgements This research was funded by Spain's Ministry of Science and Innovation under the following projects: DPI 2002-02439; ENE 2005-08255-CO2-01 and the Subprogram SP3 of PSE INVISO. The authors wish to thank Emilio Martin, R&D Technician, for his enthusiastic contribution to this study. page 25

IEA SHC Task 38 Solar Air Conditioning and Refrigeration Subtask C1 Report, 31 October 2010 2.10.7 References [28] William A. Ryan, System and process for operating an absorption cycle around a crystallization curve of the solution Patent 5,255,534 (US), 1992. [29] William A. Ryan, Water absorption in an adiabatic spray of aqueous lithium bromide solution, AES Vol. 31 International Absorption Heat Pump Conference, pp 155-162, (ASME 1993). [30] Warnakulasuriya and Worek, International Journal of Heat and Mass Transfer 51, 3362– 3368, 2008. [31] M. Izquierdo, E. Martín, A. Lecuona, Absorbedor de gotas iguales de flujo paralelo. Spanish patent P9802674, Universidad Carlos III de Madrid (UC3M), 1998. [32] Marcelo Izquierdo Millán, Emilio Martín Lázaro y Antonio Lecuona Neuman, Máquina de absorción de doble efecto enfriada por aire y alimentada por calor de los gases de escape de motores térmicos y su procedimiento de aplicación para climatización N. de solicitud: 9901979, Consejo Superior de Investigaciones Científicas (CSIC), 1999. [33] D. Arzoz, P. Rodríguez and M. Izquierdo, Experimental study on the adiabatic absorption of water vapour into LiBr-H2O solutions, Applied Thermal Engineering, Vol 25/5-6, pp 797, 811, UK, 2005. [34] E. Palacios, M. Izquierdo, R. Lizarte, J. D. Marcos, Water vapour absorption in lithium bromide aqueous solutions conical sheets, 8th IIR Gustav Lorentzen Conference, Copenhagen, September 2008, ISBN: 978-2-913149-63-2; ISSN: 0151.1637, 7-10. [35] J.D. Marcos, M.Izquierdo, R.Lizarte, M.E Palacios, C.A. Infante-Ferreira, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture Internacional Sorption Heat Pump Conference, Seoul (Korea), 23-26 September 2008. [36] J. D. Marcos, M. Izquierdo, R. Lizarte, E. Palacios, C.A. Infante Ferreira, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture, International Journal of Refrigeration, Vol. 32 pp. 627-637, 2009. [37] M. Izquierdo, E. Martín and M.E. Palacios, Absorber and absorber-evaporator assembly for absorption machines and lithium bromide - water absorption machines that integrate said absorber and absorber-evaporator assembly, Patent PCT/EP2009/057061 y European Patent EP09162208.4 (extended to USA, Japan, China, Canadá, Brasil, Argentina, Venezuela), 2009. [38] E. Palacios, M. Izquierdo, R. Lizarte, J.D. Marcos, Lithium bromide absorption machines: Pressure drop and mass transfer in solutions conical sheets, Energy Conversion and Management, 50 (2009) 1802–1809, 2009. [39] E. Palacios, M. Izquierdo, J.D. Marcos, R. Lizarte, Evaluation of mass absorption in LiBr flat-fan sheets, Applied Energy 86 (2009) 2574–2582, 2009. [40] M. Izquierdo; J. D. Marcos; M. E. Palacios; A. González; E. Martín, New advances in solar cooling and trigeneration systems, 8th expert meeting of Task 38 (IEA), Solar Air Conditioning and Refrigeration, April 26-27 Aarhus, Denmark, 2010. page 26

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion Subtask C1 Report, 31 October 2010<br />

2.10.7 References<br />

[28] William A. Ryan, System <strong>and</strong> process for oper<strong>at</strong>ing an absorption cycle around a<br />

crystalliz<strong>at</strong>ion curve of the solution P<strong>at</strong>ent 5,255,534 (US), 1992.<br />

[29] William A. Ryan, W<strong>at</strong>er absorption in an adiab<strong>at</strong>ic spray of aqueous lithium bromide<br />

solution, AES Vol. 31 Intern<strong>at</strong>ional Absorption He<strong>at</strong> Pump Conference, pp 155-162,<br />

(ASME 1993).<br />

[30] Warnakulasuriya <strong>and</strong> Worek, Intern<strong>at</strong>ional Journal of He<strong>at</strong> <strong>and</strong> Mass Transfer 51, 3362–<br />

3368, 2008.<br />

[31] M. Izquierdo, E. Martín, A. Lecuona, Absorbedor de gotas iguales de flujo paralelo.<br />

Spanish p<strong>at</strong>ent P9802674, Universidad Carlos III de Madrid (UC3M), 1998.<br />

[32] Marcelo Izquierdo Millán, Emilio Martín Lázaro y Antonio Lecuona Neuman, Máquina de<br />

absorción de doble efecto enfriada por aire y alimentada por calor de los gases de<br />

escape de motores térmicos y su procedimiento de aplicación para clim<strong>at</strong>ización N. de<br />

solicitud: 9901979, Consejo Superior de Investigaciones Científicas (CSIC), 1999.<br />

[33] D. Arzoz, P. Rodríguez <strong>and</strong> M. Izquierdo, Experimental study on the adiab<strong>at</strong>ic<br />

absorption of w<strong>at</strong>er vapour into LiBr-H2O solutions, Applied Thermal Engineering, Vol<br />

25/5-6, pp 797, 811, UK, 2005.<br />

[34] E. Palacios, M. Izquierdo, R. Lizarte, J. D. Marcos, W<strong>at</strong>er vapour absorption in lithium<br />

bromide aqueous solutions conical sheets, 8th IIR Gustav Lorentzen Conference,<br />

Copenhagen, September 2008, ISBN: 978-2-913149-63-2; ISSN: 0151.1637, 7-10.<br />

[35] J.D. Marcos, M.Izquierdo, R.Lizarte, M.E Palacios, C.A. Infante-Ferreira, Experimental<br />

boiling he<strong>at</strong> transfer coefficients in the high temper<strong>at</strong>ure gener<strong>at</strong>or of a double effect<br />

absorption machine for the lithium bromide/w<strong>at</strong>er mixture Internacional Sorption He<strong>at</strong><br />

Pump Conference, Seoul (Korea), 23-26 September 2008.<br />

[36] J. D. Marcos, M. Izquierdo, R. Lizarte, E. Palacios, C.A. Infante Ferreira, Experimental<br />

boiling he<strong>at</strong> transfer coefficients in the high temper<strong>at</strong>ure gener<strong>at</strong>or of a double effect<br />

absorption machine for the lithium bromide/w<strong>at</strong>er mixture, Intern<strong>at</strong>ional Journal of<br />

Refriger<strong>at</strong>ion, Vol. 32 pp. 627-637, 2009.<br />

[37] M. Izquierdo, E. Martín <strong>and</strong> M.E. Palacios, Absorber <strong>and</strong> absorber-evapor<strong>at</strong>or assembly<br />

for absorption machines <strong>and</strong> lithium bromide - w<strong>at</strong>er absorption machines th<strong>at</strong> integr<strong>at</strong>e<br />

said absorber <strong>and</strong> absorber-evapor<strong>at</strong>or assembly, P<strong>at</strong>ent PCT/EP2009/057061 y<br />

European P<strong>at</strong>ent EP09162208.4 (extended to USA, Japan, China, Canadá, Brasil,<br />

Argentina, Venezuela), 2009.<br />

[38] E. Palacios, M. Izquierdo, R. Lizarte, J.D. Marcos, Lithium bromide absorption machines:<br />

Pressure drop <strong>and</strong> mass transfer in solutions conical sheets, Energy Conversion <strong>and</strong><br />

Management, 50 (2009) 1802–1809, 2009.<br />

[39] E. Palacios, M. Izquierdo, J.D. Marcos, R. Lizarte, Evalu<strong>at</strong>ion of mass absorption in LiBr<br />

fl<strong>at</strong>-fan sheets, Applied Energy 86 (2009) 2574–2582, 2009.<br />

[40] M. Izquierdo; J. D. Marcos; M. E. Palacios; A. González; E. Martín, New advances in<br />

solar cooling <strong>and</strong> trigener<strong>at</strong>ion systems, 8th expert meeting of Task 38 (<strong>IEA</strong>), <strong>Solar</strong> Air<br />

Conditioning <strong>and</strong> Refriger<strong>at</strong>ion, April 26-27 Aarhus, Denmark, 2010.<br />

page 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!