04.11.2013 Views

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion<br />

Subtask A Report, D<strong>at</strong>e:…<br />

During the he<strong>at</strong>ing season, the l<strong>at</strong>ent he<strong>at</strong> storage buffers the solar surplus he<strong>at</strong> <strong>and</strong><br />

balances the he<strong>at</strong> supply to the consumer by boosting the return temper<strong>at</strong>ure of the he<strong>at</strong>ing<br />

system (see Figure 2). Thus, a low oper<strong>at</strong>ing temper<strong>at</strong>ure of the solar thermal system is<br />

accomplished yielding efficient oper<strong>at</strong>ion with optimum solar gain.<br />

SOLAR<br />

HEATING<br />

directly solar<br />

loading<br />

l<strong>at</strong>ent he<strong>at</strong><br />

storage<br />

loading hot<br />

w<strong>at</strong>er tank<br />

32°C<br />

25°C<br />

Buffering solar surplus he<strong>at</strong><br />

CHILLER<br />

45 – 90°C<br />

HEATING /<br />

LATENT<br />

COOLING<br />

HEAT<br />

SYSTEM<br />

STORAGE<br />

HOT<br />

WATER<br />

TANK<br />

AUX.<br />

BOILER<br />

DRY AIR<br />

COOLER<br />

SOLAR<br />

SYSTEM<br />

25 - 45°C<br />

SOLAR<br />

HEATING<br />

prehe<strong>at</strong>ing by<br />

l<strong>at</strong>ent he<strong>at</strong><br />

storage<br />

unloading hot<br />

w<strong>at</strong>er tank<br />

Boosting the return temper<strong>at</strong>ure<br />

CHILLER<br />

HOT<br />

WATER<br />

TANK<br />

AUX.<br />

BOILER<br />

DRY AIR<br />

COOLER<br />

32°C<br />

27°C<br />

SOLAR<br />

SYSTEM<br />

25°C<br />

HEATING /<br />

LATENT<br />

COOLING<br />

HEAT<br />

SYSTEM<br />

STORAGE<br />

Fig. 2. System scheme for solar he<strong>at</strong>ing with l<strong>at</strong>ent he<strong>at</strong> storage<br />

Simplified system configur<strong>at</strong>ions for cooling <strong>and</strong> he<strong>at</strong>ing oper<strong>at</strong>ion are given in Figure1 <strong>and</strong><br />

Figure 2. The realised piping <strong>and</strong> instrument<strong>at</strong>ion is given in Figure 3. This kind of<br />

install<strong>at</strong>ion facilit<strong>at</strong>es a very flexible <strong>and</strong> efficient use of solar energy in existing buildings with<br />

he<strong>at</strong>ing <strong>and</strong> cooling systems oper<strong>at</strong>ing <strong>at</strong> moder<strong>at</strong>e he<strong>at</strong>ing <strong>and</strong> chilled w<strong>at</strong>er temper<strong>at</strong>ures.<br />

- Conventional design of the solar thermal system with primary loop in w<strong>at</strong>er/glycol <strong>and</strong><br />

a secondary loop connected to the he<strong>at</strong>ing system, the hot w<strong>at</strong>er tank, <strong>and</strong> the<br />

gener<strong>at</strong>or of the absorption chiller via the high temper<strong>at</strong>ure (HT) he<strong>at</strong> distributor.<br />

- The dry air-cooler <strong>and</strong> the l<strong>at</strong>ent he<strong>at</strong> storage are integr<strong>at</strong>ed into a secondary loop,<br />

linked to the he<strong>at</strong>ing system by the pl<strong>at</strong>e he<strong>at</strong> exchangers WT 4-2. A set of valves is<br />

applied for switching between the different oper<strong>at</strong>ing modes in summer <strong>and</strong> winter,<br />

enabling for boosting the temper<strong>at</strong>ure of the return flow of the activ<strong>at</strong>ed ceilings, the<br />

loading <strong>and</strong> unloading of the l<strong>at</strong>ent he<strong>at</strong> storage, <strong>and</strong> the emergency cooling of the<br />

solar thermal system during summer oper<strong>at</strong>ion. The l<strong>at</strong>ent he<strong>at</strong> storage had to be<br />

integr<strong>at</strong>ed in the secondary reject he<strong>at</strong> loop due to safety reasons <strong>and</strong> simplified<br />

unloading by the dry air cooler in cooling mode. In further install<strong>at</strong>ions also the<br />

chiller’s absorber <strong>and</strong> condenser should be integr<strong>at</strong>ed into this w<strong>at</strong>er/glycol loop to<br />

avoid a temper<strong>at</strong>ure increase of the cooling w<strong>at</strong>er due to the he<strong>at</strong> transfer in the pl<strong>at</strong>e<br />

he<strong>at</strong> exchanger. Furthermore an increase of the electrical COP could be achieved.<br />

- During the he<strong>at</strong>ing season low (NT) <strong>and</strong> high temper<strong>at</strong>ure (HT) distributor are<br />

connected to each other.<br />

- A ground w<strong>at</strong>er well linked to the NT distributor <strong>and</strong> a pellet boiler linked to the HT<br />

distributor serve for backup in cooling <strong>and</strong> he<strong>at</strong>ing mode, respectively.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!