26.10.2013 Views

raman spectroscopy of ink on paper - PROBLEMS OF FORENSIC ...

raman spectroscopy of ink on paper - PROBLEMS OF FORENSIC ...

raman spectroscopy of ink on paper - PROBLEMS OF FORENSIC ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RAMAN SPECTROSCOPY <strong>OF</strong> INK ON PAPER<br />

Thomas ANDERMANN<br />

Bundeskriminalamt, Wiesbaden, Germany<br />

ABSTRACT: Blue and black ballpoint pen as well as blue, black, green and red fluid<br />

<str<strong>on</strong>g>ink</str<strong>on</strong>g>s <strong>on</strong> <strong>paper</strong> are examined by Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g>. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the Raman spectra<br />

is str<strong>on</strong>gly dependent <strong>on</strong> the excitati<strong>on</strong> wavelength. Therefore, two different<br />

spectrometers with different excitati<strong>on</strong> wavelengths have been tested. In additi<strong>on</strong>,<br />

Surface Enhanced Res<strong>on</strong>ance Raman Spectroscopy (SERRS) was used. Applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SERRS helps to avoid fluorescence and enhance certain Raman signals. Because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the minute amount <str<strong>on</strong>g>of</str<strong>on</strong>g> reagent applied to the <str<strong>on</strong>g>ink</str<strong>on</strong>g>-line, this procedure may still be regarded<br />

as n<strong>on</strong>-destructive. The resulting Raman spectra are compared and classified.<br />

Classificati<strong>on</strong> results are compared with a classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>ink</str<strong>on</strong>g>s by thin layer<br />

chromatography. An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results will show to what extent Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g><br />

may be useful in questi<strong>on</strong>ed document examinati<strong>on</strong>.<br />

KEY WORDS: Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g>; Ink; Document examinati<strong>on</strong>.<br />

Problems <str<strong>on</strong>g>of</str<strong>on</strong>g> Forensic Sciences, vol. XLVI, 2001, 335–344<br />

Received 27 November 2000; accepted 15 September 2001<br />

INTRODUCTION<br />

Recently we see an increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s in Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g>.<br />

Thermoelectrically cooled CCD array detectors and techniques like<br />

surface enhanced res<strong>on</strong>ance Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> (SERRS) enable an increase<br />

in sensitivity sufficient for applicati<strong>on</strong>s in forensics [1]. In Raman<br />

<str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> the analyte is excited with m<strong>on</strong>ochromatic laser-light. The<br />

scattered light (rayleigh scattering) c<strong>on</strong>tains the excitati<strong>on</strong> wavelength,<br />

which can be removed by holographic filters, and signals at l<strong>on</strong>ger (Stokes<br />

shift) and shorter wavelength (anti stokes shift). Usually the Stokes signals<br />

are more intensive and therefore m<strong>on</strong>itored as the Raman spectrum.<br />

Positi<strong>on</strong> and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> Raman signals depend <strong>on</strong> the maximum absorpti<strong>on</strong><br />

wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the analyte. Therefore appropriate excitati<strong>on</strong> wavelengths<br />

are needed. Fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the analyte or the substrate may cover<br />

the Raman signals, which can be avoided by blocking the fluorescence.<br />

In document examinati<strong>on</strong> we are mainly interested in <str<strong>on</strong>g>ink</str<strong>on</strong>g>s and dyes<br />

therein. We are c<strong>on</strong>fr<strong>on</strong>ted with a great variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes <str<strong>on</strong>g>of</str<strong>on</strong>g> different hues,<br />

which means they have different absorpti<strong>on</strong> maxima. The dyes bel<strong>on</strong>g to different<br />

chemical classes such as inorganic and organic pigments, acid and ba-


336 T. Andermann<br />

sic dyes, substantive and reactive dyes, triphenylmethane dyes, azo dyes<br />

etc.<br />

EXPERIMENTAL<br />

For this study we used two Raman spectrometers: A FORAM 685 from<br />

Foster & Freeman Ltd. and a LabRam Infinity from Dilor GmbH. The<br />

FORAM 685 <str<strong>on</strong>g>of</str<strong>on</strong>g>fers <strong>on</strong>e excitati<strong>on</strong> wavelength at 685 nm. The spectral range<br />

is between 400 and 2000 cm –1 with a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 cm –1 . The laser power <strong>on</strong><br />

the samples was about 1.5 mW. The LabRam Infinity <str<strong>on</strong>g>of</str<strong>on</strong>g>fers several laser<br />

sources, from which we used 514, 633 and 785 nm. The spectral range we<br />

used is between 60 and 3000 cm –1 with a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 cm –1 . The laser power<br />

<strong>on</strong> the samples can be tuned from 0 to 6 mW.<br />

We examined <str<strong>on</strong>g>ink</str<strong>on</strong>g> lines drawn <strong>on</strong> white <str<strong>on</strong>g>of</str<strong>on</strong>g>fice <strong>paper</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 26 blue and<br />

26 black ball point pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s and 63 blue, 60 black, 36 green and 48 red fluid<br />

<str<strong>on</strong>g>ink</str<strong>on</strong>g>s. The <str<strong>on</strong>g>ink</str<strong>on</strong>g>s were examined directly without any sample preparati<strong>on</strong> and<br />

after subsequently treating the samples with a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poly-L-lysine and<br />

a silver colloid to obtain SERRS spectra (SERRS 1). In some cases additi<strong>on</strong>al<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ascorbic acid soluti<strong>on</strong> (SERRS 2) leads to better results.<br />

RESULTS AND DISCUSSION<br />

The discriminati<strong>on</strong> power obtained by the FORAM 685 is shown in<br />

Table I. In most cases the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SERRS reagents leads to a distinct<br />

increase in the discriminati<strong>on</strong> power. The decrease in case <str<strong>on</strong>g>of</str<strong>on</strong>g> the black<br />

ball point pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s is due to the fact, that in the native spectra the shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fluorescence can be used as a criteri<strong>on</strong> for differentiati<strong>on</strong>. The SERRS<br />

spectra show no fluorescence.<br />

TABLE I. DIFFERENTIATION <strong>OF</strong> INKS BY FORAM 685<br />

Ink Raman SERRS1 SERRS2<br />

Blue ball point 47.1% 80.3% –<br />

Black ball point 57.8% 33.5% –<br />

Blue fluid <str<strong>on</strong>g>ink</str<strong>on</strong>g> 47.4% 82.7% 84.2%<br />

Black fluid <str<strong>on</strong>g>ink</str<strong>on</strong>g> 74.3% 92.4% 83.2%<br />

Green fluid <str<strong>on</strong>g>ink</str<strong>on</strong>g> 34.6% 67.1% 72.7%<br />

Red fluid <str<strong>on</strong>g>ink</str<strong>on</strong>g> 28.2% 87.9% 92.7%


Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ink</str<strong>on</strong>g> <strong>on</strong> <strong>paper</strong> 337<br />

Am<strong>on</strong>g optical examinati<strong>on</strong> TLC is comm<strong>on</strong>ly used for differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ink</str<strong>on</strong>g>s. Figure 1 shows the TLC results <str<strong>on</strong>g>of</str<strong>on</strong>g> 19 blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s some <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

we are able to distinguish and some which show identical chromatograms.<br />

We take an exemplary look at the first four <str<strong>on</strong>g>ink</str<strong>on</strong>g>s. We cannot distinguish between<br />

<str<strong>on</strong>g>ink</str<strong>on</strong>g>s 1 and 2 or <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3 and 4, but we can easily see the differences between<br />

the two pairs.<br />

Fig. 1. TLC results <str<strong>on</strong>g>of</str<strong>on</strong>g> 19 blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s.<br />

The Raman spectra obtained with the FORAM 685 and SERRS 1 lead to<br />

the same c<strong>on</strong>clusi<strong>on</strong>: No differentiati<strong>on</strong> between <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 1 and 2 or <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3 and<br />

4 respectively, but we see distinct differences between the two pairs (Figures<br />

2–4).<br />

Blue Ball Point 1<br />

Blue Ball Point 2<br />

2000 1916 1832 1748 1664 1580 1496 1412 1328 1244 1160 1076 992 908 824 740 656 572<br />

Raman Shift Wavenumbers<br />

Fig. 2. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 1 (blue) and 2 (magenta), FORAM 685,<br />

SERRS 1.


338 T. Andermann<br />

2000 1919 1838 1757 1676 1595 1514 1433 1352 1271 1190 1109 1028 947 866 785 704 623 542<br />

Raman Shift Wavenumbers<br />

Blue Ball Point 3<br />

Blue Ball Point 4<br />

Fig. 3. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3 (blue) and 4 (magenta), FORAM 685,<br />

SERRS 1.<br />

2000 1919 1838 1757 1676 1595 1514 1433 1352 1271 1190 1109 1028 947 866 785 704 623 542<br />

Raman Shift Wavenumbers<br />

Blue Ball Point 3<br />

Blue Ball Point 1<br />

Fig. 4. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3 (blue) and 1 (magenta), FORAM 685,<br />

SERRS 1.<br />

Figure 4 shows differences in the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lower wavelengths between the<br />

Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue points 1 and 2 obtained with the LabRam Infinity<br />

(ex- 633 nm, SERRS 1). But it has not been ball checked yet, if these differences<br />

are due to different spectroscopic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>ink</str<strong>on</strong>g>s or caused by an<br />

artefact. Figure 6 shows no difference between ball point 3 and 4. Whereas<br />

Figure 7 shows a distinct difference between ball points 1 and 3.


Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ink</str<strong>on</strong>g> <strong>on</strong> <strong>paper</strong> 339<br />

1998<br />

1929<br />

1859<br />

Blue Ball Point 2<br />

Blue Ball Point 1<br />

1788<br />

1717<br />

1645<br />

1572<br />

1499<br />

1425<br />

1350<br />

1274<br />

1198<br />

1120<br />

Figures 8 and 9 show superimposed spectra obtained with both different<br />

spectrometers <str<strong>on</strong>g>of</str<strong>on</strong>g> ball point 1 and 3 respectively. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectra<br />

looks comparable. The LabRam Infinity <str<strong>on</strong>g>of</str<strong>on</strong>g>fers greater spectral range and<br />

higher resoluti<strong>on</strong>, which may c<strong>on</strong>tain additi<strong>on</strong>al informati<strong>on</strong>.<br />

An advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> compared with TLC is its n<strong>on</strong>-destructive<br />

applicati<strong>on</strong> to documents. Furthermore, for TLC we need to extract<br />

the <str<strong>on</strong>g>ink</str<strong>on</strong>g> from the <strong>paper</strong>, which is not always possible. Figures 10 and 11 show<br />

SERRS 1 spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, which are easily to distinguish.<br />

1042<br />

963<br />

884<br />

803<br />

Raman Shift Wavenumbers<br />

Fig. 5. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 1 (blue) and 2 (magenta), LabRam Infinity,<br />

ex- 633 nm, SERRS 1.<br />

1998<br />

1923<br />

1848<br />

1771<br />

1694<br />

1616<br />

1537<br />

1458<br />

1377<br />

1295<br />

Blue Ball Point 3<br />

Blue Ball Point 4<br />

1213<br />

1130<br />

1045<br />

960<br />

874<br />

787<br />

721<br />

Raman Shift Wavenumbers<br />

Fig. 6. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3 (magenta), and 4 (blue), LabRam Infinity,<br />

ex- 633 nm, SERRS 1.<br />

699<br />

639<br />

556<br />

609<br />

472<br />

519<br />

387<br />

428<br />

301<br />

335<br />

214<br />

242<br />

126<br />

147


340 T. Andermann<br />

1998<br />

1923<br />

1848<br />

1771<br />

1694<br />

1616<br />

1537<br />

1458<br />

Blue Ball Point 3<br />

Blue Ball Point 1<br />

1377<br />

1295<br />

1213<br />

1130<br />

1045<br />

960<br />

874<br />

787<br />

Raman Shift Wavenumbers<br />

Fig. 7. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 1 (blue) and 3 (magenta), LabRam Infinity,<br />

ex- 633 nm, SERRS 1.<br />

699<br />

609<br />

Blue Ball Point 1<br />

FORAM 685 (SERRS1)<br />

LabRam Infinity (SERRS1)<br />

Fig. 8. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g> 1, FORAM 685 (magenta) and LabRam<br />

Infinity (blue), SERRS 1.<br />

519<br />

428<br />

335<br />

242<br />

147


Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ink</str<strong>on</strong>g> <strong>on</strong> <strong>paper</strong> 341<br />

Blue Ball Point 3<br />

FORAM 685 (SERRS1)<br />

LabRam Infinity (SERRS1)<br />

Fig. 9. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>s 3, FORAM 685 (magenta) and LabRam<br />

Infinity (blue), SERRS 1.<br />

2000<br />

1946<br />

1892<br />

Pentel Hybrid Roller<br />

Standard B'Gel<br />

Pilot G-1 100<br />

1838<br />

1784<br />

1730<br />

1676<br />

1622<br />

1568<br />

1514<br />

1460<br />

1406<br />

1352<br />

1298<br />

1244<br />

1190<br />

1136<br />

1082<br />

1028<br />

Raman Shift Wavenumbers<br />

974<br />

920<br />

866<br />

812<br />

758<br />

704<br />

Fig. 10. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, Pentel Hybrid Roller (magenta), Standard<br />

B’Gel (red), Pilot G-1 100 (blue), FORAM 685, SERRS 1.<br />

650<br />

596<br />

542


342 T. Andermann<br />

1998<br />

1923<br />

1848<br />

1771<br />

1694<br />

1616<br />

1537<br />

1458<br />

1377<br />

1295<br />

1213<br />

1130<br />

The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> testing several sample preparati<strong>on</strong> techniques is<br />

shown by comparing figures 12 and 13. Only after applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SERRS 2<br />

the black Pilot G-1 100 gel pen shows Raman signals. The same results are<br />

obtained with the LabRam Infinity (Figure 14).<br />

1045<br />

Pentel Hybrid Roller<br />

Pilot G-1 100<br />

960<br />

874<br />

787<br />

Raman Shift Wavenumbers<br />

Fig. 11. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, Pentel Hybrid Roller (magenta), Pilot<br />

G-1 100 (blue), LabRam Infinity, SERRS 1.<br />

2000<br />

1946<br />

Zebra J-Roller Medium<br />

Pilot G-1 100<br />

Standard B'Gel<br />

1892<br />

1838<br />

1784<br />

1730<br />

1676<br />

1622<br />

1568<br />

1514<br />

1460<br />

1406<br />

1352<br />

1298<br />

1244<br />

1190<br />

1136<br />

1082<br />

1028<br />

974<br />

Raman Shift Wavenumbers<br />

699<br />

920<br />

866<br />

609<br />

519<br />

812<br />

758<br />

428<br />

335<br />

704<br />

650<br />

242<br />

596<br />

542<br />

Fig. 12. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> black gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, Zebra J-Roller Medium (blue), Standard<br />

B’Gel (red), Pilot G-1 100 (magenta), FORAM 685, SERRS 1.<br />

147


Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ink</str<strong>on</strong>g> <strong>on</strong> <strong>paper</strong> 343<br />

2000<br />

1958<br />

Zebra J-Roller Medium<br />

Pilot G-1 100<br />

Standard B'Gel<br />

1916<br />

1874<br />

1832<br />

1790<br />

1748<br />

1706<br />

1664<br />

1622<br />

1580<br />

1538<br />

1496<br />

1454<br />

1412<br />

1370<br />

1328<br />

1286<br />

1244<br />

1202<br />

1160<br />

1118<br />

1076<br />

1034<br />

992<br />

950<br />

908<br />

866<br />

824<br />

782<br />

740<br />

698<br />

656<br />

614<br />

572<br />

530<br />

Fig. 13. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> black gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, Zebra J-Roller Medium (blue), Standard<br />

B’Gel (red), Pilot G-1 100 (magenta), FORAM 685, SERRS 2.<br />

1800<br />

1760<br />

1720<br />

1680<br />

1639<br />

1599<br />

1558<br />

1517<br />

1475<br />

1434<br />

1392<br />

1350<br />

1308<br />

1265<br />

Pilot G-1 100 633nm SERRS2<br />

Pilot G-1 100 633nm SERRS1<br />

1222<br />

1179<br />

1136<br />

1092<br />

1049<br />

1004<br />

960<br />

916<br />

Fig. 14. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> black gel pen <str<strong>on</strong>g>ink</str<strong>on</strong>g> Pilot G-1 100, SERRS 1 (blue), SERRS 2<br />

(magenta), LabRam Infinity, ex- 633 nm.<br />

871<br />

826<br />

780<br />

735<br />

689<br />

642<br />

596<br />

549<br />

502<br />

455<br />

407<br />

359<br />

311<br />

263<br />

214<br />

165<br />

116<br />

66


344 T. Andermann<br />

CONCLUSIONS<br />

Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ink</str<strong>on</strong>g>s <strong>on</strong> <strong>paper</strong> is a virtually n<strong>on</strong>-destructive technique<br />

and gives additi<strong>on</strong>al informati<strong>on</strong> to “standard” methods. It should not<br />

be used as a single technique for <str<strong>on</strong>g>ink</str<strong>on</strong>g> examinati<strong>on</strong> al<strong>on</strong>e, which may lead to<br />

false c<strong>on</strong>clusi<strong>on</strong>s. Figure 15 shows two very similar spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> a blue and<br />

a black ball point <str<strong>on</strong>g>ink</str<strong>on</strong>g>.<br />

Blue and Black Ball<br />

Point Pen Ink.<br />

2000<br />

1958<br />

1916<br />

1874<br />

1832<br />

1790<br />

1748<br />

1706<br />

1664<br />

1622<br />

1580<br />

1538<br />

1496<br />

1454<br />

1412<br />

1370<br />

1328<br />

1286<br />

1244<br />

1202<br />

1160<br />

1118<br />

1076<br />

1034<br />

992<br />

950<br />

908<br />

866<br />

824<br />

782<br />

740<br />

698<br />

656<br />

614<br />

572<br />

530<br />

Fig. 15. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> blue (blue) and black (black) ball point pen <str<strong>on</strong>g>ink</str<strong>on</strong>g>s, FORAM<br />

685, SERRS 1.<br />

It has been shown that different sample preparati<strong>on</strong> techniques and excitati<strong>on</strong><br />

wavelengths lead to different results, which may all c<strong>on</strong>tain valuable<br />

informati<strong>on</strong>. Therefore we currently cannot recommend a certain sample<br />

preparati<strong>on</strong> technique or excitati<strong>on</strong> wavelength but to collect and evaluate<br />

all the informati<strong>on</strong> taken from different techniques. Further research work<br />

is needed <strong>on</strong> Raman <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <str<strong>on</strong>g>ink</str<strong>on</strong>g> dyes to see in which way their<br />

signals appear in <str<strong>on</strong>g>ink</str<strong>on</strong>g> spectra. Libraries <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes and <str<strong>on</strong>g>ink</str<strong>on</strong>g>s should be helpful in<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain <str<strong>on</strong>g>ink</str<strong>on</strong>g> formulati<strong>on</strong>s.<br />

Acknowledgements:<br />

The author wishes to express his gratitude to Foster & Freeman and Dilor GmbH for<br />

giving us their spectrometers for this work. I would like to thank Emma Wagner and<br />

Norbert Jaufmann for examining all the <str<strong>on</strong>g>ink</str<strong>on</strong>g>s with the FORAM 685 and for the evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resulted spectra. Carolin Schumann, Dr. Ursula Hendriks and Dr. Jochen<br />

Geyer-Lippmann from the Polizeitechnische Untersuchungsstelle <str<strong>on</strong>g>of</str<strong>on</strong>g> the Landeskriminalamt<br />

Berlin did the same work with the LabRam Infinity.<br />

References:<br />

1. W h i t e P. C., SERRS <str<strong>on</strong>g>spectroscopy</str<strong>on</strong>g> – a new technique for forensic science?, Science<br />

& Justice 2000, vol. 40, pp. 113–119.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!