04.11.2013 Views

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

IEA Solar Heating and Cooling Programm - NachhaltigWirtschaften.at

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>IEA</strong> SHC Task 38 <strong>Solar</strong> Air Conditioning <strong>and</strong> Refriger<strong>at</strong>ion<br />

Subtask A Report, D<strong>at</strong>e:…<br />

Going deeply into the details, the monitored d<strong>at</strong>a are:<br />

VARIABLE EXPLICIT MEANING UNIT<br />

Zeit<br />

D<strong>at</strong>e <strong>and</strong> time<br />

V_G Flow in the gener<strong>at</strong>or piping m³/h*100<br />

V_E Flow in the evapor<strong>at</strong>or piping m³/h*100<br />

V_AC Flow in the absorber/condenser piping m³/h*100<br />

E_TS <strong>Solar</strong> Irradi<strong>at</strong>ion W/m²<br />

V_K Flow in the collectors piping m³/h*100<br />

t_Gh “temper<strong>at</strong>ure gener<strong>at</strong>or hot” = temper<strong>at</strong>ure <strong>at</strong> the entry of the gener<strong>at</strong>or °C*10<br />

t_Gc “temper<strong>at</strong>ure gener<strong>at</strong>or cold” = temper<strong>at</strong>ure <strong>at</strong> the exit of the gener<strong>at</strong>or °C*10<br />

t_Ec “temper<strong>at</strong>ure evapor<strong>at</strong>or cold” = temper<strong>at</strong>ure <strong>at</strong> the exit of the evapor<strong>at</strong>or °C*10<br />

t_Eh “temper<strong>at</strong>ure evapor<strong>at</strong>or hot” = temper<strong>at</strong>ure <strong>at</strong> the entry of the evapor<strong>at</strong>or °C*10<br />

t_ACc<br />

t_ACh<br />

“temper<strong>at</strong>ure absorber/condenser cold” = temper<strong>at</strong>ure <strong>at</strong> the entry of the<br />

absorber<br />

“temper<strong>at</strong>ure absorber/condenser hot” = temper<strong>at</strong>ure <strong>at</strong> the exit of the<br />

condenser<br />

°C*10<br />

°C*10<br />

Q_G Energy used by the gener<strong>at</strong>or kW*100<br />

Q_E Energy accumul<strong>at</strong>ed <strong>at</strong> the evapor<strong>at</strong>or kW*100<br />

Q_AC Energy given <strong>at</strong> the absorber/condenser kW*100<br />

COP Coefficient of performance none*100<br />

Q_Ballon_out <strong>He<strong>at</strong>ing</strong> Power in winter oper<strong>at</strong>ion kW*100<br />

t_Koll<br />

“temper<strong>at</strong>ure collectors” = where is it taken exactly? You have to check <strong>at</strong><br />

site, as far as I know directly in the collector<br />

°C*10<br />

t_Kh primary circuit solar coming from field °C*10<br />

t_Kc primary circuit solar going to field °C*10<br />

t_sp11 Upper storage temper<strong>at</strong>ure °C*10<br />

t_sp12 Lower storage temper<strong>at</strong>ure °C*10<br />

t_stout Storage outlet temper<strong>at</strong>ure (to SAC=<strong>Solar</strong> absorption chiller) °C*10<br />

t_stin Storage input temper<strong>at</strong>ure (coming from SAC) °C* 10<br />

Q_<strong>Solar</strong> Power <strong>Solar</strong> Circuit kW*100<br />

t_room_AKA Temper<strong>at</strong>ure inside control unit °C*10<br />

Setpoint_Ec Cold W<strong>at</strong>er Setpoint °C*10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!