25.10.2012 Views

Performance of J-PARC Linac RF System - Spallation Neutron Source

Performance of J-PARC Linac RF System - Spallation Neutron Source

Performance of J-PARC Linac RF System - Spallation Neutron Source

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Performance</strong> <strong>of</strong><br />

J-<strong>PARC</strong> <strong>Linac</strong> <strong>RF</strong> system<br />

T. Kobayashi, E. Chishiro, S. Suzuki,<br />

Japan Atomic Energy Agency (JAEA), JAPAN<br />

S. Anami, Z. Fang, S. Michizono, S. Yamaguchi,<br />

High Energy Accelerator Research Organization (KEK), JAPAN


Outline<br />

1. Introduction (J-<strong>PARC</strong> and the <strong>Linac</strong>)<br />

2. Overview <strong>of</strong> the <strong>RF</strong> <strong>System</strong><br />

3. <strong>RF</strong> Reference Distribution <strong>System</strong><br />

4. Low Level <strong>RF</strong> system<br />

5. Digital Feedback Control <strong>System</strong><br />

6. <strong>System</strong> <strong>Performance</strong><br />

7. Summary


Introduction ..(1) -- J-<strong>PARC</strong> Facility<br />

400 MeV<br />

(RCS)<br />

(main ring, MR)<br />

The Japan Proton Accelerator Research Complex (J-<strong>PARC</strong>) will be one <strong>of</strong> the highest<br />

intensity proton accelerators in the world.<br />

It consists <strong>of</strong> a 400-Mev H – linac, a 3-GeV 1-MW rapid-cycling synchrotron (RCS),<br />

and a 50-GeV synchrotron (main ring, MR)


Introduction ..(2) -- J-<strong>PARC</strong> <strong>Linac</strong><br />

•- Accelerated particles: H - (negative hydrogen)<br />

•- Energy: 181 MeV (The last two SDTL tanks are used as debunchers)<br />

Upgraded to 400 MeV by using ACS cavity ( in 2011? )<br />

•- Peak current: 30 mA (50 mA for 1MW at 3GeV)<br />

•- Repetition: 25 Hz<br />

•- Pulse width: 500 us (Beam), 650 us (<strong>RF</strong> including cavity build-up time)<br />

•- Acceleration Frequency 324 MHz<br />

<strong>RF</strong>Q: Radio Frequency <strong>Linac</strong><br />

DTL: Drift Tube <strong>Linac</strong> (3 modules)<br />

SDTL: Separate-type Drift Tube <strong>Linac</strong> (15 modules)<br />

ACS: Annual Coupled Structure <strong>Linac</strong><br />

IS<br />

H - Ion<br />

<strong>Source</strong><br />

<strong>RF</strong>Q<br />

Buncher(x2)<br />

Chopper<br />

3MeV<br />

DTL<br />

50 MeV<br />

SDTL<br />

3m 3m<br />

MEBT1<br />

27m 91m<br />

Debuncher1<br />

181 MeV<br />

300m<br />

(Present State)<br />

L3BT<br />

Debuncher2<br />

3-Gev<br />

Synchrotron<br />

ACS Section for 400-MeV Upgrade<br />

(972MHz)


Introducton ..(3)<br />

History <strong>of</strong> the <strong>Linac</strong> Commissioning<br />

Oct. .2006: High-power operation <strong>of</strong> all the <strong>RF</strong> systems was started. All<br />

klystrons have successfully supplied power to the cavities.<br />

Nov. 2006: <strong>RF</strong>Q&MEBT-1 beam commissiong<br />

Dec. 2006: DTL beam commissiong.<br />

Jan. 2007: SDTL beam test. (rough tuning)<br />

Jan. 2007: 181-MeV acceleration <strong>of</strong> 5-mA (20us) beam succeeded!<br />

Feb. 2007: 181-MeV acceleration <strong>of</strong> 26-mA beam (50 us) was succeeded!<br />

~ Fine beam commissioning ~<br />

Jul. & Aug. 2007: Summer Shutdown<br />

Oct. 2007: Injection into 3-Gev Ring (RCS) !<br />

Now RCS commissioning is continued.


<strong>Linac</strong> <strong>RF</strong> <strong>System</strong><br />

• 181 MeV normal conducting proton linac<br />

• Operation frequency: 324 MHz<br />

• Total 20 klystrons (max.3 MW), 6 DCPS (#1~6)<br />

• <strong>RF</strong> Pulse width: 650 us (25Hz)<br />

Requirements <strong>of</strong> cavity field stability<br />

< +/-1% (amplitude), < +/-1 deg. (phase)<br />

Klystron Gallery


<strong>RF</strong> Reference Distribution <strong>System</strong><br />

312-MHz <strong>RF</strong> reference is distributed to all LL<strong>RF</strong> control systems through optical links.<br />

The reference signal is optically amplified and divided into 17 transfer lines, then furthermore it is<br />

divided into 5; one <strong>of</strong> them is returned back to the first station for phase monitor.<br />

Optical cable is the Phase Stabilized Optical Fiber (PSOF). (The thermal coefficient is 0.4 ppm/ºC.)<br />

Temperature <strong>of</strong> the optical components (E/O, O/E, cables, couplers) are controlled to be constant.


Installation <strong>of</strong> the Reference <strong>System</strong><br />

1x17 optical coupler<br />

set in an oven<br />

QuickTime and a<br />

TIFF (Uncompressed) decompressor<br />

are needed to see this picture.<br />

•Insulated duct set in the under-<br />

floor cable trench.<br />

•Cooling water temperature is<br />

controlled to be 29±0.1 deg. C<br />

Klystron Gallery<br />

Insulated Duct<br />

with Cooling Water Pipe<br />

An insulate duct is set in a cable trench under floor.<br />

Phase-Stabilized<br />

Optical Cables<br />

Optical Coupler<br />

Cross section <strong>of</strong> the under-floor cable trench<br />

Optical cables and Optical couplers are installed into the insulated duct<br />

with cooling water pipe for the temperature stabilization.


Measured the phase <strong>of</strong> returned signal from the end <strong>of</strong> the<br />

linac (L3BT building).<br />

Total about 800-m round trip transfer line.<br />

Phase trend<br />

for 4 days<br />

312MHz<br />

Round trip:<br />

Klystron Gallery<br />

(312MHz) Stability <strong>of</strong> <strong>RF</strong> Reference<br />

Stability Measured<br />

Result<br />

Spec.<br />

Gallery Temp. ±1.7 °C within ±2°C<br />

Phase <strong>of</strong> Ref. ±0.06° within ±0.3°<br />

Required stability is satisfied.


Low Level <strong>RF</strong> <strong>System</strong><br />

EPICS IO<br />

LL<strong>RF</strong> PLC<br />

cPCI FB system<br />

Interlock<br />

<strong>System</strong><br />

� One klystron supplies power 2 cavities in the SDTL section.<br />

� Digital FB system (FPGA & DSP) is used for the cavity field stabilization.<br />

� The FB system controls the vector sum <strong>of</strong> the 2 cavity fields.<br />

� The <strong>RF</strong> reference is 312-MHz optical signal (received by O/E converter) .<br />

� Cavity-tuners are controlled from the digital FB system by way <strong>of</strong> PLC.<br />

� Fast hardwire interlock is connected to <strong>RF</strong> switch outside the FB system.<br />

� Analog fast FB will be used for klystron FB loop if necessary. (It is optional.)


Klystron<br />

Low Level <strong>RF</strong> <strong>System</strong> ..(2)<br />

LL<strong>RF</strong> <strong>System</strong><br />

Klystron Gallery<br />

Digital FB <strong>System</strong> (cPCI)<br />

CPU<br />

I/O <strong>RF</strong>&CLK<br />

Mixer&I/Q<br />

DSP/FPGA<br />

Digital Analog<br />

cPCI<br />

Digital FB control system acts on a<br />

compact-PCI (cPCI) crate system.<br />

The FB and FF controls are performed by<br />

means <strong>of</strong> a combination <strong>of</strong> FPGA and DSP.


<strong>RF</strong>:324MHz<br />

LO:312MHz<br />

IF:12MHz<br />

Sampling:48MH<br />

z<br />

Digital FB Control <strong>System</strong><br />

cPCI digital FB system (FPGA & DSP)<br />

�generates standard signals (48 MHz and 324 MHz).<br />

�delivers I/Q modulated <strong>RF</strong> signals to 2 cavities.<br />

�receives <strong>RF</strong> signals from cavities and down-converts to IF signal (12 MHz).<br />

�samples the IF (12MHz) directly with 48 MHz.<br />

�controls the vector sum <strong>of</strong> 2 cavity fields (PI-control).<br />

IF signals are directly read by ADCs.<br />

The separated IQ signals are compared with set-tables and PI control is made with FF.


IQ Offsets Calibration <strong>of</strong> the IQ-modulator<br />

We found that<br />

the output <strong>of</strong> the IQ-modulator has<br />

<strong>of</strong>fsets for I/Q set value (as Red Circle in<br />

the figure).<br />

(Even if I and Q components set to 0, but the IQ-<br />

modulator still outputs a considerable signal.)<br />

In order to cancel this undesired output,<br />

we added I/Q <strong>of</strong>fsets to the DAC out.<br />

The <strong>of</strong>fset values were measured for all the<br />

LL<strong>RF</strong> systems.<br />

With calibration <strong>of</strong> the IQ <strong>of</strong>fsets,<br />

the performance <strong>of</strong> the IQ-modulator<br />

significantly improved (as Blue Circle)<br />

With phase scanning, the amplitude <strong>of</strong> IQ<br />

modulator output varies by less than 1%.<br />

0<br />

I<br />

-600 -500 -400 -300 -200 -100<br />

-100<br />

0 100 200 300 400<br />

IQ_out ( I_<strong>of</strong>fset = 0,<br />

Q_<strong>of</strong>fset = 0, REF = 100 )<br />

IQ_out ( I_<strong>of</strong>fset = 0,<br />

Q_<strong>of</strong>fset = 0, REF = 500 )<br />

IQ_out ( I_<strong>of</strong>fset = -84,<br />

Q_<strong>of</strong>fset = -223, REF = 100 )<br />

IQ_out ( I_<strong>of</strong>fset = -84,<br />

Q_<strong>of</strong>fset = -223, REF = 500 )<br />

Q<br />

400<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

IQ modulator outputs at SDTL13 with<br />

or without IQ <strong>of</strong>fsetting.<br />

300<br />

200<br />

100


<strong>Performance</strong> <strong>of</strong> Feedback (FB) Control<br />

Cavity field stabilization (in 600-µs pulse)<br />

No FB Control with FB Control (Gain: P=5, I=5/1000)<br />

Amplitude Phase<br />

Amplitude Phase<br />

10%<br />

25 deg.<br />

25-degree phase sag is due to<br />

about 3.4% sag <strong>of</strong> the Klystoron<br />

DC voltage.<br />

Klystron Cathode<br />

Voltage<br />

QuickTime and a<br />

TIFF (PackBits) decompressor<br />

are needed to see this picture.<br />

3.4% sag<br />

±1%<br />

20-µs, 5-mA Beam<br />

±1 deg.<br />

Amplitude and phase are stabilized<br />

to be less than ±0.15% and ±0.15<br />

degrees, respectively.<br />

Beam loading (rising/falling ripple) is completely compensated with feed-forward<br />

control .


Temp. Gallery Temp. [deg. C] C]<br />

Long Term Stability<br />

The stability <strong>of</strong> the FB system in long-duration operation was evaluated.<br />

The trends <strong>of</strong> the amplitude and phase <strong>of</strong> the DTL2 Cavity (Input Power 1MW) were<br />

measured by external monitor (independent <strong>of</strong> FB system) for 2 days<br />

Drift [%]<br />

Drift [deg.]<br />

24.0<br />

23.5<br />

23.0<br />

22.5<br />

22.0<br />

Amplitude (<strong>RF</strong> Detector)<br />

Phase<br />

(Mixer-out around zero cross)<br />

Gallery Temperature<br />

[deg. C]<br />

0 5 10 15 20 25 30 35 40 45<br />

Time [hours]<br />

±1%<br />

±1deg.<br />

( during 2 days.)<br />

Amplitude drift is ±0.15%.<br />

Phase drift is ±0.15 degrees.<br />

These results are including characteristics<br />

<strong>of</strong> measurement system (detector, mixer<br />

and so on).<br />

Therefore, cavity field is maybe more stable<br />

than observed values.


Cavity-Amplitude [a. u.]<br />

4100<br />

4000<br />

3900<br />

3800<br />

3700<br />

Beam Loading Compensation<br />

with Feed-forward (FF) control<br />

No FF control<br />

Cavity-Amplitude<br />

+/- 2.7%<br />

Beam Start<br />

@DTL2<br />

Beam Loading<br />

50 μs, 26 mA<br />

3600<br />

-130.0<br />

200 250 300 350 400 450 500<br />

Time [μs]<br />

+/- 1.5 deg.<br />

Cavity-Phase<br />

-120.0<br />

-122.0<br />

-124.0<br />

-126.0<br />

-128.0<br />

Cavity-Phase [degrees]<br />

Beam Loading in DTL cavity field with<br />

only FB control.<br />

Peak Current: 26 mA, Pulse width: 50 us,<br />

The amplitude change: ±2.7% ,<br />

Phase Change: ±1.5 degrees<br />

Cavity-Amplitude [a. u.]<br />

4100<br />

4000<br />

3900<br />

3800<br />

3700<br />

with FF control<br />

Cavity-Amplitude<br />

50-μs, 26-mA Beam<br />

±0.2 deg.<br />

Beam Start<br />

Cavity-Phase<br />

-120.0<br />

-122.0<br />

-124.0<br />

-126.0<br />

-128.0<br />

3600<br />

-130.0<br />

4000<br />

200 250 300 350 400 450DAC Out - 500 Amplitude<br />

Time [μs]<br />

@DTL2<br />

±0.2%<br />

Cavity-Phase [degrees]<br />

2000<br />

-120<br />

200 300 400 500<br />

Time [μs]<br />

By using the FF control<br />

the beam loading was successfully compensated.<br />

(Amplitude change: ±0.2% , Phase change: ±0.2 deg.)<br />

However, it is necessary to adjust a timing <strong>of</strong> a<br />

control gate by 0.1-us step for optimization.<br />

Optimum values <strong>of</strong> the FF amplitude and phase depend on<br />

beam current.<br />

DAC Output - Amplitude [a. u.]<br />

5000<br />

3000<br />

DAC Output<br />

-90<br />

-100<br />

-110<br />

DAC Out - Phase<br />

DAC Out - Phase [degrees]


Summary<br />

� High power operation was started in October 2006.<br />

� <strong>RF</strong> control systems are working well without fatal problem.<br />

� the 181-MeV acceleration was succeeded in January 2007.<br />

� The digital FB control system is performing according to the<br />

expectation.<br />

� Required stability is satisfied in duration <strong>of</strong> <strong>RF</strong> pulse and in<br />

running operation. (Amplitude change: < ±0.2%, Phase change <strong>of</strong><br />

<strong>RF</strong> reference:


Introduction (3) -- J-<strong>PARC</strong> <strong>Linac</strong><br />

Accelerated particles:H - (negative hydrogen)<br />

Energy: 400 MeV for 3-Gev Synchroton<br />

600 MeV for Accelerator ADS<br />

Peak current: 50 mA<br />

Repetition: 50 Hz (including 25 Hz for ADS application)<br />

Pulse width: 500 us (Beam), 650 us (<strong>RF</strong>)<br />

Acceleration Frequency 324 MHz (~191MeV) , 972 MHz (~400 MHz)<br />

IS<br />

H- Ion<br />

<strong>Source</strong><br />

<strong>RF</strong>Q: Radio Frequency <strong>Linac</strong><br />

DTL: Drift Tube <strong>Linac</strong> (3 modules)<br />

SDTL: Separate-type Drift Tube <strong>Linac</strong> (15 modules)<br />

ACS: Annual Coupled Structure <strong>Linac</strong><br />

SCL: Super Conducting Cavity <strong>Linac</strong><br />

<strong>RF</strong>Q<br />

MEBT1<br />

Buncher(x2)<br />

Chopper<br />

3MeV<br />

324 MHz<br />

DTL<br />

50 MeV<br />

Buncher(x2)<br />

972 MHz<br />

SDTL ACS<br />

16m<br />

3m 3m 27m 91m 108m<br />

191 MeV 400 MeV<br />

300m<br />

MEBT2<br />

(Final Design)<br />

L3BT<br />

3-Gev<br />

Synchrotron<br />

Debuncher<br />

SCC<br />

(Phase II) 600 MeV<br />

972 MHz<br />

ADS


Digital FB Control <strong>System</strong> (Apendix)<br />

CPU<br />

I/O<br />

<strong>RF</strong>&CLK<br />

Mixer&I/Q<br />

DSP/FPGA<br />

Digital Analog<br />

cPCI is adopted for the crate.<br />

FPGA based digital FB system<br />

FPGA: Mezzanine card <strong>of</strong> the<br />

commercial DSP board<br />

� 2-FPGAs (2x VirtexII 2000) are installed<br />

with 4x14bit-ADCs and4x14bit-DACs at<br />

48 MHz sampling<br />

� DSP board enables to calculate complex<br />

diagnostics such as cavity control.<br />

� FPGAs are used only for fast feedback.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!