25.10.2012 Views

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Universität Osnabrück<br />

<strong>Cognitive</strong> <strong>Science</strong> Bachelor Program<br />

Bachelor’s <strong>Thesis</strong><br />

The influence of prepositions on<br />

attention during the processing of<br />

referentially ambiguous sentences<br />

<strong>Christian</strong> <strong>Hoffmann</strong><br />

September 29, 2009<br />

Supervisors:<br />

Prof. Dr. Peter Bosch<br />

Computational Linguistics Working Group,<br />

Institute of <strong>Cognitive</strong> <strong>Science</strong><br />

University of Osnabrück<br />

Germany<br />

Prof. Peter König<br />

Neurobiopsychology Working Group,<br />

Institute of <strong>Cognitive</strong> <strong>Science</strong><br />

University of Osnabrück<br />

Germany


Abstract<br />

The present study uses eye-tracking to investigate the role of prepo-<br />

sitions in resolving referential ambiguities. Playmobil sceneries and<br />

prerecorded sentences were presented and fixation behaviour on possi-<br />

ble referents of the discourse was recorded.<br />

The sentences investigated contained a subject NP whose head NP<br />

refers to two objects in the scenery modified by a PP that uniquely<br />

identified the referential object of the subject NP. The hypothesis was<br />

that when a preposition can uniquely identify an object in a scenery<br />

then the fixation probability of said object should rise already prior<br />

to the processing of the following prepositional NP. If the preposition<br />

does not uniquely identify an object, then the fixation probability of<br />

the referential object should only rise after processing the prepositional<br />

NP. The results seem to imply that there are no major differences in<br />

fixation probabilities connected to the prepositions. Bootstrapping<br />

analyses revealed that there are some significant differences, namely<br />

more fixations on the target in the ambiguous block.<br />

2


Contents<br />

1 Introduction 4<br />

2 Methods 8<br />

2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2 Experimental stimuli . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2.1 Visual stimuli . . . . . . . . . . . . . . . . . . . . . . . 10<br />

2.2.2 Auditory stimuli . . . . . . . . . . . . . . . . . . . . . 11<br />

2.2.3 Filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.5.1 Regions of Interest . . . . . . . . . . . . . . . . . . . . 16<br />

2.5.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

3 Results 19<br />

3.1 Subject Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

3.2 Stimulus Validity . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

3.3 Time Course of Fixations . . . . . . . . . . . . . . . . . . . . 22<br />

3.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

4 Discussion 28<br />

References 30<br />

A Visual Stimuli 31<br />

B Auditory Stimuli 33<br />

C Fillers - Visual 36<br />

D Fillers - Auditory 39<br />

E Statistics 41<br />

F Complementary Figures 43<br />

G Consent Sheet 48<br />

3


1 Introduction<br />

“Linguistic theory [...] may inform a theory of language processing. And<br />

observations about language processing may inform linguistic theory, i.e.<br />

support or disconfirm its predictions.”(Bosch (2009))<br />

In the last few decades, interest in neuroscientific methods for analyzing<br />

linguistic processing has been on the rise. More and more research areas<br />

develop which incorporate paradigms and methods from both theoretical<br />

linguistics and neuroscience.<br />

Specifically the method of analyzing the gaze of people, known as eye-<br />

tracking, generated major interest in the linguistic community, due to the<br />

seminal paper of Cooper (1974), who showed that people fixate elements of<br />

a visual scene that had a connection to spoken language stimuli to which<br />

they listened at the same time. Many researchers focused on eye-tracking<br />

as a method to investigate ongoing linguistic processing.<br />

As Michael K. Tanenhaus puts it, “eye movements provide a continu-<br />

ous measure of spoken-language processing in which the response is closely<br />

time locked to the input without interrupting the speech stream. [...] The<br />

presence of a visual world makes it possible to ask questions about real-<br />

time interpretation.” Tanenhaus et al. (2000) Eye-tracking has been used<br />

before to investigate topics like overt attention and its modulation, reading<br />

behaviour (in particular the implications on online lexical access and syn-<br />

tactic processing, e.g. garden-path sentences) and others. For an overview,<br />

see Rayner (1998).<br />

Of most importance for the understanding of the findings from Tanen-<br />

haus, Rayner, Cooper, Chalmers and others are the visual world paradigm<br />

and the linking hypothesis. The visual world paradigm serves as a blueprint<br />

for psycholinguistic experiments. Basically, subjects fixations are measured<br />

as they interact in some fashion with a visual scenery according to tasks pro-<br />

posed by the experimenter, thereby integrating linguistic and non-linguistic<br />

knowledge and action. The linking hypothesis proposes an intrinsic connec-<br />

tion between eye movements and lexical access, making it possible to derive<br />

knowledge about linguistic processing from analyzing non-linguistic actions.<br />

In his overview (Tanenhaus et al. (2000)) Tanenhaus shows that visual<br />

context and even real-world knowledge (see also Chambers et al. (1998)) can<br />

help to resolve apparent (or temporal) syntactic ambiguity and is rapidly<br />

4


1 INTRODUCTION 5<br />

integrated throughout the processing of linguistic utterances and also that<br />

linguistic experience (such as relative frequencies of lexical competitors) can<br />

influence fixation behaviour.<br />

A major topic in this field is the question of how referential expressions<br />

(e.g. “The cat on the tree”) are processed. As Chambers et al. (1998) shows,<br />

even prepositions suffice in certain tasks to identify the referential object of<br />

an expression by restricting the domain of interpretation. Studies conducted<br />

at the University of Osnabrück show that determiner gender 1 and adjectival<br />

constructions ensuring referential uniqueness already give rise to a higher fix-<br />

ation probability on the referential object due to an anticipation effect, even<br />

before the onset of the noun itself (Hartmann (2006)). Kleemeyer (2007) and<br />

Bärnreuther (2007) showed that top-down influences had a much higher im-<br />

pact on attention modulation than bottom-up processes when presented in<br />

parallel. Karabanov (2006) showed what differences in fixation probabilities<br />

arise when processing full noun phrases compared to pronouns.<br />

The last three studies mentioned used a more natural visual world than<br />

Tanenhaus and the others, by providing Playmobil R○ sceneries as visual<br />

stimuli. Furthermore, subjects did not have to perform complex tasks while<br />

viewing the sceneries, as it was the case in Chambers et al. (1998) and<br />

Hartmann (2006).<br />

The object of this study is to investigate a problem posed by Peter Bosch<br />

in Bosch (2009). The basic question is in which way does the uniqueness con-<br />

straint of the definite determiner contribute to the processing of potentially<br />

ambiguous referential expressions. For a sentence like:<br />

(1) Put the red block on the block on the disk.<br />

which is syntactically ambiguous, one finds two constituent structures:<br />

(2) put [the [red block]] [on [the [block [on [the [disk]]]<br />

(3) put [the [red [block [on [the block]]] [on [the disk]]]<br />

If this sentence is presented while figure 1 is shown, which contains more<br />

than one red block (one of which is even on another block), and a third<br />

block on a disk, the uniqueness constraints of the first two definite deter-<br />

miners are not met when analyzing their corresponding constituents. But<br />

1 determiners in German have gender markers


1 INTRODUCTION 6<br />

somehow, most people intuitively chose sentence 3 as the correct meaning of<br />

the sentence. Bosch proposes two alternatives: either constraints of single<br />

constituents are collecting during incremental construction of the semantic<br />

representation of the determiner phrase so that the meaning becomes clear<br />

after processing the second “block”-phrase, where it becomes clear that the<br />

DP describes a red block which is on another block. Or the violated unique-<br />

ness constraint leads to a modulation of processing ressources: the deref-<br />

erence of said DP becomes the most important point on the agenda of the<br />

parser, which immediately uses the information obtained from the following<br />

preposition to decide which block is the referential object of the DP.<br />

Figure 1: Example block world, taken from Bosch (2009)<br />

The hypothesis behind this experiment is that when in such a sentence<br />

(or any other expression containing a definite determiner and a referentially<br />

ambiguous DP) a preposition can give the information needed to resolve<br />

such an ambiguity, then this fact should be easily be seen in an earlier<br />

rise of the fixation probability on the referential object of that DP. If the<br />

preposition cannot provide such information 2 , then the fixation probability<br />

on the referential object should rise only after the onset of the prepositional<br />

NP-head.<br />

2 In said case, picture the second block on a hat, then the ambiguity cannot be resolved<br />

solely by the preposition, as both blocks are “on” something


1 INTRODUCTION 7<br />

In order to test this hypothesis, several visual stimuli were constructed<br />

bearing exactly those characteristics mentioned before and were shown to<br />

subjects while they were listening to matching spoken stories.


2 Methods<br />

This part contains all important information about the participants of this<br />

study, the materials used for preparation and experimental design and pro-<br />

cedures used during the experiment and for subsequent analysis.<br />

2.1 Participants<br />

Participants were contacted through personal contacts and the internal mail-<br />

ing lists of the student bodies of the cognitive science and psychology pro-<br />

grammes at the University of Osnabrück, Germany. The actual subjects of<br />

this study were almost equally distributed among those programmes. They<br />

had to be native German speakers, have normal or corrected-to-normal vi-<br />

sion and had to have no hearing deficits. For their participation, subjects<br />

were rewarded with either course credit or 5 Euros. All subjects partici-<br />

pated voluntarily and were naïve with regard to the purpose of this study.<br />

Fixations were recorded from 25 subjects. Of those data sets, four had to<br />

be rejected. For two subjects, the data files were corrupt and therefore not<br />

readable. The experiment for one subject ended prematurely, rendering the<br />

data set unusable. One subject had a red-green color blindness, but as the<br />

subjects fixation behaviour was the same as of the other remaining subjects<br />

(see subject validity of subject 21 in table 6), the data set of said subject<br />

was used nevertheless. One subjects performance was significantly different<br />

from the rest (see subject validity of subject 5) and its data set was dis-<br />

regarded. All in all, 21 data sets were used for subsequent analysis. The<br />

characteristics taken from the subject questionnaires are shown in table 1.<br />

2.2 Experimental stimuli<br />

Subjects received multi modal stimuli, composed of photographs of Playmobil R○<br />

sceneries and auditory stimuli which were semantically related to them. See<br />

Karabanov (2006), Kleemeyer (2007), Bärnreuther (2007) and Karabanov<br />

(2006) for similar designs.<br />

Ten stimuli were assembled from stimuli and filler material from prior<br />

experiments collectively used in Alexejenko et al. (2009). The pictures were<br />

edited with GIMP 2.6 in such a way as to conform to the constraints of<br />

the experimental design. Information about the construction of the original<br />

8


2 METHODS 9<br />

Category Range Median Mean ± SD<br />

Age (yrs) 18-28 22 22.5 ± 2.26<br />

Height (cm) 154-193 174 172.8 ± 8.63<br />

Daily screen time (hours) 2-10 5 5 ± 2.53<br />

Language knowledge (no.) 1-5 2 2.56 ± 0.96<br />

Previous eye-tracking studies (no.) 0-6 1 1.24 ± 1.67<br />

Gender Number Percent<br />

Female 14 56%<br />

Male 11 44%<br />

Education Number Percent<br />

High school diploma 22 88%<br />

University degree 3 12%<br />

Occupation Number Percent<br />

Student 24 96%<br />

Unemployed 1 4%<br />

Vision aids Number Percent<br />

None 14 56%<br />

Glasses 6 24%<br />

Contact lenses 5 20%<br />

Occular dominance Number Percent<br />

Left 10 40%<br />

Right 11 44%<br />

Unclear 4 16%<br />

Handedness Number Percent<br />

Left 1 4%<br />

Right 23 92%<br />

Unclear 1 4%<br />

Color Vision Number Percent<br />

Red-green colour blind 1 4%<br />

Perfect 24 96%<br />

Table 1: Statistics of study participants, collected from subject questionnaires


2 METHODS 10<br />

stimuli and filler can be found in Kleemeyer (2007). As some of the original<br />

images reused here had a resolution of 1024x768 pixels, all final images were<br />

downscaled to this resolution.<br />

Auditory stimuli were constructed corresponding to the experimental<br />

question raised in Bosch (2009). In order to find out what role prepositions<br />

may play during the processing of referential ambiguities, sentences were<br />

constructed whose subject phrase (sentence head) consisted of a noun phrase<br />

modified with a prepositional phrase. The whole phrase uniquely identified<br />

an object of the visual stimulus matching the auditory stimulus. The head<br />

of the subject phrase matched two objects of the visual stimulus, as did<br />

the NP of the prepositional phrase. In one condition, the preposition was<br />

supposed to uniquely identify the referential object of the subject phrase 3 ,<br />

whereas in the other condition, the ambiguity could only be resolved when<br />

processing the prepositional NP.<br />

2.2.1 Visual stimuli<br />

Every stimuli/filler depicted a natural scenery constructed from Playmobil R○<br />

objects. Those sceneries consisted of multiple objects referred to during the<br />

course of the corresponding auditory stimulus and also contained a vast<br />

amount of other objects serving as distraction, ensuring a higher possibility<br />

that a fixation on an object of interest is related to the auditory stimulus,<br />

and not to general browsing of the scenery.<br />

In particular, every scenery had two identical objects (identical in the<br />

sense of being part of the same category, e.g.“owl”,“man”,“cat”) serving as<br />

target and competitor. In addition, two objects served as their “location-<br />

ary” identifiers, i.e. identifying the location of the target/competitor in the<br />

scenery. 4 It is important to mention that there were matching distractors<br />

for the locationary identifiers as well. This was required in order to keep all<br />

references to the locationary identifiers in the auditory stimuli ambiguous.<br />

3<br />

E.g.“The cat in front of...” uniquely identifies a cat if the other cat in the picture is<br />

not in front of something.<br />

4<br />

To give an example, in one picture two owls were amidst a woodland scenery, one in<br />

a tree, the other on on a hill. The target here was the owl in the tree (the tree therefore<br />

being the locationary identifier of the target), the distractor the owl on the hill (the hill<br />

therefore being the locationary identifier of the competitor).


2 METHODS 11<br />

There was also a reference object in every picture to study the attention<br />

shift of participants to an easily identifiable, salient target and to compare<br />

those shifts to those elicited by the relevant part of the auditory stimulus.<br />

Figure 2: Exemplary visual stimulus. The target is circled in red, the competitor<br />

in green. The locationary object of the target and its distractor are<br />

circled in purple, the locationary object of the competitor and its distractor<br />

in blue. The reference object is circled in yellow.<br />

2.2.2 Auditory stimuli<br />

As already stated, there were two conditions for every stimulus, i.e. two sto-<br />

ries were designed that solely differed in one preposition in the last sentence.<br />

The stimuli consisted of four to six sentences in four slots. The first sentence<br />

was an informal overview of the scenery, without any direct reference to any<br />

object in it.<br />

1. In der Savanne. (In the savannah.)<br />

The reason for the introduction of that sentence was to measure participants’<br />

fixations on the stimuli while not guided by linguistic input. The next one<br />

to two sentences introduced (referred to) the locationary objects.


2 METHODS 12<br />

2. In der felsigen Landschaft traben zwei Elefanten. (Two elephants<br />

are trotting through the rocky countryside.)<br />

The one to two sentences in the third slot contained references to the tar-<br />

get/competitor, as well as distractors and the reference object.<br />

3. Die beiden Männer beobachten die vielen durstigen Tiere am einzigen<br />

Wasserloch 5 . The two men are watching the many thirsty animal near<br />

the watering hole.<br />

The only difference between the two conditions could be found in the fourth<br />

slot. As explained above, the sentence consisted of a subject NP composed<br />

of an NP and a prepositional phrase. In one case, the preposition was a<br />

more regular one, not capable of identifying the referential object by itself,<br />

i.e. prepositions able to convey more possible relations than others. The<br />

german prepositions auf, neben and bei were used in this condition (meaning<br />

“on”, “next to” and “near”, respectively. In the other, due to the relation<br />

between subject head and prepositional NP conveyed by the preposition,<br />

the ambiguity posed by the subject head could have already been resolved<br />

by the preposition. Here, the german prepositions in, vor, hinter, unter and<br />

an were used, meaning “in”, “in front of”, “behind”, “below/under” and<br />

“at.”<br />

4. Der Mann vor dem grauen Felsen ist ein erfahrener Jäger. (The man<br />

in front of the grey rock is an experienced hunter.)<br />

See Figure 2 for an exemplary stimulus.<br />

All sentences were recorded 6 by using a Trust HS-2100 Headset and Au-<br />

dacity 1.2.6 7 and Cool Edit Pro 2.0 8 . Noise and pitch reduction procedures<br />

were carried out on all audio files. Furthermore, silent intervals were cut to<br />

ensure equal length of all files (18.770s - 19.962s). The number of syllables<br />

differed slightly among all sentences (58-62 syllables). Manual alignment<br />

was performed to ensure that onsets of the subject head NP, the preposi-<br />

tion and the prepositional NP only differed on a small scale. See Table 2<br />

for details. By adding a non-disambiguating adjective to the PP, a time<br />

window of approximately 800 ms between preposition onset and the onset<br />

of the prepositional NP could be ensured for further analysis.<br />

5 This is the reference object.<br />

6 Sentences were all spoken by the experimenter himself.<br />

7 (http://audacity.sourceforge.net/)<br />

8 (http://www.adobe.com/products/audition/)


2 METHODS 13<br />

Stimulus Nr. Onset subj-head NP Onset prep. Onset prep. NP<br />

1 15,348 15,946 16,786<br />

2 15,362 15,911 16,766<br />

3 15,330 15,940 16,704<br />

4 15,319 15,909 16,842<br />

5 15,357 15,919 16,757<br />

6 15,338 15,980 16,736<br />

7 15,358 15,960 16,777<br />

8 15,336 15,930 16,778<br />

9 15,353 15,970 16,792<br />

10 15,328 15,964 16,721<br />

11 15,343 15,877 16,757<br />

12 15,333 15,946 16,780<br />

13 15,325 15,928 16,719<br />

14 15,330 15,944 16,765<br />

15 15,334 15,925 16,732<br />

16 15,348 15,887 16,771<br />

17 15,345 15,948 16,744<br />

18 15,328 15,970 16,739<br />

19 15,329 15,901 16,623<br />

20 15,319 15,968 16,698<br />

mean 15,338 15,936 16,749<br />

Table 2: Onsets of subject head NP, prepositions and prepositional NPs.<br />

Even Stimulus numbers correspond to the ambiguous case, odd to the unambiguous<br />

case. The first two stimuli correspond to visual stimulus 1, the<br />

next two to visual stimulus 2, and so on.


2 METHODS 14<br />

2.2.3 Filler<br />

Filler images were all those images from the material of Alexejenko et al.<br />

(2009), which had not been used to construct stimuli. For each of those<br />

filler images an auditory filler was recorded, which was of equal length as<br />

the auditory stimuli and consisted of 3-5 sentences.<br />

2.3 Apparatus<br />

A head-mounted binocular Eye-Tracker(“Eye Link II”, SR Research, Mis-<br />

sissauga, Ontario, Canada) was used to record subjects’ eye movements.<br />

Two infrared cameras tracked the movements of the participants’ pupils,<br />

one tracked the head position relative to the monitor. A Pentium 4 PC<br />

(Dell Inc., Round Rock, TX, USA) was used to control the eye-tracker. See<br />

figure 3 for an overview of the system 9 . A second PC (Powermac G4 8000<br />

MHz) controlled the stimulus presentation. Stimuli were presented on a 21”<br />

cathode ray tube monitor (SyncMaster 1100DF 2004, Samsung Electronics<br />

Co, Ltd, Korea), resolution set to 1024x768 and a refresh rate of 100Hz.<br />

Pupil positions were tracked using a 500 Hz sample rate.<br />

Figure 3: Eye Link II Head-Mounted Eye-Tracking System<br />

9 Image taken from Karabanov (2006)


2 METHODS 15<br />

2.4 Procedure<br />

The experiment was conducted in a dimly lit room. Prior to the experiment<br />

itself, subjects were welcomed and the experiments procedure was explained<br />

to them. Subjects were informed that they could interrupt the experiment<br />

at any time. Subjects then had to fill out a consent sheet (see section G)<br />

and a standardized questionnaire (see table 1). Tests for ocular dominance<br />

and color deficiency were performed. If subjects were able to follow the in-<br />

structions up until now, it was assumed that their hearing was also sufficient<br />

for the experiment.<br />

Subjects were then seated 80 cm from the monitor and the eye-tracker<br />

was fitted on their head. Afterwards, a 13 point calibration and valida-<br />

tion procedure was started. Participants were asked to fixate a small dot<br />

showing up in a random order at thirteen different locations on the screen.<br />

During calibration, the raw eye-data was mapped to gaze-position. During<br />

validation, the difference between computed fixation and target point was<br />

computed, in order to obtain gaze accuracy. The procedure was repeated<br />

until the mean error for one eye was below 0.3 ◦ , with a maximum error below<br />

1 ◦ , this eye was subsequently tracked during the whole experiment. Subjects<br />

then were provided with headphones (WTS Philips AY3816), through which<br />

the auditory stimuli were presented. The headphones also served the pur-<br />

pose of blocking out background noise in order to ensure full concentration<br />

on the task.<br />

Subjects were told to carefully listen to the auditory stimuli and look at<br />

the visual stimuli. Before each stimulus, a small fixation spot in the middle<br />

of the screen was presented, so that drift correction could be performed<br />

and subjects had the chance to have a small break in between trials. If<br />

the difference between gaze and computed fixation position was too high,<br />

calibration and validation were repeated. The stimuli were presented in a<br />

random order, with the constraints that no more than two actual stimuli<br />

were presented in a row and that every subject was presented with exactly<br />

five stimuli conforming to the ambigue condition and five stimuli of the<br />

unambigue condition. Furthermore, for every subject there was another<br />

subject that was presented with the same order of stimuli, but with exactly<br />

the opposite conditions, as to assure that all stimuli and all conditions were<br />

presented equally often without fully giving up randomization. The ten<br />

stimuli and 15 fillers were presented as one block. After the experiment,


2 METHODS 16<br />

participants were informed about the goal of this study.<br />

2.5 Data Analysis<br />

It has already been shown extensively that measuring eye movements seems<br />

to be an adequate tool for the investigation of attention and is especially<br />

useful when trying to understand the mechanisms behind language process-<br />

ing Tanenhaus et al. (2000). With the help of Playmobil R○ scenarios it has<br />

also been shown that top-down influences seem to at least partially override<br />

bottom-up influences on attention (Kleemeyer (2007), Bärnreuther (2007)).<br />

It therefore seems to be an adequate instrument to study the processing<br />

of prepositions and its influence on attention. A fixation is defined as the<br />

inverse of a saccade, i.e. whenever the eye-tracker does not measure a sac-<br />

cade, there is a steady fixation. The acceleration threshold for a saccade was<br />

8000 ◦ /sec 2 , the velocity threshold 30 ◦ /s and the deflection threshold 0.1 ◦ .<br />

Fixation locations and durations were calculated online by the eye-tracking<br />

software and later converted into ASCII text. All further analysis was done<br />

with MATLAB 10<br />

2.5.1 Regions of Interest<br />

In order to find out whether a subject fixated a referent of the discourse, re-<br />

gions of interest (ROIs) were manually chosen around each referent in every<br />

scene using MATLABs build-in function roipoly. The borders of the referent<br />

were chosen as close as possible around the actual figurine in the scene. As<br />

part of the fixations in question lay outside the manually chosen regions of<br />

interest, they were scaled up 12 pixel in the horizontal axis (being equiva-<br />

lent to 0,552 ◦ of visual angle) and 20 pixel in the vertical axis (equivalent to<br />

0.76 ◦ of visual angle). For an example, see figure 4. An example of all the<br />

fixation outside of the regions of interest can be seen in figure 5.<br />

2.5.2 Statistics<br />

The time course of the probabilities to fixate a certain referent throughout<br />

viewing the scenery is the important part of analysis. In order to inter-<br />

pret rise and fall of fixation probabilities, 150 ms time windows were chosen<br />

in which all relevant statistical analysis was implemented. This particular<br />

10 (www.mathworks.com)


2 METHODS 17<br />

Figure 4: Example image for regions of interest. Left: target (woman) and<br />

target locationary object (car), right: competitor (woman sitting), competitor<br />

locationary object (tree), front: reference object (man)<br />

Figure 5: Example of fixations not belonging to any region of interest<br />

length was chosen as the data was somewhat scarce. In order to test stimu-<br />

lus validity, the first 2.5 seconds (in which no reference to any object in the


2 METHODS 18<br />

scenery was yet made in the auditory stimulus) were analyzed by adding<br />

up all fixations on referents and comparing them among images. As this<br />

revealed some minor issues (see Results [3]), the time window between 2500<br />

ms and 15000 ms was also analyzed (being the time window in which all<br />

referents were introduced) in the same way. Subject validity was analyzed<br />

by summing up all fixations over the different images. For both validity<br />

analyses, MATLABs lillietest function was used to ensure normal distribu-<br />

tions. The influence of prepositions on fixation probabilities (and therefore<br />

on attention) was then tested using bootstrapping algorithms. Both intra-<br />

conditional and inter-conditional testing was performed 11 . For all statistic<br />

tests, a significance level of α = .05 was used.<br />

11 Intra-conditional meaning the comparison of fixation probabilities between different<br />

ROIs of the same condition, inter-conditional being the comparison of fixation probabilities<br />

for a specific ROI in the two different conditions.


3 Results<br />

3.1 Subject Validity<br />

The first statistical test conducted was to find out whether the fixations on<br />

the different ROIs over all subjects constituted normal distributions. For<br />

that, all fixations over the whole time course of the stimulus presentation<br />

were summed up and MATLABs lillietest function was used as a test for<br />

normality. The findings are visualized in figure 6, an overview over the<br />

statistics can be found in table 3. As it could be easily discerned that<br />

subject number 5 was a statistical outlier, all further statistical tests were<br />

conducted without the data of that subject.<br />

The lillietest revealed that all fixation distributions were normalized,<br />

except for the fixations on the locationary object of the competitor. This<br />

could be due to the fact that this object was mostly inanimate and most<br />

stimuli contained considerable amounts of animate distractors, so that fixa-<br />

tions on those objects could be unstable due to the fact that, as Karabanov<br />

(2006) already pointed out, subjects prefer fixations on animate/human ob-<br />

jects over inanimate. This did not pose a problem however, as the data<br />

clearly shows that all subjects fixated the object during the presentation<br />

(mean = 4.3536%, std. − dev. = 0.8902%), i.e. identified it either before or<br />

during the presentation of the relevant part of the stimulus.<br />

3.2 Stimulus Validity<br />

Following that, a series of normality tests was conducted to ensure stimulus<br />

validity. Contrary to previous studies, it could not be shown that fixation<br />

behaviour in the first part of the stimulus, where no objects were yet in-<br />

troduced, could be a reliable baseline for test statistics concerning fixation<br />

behaviour mediated by auditory stimuli.<br />

As can be seen in figure 7 and in table 4, there was quite a large variance<br />

in fixation probabilities, especially on target, competitor and the distractor<br />

of the targets locationary object. This is due to the fact that those objects<br />

varied in size and that each stimulus contained a great amount of distrac-<br />

tor objects. But this also ensured that fixations done on objects during<br />

their introduction via the auditory stimulus could be considered to be di-<br />

rectly linked to the linguistic input, and not to attentional browsing of the<br />

19


3 RESULTS 20<br />

picture 12 .<br />

Figure 6: Subject validity, fixations over all images<br />

That browsing occurred nevertheless can be seen in light of the large<br />

number of fixations on beyond-ROI regions. This was partly also due to the<br />

limited accuracy of the eye-tracker, leading to the fact that a percentage of<br />

fixations that should have counted towards one of the ROIs was off by a few<br />

degrees. Also see figure 5. As can be seen in table 4, fixation probabilities<br />

on target and competitor were nevertheless a normal distribution. To en-<br />

sure that the stimuli were really valid and appropriate for further statistical<br />

testing, the time interval between 2500 and 15000 ms was tested, under the<br />

hypothesis that the auditory stimuli presented similar objects for all stimuli,<br />

so that fixation probabilities should be similar as well. The results are visu-<br />

alized in figure 8 and table 5. One can see quite clear that in every picture<br />

all the relevant objects were fixated prior to the investigated stimulus part.<br />

Thus it was secured that all objects have been seen before and subjects do<br />

not have to search for objects first, overt attention that is due to linguistic<br />

input should be immediately visible.<br />

12 If one has many objects in a stimulus, fixation on one of them precisely at the point<br />

when it is presented in a concomitant auditory stimulus get more and more unlikely to<br />

have been a coincidence with increasing number of objects.


3 RESULTS 21<br />

Figure 7: Stimulus validity, fixations over all subjects, between 0 and 2500<br />

ms<br />

Figure 8: Stimulus validity, fixations over all subjects, between 2500 and<br />

15000 ms


3 RESULTS 22<br />

3.3 Time Course of Fixations<br />

The time course of fixation probability over all images are shown in figures 9<br />

and 10. As expected, the fixation probabilities on both target and competi-<br />

tor object rise twice during the whole presentation of the stimulus. A small<br />

peak beginning around 9000 ms can be distinguished, representing the time<br />

frame in which the target/competitor compatible NP is introduced. This<br />

clearly shows that subjects shift their attention on visual sceneries in line<br />

with the linguistic processing of additional linguistic stimuli.<br />

The second rise of the fixation probabilities (i.e. the relative number of<br />

fixations) occurs concurrently with the second naming of said NP. Around<br />

the time of the onset of the prepositional head-NP, the fixation probabilities<br />

diverge and a considerable number of fixations is directed towards the tar-<br />

get, implying that the subjects we’re focusing their attention on it, having<br />

understood that the subject-NP refers to it. Throughout the rest of the<br />

stimulus, most fixations stay on either the target or the target locationary<br />

object, shifting back and forth between them. To better understand the<br />

Figure 9: Time course of fixation probabilities, ambiguous condition. Yellow<br />

stripe: first introduction of target/competitor-NP. First line: mean onset<br />

subject-head-NP, second line: mean onset prepositional NP-head.


3 RESULTS 23<br />

Figure 10: Time course of fixation probabilities, unambiguous condition.<br />

Yellow stripe: first introduction of target/competitor-NP. First line: mean<br />

onset subject-head-NP, second line: mean onset prepositional NP-head.<br />

stages of linguistic processing of ambiguous sentences and to compare it to<br />

the processing of unambiguous sentences, a closer visual inspection of the<br />

time frame in question was necessary. A visualization of the fixation prob-<br />

abilities of said time frame for both the unambiguous and the ambiguous<br />

condition can be found in figures 11 and 12.<br />

A few observations can be made: first and foremost, the differences in<br />

the time course of fixation probability are minimal at best. Second, there<br />

seems to be an early peak of fixations on the target in the ambiguous case<br />

around 16400 ms, which would have been suspected in the unambiguous case<br />

when the integration of the proposition alone would be enough to resolve the<br />

ambiguity of the subject-NP. Third, increased fixations on both target and<br />

target locationary object seem to last longer in the ambiguous case than in<br />

the unambiguous one (the last peak in the ambiguous case is at 19350 ms).<br />

All of those observations have to be treated carefully, as the dataset is<br />

small and therefore statistical significance cannot be guaranteed.


3 RESULTS 24<br />

Figure 11: Time course of fixation probabilities, unambiguous condition,<br />

time span between subject head onset and end of stimulus<br />

Figure 12: Time course of fixation probabilities, ambiguous condition, time<br />

span between subject head onset and end of stimulus


3 RESULTS 25<br />

3.4 Bootstrapping<br />

Bootstrapping analyses were conducted to find out if there are any signif-<br />

icant differences between fixation probabilities on target and competitor.<br />

Both differences between conditions and in the conditions were analyzed.<br />

Bootstrapping algorithms were applied both over all images and all sub-<br />

jects, to find out for how many images and subjects significant differences<br />

can be found, respectively. Bootstrapping was applied to time windows of<br />

150 ms width, between 15200 ms (shortly before the onset of the subject-<br />

head-NP) and 22000 ms (the last recorded fixations). 1000 bootstrap sam-<br />

ples were taken from the vector of fixations on either ROI1 (target) or ROI2<br />

(competitor), for both the ambiguous and the unambiguous condition.<br />

As a test statistic, the difference of means was calculated and compared<br />

to the actual difference of means, both in and between conditions 13 . A<br />

difference was considered significant if it fell either into the 2,5 percentile<br />

or was larger than the 97,5 percentile. The figures 13, 14, 15 and 16 depict<br />

the results of bootstrapping analyses over images. No graphs are given for<br />

the results of bootstrapping over the subjects, as it did not yield a single<br />

significant difference.<br />

From figure 13 it can be concluded that fixation behaviour on the tar-<br />

get does indeed differ between conditions. Further analysis confirmed the<br />

observation made earlier, namely that the target object gets significantly<br />

more fixations in the ambiguous case. For all four images for which the time<br />

window between 15950 ms and 16100 ms became significant, the difference<br />

between unambiguous and ambiguous case was negative. Interestingly, this<br />

is the time window right after the onset of the preposition. The other peaks<br />

seem to support the claim that in the ambiguous case, fixations stayed more<br />

often on the target for a longer time. The differences here are also all neg-<br />

ative. As there is mostly only one or two pictures that lead a significant<br />

difference, this hypothesis cannot be proven.<br />

There are also significant differences in the fixation probabilities on the<br />

competitor object between conditions. They are even less pronounced than<br />

in the case of the target object. The relevant time frames can be observed<br />

in figure 14.<br />

13 I.e. mean(ROI1 unamb) - mean(ROI1 amb), mean(ROI1 unamb) - mean(ROI2 un-<br />

amb), ...


3 RESULTS 26<br />

Figure 13: Significant Differences after Bootstrapping - Fixations on Target<br />

unamb. vs amb. Condition<br />

Figure 14: Significant Differences after Bootstrapping - Fixations on Competitor<br />

Unamb. vs Amb. Condition, peaks at 16100, 17750 and 19700 ms


3 RESULTS 27<br />

Figure 15: Significant Differences after Bootstrapping - Fixations on Target<br />

vs Competitor Ambiguous Condition<br />

Interestingly, the differences seen in the time course of fixations in both<br />

conditions do not seem to be that significant. For the ambiguous case, there<br />

are 15 time windows in which the differences become significant for one<br />

image. For the unambiguous one, there are 17 time windows, two of which<br />

show two images with significant differences.


Figure 16: Significant Differences after Bootstrapping - Fixations on Target<br />

vs Competitor Unambiguous Condition<br />

4 Discussion<br />

This study about the linguistic processing of prepositions has some interest-<br />

ing implications. Due to the scarcity of the data 14 most of the implications<br />

are in need of future research. It seems that contrary to e.g. Chambers<br />

et al. (1998), prepositions do not seem to provide as much information into<br />

the processing stages of natural language understanding as for experiments<br />

in which choices are limited and subjects rely heavily on them.<br />

It seems that people process the prepositional NP-head fully when faced<br />

with a referentially ambiguous phrase and only then shift their attention to<br />

the referent. It could also be the case that the time window in which an<br />

influence of the preposition was suspected did not suffice. Therefore one<br />

proposal for future research would be to widen the gap between preposi-<br />

tion and PP-head-NP even further. As far as this study is concerned, there<br />

are a few significant differences in fixation probabilities, oddly enough there<br />

14 As could be seen by the fact that no bootstrapping analysis over the subjects yielded<br />

significant results - in most time windows, the single subject did not look at either target<br />

or competitor, only the average over subjects shows results<br />

28


4 DISCUSSION 29<br />

seem to be more fixations on the target in the ambiguous case. This could<br />

be an artifact of this study, i.e. there could be a bias towards fixating the<br />

competitor (even though none of the earlier time windows shows such a dis-<br />

crepancy). Nevertheless, it should be subject of future research. The results<br />

of this study seem to be in favor of the theory that constraints from single<br />

constituents are collected during an incremental construction of semantic<br />

representations.


References<br />

Alexejenko, S., Brukamp, K., Cieschinger, M., and Deng, X. (2009). Mean-<br />

ing, vision and situation - study project.<br />

Bärnreuther, B. (2007). Investigating the influence of visual and semantic<br />

saliency on overt attention - bsc. thesis univ. osnabrueck, cognitive science.<br />

Bosch, P. (2009). Processing Definite Determiners. Formal Semantics Meets<br />

Experimental Results. Lecture Notes on Computer <strong>Science</strong>.<br />

Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Carlson, G. N.,<br />

and Filip, H. (1998). Words and worlds: The construction of context for<br />

definite references.<br />

Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken<br />

language. <strong>Cognitive</strong> Psychology, 6.<br />

Hartmann, N. (2006). Processing grammatical gender in german - an eye-<br />

tracking study on spoken-word recognition - bsc. thesis univ. osnabrueck,<br />

cognitive science.<br />

Karabanov, A. N. (2006). Eye tracking as a tool for investigating the compre-<br />

hension of referential expressions - bsc. thesis univ. osnabrueck, cognitive<br />

science.<br />

Kleemeyer, M. (2007). Contribution of visual and semantic information and<br />

their interaction on attention guidance - an eye-tracking study - bsc. thesis<br />

univ. osnabrueck, cognitive science.<br />

Rayner, K. (1998). Eye movements in reading and information processing:<br />

20 years of research. Psychological Bulletin, 124(3).<br />

Tanenhaus, M. K., Magnuson, J. S., Dahan, D., and Chambers, C. (2000).<br />

Eye movements and lexical access in spoken-language comprehension:<br />

Evaluating a linked hypothesis between fixations and linguistic processing.<br />

30


A Visual Stimuli<br />

Figure 17: Visual Stimuli 1-6<br />

31


A VISUAL STIMULI 32<br />

Figure 18: Visual Stimuli 7-10


B Auditory Stimuli<br />

(a) is the unambiguous condition, (b) is the ambiguous one.<br />

1. (a) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung.<br />

Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe<br />

spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule<br />

in dem kleinen Baum hält nach Beute Ausschau.<br />

(b) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung.<br />

Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe<br />

spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule<br />

auf dem kleinen Baum hält nach Beute Ausschau.<br />

2. (a) In der Savanne. In der felsigen Landschaft traben zwei Elefan-<br />

ten. Die beiden Männer beobachten die vielen durstigen Tiere<br />

am einzigen Wasserloch. Der Mann vor dem grauen Felsen ist<br />

ein erfahrener Jäger.<br />

(b) In der Savanne. In der felsigen Landschaft traben zwei Elefan-<br />

ten. Die beiden Männer beobachten die vielen durstigen Tiere<br />

am einzigen Wasserloch. Der Mann neben dem grauen Felsen ist<br />

ein erfahrener Jäger.<br />

3. (a) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen<br />

warten schon lange. Die beiden Kinder langweilen sich trotz der<br />

vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind<br />

vor der einen Kiste wird gerade aufgerufen.<br />

(b) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen<br />

warten schon lange. Die beiden Kinder langweilen sich trotz der<br />

vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind<br />

bei der einen Kiste wird gerade aufgerufen.<br />

4. (a) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den<br />

Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und<br />

Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze<br />

vor dem kleinen Kind geht jetzt auf Erkundungstour.<br />

(b) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den<br />

Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und<br />

33


B AUDITORY STIMULI 34<br />

Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze<br />

bei dem kleinen Kind geht jetzt auf Erkundungstour.<br />

5. (a) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei<br />

Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n<br />

bereit, die Kinder spielen Fussball und ein Hund tollt freudig<br />

umher. Der Korb hinter der einen Frau ist voller Leckereien.<br />

(b) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei<br />

Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n<br />

bereit, die Kinder spielen Fussball und ein Hund tollt freudig<br />

umher. Der Korb bei der einen Frau ist voller Leckereien.<br />

6. (a) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer<br />

und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer<br />

warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund<br />

unter dem einen Tisch bettelt um einen Knochen.<br />

(b) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer<br />

und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer<br />

warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund<br />

bei dem einen Tisch bettelt um einen Knochen.<br />

7. (a) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die<br />

Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen<br />

sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind<br />

vor dem einen Tisch hört ihr noch nicht richtig zu.<br />

(b) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die<br />

Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen<br />

sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind<br />

bei dem einen Tisch hört ihr noch nicht richtig zu.<br />

8. (a) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei<br />

den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig,<br />

die Kinder sitzen am Feuer und der Vater passt aufs Essen auf.<br />

Die Frau hinter dem grossen Auto holt noch mehr Kohle.<br />

(b) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei<br />

den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig,<br />

die Kinder sitzen am Feuer und der Vater passt aufs Essen auf.<br />

Die Frau neben dem grossen Auto holt noch mehr Kohle.


B AUDITORY STIMULI 35<br />

9. (a) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse<br />

an den Teichen. Zwei Katzen streifen umher, und Hühner gackern<br />

um die Wette. Die Bäuerin hat viel zu tun. Die Katze an dem<br />

kleinen Teich hat grad einen Fisch entdeckt.<br />

(b) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse<br />

an den Teichen. Zwei Katzen streifen umher, und Hühner gackern<br />

um die Wette. Die Bäuerin hat viel zu tun. Die Katze bei dem<br />

kleinen Teich hat grad einen Fisch entdeckt.<br />

10. (a) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cow-<br />

boys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung<br />

und Pferde laufen herum. Ein schwarzer Hund schaut sich um.<br />

Der Geier vor dem einen Cowboy ist schon ganz abgemagert.<br />

(b) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cow-<br />

boys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung<br />

und Pferde laufen herum. Ein schwarzer Hund schaut sich um.<br />

Der Geier bei dem einen Cowboy ist schon ganz abgemagert.


C Fillers - Visual<br />

Figure 19: Filler Images 1-6<br />

36


C FILLERS - VISUAL 37<br />

Figure 20: Filler Images 7-12


C FILLERS - VISUAL 38<br />

Figure 21: Filler Images 13-15


D Fillers - Auditory<br />

1. Beim Zahnarzt. Die Arzthelferin holt die nötigen Instrumente aus<br />

den Schränken. Der Zahnarzt steht noch hinter dem Trennschirm<br />

am Tisch und trinkt noch seinen Kaffee aus. Der Patient auf dem<br />

Behandlungsstuhl fühlt sich schon ein wenig unwohl.<br />

2. Im grossen Burghof. Der grosse goldene Ritter bringt dem kleinen<br />

gerade den Schwertkampf bei. Der Mann bei den Fässern betrinkt<br />

sich und die Marktfrau bietet ihre Waren feil. Der Ritter mit der<br />

Hellebarde bewacht das Stadttor.<br />

3. Nachmittags im Zoo. Zwei Löwen stehen an der Tränke und ein Elefant<br />

ist eine Portion Heu. Die Oma und ihr Enkel beobachten begeistert die<br />

vielen Tiere. Der Tierpfleger will gleich das Elefantengehege sauber<br />

machen.<br />

4. Tief im Dschungel. Auf den Bäumen hocken Vögel und auf dem Boden<br />

streiten sich zwei Affen um Bananen. Die Schildkröte versucht die<br />

reifen Früchte zu erreichen. Der einzelne Affe versucht die anderen<br />

vor der Schlange zu warnen.<br />

5. In der Zirkusmanege. Die Affen und der Elefant rollen Fässer umher<br />

während ein Clown jongliert. Der Dompteur passt auf dass die Tiere<br />

alles richtig machen. Die Zuschauer auf den Rängen amüsieren sich<br />

prächtig.<br />

6. Auf einer Lichtung Bei den Bäumen und an den Blumen tummeln<br />

sich viele Tiere. Zwei Frischlinge halten sich nah bei ihrer Mutter auf,<br />

die kleinen Füchse trauen sich weiter weg. Das Eichhörnchen klettert<br />

lieber auf dem Baum umher.<br />

7. Auf dem Wochenmarkt. In den Körben und auf dem Tisch liegt<br />

frisches Gemüse. Der Mann ist mit dem Fahrrad gekommen um bei<br />

der Bäuerin seine Einkäufe zu erledigen. Die Bäuerin begrüsst ihn und<br />

seinen Hund gerade freundlich.<br />

8. Beim Familienausflug. Die Mutter und ihr Kind wollen gleich mit<br />

dem Kanu los paddeln Der Vogel beim Korb versucht etwas zu essen<br />

39


D FILLERS - AUDITORY 40<br />

zu ergattern und die Enten gehen schwimmen. Der Junge hat seinen<br />

Fussball zum spielen mitgenommen.<br />

9. Auf einer Ranch. Der Bulle frisst Stroh dass die Rancher gerade<br />

zusammengeharkt haben. Das Gras hat der Rancher gebündelt um<br />

es später den Pferden zu geben. Die Frau vor dem Wagen wird gleich<br />

noch die Pferde striegeln.<br />

10. Beim Kinderarzt. Beim Bett stehen allerlei medizinische Gerätschaften<br />

und im Schrank liegt Spielzeug. Der Junge auf dem Stuhl hat sich beim<br />

Sportunterricht verletzt. Die ärztin sagt ihm dass er wahrscheinlich<br />

auf Krücken nach Hause gehen muss.<br />

11. Ein Tag im Stadtpark. Ein paar Hasen und Rehe ruhen sich unter den<br />

Bäumen aus. Die Frau macht einen Spaziergang mit ihrem Hund. Sie<br />

unterhält sich gerade mit dem Mann. Die Ente am Teich schaut ihren<br />

Jungen beim Schwimmen zu.<br />

12. In einem kleinen Park. Die Blumen blühen und die vielen Bäume sind<br />

voller Blätter. Die Oma und ihr Enkel sind mit dem Hund zum Spielen<br />

in den Park gekommen. Das Fahrrad an dem einen Baum gehört den<br />

kleinen Jungen.<br />

13. Morgens in der Schule. Die Kleiderschränke sind noch leer und die<br />

Stühle noch nicht besetzt. Nur die Lehrerin und ein Schüler sind<br />

schon da. Sie fragt ihn wo die anderen bleiben. Die Aktentaschen im<br />

blauen Schrank gehören der Lehrerin.<br />

14. Auf dem Reiterhof. Beim Zaun liegt in einer Schubkarre Stroh für die<br />

Pferde. Auf dem Zaun hängen auch ein paar Sattel. Das kleine Kind<br />

will gleich einen Ausritt machen. Das Pferd neben der Tränke hat<br />

schon einen Sattel auf dem Rücken.<br />

15. Im Indianerdorf. Ein grosses Tipi ist aufgebaut und die Pferde haben<br />

Jagdbemalung. Der Häuptling redet mit dem Cowboy über die bevorste-<br />

hende Jagd. Das braune Pferd, dass gerade am Fluss trinkt, gehört<br />

dem Häuptling.


E Statistics<br />

ROI H mean std-dev.<br />

1 0 10.5542 2.1560<br />

2 0 5.8977 1.1071<br />

3 0 8.7508 1.5973<br />

4 0 5.3703 0.8303<br />

5 1 4.3536 0.8902<br />

6 0 6.0272 0.9649<br />

7 0 9.2993 2.2232<br />

8 0 49.7469 5.0927<br />

Table 3: Statistics of the Subject Validity - H: Outcome of the Lilliefors-test<br />

with α = 0.05, mean value of ROI, standard deviation (both in percent).<br />

Fixations on (from top to bottom): target object, competitor object, target<br />

locationary object, distractor for target locationary object, competitor<br />

locationary object, distractor for competitor locationary object, reference<br />

object, beyond ROI<br />

ROI H mean std-dev.<br />

1 0 7.1418 5.5750<br />

2 0 3.6015 2.5735<br />

3 1 8.2362 7.5051<br />

4 1 5.7861 7.8266<br />

5 0 3.3063 4.3488<br />

6 1 8.0087 13.1942<br />

7 0 12.7139 8.3210<br />

8 0 51.2055 10.8276<br />

Table 4: Statistics of the Stimulus Validity, for the first 2500 ms - H: Outcome<br />

of the Lilliefors-test with α = 0.05, mean value of ROI, standard<br />

deviation. ROIs like above.<br />

41


E STATISTICS 42<br />

ROI H mean std-dev.<br />

1 0 6.9826 2.5666<br />

2 0 6.1760 2.8477<br />

3 0 6.1081 1.7871<br />

4 0 6.0384 3.5721<br />

5 1 5.2184 1.6377<br />

6 1 6.6296 7.2425<br />

7 0 9.7145 3.5632<br />

8 1 53.1324 10.8374<br />

Table 5: Statistics of the Stimulus Validity, for the timespan between 2500<br />

and 15000 ms - H: Outcome of the Lilliefors-test with α = 0.05, mean value<br />

of ROI, standard deviation. ROIs like above.<br />

ROI H mean std-dev.<br />

1 0 10.4496 3.4217<br />

2 0 5.9346 2.2071<br />

3 0 8.7613 2.6996<br />

4 0 5.3531 3.5624<br />

5 1 4.3345 1.8885<br />

6 1 6.0183 7.2006<br />

7 0 9.1997 3.6903<br />

8 0 49.9490 9.5045<br />

Table 6: Statistics of the Stimulus Validity, for the whole presentation of<br />

the stimulus - H: Outcome of the Lilliefors-test with α = 0.05, mean value<br />

of ROI, standard deviation. ROIs like above.


F Complementary Figures<br />

Figure 22: Timecourse of total fixations, ambiguous condition<br />

43


F COMPLEMENTARY FIGURES 44<br />

Figure 23: Timecourse of total fixations, unambiguous condition<br />

Figure 24: Timecourse of total fixations, unambiguous condition, timespan<br />

between subject head onset and end of stimulus


LIST OF FIGURES 45<br />

Figure 25: Timecourse of total fixations, ambiguous condition, timespan<br />

between subject head onset and end of stimulus<br />

List of Figures<br />

1 Example block world, taken from Bosch (2009) . . . . . . . . 6<br />

2 Exemplary visual stimulus . . . . . . . . . . . . . . . . . . . . 11<br />

3 Eye Link II Head-Mounted Eye-Tracking System . . . . . . . 14<br />

4 Example image for regions of interest . . . . . . . . . . . . . . 17<br />

5 Fixations not belonging to any region of interest . . . . . . . 17<br />

6 Subject validity, fixations over all images . . . . . . . . . . . . 20<br />

7 Stimulus validity, fixations over all subjects, between 0 and<br />

2500 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

8 Stimulus validity, fixations over all subjects, between 2500<br />

and 15000 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

9 Time course of fixation probabilities, ambiguous condition.<br />

Yellow stripe: first introduction of target/competitor-NP. First<br />

line: mean onset subject-head-NP, second line: mean onset<br />

prepositional NP-head. . . . . . . . . . . . . . . . . . . . . . 22


10 Time course of fixation probabilities, unambiguous condi-<br />

tion. Yellow stripe: first introduction of target/competitor-<br />

NP. First line: mean onset subject-head-NP, second line:<br />

mean onset prepositional NP-head. . . . . . . . . . . . . . . . 23<br />

11 Time course of fixation probabilities, unambiguous condition,<br />

time span between subject head onset and end of stimulus . . 24<br />

12 Time course of fixation probabilities, ambiguous condition,<br />

time span between subject head onset and end of stimulus . . 24<br />

13 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get unamb. vs amb. Condition . . . . . . . . . . . . . . . . . 26<br />

14 Significant Differences after Bootstrapping - Fixations on Com-<br />

petitor Unamb. vs Amb. Condition . . . . . . . . . . . . . . . 26<br />

15 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get vs Competitor Ambiguous Condition . . . . . . . . . . . . 27<br />

16 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get vs Competitor Unambiguous Condition . . . . . . . . . . 28<br />

17 Visual Stimuli 1-6 . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

18 Visual Stimuli 7-10 . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

19 Filler Images 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

20 Filler Images 7-12 . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

21 Filler Images 13-15 . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

22 Timecourse of total fixations, ambiguous condition . . . . . . 43<br />

23 Timecourse of total fixations, unambiguous condition . . . . . 44<br />

24 Timecourse of total fixations, unambiguous condition, times-<br />

pan between subject head onset and end of stimulus . . . . . 44<br />

25 Timecourse of total fixations, ambiguous condition, timespan<br />

between subject head onset and end of stimulus . . . . . . . . 45<br />

46


List of Tables<br />

1 Statistics of study participants, collected from subject ques-<br />

tionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

2 Onsets of subject head NP, prepositions and Prepositional NP 13<br />

3 Statistics Subject Validity . . . . . . . . . . . . . . . . . . . . 41<br />

4 Statistics Stimulus Validity 0-2500 ms . . . . . . . . . . . . . 41<br />

5 Statistics Stimulus Validity 2500-15000 ms . . . . . . . . . . . 42<br />

6 Statistics Stimulus Validity whole timecourse . . . . . . . . . 42<br />

47


G Consent Sheet<br />

<strong>Christian</strong> <strong>Hoffmann</strong><br />

Arbeitsgruppe Computerlinguistik<br />

Universität Osnabrück<br />

Albrechtstrasse 28<br />

49069 Osnabrück<br />

email: chrihoff@uos.de<br />

Aufklärung/Einwilligung<br />

Sehr geehrte Teilnehmerin, sehr geehrter Teilnehmer,<br />

Sie haben sich freiwillig zur Teilnahme dieser Studie gemeldet. Hier erhalten<br />

Sie nun einige Informationen zu Ihren Rechten und zum Ablauf des folgen-<br />

den Experiments. Bitte lesen Sie sich die folgenden Abschnitte sorgfältig<br />

durch.<br />

1) Zweck der Studie<br />

Ziel dieser Studie ist es, neue Erkenntnisse über das Satzverständnis anhand<br />

von Eye-Tracking-Daten zu erhalten.<br />

2) Ablauf der Studie<br />

In dieser Studie werden Ihnen 25 Bilder auf einem Computermonitor gezeigt.<br />

Bitte sehen sie sich die Bilder sorgfältig an. Zugleich werden Sie einen kurzen<br />

Text zu hören bekommen. Hören Sie aufmerksam zu.<br />

Um Ihre Blickposition zu errechnen, wird Ihnen ein ”Eye-Tracker” auf den<br />

Kopf geschnallt. Dieses Gerät erfasst die Position Ihres Auges mit Hilfe von<br />

kleinen Kameras und Infrarotsensoren. Dieses Verfahren ist ein psychome-<br />

trisches Standardverfahren, das in dieser Art bereits vielfach angewandt und<br />

getestet wurde. Bei unseren bisherigen Erfahrungen und Experimenten mit<br />

dem Gerät ist keine Versuchsperson zu Schaden gekommen.<br />

Zu Beginn der Untersuchung muss der ”Eye-Tracker” eingestellt werden,<br />

dieser Vorgang dauert etwa 10-15 Minuten. Das eigentliche Experiment<br />

48


G CONSENT SHEET 49<br />

dauert dann etwa 15 Minuten. Der Versuchsleiter wird während des ganzen<br />

Experiments mit Ihnen im Versuchsraum sein und steht Ihnen für Fragen<br />

jederzeit zur Verfügung. Nach der Studie erhalten Sie weitere Informationen<br />

zum Sinn und Zweck dieser Untersuchung. Bitte geben Sie diese Informatio-<br />

nen an niemanden weiter um die Objektivität eventueller Versuchspersonen<br />

zu wahren.<br />

3) Risiken und Nebenwirkungen<br />

Diese Studie ist nach derzeitigem Wissenstand des Versuchsleiters ungefährlich<br />

und für die Teilnehmer schmerzfrei. Durch Ihre Teilnahme an dieser Studie<br />

setzen Sie sich keinen besonderen Risiken aus und es sind keine Neben-<br />

wirkungen bekannt. Da diese Studie in ihrer Gesamtheit neu ist, kann<br />

das Auftreten von noch unbekannten Nebenwirkungen allerdings nicht aus-<br />

geschlossen werden.<br />

Wichtig: Bitte informieren Sie den Versuchsleiter umgehend, wenn Sie unter<br />

Krankheiten leiden oder sich derzeit in medizinischer Behandlung befinden.<br />

Teilen Sie dem Versuchsleiter bitte umgehend mit, falls Sie schon einmal<br />

einen epileptischen Anfall hatten. Bei Fragen hierzu wenden Sie sich bitte<br />

an den Versuchsleiter.<br />

4) Abbruch des Experiments<br />

Sie haben das Recht, diese Studie zu jedem Zeitpunkt und ohne Angabe<br />

einer Begründung abzubrechen. Ihre Teilnahme ist vollkommen freiwillig<br />

und ohne Verpflichtungen. Es entstehen Ihnen keine Nachteile durch einen<br />

Abbruch der Untersuchung.<br />

Falls Sie eine Pause wünschen oder auf die Toilette müssen, ist dies jederzeit<br />

möglich. Sollten Sie zu irgendeinem Zeitpunkt während des Experiments<br />

Kopfschmerzen oder Unwohlsein anderer Art verspüren, dann informieren<br />

Sie bitte umgehend den Versuchsleiter.<br />

5) Vertraulichkeit<br />

Die Bestimmungen des Datenschutzes werden eingehalten. Personenbezo-<br />

gene Daten werden von uns nicht an Dritte weitergegeben. Die von Ihnen<br />

erfassten Daten werden von uns anonymisiert und nur in dieser Form weit-<br />

erverarbeitet oder veröffentlicht.


G CONSENT SHEET 50<br />

6) Einverständniserklärung<br />

Bitte bestätigen Sie durch Ihre Unterschrift die folgende Aussage:<br />

”Hiermit bestätige ich, dass ich durch den Versuchsleiter dieser Studie über<br />

die oben genannten Punkte aufgeklärt und informiert worden bin. Ich habe<br />

diese Erklärung gelesen und verstanden. Ich stimme jedem der Punkte zu.<br />

Ich ermächtige hiermit die von mir in dieser Untersuchung erworbenen Daten<br />

zu wissenschaftlichen Zwecken zu analysieren und in wissenschaftlichen Ar-<br />

beiten anonymisiert zu veröffentlichen.<br />

Ich wurde über meine Rechte als Versuchsperson informiert und erkläre mich<br />

zu der freiwilligen Teilnahme an dieser Studie bereit.”<br />

Ort, Datum Unterschrift<br />

Bei Minderjährigen, Unterschrift des Erziehungsberechtigten


Acknowledgments<br />

I want to thank Prof. Peter Bosch and Prof. Peter König for their con-<br />

stant support during the development of this thesis and the opportunity to<br />

conduct research of my own in such an exciting field. Furthermore, I want<br />

to thank Torsten Betz and Frank Schumann from the NBP-group for their<br />

open ear and advice when it was dearly needed. Lastly, I want to thank<br />

Vera Mönter for her moral support and permanent motivation.<br />

51


Confirmation<br />

Hereby I confirm that I wrote this thesis independently and that I have not<br />

made use of any other resources or means than those indicated.<br />

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst<br />

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet<br />

habe.<br />

<strong>Christian</strong> <strong>Hoffmann</strong>, Nijmegen, September 29, 2009<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!