25.10.2013 Views

Renewable Energy Sources in Figures - Nordic Folkecenter for ...

Renewable Energy Sources in Figures - Nordic Folkecenter for ...

Renewable Energy Sources in Figures - Nordic Folkecenter for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> <strong>in</strong> <strong>Figures</strong><br />

National and International Development


IMPRINT<br />

IMPRINT<br />

Published by: Federal M<strong>in</strong>istry <strong>for</strong> the Environment, Nature Conservation and Nuclear Safety (BMU)<br />

Public Relations Division · 11055 Berl<strong>in</strong><br />

Email: service@bmu.bund.de · Website: www.bmu.de/english · www.erneuerbare-energien.de<br />

Editors: Dipl.-Ing. (FH) Dieter Böhme, Dr. Wolfhart Dürrschmidt, Dr. Michael van Mark<br />

BMU, Division KI III 1<br />

(General and Fundamental Aspects of <strong>Renewable</strong> Energies)<br />

Expert contributors: Dr. Frank Musiol, Dipl.-Ing. Thomas Nieder, Dipl.-Ing. (FH) Marion Ottmüller, Dipl.-Kffr. Ulrike Zimmer<br />

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW; Centre <strong>for</strong> solar energy<br />

and hydrogen research), Stuttgart<br />

Dipl.-Forstwirt Michael Memmler, Dipl.-Biol. Elke Mohrbach,<br />

Dipl.-Biol. Sarah Moritz, Dipl.-Ing./Lic. rer. reg. Sven Schneider<br />

Federal Environment Agency (UBA), Section I 2.5<br />

Design: design idee, büro für gestaltung, Erfurt<br />

Pr<strong>in</strong>t<strong>in</strong>g: Silber Druck oHG Niestetal<br />

Photos: Cover: Dom<strong>in</strong>ique Delf<strong>in</strong>o/Biosphoto<br />

P. 4 (top): sbonky/Fotolia.com<br />

P. 4 (button): Matthias Lüdecke/BMU<br />

P. 6: sbonky/Fotolia.com<br />

P. 21: Verband der Deutschen Biokraftstoff<strong>in</strong>dustrie e.V.<br />

P. 28: Mar<strong>in</strong>a Lohrbach/Fotolia.com<br />

P. 33: camera-me.com/Fotolia.com<br />

P. 53 (top): Deutsches Zentrum für Luft- und Raumfahrt (DLR)<br />

P. 53 (button): Jörg Böthl<strong>in</strong>g/agenda<br />

P. 57: Jörg Böthl<strong>in</strong>g/agenda<br />

P. 59: IRENA/BMU<br />

P. 60: Imgo Kuzia/<strong>in</strong>tro<br />

P. 62: Jörg Lantelme<br />

P. 67: reises/Fotolia.com<br />

P. 68: Willi Wilhelm/Fotolia.com<br />

P. 69: Volker Z/Fotolia.com<br />

Date: June 2010<br />

1st edition: 5,000 copies<br />

2 <strong>Renewable</strong> energy sources <strong>in</strong> figures


CONTENTS<br />

PART I:<br />

<strong>Renewable</strong> energy sources <strong>in</strong> Germany:<br />

Guarantees <strong>for</strong> climate protection, supply security and economic stability 8<br />

<strong>Renewable</strong> energies <strong>in</strong> Germany: The most important facts <strong>in</strong> 2009 at a glance 9<br />

Contribution of renewable energies to the energy supply and relevant avoided CO 2 emissions <strong>in</strong> Germany, 2009 10<br />

<strong>Renewable</strong> energies‘ shares of energy supply <strong>in</strong> Germany, 1998 to 2009 11<br />

F<strong>in</strong>al energy consumption <strong>in</strong> Germany, 2009 – shares met by renewable energies 12<br />

Structure of the renewables-based f<strong>in</strong>al energy supply <strong>in</strong> Germany, 2009 13<br />

Development of renewables-based energy production <strong>in</strong> Germany, 1990 to 2009 14<br />

Emissions avoided through use of renewable energies <strong>in</strong> Germany, 2009 18<br />

Development of energy-related emissions <strong>in</strong> Germany, 1990 to 2008 22<br />

<strong>Energy</strong>-related emissions <strong>in</strong> Germany, by source groups, 2008 23<br />

Fossil fuels and energy imports saved via the use of renewable energies <strong>in</strong> Germany, 2009 24<br />

Gross value added achieved with renewable energies <strong>in</strong> Germany, 2009 25<br />

Employment <strong>in</strong> Germany‘s renewable energies sector 27<br />

Support under the EEG and cost apportionment to electricity prices 28<br />

Feed-<strong>in</strong> and fees under the Act on the Sale of Electricity to the Grid (StrEG)<br />

and the <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act (EEG) s<strong>in</strong>ce 1991 30<br />

Expand<strong>in</strong>g use of renewable energies <strong>in</strong> the heat sector: legislation, promotion and impacts 31<br />

How society benefits from use of renewable energies 33<br />

Research and development <strong>for</strong> renewable energy technologies 35<br />

Overview of the economic impacts of expansion of renewable energies 36<br />

Long-term, susta<strong>in</strong>able utilisation potential of renewable energies <strong>for</strong> electricity, heat and fuel production <strong>in</strong> Germany 38<br />

Part II:<br />

<strong>Renewable</strong> energies <strong>in</strong> the European Union 39<br />

Effects of EU Directive 2009/28/EC on renewable energy statistics 40<br />

Use of renewable energies <strong>in</strong> the EU 43<br />

Expansion of renewables-based electricity generation <strong>in</strong> the European <strong>in</strong>ternal electricity market 44<br />

<strong>Renewable</strong>s-based electricity supply <strong>in</strong> the EU 45<br />

W<strong>in</strong>d energy use <strong>in</strong> the EU 47<br />

<strong>Renewable</strong>s-based heat supply <strong>in</strong> the EU 49<br />

<strong>Renewable</strong>s-based fuels <strong>in</strong> the EU 50<br />

Socio-economic aspects of renewable energies <strong>in</strong> selected EU countries, 2008 51<br />

Instruments <strong>for</strong> the promotion of renewable energy sources <strong>in</strong> the EU electricity market 52<br />

Part III:<br />

Global use of renewable energy sources 53<br />

Global energy supply from renewable energies 55<br />

Regional use of renewable energies <strong>in</strong> 2007 – around the globe 57<br />

Global electricity generation from renewable energies 58<br />

International <strong>Renewable</strong> <strong>Energy</strong> Agency 59<br />

International Conference <strong>for</strong> <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> – renewables2004 – and its follow-up process 60<br />

Annex: Methodological notes 61<br />

Conversion factors 69<br />

List of abbreviations 70<br />

List of sources 71<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

3


FOREWORD<br />

4 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Dear Readers,<br />

<strong>Renewable</strong> energies have been play<strong>in</strong>g<br />

a more and more important<br />

role <strong>in</strong> Germany‘s energy supply.<br />

Already, they are help<strong>in</strong>g to significantly<br />

reduce our greenhouse gas<br />

emissions, drive job growth and<br />

strengthen our economy. And they<br />

are a sh<strong>in</strong><strong>in</strong>g example of the benefits<br />

of us<strong>in</strong>g and transferr<strong>in</strong>g <strong>in</strong>novative<br />

technologies. With this trend,<br />

Germany is <strong>in</strong> an excellent position<br />

to meet the challenges of the 21st<br />

century, <strong>in</strong> which climate protection,<br />

backed by a susta<strong>in</strong>able energy<br />

supply, will be of central importance.<br />

In the long term, we will need to<br />

drastically reduce our energy consumption<br />

and base our energy supply<br />

on CO 2 -free energy sources.<br />

Along with enhanc<strong>in</strong>g energy efficiency,<br />

there<strong>for</strong>e, the best way to<br />

achieve an energy sector that is susta<strong>in</strong>able,<br />

conserves resources and<br />

does not depend on expensive, unreliable<br />

energy imports is to cont<strong>in</strong>ue<br />

expand<strong>in</strong>g the use of electricity,<br />

heat and fuels from renewable<br />

energy resources.<br />

In 2009, renewable energies proved<br />

their economic stability <strong>in</strong> the face


of a global economic crisis. With<br />

a renewable energies sector that<br />

meets slightly more than 10 percent<br />

of its total f<strong>in</strong>al energy demand,<br />

Germany is well placed to meet the<br />

European Commission‘s targets <strong>for</strong><br />

further expansion of renewable energies<br />

by 2020.<br />

In the electricity sector renewable<br />

energies‘ share of total consumption<br />

reached 16.1 percent <strong>in</strong> 2009,<br />

while their share of total heat consumption<br />

climbed to 8.8 percent.<br />

The clear task now is to build on this<br />

success. With the <strong>Renewable</strong> <strong>Energy</strong><br />

<strong>Sources</strong> Act and the Act on the<br />

Promotion of <strong>Renewable</strong> Energies<br />

<strong>in</strong> the Heat Sector, the German Government<br />

has provided the necessary<br />

framework <strong>for</strong> cont<strong>in</strong>ued progress.<br />

This framework will be optimised on<br />

the basis of progress reports to be<br />

submitted soon.<br />

This brochure presents <strong>in</strong><strong>for</strong>mation<br />

on the development of renewable<br />

energies <strong>in</strong> Germany and the<br />

use of such energies <strong>in</strong> Europe and<br />

throughout the world.<br />

The figures clearly show that <strong>in</strong>vestments<br />

<strong>in</strong> renewable energies have<br />

paid off. The energy concept that<br />

the German Government plans to<br />

present at the end of this year will<br />

be oriented to their further growth.<br />

Dr. Norbert Röttgen<br />

Federal M<strong>in</strong>ister <strong>for</strong> the<br />

Environment, Nature Conservation<br />

and Nuclear Safety<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

5


6 <strong>Renewable</strong> energy sources <strong>in</strong> figures


WoRkINg gRouP oN RENEWablE ENERgIES –<br />

STaTISTIcS (agEE-STaT)<br />

In collaboration with the Federal<br />

M<strong>in</strong>istry of Economics and Technology<br />

and the Federal M<strong>in</strong>istry of Food,<br />

Agriculture and Consumer<br />

Protection, the Federal M<strong>in</strong>istry <strong>for</strong><br />

the Environment, Nature Conservation<br />

and Nuclear Safety established<br />

the Work<strong>in</strong>g Group on <strong>Renewable</strong><br />

Energies – Statistics (AGEE-Stat) to<br />

ensure that all statistics and data<br />

relat<strong>in</strong>g to renewable energies are<br />

part of a comprehensive, up-to-date<br />

and coord<strong>in</strong>ated system. The results<br />

of AGEE-Stat’s work have been <strong>in</strong>corporated<br />

<strong>in</strong>to this brochure.<br />

AGEE-Stat, an <strong>in</strong>dependent specialist<br />

body, began operat<strong>in</strong>g <strong>in</strong> February<br />

2004. Its members <strong>in</strong>clude experts<br />

from<br />

ó the Federal M<strong>in</strong>istry <strong>for</strong> the Environment,<br />

Nature Conservation<br />

and Nuclear Safety (BMU)<br />

ó the Federal M<strong>in</strong>istry of Economics<br />

and Technology (BMWi)<br />

ó the Federal M<strong>in</strong>istry of Food,<br />

Agriculture and Consumer Protection<br />

(BMELV)<br />

ó the Federal Environment Agency<br />

(UBA)<br />

ó the Federal Statistical Office<br />

(StBA)<br />

ó Fachagentur Nachwachsende<br />

Rohstoffe e.V. (Agency <strong>for</strong> <strong>Renewable</strong><br />

Resources; FNR)<br />

ó Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

(Work<strong>in</strong>g Group on<br />

<strong>Energy</strong> Balances; AGEB)<br />

WORKING GROUP ON RENEWABLE ENERGIES – STATISTICS (AGEE-STAT)<br />

ó Zentrum für Sonnenenergie- und<br />

Wasserstoff-Forschung Baden-<br />

Württemberg (Baden-Württemberg<br />

centre <strong>for</strong> solar-energy and<br />

hydrogen research; ZSW).<br />

In early 2010, Dr. Frank Musiol<br />

(Zentrum für Sonnenenergie- und<br />

Wasserstoff-Forschung Baden-Württemberg)<br />

was appo<strong>in</strong>ted head of<br />

the Work<strong>in</strong>g Group on <strong>Renewable</strong><br />

Energies – Statistics, tak<strong>in</strong>g over<br />

from Dr. Frithjof Staiß, who had held<br />

the position from 2004 to 2009.<br />

AGEE-Stat’s activities focus primarily<br />

on renewable energy statistics.<br />

In addition, the body has also been<br />

charged with<br />

ó creat<strong>in</strong>g a basis <strong>for</strong> meet<strong>in</strong>g the<br />

German government’s various<br />

national, EU-wide and <strong>in</strong>ternational<br />

report<strong>in</strong>g obligations <strong>in</strong> the<br />

field of renewable energies, and<br />

ó carry<strong>in</strong>g out general <strong>in</strong><strong>for</strong>mation<br />

and public relations work on renewable<br />

energy data and development.<br />

AGEE-Stat is also <strong>in</strong>volved <strong>in</strong> a range<br />

of research projects with a view to<br />

improv<strong>in</strong>g the relevant database and<br />

scientific calculation methods. It enhances<br />

its work through workshops<br />

and consultations on selected topics.<br />

Further <strong>in</strong><strong>for</strong>mation on AGEE-Stat<br />

and on renewable energies may be<br />

found on the BMU Website:<br />

www.erneuerbare-energien.de.<br />

Updated <strong>in</strong><strong>for</strong>mation on the development and environmental impacts of<br />

renewable energies <strong>in</strong> Germany can be found on the BMU renewable energies<br />

website at www.erneuerbare-energien.de, under the head<strong>in</strong>g “data service”.<br />

Some data published <strong>in</strong> this brochure are provisional and reflect the status at<br />

the time of go<strong>in</strong>g to pr<strong>in</strong>t <strong>in</strong> June 2010.<br />

The BMU renewable energies website also conta<strong>in</strong>s graphs and tables with<br />

the latest data and other <strong>in</strong><strong>for</strong>mation on renewable energies.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

7


RENEWABLE ENERGIES IN GERMANY<br />

PaRT I:<br />

RENEWablE ENERgy SouRcES IN gERMaNy:<br />

guaRaNTES FoR clIMaTE PRoTEcTIoN, SuPPly SEcuRITy<br />

aND EcoNoMIc STabIlITy<br />

Convert<strong>in</strong>g our energy systems to<br />

susta<strong>in</strong>able energy sources, their<br />

efficient management and an economical<br />

use of energy – those are<br />

among the central challenges of the<br />

21st century. In many regions of the<br />

world, energy demand is climb<strong>in</strong>g<br />

rapidly as a result of catch-up <strong>in</strong>dustrialisation.<br />

At the same time, <strong>in</strong>dustrialised<br />

countries have an obligation<br />

to drastically lower their<br />

resource consumption and their energy-related<br />

greenhouse gas emissions.<br />

Only with such reductions will<br />

we still be able to prevent the worst<br />

impacts of climate change and reduce<br />

resource dependencies.<br />

While pursu<strong>in</strong>g an important strategy<br />

of us<strong>in</strong>g energy resources carefully<br />

and convert<strong>in</strong>g them efficiently,<br />

the German Government is also<br />

firmly committed to the use of renewable<br />

energy sources. In recent<br />

years, renewable energies have rapidly<br />

ga<strong>in</strong>ed importance – particularly<br />

<strong>in</strong> the electricity market, but also<br />

<strong>in</strong> the heat<strong>in</strong>g and transport sectors.<br />

Account<strong>in</strong>g <strong>for</strong> a share of over 16 %<br />

of the German electricity supply <strong>in</strong><br />

2009, they have become an <strong>in</strong>dispensable<br />

pillar of the country’s energy<br />

sector.<br />

<strong>Renewable</strong> energies contribute to<br />

a susta<strong>in</strong>able energy supply <strong>in</strong> a<br />

number of ways:<br />

ó They make a key contribution to<br />

climate protection, <strong>for</strong> example<br />

by replac<strong>in</strong>g fossil fuels. In 2009,<br />

such replacement prevented emissions<br />

of some 107 million tonnes<br />

of CO 2 (about 108 million t CO 2<br />

equivalents).<br />

8 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

ó They <strong>in</strong>crease resource diversity<br />

and reduce dependence on fossil<br />

fuels and on imports of fossil<br />

fuels. They thus enhance supply<br />

security and help prevent resource-related<br />

conflicts.<br />

ó <strong>Renewable</strong>s also protect us<br />

aga<strong>in</strong>st <strong>in</strong>calculable <strong>in</strong>creases <strong>in</strong><br />

the cost of energy imports which<br />

are <strong>in</strong>evitable <strong>for</strong> fossil and nuclear<br />

resources <strong>in</strong> the medium and<br />

long term, and already apparent<br />

<strong>in</strong> the case of oil.<br />

ó At the end of their useful life,<br />

facilities <strong>for</strong> the use of renewable<br />

energy sources are easily dismantled<br />

and recycled. They leave<br />

beh<strong>in</strong>d no long-term pollution or<br />

damage such as radioactive waste<br />

or coal-m<strong>in</strong><strong>in</strong>g pits.<br />

ó In most cases, renewable energies<br />

are locally available energy resources<br />

whose use contribute to<br />

domestic value added and jobs.<br />

In 2009, <strong>in</strong>vestments totall<strong>in</strong>g<br />

20 billion euros were made <strong>in</strong><br />

Germany’s renewable energies<br />

sector, and operation of renewable<br />

energy facilities generated<br />

about 16 billion euros of value<br />

added. With domestic revenue<br />

totall<strong>in</strong>g about 36 billion euros<br />

the sector was able to rema<strong>in</strong><br />

clear of the economic crisis. Its<br />

work<strong>for</strong>ce <strong>in</strong> 2009 amounted to<br />

over 300,000 people.<br />

Status and perspectives<br />

The expansion of renewable energy<br />

sources <strong>in</strong> Germany has been an exemplary<br />

success. S<strong>in</strong>ce 2000, renewable<br />

energies’ contribution to f<strong>in</strong>al<br />

energy supply has <strong>in</strong>creased 2.5-fold<br />

to a level of 10.3 %. In the electricity<br />

sector, the German Government had<br />

orig<strong>in</strong>ally aimed to achieve a 12.5 %<br />

renewables’ share of gross electricity<br />

demand by 2010. This target was<br />

already surpassed, considerably, by<br />

2007. In 2009, a share of over 16 %<br />

had been reached.<br />

The most important factor <strong>in</strong> the<br />

successful expansion of renewable<br />

energies <strong>in</strong> the electricity sector is<br />

the <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act<br />

(EEG). In its most recent version,<br />

which entered <strong>in</strong>to <strong>for</strong>ce on 1 January<br />

2009, the Act outl<strong>in</strong>es a path <strong>for</strong><br />

further expansion: renewable energies<br />

are to account <strong>for</strong> at least 30 %<br />

of electricity provision by 2020.<br />

On 1 January 2009, the Act on the<br />

Promotion of <strong>Renewable</strong> Energies<br />

<strong>in</strong> the Heat Sector (EEWärmeG) also<br />

entered <strong>in</strong>to <strong>for</strong>ce. This specifies<br />

that the renewable energies’ share<br />

of heat supply is to grow to 14 % by<br />

2020. In addition, under a “Biomass<br />

Action Plan”, by 2020 the biofuels’<br />

share of fuel use is to be <strong>in</strong>creased<br />

to a level that yields a greenhouse<br />

gas emissions reduction of 7 %. This<br />

corresponds to an energy share of<br />

about 12 %.<br />

The a<strong>for</strong>ementioned targets are significant<br />

especially <strong>in</strong> the context of<br />

the EU Directive on the promotion<br />

of the use of energy from renewable<br />

sources (2009/28/EC). This directive<br />

calls <strong>for</strong> renewable energies to meet<br />

20 % of gross f<strong>in</strong>al energy consumption<br />

<strong>in</strong> the European Union by 2020.<br />

The correspond<strong>in</strong>g target <strong>for</strong> Germany<br />

is 18 %.<br />

The figures presented on the follow<strong>in</strong>g<br />

pages, cover<strong>in</strong>g the sector’s actual<br />

status <strong>for</strong> the year 2009, show that<br />

Germany is well on its way to reach<strong>in</strong>g<br />

that target.


RENEWablE ENERgIES IN gERMaNy:<br />

ThE MoST IMPoRTaNT FacTS IN 2009 aT a glaNcE<br />

use of renewable energy<br />

sources has achieved the<br />

follow<strong>in</strong>g <strong>in</strong> germany:<br />

ó <strong>Renewable</strong> energies now account<br />

<strong>for</strong> 10.3 % of total energy consumption<br />

(2008: 9.3 %)<br />

ó <strong>Renewable</strong> energies now cover<br />

16.1 % of gross electricity consumption<br />

(2008: 15.2 %)<br />

ó <strong>Renewable</strong> energies now cover<br />

8.8 % of f<strong>in</strong>al heat consumption<br />

(2008: 7.4 %)<br />

ó <strong>Renewable</strong> energies now meet<br />

5.5 % of fuel demand (2008: 5.9 %)<br />

ó Investments <strong>in</strong> 2009: 20.0 billion<br />

euros (2008: 15.3 billion euros)<br />

ó Value added through the operation<br />

of renewable energy <strong>in</strong>stallations:<br />

16 billion euros (2008:<br />

15.3 billion euros)<br />

ó Overall, use of renewable energies<br />

prevented a total of about<br />

108 million tonnes of greenhouse<br />

gas emissions<br />

2009<br />

2008<br />

2006<br />

2004<br />

2002<br />

2000<br />

1998<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

3.2<br />

Share of<br />

total FEC<br />

The economic crisis reduced<br />

energy consumption and <strong>in</strong>creased<br />

renewable energies’<br />

shares of supply<br />

As a result of the economic crisis,<br />

energy consumption <strong>in</strong> Germany<br />

decreased by around 6 % last year.<br />

However, renewable energies were<br />

able to rema<strong>in</strong> clear of the crisis,<br />

with the result that their share of<br />

the country’s electricity and heat<br />

supply <strong>in</strong>creased markedly.<br />

W<strong>in</strong>d energy reta<strong>in</strong>s the lead,<br />

<strong>in</strong> spite of poor w<strong>in</strong>d conditions<br />

With a gross capacity <strong>in</strong>crease of<br />

1,917 MW, markedly up from<br />

2008 (2008: 1,667 MW), a total of<br />

25,777 MW of w<strong>in</strong>d generation capacity<br />

were <strong>in</strong> place at the end of<br />

2009. Electricity generation from<br />

w<strong>in</strong>d, at 37.8 TWh, rema<strong>in</strong>ed noticeably<br />

below capacity, however, because<br />

2009 had unusually light w<strong>in</strong>d<br />

conditions.<br />

biogas on the upsw<strong>in</strong>g<br />

As a result of the significant <strong>in</strong>crease<br />

<strong>in</strong> the construction of biogas <strong>in</strong>stallations,<br />

a total of 23.6 TWh of elec-<br />

AT A GLANCE<br />

tricity were generated <strong>in</strong> 2009<br />

from solid, liquid and gaseous biomass<br />

(<strong>in</strong>clud<strong>in</strong>g production from<br />

biogenic waste landfill and sewage<br />

gas, 30.5 TWh). In addition, some<br />

3.5 million tonnes of biofuels were<br />

consumed, and the total number of<br />

pellet-fired heat<strong>in</strong>g systems climbed<br />

to 125,000 [110].<br />

World-lead<strong>in</strong>g expansion <strong>in</strong><br />

photovoltaic systems<br />

With added capacity of about<br />

3,800 MW, Germany was aga<strong>in</strong> the<br />

world’s “photovoltaic champion”.<br />

A total of 6.2 TWh of electricity was<br />

generated with PV systems, putt<strong>in</strong>g<br />

the photovoltaic share of total energy<br />

generation above 1 % <strong>for</strong> the first<br />

time. Addition of solar thermal collector<br />

area, at about 1.6 million m 2 ,<br />

rema<strong>in</strong>ed at a high level. All <strong>in</strong> all,<br />

nearly 13 million m 2 of such collector<br />

area were <strong>in</strong> place at the end of 2009.<br />

Investments at record levels<br />

With record total <strong>in</strong>vestments of<br />

20.0 billion euros <strong>in</strong> construction<br />

of new systems, renewable energies<br />

grew aga<strong>in</strong>st the general downward<br />

trend of the economic crisis.<br />

<strong>Renewable</strong> energies‘ shares of the energy supply <strong>in</strong> germany<br />

10.3<br />

4.7<br />

16.1<br />

Share of<br />

gross electricity<br />

consumption<br />

3.6<br />

Share of<br />

FEC <strong>for</strong> heat<br />

8.8<br />

0.2<br />

[<strong>Figures</strong> <strong>in</strong> %]<br />

5.5<br />

Share of<br />

fuel consumption<br />

2.6<br />

Share of PEC<br />

8.9<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and<br />

other sources, cf. the follow<strong>in</strong>g tables<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

9


ENERGY SUPPLY<br />

coNTRIbuTIoN oF RENEWablE ENERgIES To ThE ENERgy SuPPly<br />

aND RElEvaNT avoIDED co 2 EMISSIoNS IN gERMaNy, 2009<br />

Electricity generation<br />

heat generation<br />

Fuel<br />

10 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

F<strong>in</strong>al<br />

energy<br />

2009<br />

Share of<br />

f<strong>in</strong>al energy<br />

consumption<br />

avoided<br />

co 2 emissions<br />

F<strong>in</strong>al energy 2008<br />

[gWh] [%] [1,000 t] [gWh]<br />

Hydropower 1) 19,000<br />

3.3 15,475 20,446<br />

W<strong>in</strong>d energy 37,809 6.5 27,001 40,574<br />

on land 37,773 6.5 – –<br />

at sea (offshore) 37 0.006 – –<br />

Photovoltaics 6,200 1.1 3,296 4,420<br />

Biogenic solid fuels 12,100 2.1 9,436 11,328<br />

Biogenic liquid fuels 1,450 0.2 880 1,443<br />

Biogas 10,000 1.7 6,283 8,139<br />

Sewage gas 1,025 0.2 747 1,021<br />

Landfill gas 940 0.2 685 941<br />

Biogenic fraction of waste 2) 5,000 0.9 3,931 4,940<br />

Geothermal energy 19 0.003 10 18<br />

Total 93,543 16.1 67,745 93,269<br />

Biogenic solid fuels (households) 3) 58,000<br />

Share of electrictiy consumption 9)<br />

Share of FEc <strong>for</strong> heat 10)<br />

4.4 17,199 56,762<br />

Biogenic solid fuels (<strong>in</strong>dustry) 4) 13,900 1.1 3,808 13,901<br />

Biogenic solid fuels (CHP/HP) 5) 6,050 0.5 1,649 5,040<br />

Biogenic liquid fuels 6) 7,700 0.6 1,957 7,660<br />

Biogas 8,700 0.7 1,977 7,531<br />

Sewage gas 7) 1,100 0.1 316 1,143<br />

Landfill gas 400 0.03 115 422<br />

Biogenic fraction of waste 2) 9,400 0.7 2,614 5,020<br />

Solar thermal energy 4,725 0.4 1,032 4,131<br />

Deep geothermal energy 291 0.02 17 206<br />

Near-surface geothermal energy 8) 4,740 0.4 371 4,376<br />

Total 115,006 8.8 31,056 106,192<br />

Biodiesel 25,972<br />

Share of fuel<br />

consumption 11)<br />

4.2 5,893 27,806<br />

Vegetable oil 1,043 0.2 288 4,194<br />

Bioethanol 6,748 1.1 1,794 4,694<br />

Total 33,763 5.5 7,975 36,694<br />

Total 242,312 FEc 12) 10.3 106,776 236,155<br />

Note:<br />

<strong>Figures</strong> used throughout this brochure<br />

are provisional.<br />

Regard<strong>in</strong>g electricity generation from photovoltaic<br />

systems, and heat production with solar<br />

thermal systems, cf. Annex (1).<br />

Discrepancies <strong>in</strong> the total are the result of<br />

round<strong>in</strong>g-off<br />

1) For pumped-storage power stations, only<br />

electricity generation from natural <strong>in</strong>flow<br />

2) Biogenic fraction of waste <strong>in</strong> waste <strong>in</strong>c<strong>in</strong>eration<br />

systems assumed to be 50 %. The<br />

<strong>in</strong>crease <strong>in</strong> the heat sector, with respect to<br />

the previous year, is the result of first-time<br />

<strong>in</strong>clusion of newly available data. Such<br />

<strong>in</strong>clusion is a statistical adjustment that<br />

does not support any conclusions regard<strong>in</strong>g<br />

actual expansion of usage.<br />

3) Primarily wood<br />

4) Industry = m<strong>in</strong><strong>in</strong>g and quarry<strong>in</strong>g operations,<br />

and manufactur<strong>in</strong>g; Art. 8 Act on<br />

<strong>Energy</strong> Statistics (Energiestatistikgesetz)<br />

5) Pursuant to Arts. 3 and 5, Act on <strong>Energy</strong><br />

Statistics<br />

6) Heat production <strong>in</strong>cludes paper <strong>in</strong>dustry<br />

(spent sulphite liquor) and other <strong>in</strong>dustry<br />

7) Represents the value <strong>for</strong> direct use of sewage<br />

gas<br />

8) Includes air-to-water, water-to-water and<br />

br<strong>in</strong>e-to-water heat pumps<br />

9) Based on gross electricity consumption <strong>in</strong><br />

2009 of 582.5 TWh<br />

10) F<strong>in</strong>al energy consumption <strong>for</strong> space heat<strong>in</strong>g,<br />

water heat<strong>in</strong>g and other process heat <strong>in</strong><br />

2009, 1,310 TWh (4,710 PJ) (estimate of ZSW)<br />

11) Based on fuel consumption <strong>in</strong> 2009 of<br />

613 TWh<br />

12) Based on f<strong>in</strong>al energy consumption <strong>in</strong> 2009<br />

of 2,350 TWh (8,470 PJ) (estimate of ZSW)<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and<br />

other sources; cf. the follow<strong>in</strong>g tables


ENERGY SUPPLY<br />

RENEWablE ENERgIES’ ShaRES oF ENERgy SuPPly IN gERMaNy,<br />

1998 To 2009<br />

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

F<strong>in</strong>al energy consumption (FEc) [%]<br />

Electricity generation<br />

(based on total gross electricity consumption)<br />

Heat generation<br />

(based on total heat generation)<br />

Fuel consumption 1)<br />

(based on total fuel consumption)<br />

4.7 5.4 6.4 6.7 7.8 7.5 9.2 10.1 11.6 14.2 15.2 16.1<br />

3.6 3.8 3.9 4.2 4.3 5.1 5.5 6.0 6.2 7.4 7.4 8.8<br />

0.2 0.2 0.4 0.6 0.9 1.4 1.8 3.7 6.3 7.2 5.9 5.5<br />

<strong>Renewable</strong> energies’ share of total FEc 3.2 3.4 3.8 4.1 4.5 5.0 5.9 6.8 8.0 9.5 9.3 10.3<br />

Primary energy consumption (PEc) [%]<br />

<strong>Renewable</strong> energies’ share of total PEc 2) 2.6 2.8 2.9 2.9 3.2 3.8 4.5 5.3 6.3 7.9 8.1 8.9<br />

[%]<br />

1) For the period through 2002, the reference figure is fuel consumption <strong>in</strong> road transports; as of<br />

2003 it is total consumption of motor fuel, not <strong>in</strong>clud<strong>in</strong>g aircraft fuel<br />

2) Work<strong>in</strong>g Group on <strong>Energy</strong> Balances (AGEB) (as of March 2010). Calculated accord<strong>in</strong>g to physical<br />

energy content method.<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and of other sources; cf. pages 14 – 17<br />

Development of renewable energies’ shares of f<strong>in</strong>al energy consumption and of primary<br />

energy consumption <strong>in</strong> germany, s<strong>in</strong>ce 1998<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

3.2<br />

2.6<br />

3.4<br />

2.8<br />

3.8<br />

2.9<br />

4.1<br />

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

<strong>Renewable</strong> energies’ share of FEC<br />

<strong>Renewable</strong> energies’ share of PEC<br />

2.9<br />

4.5<br />

3.2<br />

5.0<br />

3.8<br />

5.9<br />

4.5<br />

6.8<br />

5.3<br />

8.0<br />

6.3<br />

9.5<br />

7.9<br />

9.3<br />

8.1<br />

10.3<br />

8.9<br />

<strong>Sources</strong>: cf. Table above<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

11


ENERGY SUPPLY<br />

FINal ENERgy coNSuMPTIoN IN gERMaNy, 2009<br />

– ShaRES MET by RENEWablE ENERgIES<br />

F<strong>in</strong>al energy supply from renewable<br />

energies: about 242 TWh (871 PJ)<br />

(10.3 % share of total f<strong>in</strong>al energy<br />

consumption)<br />

1) Estimate of ZSW<br />

2) Solid, liquid, gaseous biomass (biogas, sewage<br />

gas and landfill gas); biogenic fraction of<br />

waste; biogenic fuels<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat,<br />

ZSW [1]; pursuant to AGEB [4]<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Biofuels<br />

Biogenic fuels, electricity<br />

Solar thermal energy<br />

1)<br />

Biogenic fuels, heat 1)<br />

Geothermal energy<br />

Photovoltaics<br />

1) Biogenic solid fuels; biogenic liquid and<br />

gaseous fuels (biogas, sewage gas and landfill<br />

gas); biogenic fraction of waste; biofuels<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat<br />

and other sources; cf. pages 14 – 17<br />

[TWh]<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

12 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

<strong>Renewable</strong> energies‘ shares of<br />

total f<strong>in</strong>al energy consumption <strong>in</strong> germany, 2009<br />

Total: 8,470 PJ 1)<br />

RE share<br />

10.3 %<br />

89.7 %<br />

Non-renewable energy resources<br />

(hard coal, lignite, petroleum,<br />

natural gas and<br />

nuclear energy)<br />

15.6 %<br />

7.8 %<br />

2.6 %<br />

Structure of the renewables-based<br />

f<strong>in</strong>al energy supply <strong>in</strong> germany, 2009<br />

2.1 %<br />

13.9 % 12.6 %<br />

1.9 %<br />

Total: 242 TWh<br />

43.4 %<br />

Hydropower<br />

0.8 %<br />

W<strong>in</strong>d energy<br />

1.6 %<br />

Biomass 2)<br />

7.2 %<br />

Development of the renewables-based f<strong>in</strong>al energy supply <strong>in</strong> germany, by sectors<br />

Shares, 2009<br />

13.9 %<br />

47.5 %<br />

38.6 %<br />

Fuels<br />

Heat<br />

Electricity<br />

Other<br />

renewable energies<br />

0.7 %<br />

0<br />

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other sources; cf. pages 14 – 17


ENERGY SUPPLY<br />

STRucTuRE oF ThE RENEWablES-baSED FINal ENERgy SuPPly<br />

IN gERMaNy, 2009<br />

20.3 %<br />

Structure of the renewables-based<br />

electricity supply <strong>in</strong> germany, 2009<br />

5.3 %<br />

1.1 %<br />

1.0 %<br />

40.4 %<br />

10.7 %<br />

1.6 %<br />

12.9 %<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other sources; cf. table page 14<br />

Structure of the renewables-based<br />

heat supply <strong>in</strong> germany, 2009<br />

50.4 %<br />

4.1 %<br />

0.3 %<br />

4.1 %<br />

8.2 %<br />

8.9 %<br />

Structure of the renewables-based<br />

fuel supply <strong>in</strong> germany, 2009<br />

76.9 %<br />

20.0 %<br />

3.1 %<br />

6.6 %<br />

12.1 %<br />

5.3 %<br />

6.7 %<br />

Electricity supply from renewable energies:<br />

93.5 TWh<br />

(Share of total electricity consumption: 16.1 %)<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Photovoltaic power<br />

Biogenic solid fuels<br />

Biogenic liquid fuels<br />

Biogas<br />

Sewage gas<br />

Landfill gas<br />

Biogenic fraction of waste<br />

Geothermal electricity generation is not shown due<br />

to the small quantities <strong>in</strong>volved<br />

Heat production from renewable energies:<br />

115.0 TWh<br />

(Share of total heat consumption: 8.8 %)<br />

Biogenic solid fuels (households)<br />

Biogenic solid fuels (<strong>in</strong>dustry)<br />

Biogenic solid fuels (CHP/HP)<br />

Biogenic liquid fuels<br />

Biogenic gaseous fuels<br />

Biogenic fraction of waste<br />

Solar thermal systems<br />

Deep geothermal energy<br />

Near-surface geothermal energy<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other sources;<br />

cf. table page 16<br />

Biogenic fuels: 33.8 TWh<br />

(Share of total fuel<br />

consumption: 5.5%)<br />

Biodiesel<br />

Vegetable oil<br />

Bioethanol<br />

Biofuel quantities <strong>in</strong> 2009:<br />

Biodiesel: 2,517,000 tonnes,<br />

2,836 million litres;<br />

Vegetable oil: 100,000 tonnes,<br />

109 million litres;<br />

Bioethanol: 902,000 tonnes,<br />

1,153 million litres<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and of other sources;<br />

cf. table page 17<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

13


ELECTRICITY GENERATION<br />

DEvEloPMENT oF RENEWablES-baSED<br />

ENERgy PRoDucTIoN IN gERMaNy, 1990 To 2009<br />

Electricity generation (f<strong>in</strong>al energy) from renewable energies <strong>in</strong> germany s<strong>in</strong>ce 1990<br />

hydropower<br />

1)<br />

W<strong>in</strong>d<br />

energy<br />

14 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

biomass 2)<br />

biogenic<br />

fraction<br />

of waste 3)<br />

Photovoltaic<br />

power<br />

geoth. energy<br />

Total<br />

electricity<br />

generation<br />

Share of gross<br />

electricity<br />

consumption<br />

[gWh] [gWh] [gWh] [gWh] [gWh] [gWh] [gWh] [%]<br />

1990 15,580 71 222 1,213 1 0 17,087 3.1<br />

1991 15,402 100 259 1,211 2 0 16,973 3.1<br />

1992 18,091 275 297 1,262 3 0 19,928 3.7<br />

1993 18,526 600 433 1,203 6 0 20,768 3.9<br />

1994 19,501 909 570 1,306 8 0 22,294 4.2<br />

1995 20,747 1,500 665 1,348 11 0 24,271 4.5<br />

1996 18,340 2,032 759 1,343 16 0 22,490 4.1<br />

1997 18,453 2,966 879 1,397 26 0 23,721 4.3<br />

1998 18,452 4,489 1,642 1,618 32 0 26,233 4.7<br />

1999 20,686 5,528 1,847 1,740 42 0 29,843 5.4<br />

2000 24,867 7,550 2,893 1,844 64 0 37,217 6.4<br />

2001 23,241 10,509 3,348 1,859 76 0 39,033 6.7<br />

2002 23,662 15,786 4,089 1,949 162 0 45,647 7.8<br />

2003 17,722 18,713 6,085 2,161 313 0 44,993 7.5<br />

2004 19,910 25,509 7,960 2,117 556 0.2 56,052 9.2<br />

2005 19,576 27,229 10,979 3,047 1,282 0.2 62,112 10.1<br />

2006 20,042 30,710 14,840 3,675 2,220 0.4 71,487 11.6<br />

2007 21,249 39,713 19,430 4,130 3,075 0.4 87,597 14.2<br />

2008 20,446 40,574 22,872 4,940 4,420 17.6 93,269 15.2<br />

2009 19,000 37,809 25,515 5,000 6,200 18.6 93,543 16.1<br />

With regard to photovoltaic electricity generation,<br />

cf. Annex 1.<br />

Remark: In the period through 1999 (<strong>for</strong> sewage<br />

gas: through 1997), the figures on electricity<br />

generation from biomass <strong>in</strong>clude only<br />

electricity generation <strong>in</strong> power stations <strong>for</strong> the<br />

general public supply, as well as feed-<strong>in</strong> from<br />

private electricity generation; <strong>in</strong>dustry’s consumption<br />

of own electricity was not recorded.<br />

1) For pumped-storage power stations, only<br />

electricity generation from natural <strong>in</strong>flow<br />

2) Until 1998, only feed-<strong>in</strong> <strong>in</strong>to the general<br />

public grid. <strong>Figures</strong> <strong>for</strong> the period as of 2003<br />

also <strong>in</strong>clude <strong>in</strong>dustrial electricity generation<br />

from liquid biomass (spent sulphite liquor)<br />

3) Biogenic fraction of waste <strong>in</strong> waste <strong>in</strong>c<strong>in</strong>eration<br />

systems assumed to be 50 %<br />

<strong>Sources</strong>: BMU on the basis of of AGEE-Stat, ZSW [1]; VDEW<br />

[17], [18], [20], [22] [27], [28], [29], [30], [35]; AGEB [5];<br />

BDEW [6], [23], [24]; StBA [21]; SFV [26]; Erdwärme-Kraft<br />

GbR [39]; geo x [40]<br />

Development of electricity generation from renewable energies <strong>in</strong> germany s<strong>in</strong>ce 1990<br />

120<br />

Photovoltaic power<br />

W<strong>in</strong>d energy<br />

100<br />

Biogenic fraction of waste<br />

Biomass<br />

80<br />

Hydropower<br />

60<br />

StrEG<br />

Geothermal electricity generation<br />

40<br />

as of January 1991<br />

is not shown, due to the small<br />

quantities <strong>in</strong>volved<br />

20<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat<br />

and other sources; cf. the table above<br />

Electricity generation [TWh]<br />

0<br />

1990<br />

1991<br />

Amendment to BauGB<br />

as of November 1997<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

EEG<br />

as of 1 April 2000<br />

new EEG 2009<br />

as of 1 January 2009<br />

EEG 2004<br />

as of 1 August 2004<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009


Installed capacity <strong>for</strong> renewables-based electricity generation <strong>in</strong> germany s<strong>in</strong>ce 1990<br />

hydropower<br />

W<strong>in</strong>d<br />

energy<br />

biomass<br />

biogenic<br />

fraction<br />

of waste<br />

Photovoltaic<br />

power<br />

geoth.<br />

energy<br />

Total<br />

capacity<br />

[MW] [MW] [MW] [MW] [MW p ] [MW] [MW]<br />

1990 4,403 55 85 499 1 0 5,042<br />

1991 4,446 106 97 499 2 0 5,150<br />

1992 4,489 174 105 499 3 0 5,270<br />

1993 4,509 326 143 499 5 0 5,482<br />

1994 4,529 618 178 499 6 0 5,830<br />

1995 4,546 1,121 215 525 8 0 6,415<br />

1996 4,563 1,546 253 551 11 0 6,924<br />

1997 4,578 2,080 318 527 18 0 7,521<br />

1998 4,600 2,871 432 540 23 0 8,466<br />

1999 4,547 4,439 467 555 32 0 10,040<br />

2000 4,600 6,104 579 585 76 0 11,944<br />

2001 4,600 8,754 696 585 186 0 14,821<br />

2002 4,620 11,994 826 585 296 0 18,321<br />

2003 4,640 14,609 1,090 847 439 0 21,625<br />

2004 4,660 16,629 1,444 1,016 1,074 0.2 24,823<br />

2005 4,680 18,415 1,964 1,210 1,980 0.2 28,249<br />

2006 4,700 20,622 2,619 1,250 2,812 0.2 32,003<br />

2007 4,720 22,247 3,502 1,330 3,977 3.2 35,779<br />

2008 4,740 23,897 3,973 1,440 5,994 6.6 40,051<br />

2009 4,760 25,777 4,509 1,460 9,800 6.6 46,313<br />

Shares of total renewables-based <strong>in</strong>stalled capacity <strong>in</strong><br />

the electricity sector <strong>in</strong> germany 2000 and 2009<br />

51.1 %<br />

9.7 %<br />

0.6 %<br />

2000:<br />

11,944 MW<br />

total<br />

38.5 %<br />

12.9 %<br />

55.6 %<br />

2009:<br />

46,313 MW<br />

total<br />

21.2 %<br />

10.3 %<br />

S<strong>in</strong>ce the entry <strong>in</strong>to <strong>for</strong>ce of the <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act (EEG), <strong>in</strong><br />

2000, the total <strong>in</strong>stalled capacity <strong>for</strong> renewables-based electricity generation<br />

has nearly quadrupled. The importance of hydropower has decl<strong>in</strong>ed<br />

considerably dur<strong>in</strong>g the same period.<br />

INSTALLED CAPACITY<br />

Remark: In the period through 1999, the figures<br />

<strong>for</strong> <strong>in</strong>stalled electricity capacity of biomass<br />

<strong>in</strong>stallations <strong>in</strong>clude only “power stations <strong>for</strong><br />

the general public supply” and “other parties<br />

feed<strong>in</strong>g <strong>in</strong> renewables-based electricity”.<br />

In each case, figures <strong>for</strong> <strong>in</strong>stalled capacity<br />

figures refer to the relevant cumulative levels at<br />

the end of the year.<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and VDEW [17],<br />

[18], [20], [22], [27], [28], [29], [30], [35], [61], [62],<br />

[63] [64]; EnBW [41]; Fichtner [42]; BWE [43]; DEWI et<br />

al.[44]; DEWI [45], [46], [47], [48], [49], [50]; BSW [51];<br />

IE [58]; DBFZ [57]; BDEW [59]; ITAD [66]; Erdwärme-Kraft<br />

GbR [39]; geo x GmbH [40]; BNetzA [52], [113]; ZSW[1]<br />

pursuant to [112]<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Biomass<br />

Photovoltaic power<br />

Geothermal electricity generation capacities<br />

are still marg<strong>in</strong>al <strong>in</strong> comparison to the shares<br />

of other renewables-based technologies; <strong>for</strong><br />

this reason, they are not shown.<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other<br />

sources; cf. the table above<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

15


HEAT SUPPLY<br />

1) Survey method modified <strong>in</strong> 1996/1997. As<br />

of 2003, <strong>in</strong> a departure from the approach<br />

used <strong>in</strong> the previous years, figures are <strong>in</strong><br />

accordance with Arts. 3, 5 (CHP <strong>in</strong>stallations<br />

and district heat<strong>in</strong>g <strong>in</strong>stallations) and Art. 8<br />

(<strong>in</strong>dustry) of the Act on <strong>Energy</strong> Statistics of<br />

2003. Furthermore, they <strong>in</strong>clude direct use<br />

of sewage gas.<br />

2) <strong>Figures</strong> <strong>for</strong> the period 1990 to 1994 set as<br />

equivalent to those <strong>for</strong> 1995. <strong>Figures</strong> <strong>for</strong><br />

2000 to 2002 estimated, on basis of the<br />

values <strong>for</strong> 1999 and 2003. Biogenic fraction<br />

of waste <strong>in</strong> waste-<strong>in</strong>c<strong>in</strong>eration systems assumed<br />

to be 50 %. The <strong>in</strong>crease <strong>in</strong> the heat<br />

sector seen <strong>in</strong> 2009 compared to the previous<br />

year is the result of first-time <strong>in</strong>clusion<br />

of newly available data. Such <strong>in</strong>clusion is a<br />

statistical adjustment that does not support<br />

any conclusions regard<strong>in</strong>g actual expansion<br />

of usage.<br />

3) Useful energy; dismantl<strong>in</strong>g of old <strong>in</strong>stallations<br />

has been taken <strong>in</strong>to account.<br />

4) Includ<strong>in</strong>g heat from deep geothermal<br />

energy and air-to-water, water-to-water and<br />

br<strong>in</strong>e-to-water heat pumps.<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and ZSW [1]; StBA<br />

[21]; IEA [65]; AGEB [68], [69], [70]; BSW [51]; ZfS [54];<br />

pursuant to IE et al. [58]; pursuant to ITW [72]; GZB [114];<br />

LIAG [115]<br />

Geothermal energy<br />

Solar thermal energy<br />

Biogenic fraction<br />

of waste<br />

Biomass<br />

<strong>Sources</strong>: See above<br />

[TWh]<br />

16 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

heat supply (f<strong>in</strong>al energy) from renewable energies <strong>in</strong> germany<br />

s<strong>in</strong>ce 1990<br />

biomass 1)<br />

biogenic<br />

fraction of<br />

waste 2)<br />

Solar<br />

thermal<br />

energy 3)<br />

geothermal<br />

energy 4)<br />

Total heat<br />

generation<br />

Share<br />

of heat<br />

consumption<br />

[gWh] [gWh] [gWh] [gWh] [gWh] [%]<br />

1990 28,265 2,308 130 1,515 32,218 2.1<br />

1991 28,360 2,308 166 1,518 32,353 2.1<br />

1992 28,362 2,308 218 1,525 32,413 2.1<br />

1993 28,368 2,308 277 1,535 32,488 2.1<br />

1994 28,375 2,308 351 1,538 32,572 2.2<br />

1995 28,387 2,308 439 1,543 32,677 2.1<br />

1996 28,277 2,538 547 1,554 32,916 2.0<br />

1997 45,591 2,290 688 1,589 50,158 3.2<br />

1998 49,740 3,405 846 1,624 55,615 3.6<br />

1999 50,858 3,674 1,021 1,666 57,219 3.8<br />

2000 51,419 3,548 1,259 1,722 57,947 3.9<br />

2001 58,220 3,421 1,586 1,809 65,036 4.2<br />

2002 57,242 3,295 1,884 1,903 64,324 4.3<br />

2003 69,182 3,169 2,139 2,010 76,500 5.1<br />

2004 75,376 3,690 2,437 2,162 83,665 5.5<br />

2005 79,746 4,692 2,773 2,413 89,624 6.0<br />

2006 83,023 4,911 3,212 3,100 94,246 6.2<br />

2007 86,670 4,783 3,636 3,731 98,820 7.4<br />

2008 92,459 5,020 4,131 4,582 106,192 7.4<br />

2009 95,850 9,400 4,725 5,031 115,006 8.8<br />

heat supply from renewable energies <strong>in</strong> germany s<strong>in</strong>ce 1997<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

50.2<br />

Shares, 2009<br />

83.3 %<br />

55.6 57.2 57.9<br />

8.2 %<br />

4.1 %<br />

4.4 %<br />

65.0 64.3<br />

76.5<br />

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

83.7<br />

89.6<br />

94.2<br />

98.8<br />

106.2<br />

115.0


Net <strong>in</strong>crease [thousands of m 2 ]<br />

1.400<br />

1.200<br />

1.000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

addition of solar collector capacity <strong>in</strong> germany s<strong>in</strong>ce 1990<br />

0.3<br />

1.1<br />

1990 1995<br />

Total area, cumulative<br />

Additions of absorber systems <strong>for</strong> swimm<strong>in</strong>g pools<br />

Additions of solar combisystems<br />

Additions of solar thermal water heat<strong>in</strong>g systems<br />

3.2<br />

4.1<br />

4.7<br />

5.4<br />

6.1<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

The graph takes account of dismantl<strong>in</strong>g of old <strong>in</strong>stallations; “Combisystems” = Systems <strong>for</strong> both heat<strong>in</strong>g of process<br />

water and boost<strong>in</strong>g of central heat<strong>in</strong>g systems. Area converted <strong>in</strong>to power us<strong>in</strong>g the conversion factor 0.7 kW /m th 2<br />

[IEA 107].<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat, ZSW [1]; ZfS [54]<br />

Fuel supply (f<strong>in</strong>al energy) from renewable energies <strong>in</strong> germany s<strong>in</strong>ce 1990<br />

biodiesel vegetable oil bioethanol Total biofuels<br />

Share of fuel<br />

consumption<br />

[gWh] [gWh] [gWh] [gWh] [%]<br />

1990 0 k.A. 0 0 0.0<br />

1991 2 k.A. 0 2 0.0<br />

1992 52 21 0 72 0.01<br />

1993 52 31 0 83 0.01<br />

1994 258 42 0 300 0.05<br />

1995 310 63 0 372 0.06<br />

1996 516 84 0 599 0.1<br />

1997 825 94 0 919 0.1<br />

1998 1,032 115 0 1,147 0.2<br />

1999 1,341 146 0 1,487 0.2<br />

2000 2,579 167 0 2,746 0.4<br />

2001 3,611 209 0 3,820 0.6<br />

2002 5,674 251 0 5,925 0.9<br />

2003 8,253 292 0 8,546 1.4<br />

2004 10,833 345 481 11,659 1.8<br />

2005 18,570 2,047 1,674 22,291 3.7<br />

2006 1) 29,310 7,426 3,540 40,276 6.3<br />

2007 33,677 8,066 3,412 45,154 7.2<br />

2008 27,806 4,194 4,694 36,694 5.9<br />

2009 2) 25,972 1,043 6,748 33,763 5.5<br />

7.1<br />

8.5<br />

9.4<br />

11.3<br />

12.9<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Total <strong>in</strong>stalled area [millions of m 2 ]<br />

HEAT/FUEL SUPPLY<br />

Solar thermal<br />

cum. cum.<br />

area output<br />

[1,000 m 2 ] [MW]<br />

1990 332 232<br />

1991 460 322<br />

1992 575 402<br />

1993 740 518<br />

1994 931 652<br />

1995 1,138 797<br />

1996 1,428 1,000<br />

1997 1,783 1,248<br />

1998 2,147 1,503<br />

1999 2,603 1,822<br />

2000 3,231 2,261<br />

2001 4,128 2,890<br />

2002 4,658 3,261<br />

2003 5,374 3,762<br />

2004 6,128 4,290<br />

2005 7,073 4,951<br />

2006 8,475 5,932<br />

2007 9,410 6,587<br />

2008 11,307 7,915<br />

2009 12,880 9,016<br />

1) The biodiesel quantity <strong>for</strong> 2006 <strong>in</strong>cludes vegetable<br />

oil, s<strong>in</strong>ce until August 2006 biodiesel<br />

and vegetable oil quantities were jo<strong>in</strong>tly<br />

recorded. AGQM [31] and UFOP [32] show<br />

biodiesel consumption of 2.5 million tonnes<br />

<strong>in</strong> 2006.<br />

2) Biofuel quantities <strong>in</strong> 2009:<br />

biodiesel: 2,517,000 tonnes,<br />

vegetable oil: 100,000 tonnes,<br />

bioethanol: 902,000 tonnes.<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and BMU/BMELV<br />

[14]; BMELV [15]; BAFA [16]; FNR [60], UFOP [32]; AGQM<br />

[31]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

17


AVOIDED EMISSIONS<br />

Emissions avoidEd through usE of rEnEwablE EnErgiEs<br />

<strong>in</strong> gErmany, 2009<br />

<strong>Renewable</strong> energies reduce energysector<br />

emissions by tak<strong>in</strong>g the place<br />

of fossil fuels <strong>in</strong> production of electricity,<br />

heat and fuels. All <strong>in</strong> all, use<br />

of renewable energies <strong>in</strong> 2009 avoided<br />

some 107 million tonnes of CO 2<br />

emissions and a total of 108 million<br />

tonnes of greenhouse gases (CO 2 , CH 4<br />

and N 2 O).<br />

The electricity sector accounted <strong>for</strong><br />

about 72 million tonnes of the avoided<br />

greenhouse gases. A reduction<br />

of around 52 million tonnes was<br />

achieved by the renewables-based<br />

electricity subject to payment under<br />

the <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act<br />

(EEG). The greenhouse gas emission<br />

reductions <strong>in</strong> the heat sector amounted<br />

to about 31 million tonnes, while<br />

Electricity<br />

71.6 million<br />

tonnes<br />

Heat<br />

31.3 million<br />

tonnes<br />

Fuels<br />

5.1 million<br />

tonnes<br />

Electricity<br />

67.7 million<br />

tonnes<br />

Heat<br />

31.1 million<br />

tonnes<br />

Fuels<br />

8.0 million<br />

tonnes<br />

18 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

those <strong>in</strong> the fuel sector totalled<br />

about 5 million tonnes.<br />

Discrepancies <strong>in</strong> the figures emerge<br />

when only the ma<strong>in</strong> climate gas,<br />

CO 2 , is considered. In the electricity<br />

and heat sectors, these are primarily<br />

the result of methane emissions related<br />

to fossil-fuel production. In the<br />

transport sector, they are tied partly<br />

to high nitrous oxide emissions <strong>in</strong><br />

connection with biomass cultivation.<br />

The present balance takes account of<br />

both avoided emissions from use of<br />

fossil fuels and emissions tied to production<br />

of renewable energies. The<br />

relevant upstream stages of the energy-production<br />

cha<strong>in</strong> are taken <strong>in</strong>to<br />

account <strong>in</strong> each case.<br />

For electricity and heat, the results<br />

depend significantly on what fossil<br />

fuels are replaced through what renewable<br />

energies. In the area of biogenic<br />

fuels, the type and orig<strong>in</strong> of<br />

the resources used are decisive.<br />

In agricultural cultivation of energy<br />

plants, greenhouse gas emissions<br />

related to direct and <strong>in</strong>direct<br />

land-use changes – such as clear<strong>in</strong>g<br />

of ra<strong>in</strong> <strong>for</strong>est and till<strong>in</strong>g of grasslands<br />

– play an important role. Too<br />

little is known about the scope of<br />

such factors, however, and reliable<br />

calculation methods are still be<strong>in</strong>g<br />

developed. For this reason, land-use<br />

changes were not <strong>in</strong>cluded <strong>in</strong> the<br />

relevant calculations.<br />

greenhouse gas emissions avoided via use of renewable energies <strong>in</strong> germany, 2009<br />

5.1<br />

22.2<br />

16.5<br />

29.9 0.4<br />

1.1<br />

0 10 20 30 40 50 60 70 80<br />

Greenhouse-gas reductions [mill. tonnes of CO eq.] 2<br />

29.3<br />

3.6<br />

total gg emissions avoided <strong>in</strong> 2009<br />

(electricity/heat/biofuels):<br />

about 108 million tonnes of Co 2 equivalents<br />

GG avoidance via electricity generation subject<br />

to compensation under the EEG amounted<br />

to 52 million tonnes of CO 2 equivalents<br />

Co 2 emissions avoided via use of renewable energies <strong>in</strong> germany, 2009<br />

8.0<br />

22.0<br />

15.5<br />

29.5 0.4<br />

1.0<br />

0 10 20 30 40 50 60 70 80<br />

CO reduction [mill. tonnes of CO ]<br />

2 2<br />

27.0<br />

3.3<br />

total Co 2 emissions avoided <strong>in</strong> 2009<br />

(electricity/heat/biofuels):<br />

about 107 million tonnes of Co 2<br />

CO 2 avoidance via electricity generation<br />

subject to compensation under the EEG<br />

amounted to 49 million tonnes of CO 2<br />

Biomass<br />

Biofuels<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Photovoltaics<br />

Solar thermal en.<br />

Geothermal energy<br />

<strong>Sources</strong>: UBA, on the basis of<br />

AGEE-Stat and other sources;<br />

cf. pages 19 – 21<br />

Biomass<br />

Biofuels<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Photovoltaics<br />

Solar thermal en.<br />

Geothermal energy<br />

<strong>Sources</strong>: UBA, on the basis of<br />

AGEE-Stat and other sources;<br />

cf. pages 19 – 21


Emissions avoided <strong>in</strong> the electricity sector <strong>in</strong> 2009 via use of renewable energies<br />

The types of renewable energies<br />

used to generate electricity <strong>in</strong>clude<br />

hydropower, w<strong>in</strong>d power, solar power,<br />

geothermal energy and biomass.<br />

Use of such energies <strong>in</strong> electricity<br />

generation reduces use of fossil fuels,<br />

which still provide the basis <strong>for</strong><br />

the majority of Germany’s electricity<br />

generation. Consequently, electricity<br />

generation from renewable energies<br />

contributes significantly to avoidance<br />

of greenhouse gases and emissions<br />

of acidify<strong>in</strong>g air pollutants <strong>in</strong><br />

Germany.<br />

The results reflect both directly<br />

avoided emissions from fossil-fired<br />

power stations and the avoided environmental<br />

pollution related to pro-<br />

duction cha<strong>in</strong>s <strong>in</strong> the fossil-energy<br />

sector. Such avoided total emissions<br />

can by far exceed the emissions tied<br />

to production of renewable energies.<br />

In this connection, the high methane<br />

(CH 4 ) emissions <strong>in</strong>volved <strong>in</strong> production<br />

of hard coal and natural gas<br />

are particularly significant.<br />

The avoidance factor is the quotient obta<strong>in</strong>ed<br />

by divid<strong>in</strong>g avoided emissions (<strong>in</strong> kg) by<br />

renewables-based electricity generation (<strong>in</strong><br />

GWh). It represents the average avoidance of<br />

greenhouse gases and air pollutants per GWh<br />

of renewables-based electricity generated (cf.<br />

Annex <strong>for</strong> a further explanation).<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other<br />

sources; cf. the follow<strong>in</strong>g table.<br />

Emissions balance <strong>for</strong> renewables-based electricity generation, 2009<br />

Greenhouseeffect 1)<br />

Acidification 2)<br />

Ozone 3)<br />

Particulates 4)<br />

Greenhouse gas/<br />

air pollutant<br />

<strong>Renewable</strong>s-based electricity generation:<br />

total: 93,543 GWh<br />

Avoidance factor<br />

[kg/GWh]<br />

Avoided emissions<br />

[1,000 t]<br />

CO 2 724,213 67,745<br />

CH 4 2,119 198<br />

N 2 O -10.5 -1.0<br />

CO 2 equivalent 765,455 71,603<br />

SO 2 360.5 33.7<br />

NO X 129.8 12.1<br />

SO 2 equivalent 450.9 42.2<br />

CO -161.1 -15.1<br />

NMVOC -7.8 -0.7<br />

Particulates -24.1 -2.3<br />

AVOIDED EMISSIONS<br />

CO 2 -avoidance factors <strong>for</strong><br />

renewables-based electricity<br />

generation, 2009<br />

Electricity<br />

Avoidance<br />

factor<br />

[kg CO /GWh] 2<br />

Hydropower 814,474<br />

W<strong>in</strong>d energy 714,138<br />

Photovoltaic power 531,611<br />

Biogenic solid fuels 779,798<br />

Biogenic liquid fuels 607,215<br />

Biogas 628,347<br />

Sewage gas 729,002<br />

Landfill gas 729,002<br />

Biogenic fraction<br />

of waste<br />

786,237<br />

Geothermal energy 523,732<br />

1) Other greenhouse gases (SF , PFC, HFC) are<br />

6<br />

not <strong>in</strong>cluded.<br />

2) Other air pollutants with potential acidify<strong>in</strong>g<br />

impacts (NH , HCl, HF) are not <strong>in</strong>cluded.<br />

3<br />

3) NMVOC and CO are important precursor<br />

substances <strong>for</strong> ground-level ozone, which is<br />

a key contributor to “summer smog”.<br />

4) Here, “particulates” <strong>in</strong>cludes total emissions<br />

of suspended solids of all gra<strong>in</strong> sizes. The<br />

calculations are based on the “Gutachten<br />

zur CO -M<strong>in</strong>derung im Stromsektor durch<br />

2<br />

den E<strong>in</strong>satz erneuerbarer Energien im Jahr<br />

2006 und 2007” (“Report on CO reduction<br />

2<br />

<strong>in</strong> the electricity sector via use of renewable<br />

energies <strong>in</strong> 2006 and 2007”; Klobasa et al.<br />

[88]). Regard<strong>in</strong>g the calculation methods<br />

used, cf. Annex (3).<br />

<strong>Sources</strong>: UBA [75], on the basis of AGEE-Stat and Klobasa<br />

et al. [88]; UBA [99]; Öko-Institut [90]; Eco<strong>in</strong>vent [84];<br />

Vogt et al. [89]; Ciroth [83]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

19


AVOIDED EMISSIONS<br />

Emissions avoided <strong>in</strong> the heat sector <strong>in</strong> 2009 through use of renewable energies<br />

In addition to sunlight and ambient<br />

heat, the most important renewable<br />

energy source <strong>for</strong> space heat<strong>in</strong>g and<br />

water heat<strong>in</strong>g <strong>in</strong> households, and <strong>for</strong><br />

<strong>in</strong>dustrial process heat, consists of<br />

CO 2 -neutral combustion of biomass.<br />

In such combustion, no more CO 2 is<br />

released than the plants <strong>in</strong> the biomass<br />

absorbed <strong>for</strong> their growth.<br />

<strong>Renewable</strong>s-based heat generation<br />

thus plays a significant role <strong>in</strong> reduction<br />

of greenhouse gas emissions.<br />

This climate protection effect consists<br />

of a) avoided emissions of the<br />

carbon bound <strong>in</strong> fossil fuels such as<br />

oil, natural gas, hard coal and lignite<br />

and b) avoided emissions (such<br />

as methane emissions) tied to production,<br />

process<strong>in</strong>g and transport of<br />

fossil fuels.<br />

At the same time, it should be noted<br />

that the levels of air pollutants released<br />

<strong>in</strong> biomass combustion <strong>in</strong> older<br />

combustion <strong>in</strong>stallations, such as<br />

20 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

tiled stoves and fireview stoves, are<br />

higher than those released <strong>in</strong> heat<br />

generation with fossil fuels. This applies<br />

especially to emissions of volatile<br />

organic compounds which contribute<br />

to summer smog, to carbon<br />

monoxide and to particulates (all<br />

gra<strong>in</strong> sizes).<br />

On the other hand, such pollution<br />

can be m<strong>in</strong>imized through the use<br />

of modern heat<strong>in</strong>g systems and<br />

stoves, as well as through responsible<br />

user behaviour.<br />

The avoidance factor is the quotient obta<strong>in</strong>ed<br />

by divid<strong>in</strong>g avoided emissions (<strong>in</strong> kg) by<br />

renewables-based heat generation (<strong>in</strong> GWh).<br />

It represents the average avoidance of greenhouse<br />

gases and air pollutants per GWh of<br />

renewables-based heat generated (cf. Annex <strong>for</strong><br />

a further explanation).<br />

1) The avoided CO emissions were derived on<br />

2<br />

the basis of the avoided CO equivalents.<br />

2<br />

2) Includ<strong>in</strong>g other ambient heat.<br />

Emissions balance <strong>for</strong> renewables-based heat supply, 2009<br />

Greenhouseeffect 1)<br />

Acidification 2)<br />

Ozone 3)<br />

Particulates 4)<br />

Greenhouse gas/<br />

air pollutant<br />

<strong>Renewable</strong>s-based heat supply:<br />

total: 115,006 GWh<br />

Avoidance factor<br />

[kg/GWh]<br />

Avoided emissions<br />

[1,000 t]<br />

CO 2 270,038 31,056<br />

CH 4 287.0 33.0<br />

N 2 O -11.5 -1.3<br />

CO equivalent<br />

2 272,514 31,341<br />

SO 2 202.2 23.3<br />

NO X -130.3 -15.0<br />

SO equivalent<br />

2 111.5 12.8<br />

CO -4,676.9 -537.9<br />

NMVOC -231.7 -26.6<br />

Particulates -182.6 -21.0<br />

CO 2 -avoidance factors<br />

<strong>for</strong> renewables-based<br />

heat generation, 2009<br />

Heat<br />

Avoidance<br />

factor<br />

[kg CO /GWh] 2<br />

Biogenic solid fuels<br />

(households)<br />

296,536<br />

Biogenic solid fuels<br />

(<strong>in</strong>dustry)<br />

273,965<br />

Biogenic solid fuels<br />

(CHP/HP)<br />

272,539<br />

Biogenic liquid fuels 254,217<br />

Biogas 227,243<br />

Sewage gas 287,644<br />

Landfill gas 287,644<br />

Biogenic fraction<br />

of waste<br />

278,038<br />

Solar thermal energy 218,473<br />

Deep geothermal energy 1) 59,053<br />

Near-surface geothermal<br />

energy 2)<br />

78,259<br />

<strong>Sources</strong>: BMU, on the basis of AGEE-Stat and other<br />

sources; cf. the follow<strong>in</strong>g table.<br />

1) Other greenhouse gases (SF , PFC, HFC) are<br />

6<br />

not <strong>in</strong>cluded.<br />

2) Other air pollutants with potential acidify<strong>in</strong>g<br />

impacts (NH , HCl, HF) are not <strong>in</strong>cluded.<br />

3<br />

3) NMVOC and CO are important precursor<br />

substances <strong>for</strong> ground-level ozone, which is<br />

a key contributor to “summer smog”.<br />

4) Here, “particulates” <strong>in</strong>cludes total emissions<br />

of suspended solids of all gra<strong>in</strong> sizes.<br />

Regard<strong>in</strong>g the calculation methods used, cf.<br />

Annex (4).<br />

<strong>Sources</strong>: UBA [75], on the basis of AGEE-Stat and Frondel<br />

et al. [87]; UBA [99]; Öko-Institut [90]; Eco<strong>in</strong>vent [84];<br />

Vogt et al. [89]; Ciroth [83]; AGEB [2], [73]


Emissions avoided <strong>in</strong> the transport sector <strong>in</strong> 2009 through use of renewable energies<br />

Production and use of biofuels generate<br />

emissions throughout a range<br />

of areas that <strong>in</strong>cludes biomass cultivation<br />

and harvest, biomass process<strong>in</strong>g,<br />

fuel combustion <strong>in</strong> eng<strong>in</strong>es and<br />

– to a lesser degree – related transports.<br />

Fertilisation is an especially<br />

important factor <strong>in</strong> cultivation, lead<strong>in</strong>g<br />

to emissions of climate-relevant<br />

nitrous-oxide (N 2 O) and acidify<strong>in</strong>g<br />

ammonia (NH 3 ). As a result of the<br />

high levels of NH 3 emissions, acidification<br />

tied to use of biofuels is higher<br />

than that connected with the use<br />

of conventional fuels. The balance<br />

takes account of fossil-based processenergy<br />

requirements <strong>for</strong> production<br />

of biofuels, as well as of required<br />

auxiliary substances (such as fossilbased<br />

methanol).<br />

Look<strong>in</strong>g at the sum total of greenhouse<br />

gases, the emission levels depend<br />

heavily on the raw materials<br />

used and thus also on the orig<strong>in</strong> and<br />

emission factors of the biofuels.<br />

Currently, the highest specific green-<br />

house gas reductions are be<strong>in</strong>g<br />

achieved <strong>in</strong> this area via use of vegetable<br />

oils, followed by use of bioethanol<br />

and biodiesel.<br />

As described on page 18, <strong>for</strong> reasons<br />

related to the methods used, greenhouse<br />

gas emissions from land-use<br />

changes tied to agricultural cultivation<br />

of energy crops <strong>for</strong> biofuels<br />

production cannot yet be taken <strong>in</strong>to<br />

account.<br />

Emissions balance <strong>for</strong> renewables-based fuel supply, 2009<br />

greenhouseeffect<br />

1)<br />

greenhouse gas/<br />

air pollutant<br />

avoidance factor<br />

[kg/gWh]<br />

biogenic fuels:<br />

total: 33,763 gWh<br />

avoided emissions<br />

[1,000 t]<br />

CO 2)<br />

2 236,201 7,975<br />

co 2 equivalent 150,649 5,086<br />

<strong>Sources</strong>: UBA [75], on the basis of AGEE-Stat and EP/ER [85]; BR [79]; BR [80]; BDBe [82]; VDB [81] [98] and [142], OVID<br />

[77]; TFZ [91], Greenpeace [78], BLE [103], Federal Statistical Office [104] and [134]<br />

AVOIDED EMISSIONS<br />

avoidance factors <strong>for</strong><br />

renewables-based fuel supply,<br />

2009<br />

avoidance factors<br />

[kg/gWh]<br />

Transport co co eq.<br />

2 2<br />

Biodiesel 226,904 144,719<br />

Vegetable oil 275,447 175,680<br />

Bioethanol 265,914 169,600<br />

The avoidance factor is the quotient obta<strong>in</strong>ed<br />

by divid<strong>in</strong>g avoided emissions (<strong>in</strong> kg) by<br />

renewables-based fuel production (<strong>in</strong> GWh). It<br />

represents the average avoidance of greenhouse<br />

gases and air pollutants per GWh of renewables-based<br />

fuel generated. It takes account of<br />

the relevant upstream production cha<strong>in</strong>s and<br />

the different types of biomass concerned, and is<br />

based on allocation <strong>for</strong> purposes of differentiation<br />

by primary and secondary products, on the<br />

basis of the lower net calorific value.<br />

1) For greenhouse gas emissions, only CO , CH 2 4<br />

and N O have been taken <strong>in</strong>to account here;<br />

2<br />

other greenhouse gases (SF , PFC, HFC) have<br />

6<br />

not been <strong>in</strong>cluded.<br />

2) The avoided CO emissions were derived on<br />

2<br />

the basis of the avoided CO equivalents.<br />

2<br />

The greenhouse gas balance depends on<br />

numerous parameters, <strong>in</strong>clud<strong>in</strong>g the biomass<br />

used, the processes used, the reference systems<br />

selected and the allocation method used. The<br />

data obta<strong>in</strong>ed are thus subject to uncerta<strong>in</strong>ty.<br />

Regard<strong>in</strong>g the calculation methods used, cf.<br />

Annex (5).<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

21


ENERGY-RELATED EMISSIONS<br />

DEvEloPMENT oF ENERgy-RElaTED EMISSIoNS IN gERMaNy,<br />

1990 To 2008<br />

co 2 ch 4 N 2 o<br />

22 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

co 2 equivalent 1)<br />

So 2<br />

No 2)<br />

X<br />

Nh 3<br />

So 2 equivalent 3)<br />

co NMvoc Particulates<br />

[mill. t] [1,000 t] [1,000 t] [mill. t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t]<br />

1990 950 1,549 25 990 5,146 2,709 15 7,089 11,476 2,204 1,362<br />

1991 917 1,459 24 955 3,833 2,498 16 5,633 9,310 1,714 750<br />

1992 872 1,321 23 907 3,119 2,347 17 4,816 8,014 1,489 480<br />

1993 864 1,353 23 899 2,781 2,243 18 4,410 7,239 1,233 330<br />

1994 844 1,216 23 877 2,317 2,106 18 3,852 6,262 961 218<br />

1995 842 1,166 23 853 1,650 1,998 19 3,112 5,959 860 154<br />

1996 869 1,143 23 900 1,388 1,917 20 2,797 5,604 768 146<br />

1997 833 1,127 23 864 1,144 1,836 20 2,496 5,430 705 143<br />

1998 827 1,017 22 856 905 1,750 20 2,199 5,052 637 132<br />

1999 804 1,085 22 833 723 1,719 20 1,993 4,706 561 128<br />

2000 802 1,025 22 830 534 1,619 19 1,732 4,389 473 121<br />

2001 823 950 22 850 536 1,549 19 1,686 4,146 442 120<br />

2002 808 913 21 834 494 1,459 19 1,579 3,852 395 115<br />

2003 805 847 21 830 479 1,396 18 1,519 3,651 356 113<br />

2004 791 773 21 813 462 1,347 18 1,466 3,438 331 111<br />

2005 774 747 21 796 437 1,292 17 1,401 3,237 304 107<br />

2006 779 717 21 801 440 1,296 17 1,404 3,213 295 107<br />

2007 749 682 21 770 412 1,228 15 1,324 3,154 277 102<br />

2008 752 680 20 773 406 1,169 16 1,278 3,156 270 99<br />

As of spr<strong>in</strong>g 2010; figures <strong>in</strong>clude fugitive<br />

emissions from extraction, trans<strong>for</strong>mation and<br />

distribution of fuels<br />

<strong>Energy</strong>-related CO 2 emissions were<br />

198 million tonnes lower <strong>in</strong> 2008<br />

than they were <strong>in</strong> 1990. This corresponds<br />

to a decrease <strong>in</strong> CO 2 emissions<br />

of about 20 %.<br />

Total energy-related greenhouse gas<br />

emissions were lowered by nearly<br />

22 % by 2008.<br />

1) Includes CO , CH and N O<br />

2 4 2<br />

2) Calculated as NO2 3) Includes SO , NO and NH 2 X 3<br />

In addition, emissions of energy-<br />

related air pollutants have been<br />

significantly reduced s<strong>in</strong>ce 1990.<br />

These decreases are the result of<br />

greater reliance on natural gas,<br />

which has lower emissions, and of<br />

enhancements <strong>in</strong> the conversion<br />

efficiency of power stations and<br />

With regard to the significance and calculation<br />

of CO 2 - and SO 2 -equivalents, cf. Annex (2).<br />

Source: UBA [94]<br />

combustion systems. Intensive expansion<br />

of renewable energies has<br />

also been a significant factor.<br />

<strong>Renewable</strong> energies have been meet<strong>in</strong>g<br />

ever-larger shares of f<strong>in</strong>al energy<br />

consumption, thereby reduc<strong>in</strong>g consumption<br />

of fossil fuels.


ENERgy-RElaTED EMISSIoNS IN gERMaNy,<br />

by SouRcE gRouPS, 2008<br />

co 2 equivalent 5)<br />

co 2 ch 4 N 2 o So 2<br />

No 6)<br />

x<br />

Nh 3<br />

So 2 equivalent 7)<br />

STRUCTURE OF EMISSIONS<br />

co NMvoc Particulates<br />

[mill. t] [1,000 t] [1,000 t] [mill. t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t] [1,000 t]<br />

<strong>Energy</strong> <strong>in</strong>dustry 1) 351.8 86.6 12.2 357.4 267.6 311.7 2.6 489.3 157.6 14.1 12.7<br />

Residential/commercial/<br />

<strong>in</strong>stitutional 2)<br />

152.2 32.1 1.8 153.4 74.9 141.2 2.9 178.7 978.8 57.5 32.3<br />

Transport 3) 152.3 6.9 3.3 153.5 1.3 629.7 9.0 456.6 1,257.0 126.6 47.7<br />

Industry 4) 94.5 26.5 2.7 95.9 45.3 86.1 1.1 107.4 753.8 5.2 4.1<br />

Total 750.8 152.2 20.0 760.2 389.1 1,168.7 15.7 1,232.0 3,147.3 203.4 96.8<br />

As of spr<strong>in</strong>g 2010; figures do not <strong>in</strong>clude fugitive<br />

emissions from extraction, trans<strong>for</strong>mation<br />

and distribution of fuels.<br />

1) Public electricity and heat supply; district<br />

heat<strong>in</strong>g <strong>in</strong>stallations; and <strong>in</strong>dustry combustion<br />

systems and <strong>in</strong>dustrial power stations<br />

<strong>in</strong> the sectors oil ref<strong>in</strong><strong>in</strong>g and process<strong>in</strong>g,<br />

extraction and process<strong>in</strong>g of solid fuels and<br />

other energy <strong>in</strong>dustries<br />

breakdown, by relevant shares,<br />

of greenhouse gas emissions<br />

<strong>in</strong> germany, 2008<br />

20.2 %<br />

47.0 %<br />

12.6 %<br />

Total:<br />

760 million<br />

tonnes of<br />

CO 2 equivalent<br />

2) Private households; commerce, trade<br />

services; and military, <strong>in</strong>clud<strong>in</strong>g agricultural<br />

and <strong>for</strong>estry transports and military ground<br />

and air transports<br />

3) Includ<strong>in</strong>g railway transports, national<br />

aviation and coastal and <strong>in</strong>land shipp<strong>in</strong>g<br />

4) Manufactur<strong>in</strong>g; not <strong>in</strong>clud<strong>in</strong>g processrelated<br />

emissions<br />

20.2 %<br />

Industry<br />

Transport 1)<br />

<strong>Energy</strong> <strong>in</strong>dustry<br />

Residential,<br />

commercial and<br />

<strong>in</strong>stitutional 2)<br />

1) Includ<strong>in</strong>g rail transport, national aviation and coastal and <strong>in</strong>land shipp<strong>in</strong>g<br />

2) Includ<strong>in</strong>g military<br />

Source: UBA [94]<br />

5) Includes CO , CH and N O<br />

2 4 2<br />

6) Calculated as NO2 7) Includes SO , NO and NH 2 X 3<br />

<strong>Sources</strong>: UBA [94]<br />

breakdown, by relevant shares,<br />

of acidify<strong>in</strong>g emissions (So 2 equivalents)<br />

<strong>in</strong> germany, 2008<br />

39.7 %<br />

14.5 %<br />

Total:<br />

1.2 million<br />

tonnes of<br />

SO 2 equivalent<br />

8.7 %<br />

37.1 %<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

23


SECURITY OF ENERGY SUPPLY<br />

FoSSIl FuElS aND ENERgy IMPoRTS SavED<br />

vIa ThE uSE oF RENEWablE ENERgIES<br />

IN gERMaNy, 2009<br />

Primary energy sav<strong>in</strong>gs result<strong>in</strong>g from use of renewable energies<br />

lignite hard coal Natural gas<br />

24 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Petroleum/<br />

heat<strong>in</strong>g oil<br />

Diesel fuel Petrol Total<br />

Electricity 34.4 134.8 46.6<br />

Primary energy [TWh]<br />

2.5 – – 218.3<br />

Heat 8.9 10.8 59.6 46.6 – – 125.9<br />

Transport – – – – 18.1 5.7 23.8<br />

Total 43.3 145.6 106.2 49.1 18.1 5.7 368.0<br />

Total 155.9 524.2 382.4<br />

Primary energy [PJ]<br />

176.8 65.0 20.6 1,324.9<br />

Which corres-<br />

ponds to 1):<br />

16.6<br />

mill. t 2)<br />

17.4<br />

mill. t 3)<br />

Fossil-fuel sav<strong>in</strong>gs calculated <strong>in</strong> a manner similar<br />

to that used <strong>for</strong> balanc<strong>in</strong>g emissions; cf. also<br />

Annex (6).<br />

1) The follow<strong>in</strong>g net calorific values, derived<br />

by the Work<strong>in</strong>g Group on <strong>Energy</strong> Balances<br />

(AGEB) 2007, were used <strong>in</strong> conversion of<br />

saved primary energy: lignite, 2.506 kWh/kg;<br />

lignite briquettes, 5.452 kWh/kg; coal dust,<br />

The table shows the specific sav<strong>in</strong>gs<br />

of fossil fuels result<strong>in</strong>g from use of<br />

renewable energies <strong>in</strong> the areas of<br />

electricity, heat and transport <strong>in</strong><br />

Source: Same as <strong>for</strong> previous table<br />

1) Not <strong>in</strong>clud<strong>in</strong>g imported lignite <strong>for</strong> heat<strong>in</strong>g<br />

purposes (briquettes). Import shares <strong>for</strong> oil<br />

and natural gas pursuant to [BMWi]. For<br />

steam coal, the import share is 100 %, s<strong>in</strong>ce<br />

the firm contracts <strong>in</strong> place <strong>for</strong> supply of<br />

German hard coal do not allow any reduction<br />

of that share. Sav<strong>in</strong>gs <strong>in</strong> the area<br />

of steam coal thus lead to reductions of<br />

hard-coal imports. Overall, the import share<br />

<strong>for</strong> hard coal is over 60 %. Import prices<br />

pursuant to [BAFA].<br />

2) Gross figures, i.e. not <strong>in</strong>clud<strong>in</strong>g imports of<br />

biogenic fuels<br />

Source: ISI et al. [55]<br />

12,049<br />

mill. m 3<br />

4,946<br />

mill. litres<br />

6.096 kWh/kg; hard coal, 8.393 kWh/kg,<br />

hard-coal coke, 7.958 kWh/kg; natural gas,<br />

8.816 kWh/m3 ; heat<strong>in</strong>g oil, light,<br />

9.928 kWh/litre; diesel fuel,<br />

9.964 kWh/litre; petrol, 9.011 kWh/litre.<br />

2) Includes about 16 million tonnes of lignite,<br />

about 0.2 million tonnes of lignite briquettes<br />

and about 0.3 million tonnes of coal dust<br />

2009. S<strong>in</strong>ce Germany imports a large<br />

share of its fossil fuels, i.e. oil, natural<br />

gas and hard coal (all non-renewable<br />

energy resources), such sav<strong>in</strong>gs<br />

1,812<br />

mill. litres<br />

635<br />

mill. litres<br />

3) Includes about 17.2 million tonnes of hard<br />

coal and about 0.2 million tonnes of hardcoal<br />

coke<br />

<strong>Sources</strong>: UBA [75], on the basis of AGEE-Stat and Klobasa<br />

et al. [88]; Frondel et al. [87]; Öko-Institut [90]; Eco<strong>in</strong>vent<br />

[84]; Vogt et al. [89]; Frick et al. [86]; and other<br />

sources – cf. the tables on pages 19 – 21<br />

also directly reduce German energy<br />

imports. As a result of marked energy<br />

price decreases, these imports<br />

were down from the previous year.<br />

Trends <strong>in</strong> fossil-fuel sav<strong>in</strong>gs result<strong>in</strong>g from use of renewable energies<br />

Electricity heat<br />

Transport Total<br />

[TWh]<br />

2008 219.0 116.4 26.9 362.3<br />

2009 218.3 125.9 23.8 368.0<br />

Development of sav<strong>in</strong>gs on energy import costs <strong>in</strong> germany 1)<br />

Electricity heat Transport<br />

[billion EuR]<br />

Total<br />

2008 3.0 3.1 1.1 7.2 2)<br />

2009 2.2 2.7 0.8 5.7 2)


gRoSS valuE aDDED achIEvED WITh RENEWablE ENERgIES<br />

IN gERMaNy, 2009<br />

In recent years, renewable energies<br />

have become a significant economic<br />

factor, as they proved <strong>in</strong> the economic<br />

crisis year of 2009. Notwithstand<strong>in</strong>g<br />

the extremely difficult economic<br />

climate, <strong>in</strong>vestments <strong>in</strong> <strong>in</strong>stal-<br />

Hydropower<br />

Geoth. energy 1)<br />

Solar thermal en.<br />

Biomass heat<br />

Biomass electricity<br />

W<strong>in</strong>d energy<br />

Photovoltaics<br />

lations <strong>for</strong> use of renewable energies<br />

<strong>in</strong>creased by almost 31 % over the<br />

previous year, while almost all other<br />

sectors registered dramatic decreases.<br />

As a result, the renewable energies<br />

sector was able to steer clear<br />

Investments <strong>in</strong> construction of renewable energy <strong>in</strong>stallations<br />

<strong>in</strong> germany, 2009<br />

70 mill. EUR<br />

1,000 mill. EUR<br />

1,250 mill. EUR<br />

1,350 mill. EUR<br />

1,700 mill. EUR<br />

2,650 mill. EUR<br />

Total:<br />

about 20.0 bn. EuR<br />

GROSS VALUE ADDED<br />

of the general downward trend. It<br />

should also be noted that a good<br />

82 % of <strong>in</strong>vestments were made <strong>in</strong><br />

electricity generat<strong>in</strong>g plants supported<br />

under the EEG.<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

This primarily concerns the<br />

construction of new plants and,<br />

to a lesser extent, the expansion<br />

or upgrad<strong>in</strong>g of exist<strong>in</strong>g<br />

plants, such as the reactivation<br />

of old hydropower plants.<br />

Besides <strong>in</strong>vestments of power<br />

supply companies, commercial,<br />

<strong>in</strong>dustrial and residential<br />

<strong>in</strong>vestments are <strong>in</strong>cluded too.<br />

12,000 mill. EUR<br />

[mill. EUR]<br />

1) Large <strong>in</strong>stallations and heat pumps Source: BMU, pursuant to [1]<br />

Geoth. energy<br />

Hydropower<br />

Biogenic solid fuels 1)<br />

Photovoltaics<br />

W<strong>in</strong>d energy<br />

Biofuels<br />

Biomass electricity<br />

value added from operation of renewable energy <strong>in</strong>stallations<br />

<strong>in</strong> germany, 2009<br />

3 mill. EUR<br />

1,350 mill. EUR<br />

1,700 mill. EUR<br />

Total:<br />

about 16.0 bn. EuR<br />

2,950 mill. EUR<br />

3,000 mill. EUR<br />

3,150 mill. EUR<br />

3,850 mill. EUR<br />

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500<br />

[mill. EUR]<br />

For explanations, cf. Annex (7).<br />

1) Only fuels used exclusively <strong>for</strong> heat production Source: BMU, pursuant to ZSW [1]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

25


GROSS VALUE ADDED<br />

For electricity generation the turnover<br />

is determ<strong>in</strong>ed on the basis of<br />

feed-<strong>in</strong> tariffs paid pursuant to the<br />

<strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act (EEG),<br />

Geoth. energy 1)<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Biomass<br />

Solar energy 2)<br />

26 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

or from the prices atta<strong>in</strong>able on the<br />

open electricity market; <strong>for</strong> fuels, it<br />

is obta<strong>in</strong>ed from statistics on sale of<br />

biofuels. In the area of heat produc-<br />

tion, only sale of fuels (i.e. as a rule,<br />

wood) contributes to turnover, s<strong>in</strong>ce<br />

most of the heat produced is used by<br />

producers themselves rather than sold.<br />

value added from <strong>in</strong>vestments <strong>in</strong> and operation of renewable energy <strong>in</strong>stallations<br />

<strong>in</strong> germany, 2009<br />

0<br />

1,003 mill. EUR<br />

1,420 mill. EUR<br />

5,650 mill. EUR<br />

Total:<br />

about 36.0 bn. EuR<br />

11,750 mill. EUR<br />

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000<br />

16,200 mill. EUR<br />

18,000<br />

[mill. EUR]<br />

Investments and operation<br />

1) Large <strong>in</strong>stallations and heat pumps<br />

2) Photovoltaic and solar thermal systems Source: BMU, pursuant to ZSW [1]<br />

[Billion EUR]<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

18.1<br />

7.8<br />

10.3<br />

Development of the value added from renewable energies<br />

<strong>in</strong> germany, 2005 to 2009<br />

Investments <strong>in</strong> renewable-energies <strong>in</strong>stallations<br />

Added value created via operation of <strong>in</strong>stallations<br />

22.4<br />

11.3<br />

11.1<br />

25.5<br />

14.5<br />

11.0<br />

2005 2006<br />

2007<br />

2008<br />

2009<br />

30.6<br />

15.3<br />

15.3<br />

36.0<br />

16.0<br />

20.0<br />

Source: BMU, pursuant to ZSW [1]


EMPloyMENT IN gERMaNy’S RENEWablE ENERgIES SEcToR<br />

<strong>Renewable</strong> energies are becom<strong>in</strong>g<br />

more important as an economic factor<br />

<strong>in</strong> Germany. This grow<strong>in</strong>g significance<br />

is apparent <strong>in</strong> the <strong>for</strong>m of<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>vestments <strong>in</strong> <strong>in</strong>stallations<br />

and production capacities and<br />

<strong>in</strong> cont<strong>in</strong>u<strong>in</strong>g employment growth<br />

<strong>in</strong> the sector. This development rema<strong>in</strong>ed<br />

stable throughout the economic<br />

crisis – <strong>in</strong> contrast to the situation<br />

<strong>in</strong> nearly all other economic<br />

sectors.<br />

Accord<strong>in</strong>g to <strong>in</strong>terim results of an<br />

ongo<strong>in</strong>g BMU research project [128],<br />

<strong>in</strong> 2009 the renewable energies sector<br />

accounted <strong>for</strong> more than 300,000<br />

jobs <strong>in</strong> Germany. This represents an<br />

<strong>in</strong>crease of over 87 % compared to<br />

2004 (which showed some 160,000<br />

jobs). Thus, the sector’s work<strong>for</strong>ce <strong>in</strong>creased<br />

by about 8 % over the previous<br />

year. An <strong>in</strong>itial allocation by<br />

region <strong>in</strong>dicates that nearly a quarter<br />

of the sector’s employees work<br />

<strong>in</strong> eastern Germany, an <strong>in</strong>crease of<br />

about 10 % over the previous year.<br />

Western German Länder have a<br />

Sectors<br />

9,000<br />

9,300<br />

9,500<br />

9,300<br />

9,100<br />

1,800<br />

6,500<br />

4,300<br />

3,400<br />

25,100<br />

Hydropower<br />

Geoth. energy<br />

number of advantages as a result of<br />

their natural conditions (solar energy<br />

<strong>in</strong> the south of Germany) and<br />

their established supply <strong>in</strong>dustries.<br />

The calculation of the above figures<br />

took account of <strong>in</strong>vestments <strong>in</strong> renewable<br />

energy <strong>in</strong>stallations; expenditures<br />

<strong>for</strong> operation, exports<br />

and imports of such <strong>in</strong>stallations;<br />

relevant required advance services<br />

(such as provision of required biomass)<br />

and related advance services<br />

by other <strong>in</strong>dustrial sectors. To those<br />

figures must be added work funded<br />

by the public and non-profit sectors<br />

to promote renewable energies, <strong>in</strong>clud<strong>in</strong>g<br />

relevant work carried out by<br />

civil service employees. The figures<br />

<strong>for</strong> the last group have been partly<br />

updated <strong>in</strong> light of <strong>in</strong>creases <strong>in</strong> relevant<br />

public fund<strong>in</strong>g. In 2009, it comprised<br />

6,500 employees. Thus <strong>for</strong><br />

the year 2009 a total of 300,500 jobs<br />

were recorded. Of those, somewhat<br />

more than two-thirds (68 %) can be<br />

attributed to the effects of the <strong>Renewable</strong><br />

<strong>Energy</strong> <strong>Sources</strong> Act (EEG).<br />

Employees <strong>in</strong> germany’s renewable energies sector<br />

56,800<br />

Persons employed via public-sector/<br />

non-profit fund<strong>in</strong>g<br />

63,900<br />

79,600<br />

74,400<br />

87,100<br />

85,100<br />

95,800<br />

Solar energy<br />

W<strong>in</strong>d energy<br />

109,000<br />

Biomass<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

JOBS<br />

The study f<strong>in</strong>ds that the positive<br />

trend is likely to cont<strong>in</strong>ue <strong>in</strong> the<br />

com<strong>in</strong>g years. It <strong>in</strong>dicates that the<br />

renewable energies sector’s work<strong>for</strong>ce<br />

could amount to at least<br />

400,000 employees by the year 2020<br />

[125 – 128]. The key factors <strong>in</strong>fluenc<strong>in</strong>g<br />

the further development <strong>in</strong>clude<br />

a) Germany’s cont<strong>in</strong>u<strong>in</strong>g attractiveness<br />

as a production location and<br />

b) German companies’ favourable<br />

position <strong>in</strong> the world market <strong>for</strong> renewable<br />

energies, a market that cont<strong>in</strong>ues<br />

to grow <strong>in</strong> spite of the current<br />

f<strong>in</strong>ancial and economic crisis. Another<br />

BMU research project currently<br />

underway is exam<strong>in</strong><strong>in</strong>g <strong>in</strong> detail<br />

the possible negative employment<br />

effects of the expansion of renewable<br />

energies. Initial results <strong>in</strong>dicate<br />

that renewable energies’ “net balance”<br />

<strong>in</strong> Germany rema<strong>in</strong>s clearly<br />

positive [128].<br />

Further <strong>in</strong><strong>for</strong>mation on this topic<br />

is available at the BMU theme page<br />

http://www.erneuerbare-energien.<br />

de/<strong>in</strong>halt/40289.<br />

The figures <strong>for</strong> 2008 and 2009<br />

are provisional estimates<br />

<strong>Sources</strong>: BMU [125 – 128]<br />

160,500<br />

jobs<br />

2004<br />

Increase <strong>in</strong> 2009<br />

compared to 2008: about 8 %<br />

278,000<br />

jobs<br />

2008<br />

300,500<br />

jobs<br />

2009<br />

27


COSTS FOR ELECTRICITY CONSUMERS<br />

SuPPoRT uNDER ThE EEg aND coST<br />

aPPoRTIoNMENT To ElEcTRIcITy PRIcES<br />

At present <strong>in</strong> Germany, renewably<br />

generated electricity eligible <strong>for</strong><br />

feed-<strong>in</strong> payments under the <strong>Renewable</strong><br />

<strong>Energy</strong> <strong>Sources</strong> Act (EEG) is still<br />

more expensive on average than<br />

electricity generated from fossil fuels<br />

or nuclear energy 1) . This leads to support<br />

costs. Via “EEG apportionment”,<br />

such costs are passed on to electricity<br />

customers as part of electricity<br />

prices. Over 500 electricity-<br />

<strong>in</strong>tensive enterprises <strong>in</strong> the manufactur<strong>in</strong>g<br />

sector, and railway operators,<br />

benefit from a special equalisation<br />

scheme under the EEG whereby they<br />

are largely exempt from such cost<br />

apportionment [38]. To compensate<br />

<strong>for</strong> such exemptions the EEG-related<br />

costs of all other electricity customers<br />

have been <strong>in</strong>creased; this <strong>in</strong>crease<br />

is currently nearly 20 %.<br />

Development through 2009<br />

Through 2009, electricity suppliers<br />

were responsible <strong>for</strong> calculat<strong>in</strong>g and<br />

pass<strong>in</strong>g on cost apportionments under<br />

the EEG. Such suppliers received<br />

EEG electricity from transmission<br />

system operators (TSO), <strong>in</strong> the framework<br />

of nationally standardised<br />

mandatory acceptance quotas, and<br />

paid nationally standardised EEGbased<br />

average tariffs <strong>for</strong> it. For suppliers,<br />

these quotas and fixed payment<br />

levels have resulted <strong>in</strong> “EEG<br />

differential costs”, which represent<br />

the difference between the EEG’s<br />

fixed average tariffs and the procurement<br />

prices <strong>for</strong> conventionally<br />

generated electricity replaced by<br />

EEG electricity. Such EEG support<br />

costs varied from supplier to supplier,<br />

depend<strong>in</strong>g on the different procurement<br />

terms. S<strong>in</strong>ce the terms <strong>for</strong><br />

pass<strong>in</strong>g on such costs have not been<br />

standardised, assessments of the average<br />

EEG costs throughout Germany<br />

are only possible with the help of<br />

assumptions regard<strong>in</strong>g the average<br />

procurement prices <strong>for</strong> all electricity<br />

suppliers. Such assumptions have<br />

normally been based on the electricity<br />

prices on electricity exchanges.<br />

In the past, different methodologies<br />

<strong>for</strong> mak<strong>in</strong>g assumptions regard<strong>in</strong>g<br />

28 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

“applicable prices” <strong>for</strong> EEG electricity<br />

have led to different conclusions<br />

regard<strong>in</strong>g the level of EEG differential<br />

costs and/or EEG cost apportionment.<br />

For 2009, the cost of the non-renewably<br />

generated electricity replaced<br />

by electricity fed <strong>in</strong>to the grid on<br />

the basis of the EEG can be assumed<br />

to be 6.9 cents per kWh [IfnE 7].<br />

With an expected EEG-electricity<br />

volume of about 71.7 TWh, and an<br />

average tariff of about 13.4 cents<br />

per kWh, the result<strong>in</strong>g support costs<br />

would be about 4.7 billion euros.<br />

This is similar to the support cost<br />

levels of previous years, and is considerably<br />

lower than the EEG-based<br />

payments made <strong>in</strong> 2009 to operators<br />

of EEG-based electricity generat<strong>in</strong>g<br />

<strong>in</strong>stallations (9.9 billion euros; cf.<br />

page 30).<br />

The result<strong>in</strong>g average EEG apportionment<br />

<strong>in</strong> 2009 <strong>for</strong> electricity customers<br />

not benefit<strong>in</strong>g from the special<br />

equalisation scheme is about<br />

1.2 cents/kWh. This is equivalent to<br />

about 5 % of the rate <strong>for</strong> one kilowatt-hour<br />

of houshold electricity <strong>in</strong><br />

2009. For a sample household that<br />

uses 3,500 kWh of electricity per<br />

year, the EEG cost apportionment<br />

thus amounts to about 3.40 euros<br />

per month [7].<br />

outlook <strong>for</strong> 2010<br />

The above-described procedure <strong>for</strong><br />

apportion<strong>in</strong>g EEG costs changes considerably<br />

as of 2010. Pursuant to the<br />

Ord<strong>in</strong>ance on the further development<br />

of the nationwide equalisation<br />

scheme compensation mechanism<br />

(“Verordnung zur Weiterentwicklung<br />

des bundesweiten Ausgleichsmechanismus<br />

im EEG”; AusglMechV), which<br />

entered <strong>in</strong>to <strong>for</strong>ce <strong>in</strong> summer 2009,<br />

all of the electricity paid <strong>for</strong> under<br />

the EEG will now be sold on the electricity<br />

exchange. In each case by<br />

15 October, each transmission system<br />

operator is now required to<br />

submit an estimate <strong>for</strong> the com<strong>in</strong>g<br />

year of the expect<strong>in</strong>g result<strong>in</strong>g costs.<br />

Such estimates will <strong>in</strong>clude items<br />

previously accounted <strong>for</strong> under the<br />

grid-use charges. At the end of each<br />

year the TSO will determ<strong>in</strong>e, on the<br />

basis of their actual <strong>in</strong>come and expenditures,<br />

the extent to which their<br />

estimates were accurate. Any over-<br />

or undercoverage will then be taken<br />

<strong>in</strong>to account <strong>in</strong> the follow<strong>in</strong>g year 2) .<br />

1) The reasons <strong>for</strong> this <strong>in</strong>clude the fact that<br />

relevant bus<strong>in</strong>ess calculations fail to take<br />

account of certa<strong>in</strong> significant benefits. A<br />

comprehensive, macroeconomic consideration<br />

can produce a different picture; cf. <strong>in</strong><br />

this regard the section beg<strong>in</strong>n<strong>in</strong>g on p. 33.<br />

2) For 2010, TSO expect to make payments<br />

totall<strong>in</strong>g 12.6 billion euros to operators of<br />

renewable energy <strong>in</strong>stallations. On that basis,<br />

they expect apportionable support costs<br />

of about 8.2 billion euros. In light of that<br />

figure, an EEG cost apportionment of about<br />

2 cents per kilowatt-hour has been calculated.<br />

For relevant background <strong>in</strong><strong>for</strong>mation, as<br />

well as <strong>in</strong><strong>for</strong>mation about the EEG’s impacts<br />

on household electricity prices, cf. ÜNB [95]<br />

and BMU [102].<br />

Development of EEg costs <strong>for</strong> nonprivileged<br />

electricity customers<br />

year<br />

EEg costs<br />

[bn. EuR]<br />

2000 1.0<br />

2001 1.2<br />

2002 1.8<br />

2003 1.9<br />

2004 2.5<br />

2005 2.8<br />

2006 3.3<br />

2007 4.3<br />

2008 4.5<br />

2009 4.7<br />

In 2009 prices<br />

Source: IfnE [145]


Turnover tax<br />

Electricity tax<br />

Concession levy<br />

EEG<br />

CHP Act<br />

Generation, transportation,<br />

distribution<br />

composition of the average price <strong>for</strong> one kilowatt-hour (kWh)<br />

of electricity <strong>for</strong> household customers <strong>in</strong> germany<br />

[Cent/kWh]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

14.3<br />

16.1<br />

17.2<br />

18.6<br />

COSTS FOR ELECTRICITY CONSUMERS<br />

2000 2002 2004 2005 2006 2007 2008 2009<br />

Turnover tax 2.0 2.2 2.4 2.6 2.7 3.3 3.4 3.7<br />

Electricity tax<br />

1.5 1.8 2.0 2.0 2.0 2.0 2.0 2.0<br />

Concession levy<br />

1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8<br />

EEG<br />

0.2 0.3 0.4 0.6 0.8 1.0 1.1 1.2<br />

CHP Act 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2<br />

Generation, transportation, distribution 8.6 9.7 10.2 11.2 11.8 12.2 13.0 14.2<br />

Total<br />

14.3 16.1 17.2 18.6 19.4 20.7 21.6 23.2<br />

Merit order effect<br />

The so-called “merit order effect”<br />

must be taken <strong>in</strong>to account <strong>in</strong> any<br />

analysis of the impacts of renewable<br />

energies and, especially, of the <strong>Renewable</strong><br />

<strong>Energy</strong> <strong>Sources</strong> Act (EEG),<br />

on electricity prices. Merit order effect<br />

refers to the impact that priority<br />

feed-<strong>in</strong> of renewably generated<br />

electricity – especially electricity<br />

generated with w<strong>in</strong>d energy – has<br />

on wholesale electricity prices. S<strong>in</strong>ce<br />

the demand <strong>for</strong> conventionally generated<br />

electricity decreases as a result,<br />

under a merit-order system the<br />

most expensive of the power stations<br />

that would otherwise be used are no<br />

longer needed <strong>for</strong> meet<strong>in</strong>g demand.<br />

This causes the price on electricity<br />

exchanges to fall. While revenues<br />

of electricity producers decrease as<br />

a result, suppliers and – depend<strong>in</strong>g<br />

on market circumstances – electricity<br />

consumers enjoy price reductions.<br />

A number of scientific studies,<br />

<strong>in</strong>clud<strong>in</strong>g studies commissioned by<br />

the BMU [<strong>for</strong> the most recent, cf. 53]<br />

have shown that the merit order effect<br />

has been highly significant <strong>in</strong><br />

the past, even when assessed <strong>in</strong> light<br />

of conservative assumptions (2008:<br />

3.6 – 4 billion euros; calculations <strong>for</strong><br />

Impacts of the merit order effect<br />

Simulated EEg-based<br />

electricity generation<br />

19.4<br />

20.7<br />

21.6<br />

23.2<br />

Source: BMU [36] and [102]; IfnE [7]<br />

2009 are not yet available). Electricity-<strong>in</strong>tensive<br />

enterprises that are privileged<br />

under the EEG’s special equalisation<br />

scheme are thus likely to be<br />

the major beneficiaries of this effect:<br />

while their EEG cost apportionment is<br />

limited to 0.05 cents/kWh, as specialcontract<br />

customers they are normally<br />

the first to profit from decreas<strong>in</strong>g<br />

prices on the electricity exchange.<br />

Reduction of the<br />

Phelix Day base<br />

Merit order effect<br />

year [TWh] [EuR/MWh] [bn. EuR]<br />

2006 52.2 – 5.0<br />

2007 62.5 5.8 3.7<br />

2008 69.3 5.8 – 6.7 3.6 – 4.0<br />

Source: BMU [53]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

29


ELECTRICITY FEED-IN/EEG<br />

Feed-<strong>in</strong> and FeeS under the act on the Sale oF electricity<br />

to the Grid (StreG) and the renewable enerGy SourceS<br />

act (eeG) S<strong>in</strong>ce 1991<br />

[TWh]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

StrEG<br />

as of 1 January 1991<br />

1.0 1.3 1.6 2.3 2.8 3.7 4.8 6.8 7.9<br />

1991<br />

Total electricity from renewable energies<br />

30 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Feed-<strong>in</strong> of electricity remunerated under the StrEG<br />

Feed-<strong>in</strong> of electricity remunerated under the EEG 1)<br />

Fees<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

EEG<br />

as of 1 April 2000<br />

10.4<br />

3.5<br />

1999<br />

2000<br />

18.1<br />

2001<br />

2002<br />

EEG 2004<br />

as of 1 August 2004<br />

25.0 28.4<br />

38.5<br />

44.0<br />

51.5<br />

67.0<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

New EEG 2009<br />

as of 1 January 2009<br />

71.1 71.7<br />

2008<br />

2009<br />

1) Private and public feed-<strong>in</strong> <strong>Sources</strong>: VDEW [30]; VDN [33], BDEW [23], [24]; ZSW [1]<br />

Structure of electricity quantities paid <strong>for</strong> under the eeG s<strong>in</strong>ce 2000<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

2000 1) 2002 2004 2006 2008 2009 7)<br />

total end consumption [GWh] 344,663 465,346 487,627 495,203 493,506 470,000<br />

Privileged end consumption 2) [GWh] – – 36,865 70,161 77,991 70,000<br />

total remunerated eeG electricity 3) [Gwh] 10,391.0 24,969.9 38,511.2 51,545.2 71,147.9 71,715<br />

Hydropower, gases 4) [GWh] 4,114.0 6,579.3 4,616.1 4,923.9 4,981.5 4,766<br />

Gases 4) [GWh] 2,588.6 2,789.2 2,208.2 2,397<br />

Biomass [GWh] 586.0 2,442.0 5,241.0 10,901.6 18,947.0 20,525<br />

Geothermal energy [GWh] – – 0.2 0.4 17.6 19<br />

W<strong>in</strong>d energy [GWh] 5,662.0 15,786.2 25,508.8 30,709.9 40,573.7 37,809<br />

Solar irradiation energy [GWh] 29.0 162.4 556.5 2,220.3 4,419.8 6,200<br />

eeG quota 5) [%] 3.01 5.37 8.48 12.01 17.13 17.8<br />

average fee [ct/kwh] 8.50 8.91 9.29 10.88 12.25 13.4<br />

total fee 6) [bn. eur] 0.88 2.23 3.61 5.81 9.02 9.9<br />

Non-remunerated<br />

renewables-based electricity<br />

total renewables-based<br />

electricity<br />

1) Partial year: 01.04.- 31.12.2000<br />

2) F<strong>in</strong>al consumption privileged, s<strong>in</strong>ce July<br />

2003, under the EEG’s special equalisation<br />

scheme<br />

3) This does not <strong>in</strong>clude subsequent corrections<br />

of the VDN (2002 through 2006), s<strong>in</strong>ce<br />

the additional feed-<strong>in</strong> <strong>in</strong> previous years,<br />

[GWh] 26,826.4 20,677.6 17,540.4 19,941.4 22,121.7 21,827.6<br />

[Gwh] 37,217.4 45,647.5 56,051.6 71,486.6 93,269.6 93,542.6<br />

pursuant to auditors’ certifications, cannot<br />

be allocated to specific energy sources<br />

4) Landfill gas, sewage gas and m<strong>in</strong>e gas listed<br />

separately <strong>for</strong> the first time <strong>in</strong> 2004<br />

5) Quota <strong>for</strong> non-privileged f<strong>in</strong>al consumption<br />

6) Total payments, without deduction of<br />

avoided grid-use charges. The payments<br />

0<br />

[mill. EUR]<br />

listed here differ considerably from the differential<br />

costs (cf. the follow<strong>in</strong>g pages).<br />

7) Provisional figures pursuant to calculations<br />

of “Ingenieurbüro für neue Energien”<br />

Further <strong>in</strong><strong>for</strong>mation is available at the Website<br />

of the BDEW e.V.: www.bdew.de.<br />

<strong>Sources</strong>: VDN [33]; BDEW [23], [24]; ZSW [1], IfnE 7]


MARKET INTRODUCTION<br />

EXPaNDINg uSE oF RENEWablE ENERgIES IN ThE hEaT SEcToR:<br />

lEgISlaTIoN, PRoMoTIoN aND IMPacTS<br />

The act on the Promotion of<br />

<strong>Renewable</strong> Energies <strong>in</strong> the<br />

heat Sector<br />

In light of the heat market’s enormous<br />

importance, <strong>in</strong>creases <strong>in</strong> the<br />

use of renewable energies <strong>in</strong> this<br />

field play a central role: the heat<br />

market accounts <strong>for</strong> nearly 55 %<br />

of Germany’s f<strong>in</strong>al energy requirements.<br />

The key <strong>in</strong>strument <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g<br />

renewable energies’ share of the<br />

heat market is the Act on the Promotion<br />

of <strong>Renewable</strong> Energies <strong>in</strong> the<br />

Heat Sector (EEWärmeG), applied <strong>in</strong><br />

conjunction with the government’s<br />

Market Incentive Programme (MAP).<br />

The Act entered <strong>in</strong>to <strong>for</strong>ce on 1 January<br />

2009.<br />

The EEWärmeG stipulates that by<br />

2020 at least 14 % of Germany’s heat<br />

requirements must be met by renewable<br />

energies. The aim is to reduce<br />

the energy sector’s CO 2 emissions,<br />

conserve resources and contribute<br />

to the establishment of a secure and<br />

susta<strong>in</strong>able energy supply. In addition<br />

to provid<strong>in</strong>g <strong>in</strong>centives <strong>for</strong> <strong>in</strong>tensify<strong>in</strong>g<br />

expansion of local and<br />

district heat<strong>in</strong>g networks, the Act<br />

has two ma<strong>in</strong> thrusts.<br />

Firstly, owners of build<strong>in</strong>gs constructed<br />

as of 1 January 2009 must<br />

comply with certa<strong>in</strong> m<strong>in</strong>imum renewable<br />

energy quotas <strong>in</strong> meet<strong>in</strong>g<br />

their build<strong>in</strong>gs’ heat<strong>in</strong>g requirements.<br />

The quotas may be met with<br />

all <strong>for</strong>ms of renewable energies that<br />

can produce heat, and comb<strong>in</strong>ations<br />

of different renewable energy sources<br />

are allowed. In meet<strong>in</strong>g their obligations,<br />

build<strong>in</strong>g owners may thus<br />

use heat from solar thermal, geothermal,<br />

ambient heat or biomassbased<br />

systems. Other climate-beneficial<br />

measures, so-called “substitute<br />

measures”, may be used <strong>in</strong>stead of<br />

renewable energies. Under that option,<br />

obligations may be met via use<br />

of heat from comb<strong>in</strong>ed heat-power<br />

(CHP) <strong>in</strong>stallations, waste heat or<br />

heat from district heat<strong>in</strong>g systems.<br />

Owners may also opt <strong>for</strong> thermal <strong>in</strong>sulation<br />

that exceeds the basic requirements<br />

of the <strong>Energy</strong> Sav<strong>in</strong>g<br />

Ord<strong>in</strong>ance (Energiee<strong>in</strong>sparverordnung).<br />

The costs of such obligations<br />

and their fulfillment are paid by the<br />

builders/owners of new build<strong>in</strong>gs.<br />

Builders/owners must bear any added<br />

costs result<strong>in</strong>g from the obligation<br />

to use renewable energies or to<br />

carry out substitute measures. Such<br />

costs, which result directly from differences<br />

<strong>in</strong> the costs <strong>for</strong> different<br />

types of heat generation, can possibly<br />

be compensated <strong>for</strong> – depend<strong>in</strong>g<br />

on technology and cost-effectiveness<br />

– through sav<strong>in</strong>gs result<strong>in</strong>g from<br />

lower demand <strong>for</strong> fossil fuels.<br />

The second major thrust of the EE-<br />

WärmeG consists of f<strong>in</strong>ancial support.<br />

The EEWärmeG now provides<br />

the legal framework <strong>for</strong> support<br />

under the Market Incentive Programme<br />

(MAP), which has been <strong>in</strong><br />

place s<strong>in</strong>ce 1999. The MAP, the German<br />

Government’s central <strong>in</strong>strument<br />

<strong>for</strong> promot<strong>in</strong>g renewable energies<br />

<strong>in</strong> the heat market, triggers<br />

<strong>in</strong>vestments <strong>for</strong> the construction of<br />

<strong>in</strong>stallations <strong>for</strong> produc<strong>in</strong>g heat from<br />

renewable energies.<br />

The EEWärmeG explicitly sets out<br />

that the German Government f<strong>in</strong>ancially<br />

supports use of renewable energies<br />

<strong>for</strong> heat production through<br />

the MAP. The relevant fund<strong>in</strong>g is obta<strong>in</strong>ed<br />

from tax revenues and from<br />

the Climate Initiative of the Federal<br />

M<strong>in</strong>istry <strong>for</strong> the Environment, Nature<br />

Conservation and Nuclear Safety<br />

(BMU), a programme launched<br />

<strong>in</strong> 2008. This <strong>in</strong>itiative is f<strong>in</strong>anced<br />

through the auction<strong>in</strong>g of emission<br />

allowances. With this approach, f<strong>in</strong>ancial<br />

support <strong>in</strong> the heat sector<br />

differs fundamentally from the support<br />

provided <strong>in</strong> the electricity sector<br />

under the <strong>Renewable</strong> <strong>Energy</strong><br />

<strong>Sources</strong> Act (EEG), which f<strong>in</strong>ances<br />

feed-<strong>in</strong> payments <strong>for</strong> renewablesbased<br />

electricity via cost apportionment<br />

to electricity consumers.<br />

The Market Incentive Programme<br />

The MAP is implemented through<br />

adm<strong>in</strong>istrative regulations that def<strong>in</strong>e<br />

the relevant eligibilities and requirements<br />

perta<strong>in</strong><strong>in</strong>g to support. These<br />

adm<strong>in</strong>istrative regulations differentiate<br />

two avenues of support:<br />

Investment cost subsidies provided<br />

by the Federal Office of Economics<br />

and Export Control (BAFA) <strong>for</strong> smaller<br />

<strong>in</strong>stallations (<strong>in</strong>stalled, <strong>in</strong> most cases<br />

by private <strong>in</strong>vestors); and low-<strong>in</strong>terest<br />

loans with redemption subsidies provided<br />

<strong>in</strong> the framework of KfW’s<br />

“<strong>Renewable</strong> Energies” programme<br />

(“Premium” programme part) <strong>for</strong><br />

larger <strong>in</strong>stallations (<strong>in</strong> most cases,<br />

<strong>in</strong>stallations of commercial and communal<br />

<strong>in</strong>vestors).<br />

The details of such support are set out<br />

<strong>in</strong> support guidel<strong>in</strong>es.<br />

From January 2000 through May<br />

2010, under the BAFA support some<br />

975,000 solar thermal systems and<br />

some 245,000 small biomass-fired<br />

heat<strong>in</strong>g systems were funded with<br />

<strong>in</strong>vestment cost subsidies. The <strong>in</strong>vestments<br />

triggered by these subsidies<br />

amounted to about 8.1 billion euros<br />

<strong>in</strong> the “solar” segment and about<br />

3.5 billion euros <strong>in</strong> the “biomass”<br />

segment.<br />

At the beg<strong>in</strong>n<strong>in</strong>g of 2008 a “heat<br />

pump” support segment was added<br />

to the MAP, i.e. offered <strong>in</strong> addition to<br />

the “solar” and “biomass” segments.<br />

From January 2008 through May<br />

2010, <strong>in</strong>vestment cost subsidies were<br />

provided <strong>for</strong> some 56,000 efficient<br />

heat pumps. The volume of <strong>in</strong>vestments<br />

triggered by the subsidies<br />

amounted to about 982 million euros.<br />

Under the KfW support, some 6,500<br />

low-<strong>in</strong>terest loans with redemption<br />

subsidies were provided from early<br />

1999 through May 2010. The loans,<br />

which totalled about 1.33 billion euros,<br />

were approved <strong>for</strong> a range of systems,<br />

<strong>in</strong>clud<strong>in</strong>g heat networks, deep<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

31


MARKET INTRODUCTION<br />

geothermal systems and biogas pipel<strong>in</strong>es.<br />

Of the 6,500 loans approved,<br />

some 2,120 were approved <strong>in</strong> 2009,<br />

the “record year” <strong>for</strong> the MAP.<br />

In 2009, almost all of the available<br />

fund<strong>in</strong>g <strong>for</strong> the MAP was used. With<br />

a fund<strong>in</strong>g volume of about 423 million<br />

euros, the programme triggered<br />

<strong>in</strong>vestments of over 3 billion euros.<br />

In<strong>for</strong>mation about <strong>in</strong>vestment cost<br />

subsidies <strong>in</strong> the framework of the<br />

[mill. EUR]<br />

3,500<br />

3,000<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

359<br />

47<br />

873<br />

136<br />

32 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Market Incentive Programme is<br />

available from the Federal Office<br />

of Economics and Export Control<br />

(BAFA), Tel. 06196 908-625,<br />

www.bafa.de (under “Energie/<br />

Erneuerbare Energien”).<br />

Enquiries relat<strong>in</strong>g to low-<strong>in</strong>terest<br />

loans <strong>for</strong> commercial or municipal<br />

applicants under the Market Incentive<br />

Programme may be directed to<br />

the <strong>in</strong><strong>for</strong>mation centre of KfW-Bank-<br />

available fund<strong>in</strong>g and <strong>in</strong>itiated <strong>in</strong>vestment volumes<br />

<strong>in</strong> the Market Incentive Programme s<strong>in</strong>ce 2000<br />

Investment volume<br />

Of which fund<strong>in</strong>g volume<br />

979<br />

117<br />

633<br />

102<br />

890<br />

125<br />

1,713<br />

1,499 150<br />

1,220 165<br />

131<br />

engruppe, at Tel. 01801 335577<br />

(3.9 cents/m<strong>in</strong>ute from Deutsche<br />

Telekom’s fixed network; mobile<br />

calls cost a maximum of 42 cents/<br />

m<strong>in</strong>ute),<br />

http://www.kfw-mittelstandsbank.de<br />

under „Förderkredite/Umweltschutz/<br />

KfW-Programm Erneuerbare Energien”.<br />

1,635<br />

236<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

As of: January 2010 Source: BMU – KI III 2<br />

biofuels: promotion and<br />

relevant legislation<br />

S<strong>in</strong>ce 2007, addition of biofuels to<br />

fossil fuels has been promoted <strong>in</strong> accordance<br />

with quotas set out by the<br />

Biofuel Quota Act (BioKraftQuG),<br />

while pure biofuels not subject to<br />

such quotas are eligible <strong>for</strong> degressively<br />

structured tax breaks. As of<br />

2010, support pursuant to the Biofuel<br />

Susta<strong>in</strong>ability Ord<strong>in</strong>ance will<br />

be cont<strong>in</strong>gent on whether production<br />

of relevant fuel demonstrably<br />

meets certa<strong>in</strong> criteria <strong>for</strong> susta<strong>in</strong>able<br />

cultivation. As part of the specific<br />

provisions of this requirement, bio-<br />

fuels will only be eligible <strong>for</strong> credit<strong>in</strong>g<br />

aga<strong>in</strong>st applicable quotas, or <strong>for</strong><br />

tax breaks, if their greenhouse gas<br />

reduction potential is at least 35 %.<br />

Thus, as of 2015, the biofuels quota<br />

will also be oriented to greenhouse<br />

gas reduction.<br />

Biofuels’ share of total fuel consumption<br />

<strong>in</strong> Germany (exclud<strong>in</strong>g aviation)<br />

<strong>in</strong> 2009 was 5.5 %, thereby exceed<strong>in</strong>g<br />

the applicable legal quota of<br />

5.25 %. As of 2010, the quota has <strong>in</strong>creased<br />

to 6.25 %.<br />

3,045<br />

423<br />

Directive 2009/28/EC on the promotion<br />

of the use of energy from renewable<br />

sources lays down a b<strong>in</strong>d<strong>in</strong>g<br />

m<strong>in</strong>imum renewables’ share <strong>in</strong><br />

f<strong>in</strong>al energy consumption <strong>in</strong> the<br />

transport sector of at least 10 % by<br />

2020, <strong>for</strong> all Member States. Susta<strong>in</strong>ability<br />

standards must also be <strong>in</strong>troduced.<br />

However, this quota does not<br />

have to be met solely via use of biofuels;<br />

the renewable energies’ share<br />

of electromobility is also credited.


AVOIDED ENVIRONMENTAL DAMAGE<br />

hoW SocIETy bENEFITS FRoM uSE oF RENEWablE ENERgIES<br />

The preced<strong>in</strong>g pages have already<br />

presented <strong>in</strong><strong>for</strong>mation about the<br />

positive effects that the expansion of<br />

the use of renewable energies has on<br />

<strong>in</strong>vestments, turnover, employment<br />

and progress toward reduc<strong>in</strong>g energy<br />

imports and their costs. The follow<strong>in</strong>g<br />

section describes additional<br />

relevant positive effects.<br />

Reduction of environmental<br />

damage/avoided external<br />

costs<br />

Compared to energy generation<br />

from fossil fuels, use of renewable<br />

energies releases considerably lower<br />

levels of greenhouse gases and air<br />

pollutants. <strong>Renewable</strong>s thus contribute<br />

significantly to environmental<br />

protection. Their contribution <strong>in</strong> this<br />

regard can be evaluated <strong>in</strong> monetary<br />

terms as a positive effect and <strong>in</strong><br />

a systems analysis compared to the<br />

costs of the <strong>in</strong>creas<strong>in</strong>g use of renewable<br />

energies. The complex methodological<br />

issues that arise <strong>in</strong> such<br />

a comparison have been exam<strong>in</strong>ed<br />

<strong>in</strong> various studies, <strong>in</strong>clud<strong>in</strong>g studies<br />

The assumed costs used to evaluate <strong>in</strong><br />

monetary terms the environmental damage<br />

caused by emissions are obta<strong>in</strong>ed<br />

from the sum<br />

ó climate change-related costs,<br />

<strong>in</strong>clud<strong>in</strong>g harvest losses, land losses,<br />

impacts on health and water<br />

resources, ecosystem damage, etc.<br />

and<br />

ó air-pollutant-related health damage,<br />

harvest losses, material damages<br />

and impairments of biodiversity.<br />

The basic aim <strong>in</strong> determ<strong>in</strong><strong>in</strong>g damagecost<br />

estimates <strong>for</strong> <strong>in</strong>dividual emitted<br />

gases is to tally future damage, caused<br />

by current emissions, <strong>in</strong> terms of today’s<br />

costs.<br />

<strong>for</strong> the Federal Environment Agency<br />

[106] and the BMU [most recently:<br />

53]. The “best estimate” <strong>for</strong> the climate<br />

damage avoided through the<br />

use of renewable energies is currently<br />

placed at 70 euros/t CO 2 .<br />

On this basis, the figures on page<br />

34 show the costs of environmental<br />

damage result<strong>in</strong>g from emissions<br />

of conventional greenhouse gases<br />

(accord<strong>in</strong>g to IPCC; not <strong>in</strong>clud<strong>in</strong>g<br />

“black carbon”) and air pollutants.<br />

The costs are shown monetarily, as<br />

cents per kWh, <strong>for</strong> the ma<strong>in</strong> options<br />

<strong>for</strong> produc<strong>in</strong>g electricity and heat.<br />

Overall, fossil-based heat/power generation<br />

entails considerably higher<br />

environmental damage than that related<br />

to renewables-based heat and<br />

electricity. The environmental damage<br />

is compared to companies’ expenditures<br />

<strong>for</strong> CO 2 emission allowances,<br />

which electricity producers<br />

– and, to a lesser extent – heat producers<br />

normally <strong>in</strong>cur <strong>in</strong> procur<strong>in</strong>g<br />

such allowances. The costs of such<br />

allowances are designed to compensate<br />

at least partly <strong>for</strong> the environmental<br />

damage caused. The costs <strong>for</strong><br />

the allowances thus lead to partial<br />

<strong>in</strong>ternalisation of the environmental<br />

damage, although the <strong>in</strong>ternalisation<br />

levels pale by comparison to the<br />

damage caused.<br />

Pursuant to [55], <strong>in</strong> 2009 use of renewable<br />

energies <strong>in</strong> the electricity<br />

and heat sectors prevented about<br />

7.8 billion euros worth of environmental<br />

damage. <strong>Renewable</strong>s-based<br />

electricity generation contributed<br />

about 5.7 billion euros to this figure,<br />

renewables-based heat generation<br />

about 2.1 billion euros. When the<br />

costs <strong>for</strong> CO 2 allowances and the partial<br />

<strong>in</strong>ternalisation of environmental<br />

damage [76], are taken <strong>in</strong>to account,<br />

these gross figures decrease to about<br />

4.8 billion euros (electricity) and<br />

2.0 billion euros (heat).<br />

Apply<strong>in</strong>g the a<strong>for</strong>ementioned estimate<br />

of 70 euros/t CO 2 , the CO 2 reduction<br />

contributions of all renewable<br />

energies (<strong>in</strong> the electricity, heat<br />

and mobility sectors) <strong>in</strong> 2009 (some<br />

107 million tonnes; cf. p. 18) amount<br />

to some 7.4 billion euros (gross)<br />

worth of avoided climate damage.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

33


AVOIDED ENVIRONMENTAL DAMAGE/OTHER EFFECTS<br />

Environmental damage from emissions of greenhouse gases and air pollutants,<br />

and co 2 allowance costs – electricity generation<br />

Damage via air pollution<br />

Damage via greenhouse gases<br />

Internalisation via<br />

CO allowances<br />

2<br />

Provisional values<br />

1) Average value <strong>for</strong> biomass; range<br />

from 0.4 to 5.0 cents/kWh<br />

<strong>Sources</strong>: own calculations of Fraunhofer ISI,<br />

pursuant to ISI et al. [53]; NEEDS [105];<br />

UBA [75]; Po<strong>in</strong>tCarbon [68]<br />

[Cents/kWh]<br />

34 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Hydro-<br />

power<br />

W<strong>in</strong>d<br />

energy<br />

Photovoltaics<br />

Biomass 1) Lignite Hard coal Natural<br />

gas<br />

Environmental damage from emissions of greenhouse gases and air pollutants,<br />

and co 2 allowance costs – heat generation<br />

Damage via air pollution<br />

Damage via greenhouse gases<br />

Internalisation via<br />

CO allowances<br />

2<br />

Provisional values<br />

1) Average value <strong>for</strong> biomass; range<br />

from 0.1 to 0.9 cents/kWh<br />

2) Average value <strong>for</strong> biomass; range<br />

from 0.1 to 0.3 cents/kWh<br />

<strong>Sources</strong>: own calculations of Fraunhofer ISI,<br />

pursuant to ISI et al. [53]; NEEDS [105];<br />

UBA [75]; Po<strong>in</strong>tCarbon [68]<br />

other positive effects <strong>for</strong><br />

society of expansion<br />

of renewable energies<br />

[Cents/kWh]<br />

In addition to prevent<strong>in</strong>g environmental<br />

damage, the expansion of<br />

renewable energies entails additional<br />

positive effects <strong>for</strong> society<br />

that have not yet been quantified,<br />

or have only been partly quantified.<br />

These effects <strong>in</strong>clude conservation<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Biomass,<br />

HH 1)<br />

Biomass<br />

<strong>in</strong>dustry 2)<br />

Solar<br />

thermal<br />

en.<br />

Near-<br />

surface<br />

geoth.<br />

energy<br />

Heat<strong>in</strong>g<br />

oil, HH<br />

of scarce resources; impetus <strong>for</strong> <strong>in</strong>novation<br />

<strong>in</strong> renewable energy <strong>in</strong>stallations;<br />

strengthen<strong>in</strong>g of decentralised<br />

structures; transfer of knowhow,<br />

technologies and <strong>in</strong>stallations<br />

to other countries; and reduced import<br />

dependency and better supply<br />

security through the diversification<br />

of energy resources. Another factor<br />

is also significant and is expected to<br />

become more so <strong>in</strong> future: use of renewable<br />

energies helps defuse con-<br />

Natural<br />

gas, HH<br />

District<br />

heat, HH<br />

Natural<br />

gas,<br />

<strong>in</strong>dustry<br />

Heat<strong>in</strong>g<br />

oil<br />

Hard coal/<br />

lignite,<br />

<strong>in</strong>dustry<br />

flicts over scarce resources, thereby<br />

<strong>in</strong>directly contribut<strong>in</strong>g to external<br />

and <strong>in</strong>ternal security.<br />

On a macroeconomic level, such<br />

effects provide economic impetus<br />

that can trigger or <strong>in</strong>fluence regional<br />

and national developments,<br />

thus ultimately enhanc<strong>in</strong>g employment<br />

and value added. Additional<br />

research on such effects needs to be<br />

carried out [53].


RESEARCH AND DEVELOPMENT<br />

RESEaRch aND DEvEloPMENT FoR RENEWablE ENERgy TEchNologIES<br />

Research and development projects<br />

relative to renewable energy technologies<br />

are be<strong>in</strong>g suppported <strong>in</strong> the<br />

framework of the German Government’s<br />

energy research programme.<br />

Investments <strong>in</strong> renewable energies<br />

help to conserve scarce resources,<br />

reduce dependence on energy imports<br />

and protect the environment<br />

and climate. Technological <strong>in</strong>novations<br />

reduce the costs of renewablesbased<br />

electricity. The Federal M<strong>in</strong>istry<br />

<strong>for</strong> the Environment, Nature<br />

Conservation and Nuclear Safety<br />

(BMU) is responsible <strong>for</strong> applicationoriented<br />

project fund<strong>in</strong>g <strong>in</strong> the area<br />

of renewable energies.<br />

The BMU supports R&D <strong>in</strong> the area<br />

of renewable energies also with<br />

a view to promot<strong>in</strong>g Germany as<br />

an <strong>in</strong>dustrial location and bolster<strong>in</strong>g<br />

employment. Research support<br />

strengthens the <strong>in</strong>ternational leadership<br />

and competitiveness of German<br />

companies and research <strong>in</strong>stitutions.<br />

It thus helps to create jobs <strong>in</strong> a globally<br />

grow<strong>in</strong>g market.<br />

Newly approved projects by the bMu<br />

aims and key areas of<br />

research support<br />

The overarch<strong>in</strong>g aims of research<br />

support <strong>in</strong>clude:<br />

ó Expansion of renewable energies<br />

as part of the German Government’s<br />

energy and climate policy;<br />

ó Strengthen<strong>in</strong>g the <strong>in</strong>ternational<br />

competitiveness of German companies<br />

and research <strong>in</strong>stitutions;<br />

ó Creat<strong>in</strong>g jobs with a future.<br />

To achieve these aims the BMU has<br />

def<strong>in</strong>ed the follow<strong>in</strong>g key areas:<br />

ó Work<strong>in</strong>g to cont<strong>in</strong>ually reduce<br />

the costs of us<strong>in</strong>g renewable energies;<br />

ó Optimis<strong>in</strong>g energy systems, with<br />

a view to the <strong>in</strong>creas<strong>in</strong>g renewable<br />

energies’ share of the energy<br />

supply;<br />

ó Mak<strong>in</strong>g further development and<br />

expansion of renewable energies<br />

compatible with environmental<br />

and nature conservation criteria –<br />

<strong>for</strong> example, via resource-conserv<strong>in</strong>g<br />

production methods;<br />

ó Provid<strong>in</strong>g <strong>for</strong> rapid technology<br />

transfer from the research sector<br />

<strong>in</strong>to the market.<br />

In 2009, the BMU approved a total of<br />

163 new projects, represent<strong>in</strong>g a total<br />

volume of over 118 million euros,<br />

<strong>in</strong>clud<strong>in</strong>g the areas of photovoltaics,<br />

geothermal energy, w<strong>in</strong>d energy,<br />

low-temperature solar thermal systems,<br />

solar thermal power stations,<br />

ocean energy, <strong>in</strong>ternational cooperation<br />

and overall strategy and overarch<strong>in</strong>g<br />

issues.<br />

The BMU attaches great importance<br />

to present<strong>in</strong>g its research support<br />

transparently. Comprehensive <strong>in</strong><strong>for</strong>mation<br />

is available <strong>in</strong> the annual<br />

report <strong>for</strong> 2009, a free newsletter,<br />

and a regularly updated overview of<br />

ongo<strong>in</strong>g research projects<br />

(www.erneuerbare-energien.de/<br />

<strong>in</strong>halt/4595/).<br />

2006 2007 2008 2009<br />

[Number] [1,000 EuR] [Share <strong>in</strong> %] [Number] [1,000 EuR] [Share <strong>in</strong> %] [Number] [1,000 EuR] [Share <strong>in</strong> %] [Number] [1,000 EuR] [Share <strong>in</strong> %]<br />

Photovoltaics 39 43,367 43.9 49 41,653 40.8 38 39,735 26.3 36 31,446 26.6<br />

W<strong>in</strong>d energy 29 16,083 16.3 52 34,713 34.0 32 40,097 26.6 45 28,227 23.8<br />

Geoth. energy 11 23,718 24.0 17 8,051 7.9 18 16,381 10.9 14 14,892 12.6<br />

Low-temp. solar<br />

thermal energy<br />

Solar thermal<br />

power<br />

stations<br />

System<br />

<strong>in</strong>tegration<br />

Cross-sectoral<br />

research<br />

13 5,059 5.1 20 7,505 7.3 20 10,129 6.7 17 7,013 5.9<br />

16 6,875 6.9 18 5,851 5.7 15 8,217 5.4 22 8,612 7.3<br />

– – – – – – 26 28,184 18.7 6 11,458 9.7<br />

8 1,860 1.9 13 2,474 2.4 11 3,004 2.0 16 3,314 2.8<br />

Other 2 1,856 1.9 8 1,917 1.9 9 5,066 3.4 7 13,478 11.3<br />

Total 118 98,818 100.0 177 102,164 100.0 169 150,813 100.0 163 118,440 100.0<br />

Source: BMU KI III 5<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

35


OVERVIEW OF ECONOMIC IMPACTS<br />

Overview Of the ecOnOmic impacts Of expansiOn<br />

Of renewable energies<br />

The previous pages have expla<strong>in</strong>ed<br />

how expansion of use of renewable<br />

energies, while entail<strong>in</strong>g costs,<br />

br<strong>in</strong>gs considerable benefits.<br />

To date the focus has primarily been<br />

on the costs of renewables-based<br />

electricity generation aris<strong>in</strong>g <strong>in</strong> connection<br />

with the <strong>Renewable</strong> <strong>Energy</strong><br />

<strong>Sources</strong> Act (EEG). Other renewable<br />

energy sectors and the benefits that<br />

expansion of those sectors could<br />

br<strong>in</strong>g have tended to receive little<br />

36 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

attention. As a result, there has been<br />

no comprehensive, scientifically<br />

founded overview of the relevant<br />

effects <strong>in</strong> the <strong>for</strong>m of a cost-benefit<br />

analysis.<br />

To close this gap, the BMU has commissioned<br />

a project team, led by the<br />

Fraunhofer Institute <strong>for</strong> Systems and<br />

Innovation Research ISI/Karlsruhe,<br />

to carry out an extensive research<br />

project. In spr<strong>in</strong>g 2010, the group<br />

presented a first <strong>in</strong>terim report. The<br />

report shows that any well-founded<br />

economic overview of renewable<br />

energies must take account of a<br />

diverse range of complex aspects<br />

and <strong>in</strong>terrelationships.<br />

Further <strong>in</strong><strong>for</strong>mation on this study<br />

is available <strong>in</strong> the Internet at the<br />

BMU’s theme page,<br />

www.erneuerbare-energien.de/<br />

45801/45802/ [ISI et al. 53].<br />

<strong>in</strong>terrelationships considered <strong>in</strong> an economic overview analysis of renewable energies<br />

Category System-analytical Distribution aspects Other <strong>in</strong>terrelationships 1)<br />

Macroeconomic<br />

Impact type Benefits Costs Burdens Relief<br />

Analysis area<br />

Object of the<br />

analysis<br />

Employment<br />

GDP,<br />

revenue<br />

Differential costs, equalisation costs, control costs and grid-expansion costs,<br />

transaction costs, taxation, support fund<strong>in</strong>g, employment and revenue, avoided external costs,<br />

merit order, avoided imports, portfolio effects, …<br />

<strong>Renewable</strong>s-based electricity<br />

EEG-<br />

related<br />

1) The other impacts cannot be clearly<br />

assigned to any one of the three a<strong>for</strong>ementioned<br />

ma<strong>in</strong> categories. Such impacts<br />

<strong>in</strong>clude the possible effects of expansion of<br />

renewable energies on <strong>in</strong>novation <strong>in</strong>tensity<br />

Subsidy<strong>in</strong>dependent<br />

MAP-<br />

related<br />

Total renewable energies<br />

<strong>Renewable</strong>s-based heat Other renewable energies 2)<br />

Subsidy<strong>in</strong>dependent<br />

– and not only <strong>in</strong> the area of renewable<br />

energies; spill-over effects <strong>in</strong> the areas of<br />

technology and policy-mak<strong>in</strong>g; effects on<br />

environmental awareness; changes <strong>in</strong> common<br />

societal views with regard to climate<br />

EE-<br />

WärmeG<br />

protection; and the benefits of renewable<br />

energies with regard to <strong>in</strong>ternal and external<br />

security<br />

2) e.g. transport<br />

Source: ISI et al. [53]


Some of the cost-benefit impacts<br />

of renewable energies have not yet<br />

been quantified. These <strong>in</strong>clude the<br />

significance of renewable energies<br />

<strong>for</strong> <strong>in</strong>ternal and external security.<br />

In light of the many different effects<br />

<strong>in</strong>volved, it is important to understand<br />

that quantitative comparisons<br />

are only possible with<strong>in</strong> the various<br />

<strong>in</strong>dividual ma<strong>in</strong> effects categories.<br />

To date, perhaps the best means of<br />

carry<strong>in</strong>g out such comparisons is a<br />

cost-benefit evaluation based on systems<br />

analysis. A rough estimate of<br />

the available quantitatively determ<strong>in</strong>ed<br />

system costs <strong>in</strong> the areas of<br />

electricity and heat shows total costs<br />

of about 7.5 billion euros <strong>for</strong> 2009.<br />

Those costs were offset by quantified<br />

gross benefits of about 7.8 billion<br />

euros. As <strong>in</strong> the other categories<br />

<strong>in</strong>volved, considerable additional<br />

research needs to be carried out <strong>in</strong><br />

this area. At the same time, <strong>in</strong> light<br />

Selected key figures relative to economic analysis of expansion of renewable energies<br />

<strong>in</strong> germany’s electricity and heat sectors, 2009<br />

System-analytical costs/benefits aspects<br />

costs benefits<br />

Differential costs, electricity 5.6 bn. EUR<br />

Control and balanc<strong>in</strong>g energy ca. 0.4 bn. EUR<br />

Grid expansion 0.02 bn. EUR 1)<br />

Transaction costs 0.03 bn. EUR 1)<br />

Total, electricity<br />

Differential costs, heat<br />

ca. 6 bn. EuR<br />

1.5 bn. EuR<br />

Total 2) about 7.5 bn. EuR 7.8 bn. EuR<br />

EEG-related differential<br />

costs<br />

Merit-order effect<br />

(renewables-based<br />

electricity)<br />

Taxation of renewablesbased<br />

electricity<br />

Federal subsidies <strong>for</strong><br />

renewable energies<br />

Special equalisation<br />

provisions <strong>in</strong> the EEG<br />

OVERVIEW OF ECONOMIC IMPACTS<br />

of the considerable benefits <strong>in</strong>volved<br />

it is clear that any costs-only analysis<br />

of the expansion of renewable energies<br />

is bound to be <strong>in</strong>adequate.<br />

The follow<strong>in</strong>g table presents an overview<br />

of the most important currently<br />

known cost-benefit impacts of renewables-based<br />

electricity and heat<br />

generation.<br />

5.7 bn. EuR<br />

Environmental damage avoided via renewables-based<br />

electricity (gross)<br />

2.1 bn. EuR<br />

Environmental damage avoided via<br />

renewables-based heat (gross)<br />

n.q. Portfolio-Effekt<br />

Distribution effects<br />

Total beneficiaries Parties burdened<br />

4.7 bn. EUR Installation operators All electricity customers, exception: beneficiaries of special<br />

equalisation provisions with<strong>in</strong> the EEG<br />

3.6 – 4.0 bn. EUR 1) 2) Electricity customers or suppliers,<br />

depend<strong>in</strong>g on carry-over; <strong>in</strong> all likelihood,<br />

especially electricity-<strong>in</strong>tensive<br />

special-contract customers<br />

1 – 1.1 bn. EUR Federal budget/<br />

Pension <strong>in</strong>surance system<br />

0.8 bn. EUR Installation operators; <strong>in</strong>directly,<br />

also producers, <strong>in</strong>ter alia (<strong>in</strong>novation<br />

effects, etc)<br />

0.6 – 0.7 bn. EUR About 500 electricity-<strong>in</strong>tensive<br />

companies and railway operators<br />

Macroeconomic and other effects (selection)<br />

Conventional electricity producers<br />

Electricity consumers; possibly, producers of renewables-based<br />

electricity (those who carry out their own sell<strong>in</strong>g)<br />

Federal budget<br />

All other electricity customers<br />

Revenue effects (all renewables) about 36 bn. EUR (total revenue) and about 16 bn. EUR (with direct effects on employment)<br />

Employment (all renewables) about 300,000 directly and <strong>in</strong>directly employed persons<br />

Avoided energy imports (all renewables) 5.7 bn. EUR (brutto)<br />

<strong>Energy</strong> price, GDP effect 1), 2)<br />

100 – 200 bn. EUR<br />

Impacts on <strong>in</strong>ternal and external security<br />

(<strong>in</strong>clud<strong>in</strong>g improved energy <strong>in</strong>dependence)<br />

n.q.<br />

n.q. = not quantified<br />

1) To date, data only available <strong>for</strong> 2008<br />

2) Def<strong>in</strong>itive summ<strong>in</strong>g of the system-analytically<br />

determ<strong>in</strong>ed cost-benefit impacts <strong>for</strong> 2009 is not<br />

yet possible. The reasons <strong>for</strong> this <strong>in</strong>clude the<br />

differences <strong>in</strong> applicable reference years and<br />

the fact that benefits are expressed as gross<br />

benefits.<br />

Source: ISI [55]; IfnE [7]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

37


POTENTIAL CAPACITIES<br />

loNg-TERM, SuSTaINablE uTIlISaTIoN PoTENTIal<br />

oF RENEWablE ENERgIES FoR ElEcTRIcITy, hEaT aND<br />

FuEl PRoDucTIoN IN gERMaNy<br />

38 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

use<br />

2009<br />

Potential capacity Remarks<br />

yield output<br />

Electricity generation [TWh] [TWh/a] [MW]<br />

Hydropower 1) 19.0 25 5,200 Runn<strong>in</strong>g water and natural <strong>in</strong>flow to reservoirs<br />

W<strong>in</strong>d energy 37.8<br />

on land 37.8 110 50,000<br />

at sea (offshore) 0.037 300 80,000<br />

Power calculated on the basis of the average value of<br />

2,200 h/a<br />

Power calculated on the basis of the average value of<br />

3,750 h/a<br />

Biomass 2) 30.5 60 10,000 Some generation as CHP generation<br />

Photovoltaic power 6.2 115 125,000 3) Only suitable rooftop, facade and municipal areas<br />

Geothermal energy 0.02 90 15,000<br />

Total 93.5 700<br />

Share with respect to gross electricity consumption<br />

<strong>in</strong> 2009<br />

16.1 % 120.2 %<br />

Range of 66 – 290 TWh, depend<strong>in</strong>g on requirements perta<strong>in</strong><strong>in</strong>g<br />

to heat use (comb<strong>in</strong>ed heat-power (CHP) generation)<br />

heat generation [TWh] [TWh/a]<br />

Biomass 105.3 160 Includ<strong>in</strong>g useful heat from CHP generation<br />

Geothermal energy 5.0 300 Only energy production from hydrothermal sources<br />

Solar thermal energy 4.7 350 Only suitable rooftop and municipal areas<br />

Total 115.0 810<br />

Share with respect to f<strong>in</strong>al-energy consumption<br />

<strong>for</strong> heat <strong>in</strong> 2009 4) 8.8 % 61.9 %<br />

Fuels [TWh] [TWh/a]<br />

Biomass 33.8 90<br />

Total 33.8 90<br />

Share with respect to fuel consumption <strong>in</strong> 2009 5.5 % 14.7 %<br />

Share with respect to total f<strong>in</strong>al energy consumption<br />

<strong>in</strong> 2009<br />

<strong>Renewable</strong>s-based energy imports are not<br />

<strong>in</strong>cluded <strong>in</strong> the figures.<br />

1) Exclud<strong>in</strong>g ocean energy<br />

2) Includ<strong>in</strong>g biogenic waste<br />

3) Capacity oriented to module output (MW ); p<br />

the correspond<strong>in</strong>g alternat<strong>in</strong>g-current<br />

power level is 115 MW<br />

4) Space heat<strong>in</strong>g, water heat<strong>in</strong>g and other<br />

process heat<br />

<strong>Sources</strong>: Nitsch [100]; Scholz [25]; ZSW [1];<br />

work<strong>in</strong>g group: WI, DLR, IFEU [101]<br />

10.3 % 68.0 %<br />

As a result of different assumptions<br />

regard<strong>in</strong>g availability of suitable<br />

sites, the technical characteristics of<br />

energy technologies and other factors,<br />

estimates on utilisation potential<br />

can vary widely.<br />

The orientational figures given here<br />

take account especially of nature<br />

conservation and landscape protection<br />

concerns. They thus tend to represent<br />

the lower limits of the capacities<br />

that could be developed.<br />

2.35 million ha cultivation area <strong>for</strong> energy crops<br />

(of a total of 4.2 million ha cultivation area)<br />

The percentage share of potential renewable-energies<br />

capacities grows as f<strong>in</strong>al energy consumption is reduced<br />

via energy-efficiency ga<strong>in</strong>s.<br />

A great deal of versatility is seen <strong>in</strong><br />

energy-related biomass use. Depend<strong>in</strong>g<br />

on the requirement, there<strong>for</strong>e,<br />

capacity assignment to the areas<br />

of electricity generation, heat generation<br />

and fuel production can<br />

change. This applies especially <strong>for</strong><br />

cultivation of energy crops (calculated<br />

here on the basis of a cultivation<br />

area of 4.2 million hectares).


Part II:<br />

renewable energIes In the euroPean unIon<br />

RENEWABLE ENERGIES IN THE EUROPEAN UNION<br />

Directive 2009/28/eC of the european Parliament and of the Council on the promotion of the use<br />

of energy from renewable sources, which entered <strong>in</strong>to <strong>for</strong>ce <strong>in</strong> June 2009, def<strong>in</strong>es ambitious aims:<br />

by 2020, renewable energies are to meet 20 % of f<strong>in</strong>al energy consumption and at least 10 % of<br />

energy requirements <strong>in</strong> the transport sector<br />

Directive 2009/28/EC of the European<br />

Parliament and of the Council<br />

entered <strong>in</strong>to <strong>for</strong>ce on 25 June 2009.<br />

This new EU Directive <strong>for</strong> the promotion<br />

of renewable energies is part<br />

of a European climate and energy<br />

package <strong>for</strong> implementation of resolutions<br />

taken at the 9 March 2007<br />

spr<strong>in</strong>g summit of heads of state and<br />

government (European Council). The<br />

Directive establishes a b<strong>in</strong>d<strong>in</strong>g aim<br />

of rais<strong>in</strong>g renewable energies’ share<br />

of the EU’s total energy consumption<br />

from about 8.5 % <strong>in</strong> 2005 to<br />

20 % <strong>in</strong> 2020.<br />

The Directive divides the EU’s 20 %<br />

goal <strong>in</strong>to differentiated national<br />

overall targets <strong>for</strong> renewables’ share<br />

of f<strong>in</strong>al energy consumption <strong>in</strong><br />

2020, <strong>for</strong> each of the Member States.<br />

These b<strong>in</strong>d<strong>in</strong>g national targets are<br />

oriented to the respective start<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>in</strong> 2005 and to national potential.<br />

Accord<strong>in</strong>gly, the national targets<br />

<strong>for</strong> EU Member States <strong>for</strong> 2020<br />

vary from 10 % <strong>for</strong> Malta to 49 % <strong>for</strong><br />

Sweden. A national target of 18 %<br />

has been set <strong>for</strong> Germany.<br />

Along with such national targets,<br />

the Directive also establishes a common<br />

goal of a 10 % renewables’<br />

share of energy consumption <strong>in</strong> the<br />

transport sector. The Member States<br />

may thus count biofuel use, as well<br />

as (<strong>for</strong> example) electromobility us<strong>in</strong>g<br />

renewables-based electricity, <strong>in</strong><br />

their progress toward that goal.<br />

For reach<strong>in</strong>g the national targets,<br />

the Directive emphasises national<br />

support mechanisms. Member States<br />

can decide on the design of their<br />

support system with a view to optimal<br />

development of their capacities.<br />

In addition, the Directive <strong>in</strong>troduces<br />

flexible cooperation mechanisms<br />

that allow Member States to work<br />

together toward their goals. Such<br />

cooperation mechanisms <strong>in</strong>clude<br />

statistical transfer of surplus quantities<br />

of renewable energies; jo<strong>in</strong>t<br />

projects <strong>for</strong> promot<strong>in</strong>g renewable<br />

energies; and (partial) comb<strong>in</strong>ation<br />

of the national support systems of<br />

several Member States.<br />

The Directive requires the Member<br />

States to adopt, by 30 June 2010,<br />

national action plans <strong>for</strong> implement<strong>in</strong>g<br />

their targets and, to make regular<br />

progress reports to the Commission<br />

until 2020. In addition, the<br />

Directive stipulates that renewablesbased<br />

electricity must be given priority<br />

access to the grid and specifies<br />

the first susta<strong>in</strong>ability requirements<br />

<strong>for</strong> production of biomass <strong>for</strong> energy<br />

applications. However, the Directive’s<br />

susta<strong>in</strong>ability criteria only<br />

apply to biofuels and liquid bioenergy<br />

sources. In February 2010, the<br />

EU Commission presented a report<br />

on susta<strong>in</strong>ability criteria <strong>for</strong> gaseous<br />

and solid bioenergy sources. In contrast<br />

to the Directive’s b<strong>in</strong>d<strong>in</strong>g susta<strong>in</strong>ability<br />

criteria, this report only<br />

conta<strong>in</strong>s recommendations <strong>for</strong> the<br />

Member States.<br />

In preparation <strong>for</strong> their national<br />

action plans Member States were<br />

already required, to submit an advance<br />

assessment to the European<br />

Union at the end of 2009. In those<br />

assessments, all Member States reported<br />

their expectations regard<strong>in</strong>g<br />

their national shares of renewable<br />

energies by 2020, tak<strong>in</strong>g <strong>in</strong>to<br />

account the possibility of us<strong>in</strong>g the<br />

flexible cooperation mechanisms.<br />

A majority of the Member States expect<br />

to reach or even surpass their<br />

goals, us<strong>in</strong>g their own resources and<br />

measures. Only five Member States<br />

expect to have to rely on imports<br />

with the help of the flexible cooperation<br />

mechanisms. In its own advance<br />

assessment, at the end of December<br />

2009, Germany expects to<br />

achieve a renewable energies’ share<br />

of 18.7 % <strong>in</strong> 2020, i.e. to slightly exceed<br />

its national target. Add<strong>in</strong>g all<br />

of the Member States’ advance assessments<br />

yields a figure of 20.3 %,<br />

which would slightly exceed the<br />

goal <strong>for</strong> the EU as a whole.<br />

The Directive <strong>in</strong>troduces a first global<br />

EU provision cover<strong>in</strong>g all areas<br />

of renewable energies: electricity,<br />

heat/refrigeration and transport.<br />

The Directive will thus replace the<br />

exist<strong>in</strong>g EU-wide provisions <strong>for</strong> promotion<br />

of renewable energies, which<br />

expire on 1 January 2012 – the EU<br />

Directive <strong>for</strong> promotion of renewable<br />

energy sources <strong>in</strong> the electricity<br />

market and the Biofuels Directive.<br />

The Electricity Directive, which entered<br />

<strong>in</strong>to <strong>for</strong>ce <strong>in</strong> 2001, prescribes<br />

an <strong>in</strong>crease <strong>in</strong> renewable energies’<br />

share of electricity generation from<br />

14 % <strong>in</strong> 1997 to 21 % by 2010 <strong>in</strong> the<br />

EU-25. The Biofuels Directive pretends<br />

the goal of a 5.75 % biofuels’<br />

share of fuel consumption <strong>in</strong> 2010.<br />

The new, comprehensive EU Directive<br />

<strong>for</strong> promotion of renewable<br />

energies will provide a reliable EUwide<br />

legal framework <strong>for</strong> the necessary<br />

<strong>in</strong>vestments. It will thus lay the<br />

foundation <strong>for</strong> cont<strong>in</strong>ued successful<br />

expansion of renewable energies<br />

through 2020.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

39


EU: FRAMEWORK CONDITIONS<br />

effeCts of eu DIreCtIve 2009/28/eC<br />

on renewable energy statIstICs<br />

The Directive <strong>in</strong>cludes detailed<br />

provisions <strong>for</strong> calculat<strong>in</strong>g target<br />

achievement. These methods differ<br />

<strong>in</strong> some respects from the calculation<br />

methods that have been used to<br />

date <strong>in</strong> Germany and that have provided<br />

the basis <strong>for</strong> the present brochure.<br />

In particular, the follow<strong>in</strong>g<br />

differences apply:<br />

gross f<strong>in</strong>al energy consumption<br />

In Article 2 (f), Directive 2009/28/EC<br />

def<strong>in</strong>es gross f<strong>in</strong>al energy consumption<br />

as follows:<br />

“‘gross f<strong>in</strong>al consumption of energy’<br />

means the energy commodities delivered<br />

<strong>for</strong> energy purposes to <strong>in</strong>dustry,<br />

transport, households, services <strong>in</strong>clud<strong>in</strong>g<br />

public services, agriculture, <strong>for</strong>estry<br />

and fisheries, <strong>in</strong>clud<strong>in</strong>g the consumption<br />

of electricity and heat by the energy<br />

branch <strong>for</strong> electricity and heat production<br />

and <strong>in</strong>clud<strong>in</strong>g losses of electric-<br />

40 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

ó the goal is oriented to gross f<strong>in</strong>al<br />

energy consumption,<br />

ó electricity generation from hydropower<br />

and w<strong>in</strong>d energy <strong>in</strong>stallations<br />

is normalised,<br />

ó special specifications apply to<br />

calculation of shares of heat con-<br />

ity and heat <strong>in</strong> distribution and transmission.”<br />

In national statistics to date (<strong>for</strong> example,<br />

this brochure), f<strong>in</strong>al energy<br />

consumption is def<strong>in</strong>ed as that portion<br />

of domestic energy that is used<br />

<strong>for</strong> energy applications and that<br />

reaches end consumers. “Gross f<strong>in</strong>al<br />

energy” is equivalent to f<strong>in</strong>al energy<br />

plus l<strong>in</strong>e losses and own consumption<br />

by generation <strong>in</strong>stallations. It is<br />

normalisation rule <strong>for</strong> w<strong>in</strong>d energy and hydropower<br />

The calculation of the contributions<br />

of w<strong>in</strong>d energy and hydropower<br />

takes the impacts of climate fluctuations<br />

on electricity production <strong>in</strong>to<br />

account. Due to this “normalisation”<br />

to an average year, the value obta<strong>in</strong>ed<br />

<strong>for</strong> w<strong>in</strong>d energy and hydropower<br />

no longer corresponds to ac-<br />

sumption and <strong>in</strong> the transport<br />

sector.<br />

As a result, there are limited possibilities<br />

<strong>for</strong> compar<strong>in</strong>g data pursuant<br />

to the EU Directive with data relative<br />

to the <strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong><br />

Act (EEG) and data from national<br />

statistics.<br />

thus a larger figure, as the follow<strong>in</strong>g<br />

table shows:<br />

Example <strong>for</strong> Germany:<br />

f<strong>in</strong>al energy consumption, 2007: 8,815 PJ<br />

L<strong>in</strong>e losses, own consumption: + 296 PJ<br />

gross f<strong>in</strong>al energy consumption,<br />

2007:<br />

9,111 PJ<br />

Source: AGEB, prelim<strong>in</strong>ary<br />

tual production <strong>in</strong> any year <strong>in</strong> question,<br />

but does provide a better picture<br />

of the status of development of<br />

such resources.<br />

effects of the normalisation rule, illustrated with the example of w<strong>in</strong>d energy <strong>in</strong> 2008 and 2009<br />

national method<br />

2008 2009<br />

eu Directive<br />

method<br />

national method<br />

eu Directive<br />

method<br />

W<strong>in</strong>d energy 1) 40,574 GWh 38,873 GWh 37,809 GWh 41,092 GWh<br />

transport sector<br />

The calculation of target achievement<br />

<strong>in</strong> the transport sector only<br />

takes account of susta<strong>in</strong>ably produced<br />

biofuels plus the quantity of<br />

renewables-based electricity that<br />

is used <strong>in</strong> electric vehicles (of all<br />

types). In addition, biofuels from<br />

residual substances, lignocellulosic<br />

biomass, biomass-to-liquids (BtL) and<br />

biogas from residual substances are<br />

1) W<strong>in</strong>d energy was normalised over<br />

a four-year period, pursuant to the<br />

EU Directive<br />

counted double, while renewablesbased<br />

electricity <strong>in</strong> road transports<br />

is counted with a factor of 2.5.


[%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

EU: FRAMEWORK CONDITIONS<br />

renewable energies’ shares of gross f<strong>in</strong>al energy consumption <strong>in</strong> selected eu countries<br />

EU-27<br />

Germany<br />

France<br />

Italy<br />

Spa<strong>in</strong><br />

United K<strong>in</strong>gdom<br />

Indicative trajectory pursuant to<br />

EU Directive 2009/28/EC<br />

Target<br />

2001 2003 2005<br />

2011/ 2013/ 2015/ 2017/<br />

2020<br />

2012 2014 2016 2018<br />

share of<br />

re <strong>in</strong> total<br />

gross feC<br />

2005 [%]<br />

target<br />

2020<br />

Belgium 2.2 13<br />

Bulgaria 9.4 16<br />

Denmark 17.0 30<br />

Germany 5.8 18<br />

Estonia 18.0 25<br />

F<strong>in</strong>land 28.5 38<br />

France 10.3 23<br />

Greece 6.9 18<br />

Ireland 3.1 16<br />

Italy 5.2 17<br />

Latvia 32.6 40<br />

Lithuania 15.0 23<br />

Luxembourg 0.9 11<br />

Malta 0.0 10<br />

Netherlands 2.4 14<br />

Austria 23.3 34<br />

Poland 7.2 15<br />

Portugal 20.5 31<br />

Romania 17.8 24<br />

Sweden 39.8 49<br />

Slovakia 6.7 14<br />

Slovenia 16.0 25<br />

Spa<strong>in</strong> 8.7 20<br />

Czech. Republic 6.1 13<br />

Hungary 4.3 13<br />

United K<strong>in</strong>gdom 1.3 15<br />

Cyprus 2.9 13<br />

eu-27 8.5 20<br />

39.8<br />

49<br />

32.6<br />

40<br />

28.5<br />

38<br />

23.3<br />

34<br />

20.5<br />

31<br />

17.0<br />

30<br />

16.0 25<br />

18.0 25<br />

17.8 24<br />

15.0 23<br />

10.3 23<br />

8.7 20<br />

6.9 18<br />

5.8 18<br />

5.2 17<br />

3.1 16<br />

9.4 16<br />

1.3 15<br />

7.2 15<br />

6.7 14<br />

2.4 14<br />

2.9 13<br />

Target 2020<br />

4.3 13<br />

RE share 2005<br />

6.1 13<br />

[%]<br />

2.2 13<br />

0.9 11<br />

0.0 10<br />

SE<br />

LV<br />

FI<br />

AT<br />

PT<br />

DK<br />

SI<br />

EE<br />

RO<br />

LT<br />

FR<br />

ES<br />

EL<br />

DE<br />

IT<br />

IE<br />

BG<br />

UK<br />

PL<br />

SK<br />

NL<br />

CY<br />

HU<br />

CZ<br />

BE<br />

LU<br />

MT<br />

0 10 20 30 40 50 60<br />

The 5 EU Member States with the<br />

highest energy consumption were<br />

selected.<br />

The new EU Directive 2009/28/EC<br />

prescribes an <strong>in</strong>dicative trajectory<br />

to the goal <strong>for</strong> renewable energies’<br />

share of gross f<strong>in</strong>al energy consumption.<br />

The Member States are required<br />

to take suitable measures to ensure<br />

that their shares of energy from<br />

renewable sources at least atta<strong>in</strong><br />

the relevant national orientational<br />

values on the trajectory.<br />

<strong>Sources</strong>: pursuant to EC [85];<br />

Eurostat [132]<br />

General remarks:<br />

The data given <strong>in</strong> European and <strong>in</strong>ternational<br />

statistics with regard to energy<br />

production and use <strong>in</strong> Germany diverge,<br />

<strong>in</strong> part, from relevant data given by<br />

German sources. Along with differences<br />

<strong>in</strong> the orig<strong>in</strong> of the data, differences <strong>in</strong><br />

summ<strong>in</strong>g methods also play a role <strong>in</strong><br />

this regard.<br />

To ensure consistency, <strong>in</strong> the “Europe”<br />

section, the data <strong>for</strong> Germany have<br />

been taken from <strong>in</strong>ternational statistics.<br />

However, the more detailed figures of<br />

national sources that are given on the<br />

preced<strong>in</strong>g pages tend to be more reliable.<br />

Shares <strong>for</strong> 2005, and national overall goals<br />

pursuant to EU Directive 2009/28/EC<br />

Source: EC [85]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

41


EU: ENERGY SUPPLY<br />

Structure of f<strong>in</strong>al energy consumption <strong>in</strong> the EU, 2008<br />

Nuclear energy<br />

Gas<br />

<strong>Renewable</strong><br />

energies<br />

M<strong>in</strong>eral oil<br />

Coal<br />

Total FEC:<br />

about 13,600 TWh<br />

7 %<br />

29 %<br />

10 %<br />

42 %<br />

12 %<br />

2008<br />

42 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Structure of renewables-based<br />

f<strong>in</strong>al energy<br />

Biomass/<br />

waste<br />

56 %<br />

Biofuels<br />

9 %<br />

W<strong>in</strong>d<br />

energy<br />

9 %<br />

Hydropower<br />

24 %<br />

Solar energy<br />

1 %<br />

Geoth. energy<br />

1 %<br />

Structure of primary energy consumption <strong>in</strong> the EU, 2003 and 2008<br />

Net imports<br />

Nuclear energy<br />

Natural gas<br />

<strong>Renewable</strong> energies<br />

M<strong>in</strong>eral oil<br />

Total PEC:<br />

Coal about 75,500 PJ<br />

Of which,<br />

net imports:<br />

about 37,900 PJ<br />

50.2 %<br />

2003<br />

14.2 %<br />

23.6 %<br />

6.0 %<br />

37.4 %<br />

18.4 %<br />

Of which,<br />

net imports:<br />

about 42.500 PJ<br />

56.4 %<br />

Total PEC:<br />

about 75,300 PJ<br />

2008<br />

13.4 %<br />

24.5 %<br />

8.4 %<br />

36.5 %<br />

17.0 %<br />

Hydropower<br />

19.0 %<br />

Structure of renewables-based<br />

primary energy<br />

W<strong>in</strong>d energy<br />

6.9 %<br />

Geoth. energy<br />

3.9 %<br />

Solar energy<br />

1.2 %<br />

In the framework of the EU’s new Directive<br />

on the promotion of the use of energy from<br />

renewable sources, attention has become<br />

focused on renewable energies’ share of total<br />

f<strong>in</strong>al energy consumption. To date, f<strong>in</strong>al<br />

energy consumption statistics show only<br />

the shares <strong>for</strong> the various different sectors.<br />

The figure at left shows how f<strong>in</strong>al energy<br />

consumption breaks down <strong>in</strong>to different energy<br />

sources. The figures <strong>for</strong> the <strong>in</strong>dividual<br />

energy sources were calculated <strong>in</strong> detail<br />

on the basis of statistics from the Eurostat<br />

Onl<strong>in</strong>e Database. The shares as shown are<br />

<strong>in</strong>tended solely as an <strong>in</strong>dication of relative<br />

magnitude.<br />

<strong>Sources</strong>: ZSW [1] pursuant to Eurostat [119], [124]<br />

Biomass/<br />

waste<br />

69.1 %<br />

Wood/<br />

wood waste<br />

47.0 %<br />

Waste<br />

10.0 %<br />

Biogas<br />

5.1 %<br />

Biofuels<br />

6.9 %<br />

Calculated <strong>in</strong> accordance with the physical<br />

energy content method; cf. also Annex (9)<br />

<strong>Sources</strong>: ZSW [1] pursuant to Eurostat [124]


use of renewable energIes In the eu<br />

biomass<br />

1)<br />

hydropower<br />

2)<br />

2008 2009<br />

w<strong>in</strong>d<br />

energy<br />

geoth.<br />

energy 3)<br />

total<br />

solar thermal<br />

4), 5) energy<br />

Photovoltaic<br />

power 5)<br />

f<strong>in</strong>al energy [twh] [1,000 m 2 ] [Mw th ] [kw p ]<br />

Belgium 13.95 0.41 0.62 – 15.00 335 235 363,023<br />

Bulgaria 8.00 2.82 0.12 0.38 11.33 37 26 5,700<br />

Denmark 18.05 0.03 6.98 – 25.05 484 339 4,565<br />

Germany 168.31 20.94 40.60 2.37 232.21 12,900 9,030 9,830,300<br />

Estonia 6.23 0.03 0.13 – 6.40 2 2 60<br />

F<strong>in</strong>land 65.29 17.11 0.26 – 82.67 28 20 7,649<br />

France 140.66 64.24 5.69 1.33 211.91 1,995 1,396 289,349<br />

Greece 11.15 3.31 1.70 0.20 16.36 4,076 2,853 55,000<br />

Ireland 2.82 0.97 2.47 0.05 6.31 121 85 400<br />

Italy 37.18 41.62 5.06 8.00 91.85 2,015 1,410 1,032,400<br />

Latvia 11.06 3.11 0.06 – 14.22 8 6 4<br />

Lithuania 6.90 0.40 0.12 – 7.42 5 3 55<br />

Luxembourg 0.71 0.13 0.06 – 0.91 20 14 26,322<br />

Malta – – – – 0.00 45 31 1,527<br />

Netherlands 15.12 0.10 4.26 0.02 19.50 774 542 63,633<br />

Austria 40.89 37.95 2.00 0.07 80.91 4,330 3,031 37,487<br />

Poland 54.01 2.15 0.79 0.15 57.11 510 357 1,011<br />

Portugal 33.38 6.80 5.70 0.31 46.18 445 312 102,205<br />

Romania 45.21 17.20 0.01 0.27 62.68 114 80 635<br />

Sweden 72.50 69.07 2.00 – 143.56 422 295 8,710<br />

Slovakia 6.09 4.04 0.01 0.02 10.16 105 73 196<br />

Slovenia 5.21 4.02 – – 9.23 158 111 8,402<br />

Spa<strong>in</strong> 53.88 23.50 32.20 0.09 109.68 1,865 1,306 3,520,082<br />

Czech. Republic 20.38 2.02 0.20 – 22.61 514 360 465,901<br />

Hungary 11.55 0.21 0.24 1.06 13.07 67 47 650<br />

United K<strong>in</strong>gdom 27.73 5.17 7.10 0.01 40.01 476 333 32,610<br />

Cyprus 0.35 – – – 0.35 701 491 3,328<br />

eu-27 876.61 327.35 118.37 14.34 1,356.67 6) 32,552 22,786 15,861,204<br />

The EU plays an important role globally<br />

with regard to use of renewable<br />

energies. Its ef<strong>for</strong>ts <strong>in</strong> the area of<br />

solar and w<strong>in</strong>d energy are particularly<br />

noteworthy.<br />

All <strong>in</strong> all, an estimated 15.9 GW p<br />

of photovoltaic capacity were <strong>in</strong><br />

place <strong>in</strong> the EU at the end of 2009<br />

(2008: about 10.4 GW p ). The net<br />

capacity addition <strong>in</strong> 2009 was about<br />

5.5 GW p , which represents an <strong>in</strong>crease<br />

of 8 % over the previous year<br />

(about 5.1 GW p ) and a world market<br />

share of about 76 %. Germany played<br />

an outstand<strong>in</strong>g role <strong>in</strong> this regard; it<br />

more than doubled its net capacity<br />

addition, from about 1.8 GW p <strong>in</strong> 2008<br />

to about 3.8 GW p <strong>in</strong> 2009 [131], [141].<br />

In the w<strong>in</strong>d energy sector the EU is<br />

the global leader, with about 75 GW<br />

(2008: about 65 GW) of <strong>in</strong>stalled<br />

w<strong>in</strong>d energy capacity at the end of<br />

2009 and a global share of 47 %.<br />

The International <strong>Energy</strong> Agency<br />

EU: USE OF RENEWABLE ENERGIES<br />

The overview summarises the currently<br />

available statistics (cf. sources).<br />

These data can diverge from relevant<br />

national statistics. The reasons <strong>for</strong> this<br />

<strong>in</strong>clude differences <strong>in</strong> methodologies.<br />

All figures are provisional; discrepancies<br />

<strong>in</strong> the totals are due to round<strong>in</strong>g<br />

off.<br />

1) Electricity and heat generation<br />

from solid biomass, biogas, municipal<br />

waste and biofuels<br />

2) Gross generation; <strong>for</strong> pumpedstorage<br />

power stations, only<br />

generation from natural <strong>in</strong>flow<br />

3) Heat and electricity generation;<br />

electricity generation <strong>in</strong> Italy,<br />

5.5 TWh; <strong>in</strong> Portugal, 0.2 TWh; <strong>in</strong><br />

Germany, 0.02 TWh and Austria,<br />

0.002 TWh (<strong>for</strong> France, 0.09 TWh<br />

<strong>in</strong> Overseas Departments not<br />

<strong>in</strong>cluded)<br />

4) glazed and unglazed collectors; assumed<br />

power output, 0.7 kW /m th 2<br />

5) Includ<strong>in</strong>g <strong>in</strong>stallations <strong>in</strong> Overseas<br />

Departments<br />

6) The total <strong>in</strong>cludes 12.6 TWh from<br />

solar thermal systems and 7.4 TWh<br />

from photovoltaic systems<br />

<strong>Sources</strong>:<br />

Biomass: Eurostat [119]<br />

Hydroelectric power: Eurostat [119]<br />

W<strong>in</strong>d energy: Observ’ER [120]<br />

Geothermal energy: Eurostat [119];<br />

Observ’ER [122]<br />

Solar thermal energy: Observ’ER [130]<br />

Photovoltaic power: Observ’ER [131]<br />

estimates the <strong>in</strong>stalled global solar<br />

collector capacity <strong>for</strong> 2008 at<br />

152 GW th ; the EU share of that<br />

capacity was more than 13 % (EU<br />

2008: 20 GW th ).<br />

While ocean energy still plays a<br />

very m<strong>in</strong>or role <strong>in</strong> the EU’s and the<br />

world’s energy supply, the ocean<br />

energy sector is seen to have great<br />

potential.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

43


EU: ELECTRICITY DIRECTIVE<br />

exPansIon of renewables-baseD eleCtrICIty generatIon In<br />

the euroPean Internal eleCtrICIty Market<br />

Directive 2001/77/EC on the promotion<br />

of electricity produced from<br />

renewable energy sources <strong>in</strong> the<br />

<strong>in</strong>ternal electricity market entered<br />

<strong>in</strong>to <strong>for</strong>ce <strong>in</strong> October 2001. The Community<br />

aims to <strong>in</strong>crease renewable<br />

energies’ share of electricity generation<br />

from 14 % <strong>in</strong> 1997 to 22 % by<br />

2010 <strong>in</strong> the EU-15, and to 21 % <strong>in</strong> the<br />

EU-25.<br />

The EU Commission’s “<strong>Renewable</strong><br />

<strong>Energy</strong> Progress Report” (COM<br />

(2009) 192) of 24.04.2009 1) notes that<br />

the Commission’s analyses <strong>in</strong>dicate<br />

that Europe will fail to reach the<br />

21 % target <strong>for</strong> 2010 unless the Member<br />

States undertake additional ef<strong>for</strong>ts.<br />

The report notes that Germany<br />

and Hungary have already met<br />

their targets <strong>for</strong> 2010. From 2004 to<br />

2006, renewable energies’ share of<br />

total electricity generation <strong>in</strong> the<br />

EU <strong>in</strong>creased by nearly 1.5 percentage<br />

po<strong>in</strong>ts. Germany and five other<br />

EU Member States <strong>in</strong>creased their<br />

shares by more than two percentage<br />

po<strong>in</strong>ts from 2004 to 2006, thereby<br />

contribut<strong>in</strong>g significantly to the<br />

development of the renewable energies’<br />

total share of electricity generation<br />

<strong>in</strong> the EU. Such growth has<br />

occurred primarily via expansion<br />

of use of solid biomass and of w<strong>in</strong>d<br />

energy.<br />

In spite of the progress achieved, the<br />

growth rate rema<strong>in</strong>s low, however.<br />

In most Member States, h<strong>in</strong>drances<br />

to growth persist <strong>in</strong> all sectors.<br />

In non-nuclear research support, the<br />

EU’s 7th Framework Programme of<br />

Research (FP7) placed a clear priority<br />

on energy efficiency and renewable<br />

energies.<br />

In its green paper “A European Strategy<br />

<strong>for</strong> Susta<strong>in</strong>able, Competitive and<br />

Secure <strong>Energy</strong>”, presented <strong>in</strong> March<br />

2005, the EU Commission highlights<br />

the contribution that domestic<br />

energy sources w<strong>in</strong>d energy, solar<br />

energy, biomass, hydropower and<br />

geothermal energy make to a secure<br />

44 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

electricity supply. This is of special<br />

significance <strong>in</strong> light of the entire<br />

EU’s grow<strong>in</strong>g dependency on energy<br />

imports. Not<strong>in</strong>g the some 300,000<br />

jobs <strong>in</strong> the EU’s renewable energies<br />

sector, the green paper highlights<br />

the economic importance of renewables<br />

and Europe’s technological leadership<br />

<strong>in</strong> this sector. With a road<br />

map presented on 10 January 2007<br />

the Commission outl<strong>in</strong>ed a path <strong>for</strong><br />

the further expansion of renewable<br />

energies <strong>in</strong> Europe. The new direc-<br />

tive <strong>for</strong> promotion of renewable<br />

energies, adopted <strong>in</strong> the framework<br />

of the European Climate and <strong>Energy</strong><br />

Package, is an important milestone<br />

on this path (cf. also page 39).<br />

1) Pursuant to Article 3 (4) of Directive 2001/77/<br />

EC, the Commission is required, at two-year<br />

<strong>in</strong>tervals, to publish a report detail<strong>in</strong>g<br />

the Member States’ progress toward their<br />

national targets <strong>in</strong> the area of renewable<br />

energies.<br />

renewable energies’ share of gross electricity consumption [%] target<br />

1997 2000 2002 2004 2006 2008 2010 [%]<br />

Belgium 1.0 1.5 1.8 2.1 3.9 5.3 6.0<br />

Bulgaria 7.0 7.4 6.0 8.9 11.2 7.4 11.0<br />

Denmark 8.9 16.7 19.9 27.1 25.9 28.7 29.0<br />

Germany 4.3 6.5 8.1 9.5 12.0 15.4 12.5<br />

Estonia 0.1 0.3 0.5 0.7 1.4 2.0 5.1<br />

F<strong>in</strong>land 25.3 28.5 23.7 28.3 24.0 31.0 31.5<br />

France 15.2 15.1 13.7 12.9 12.5 14.4 21.0<br />

Greece 8.6 7.7 6.2 9.5 12.1 8.3 20.1<br />

Ireland 3.8 4.9 5.4 5.1 8.5 11.7 13.2<br />

Italy 16.0 16.0 14.3 15.9 14.5 16.6 25.0<br />

Latvia 46.7 47.7 39.3 47.1 37.7 41.2 49.3<br />

Lithuania 2.6 3.4 3.2 3.5 3.6 4.6 7.0<br />

Luxembourg 2.0 2.9 2.8 3.1 3.5 4.1 5.7<br />

Malta 0.0 0.0 0.0 0.0 0.0 0.0 5.0<br />

Netherlands 3.5 3.9 4.7 5.6 7.9 8.9 9.0<br />

Austria 67.5 72.4 66.0 58.7 56.5 62.0 78.1<br />

Poland 1.7 1.7 2.0 2.1 2.9 4.2 7.5<br />

Portugal 38.3 29.4 20.8 24.4 29.4 26.9 39.0<br />

Romania 30.5 28.8 30.8 29.9 31.4 28.4 33.0<br />

Sweden 49.1 55.4 46.9 46.1 48.1 55.5 60.0<br />

Slovakia 14.5 16.9 19.2 14.4 16.6 15.5 31.0<br />

Slovenia 26.9 31.7 25.4 29.1 24.4 29.1 33.6<br />

Spa<strong>in</strong> 19.7 15.7 13.8 18.5 17.7 20.6 29.4<br />

Czech. Republic 3.5 3.6 4.6 4.0 4.9 5.2 8.0<br />

Hungary 0.8 0.7 0.7 2.3 3.7 5.6 3.6<br />

United K<strong>in</strong>gdom 1.9 2.7 2.9 3.7 4.6 5.6 10.0<br />

Cyprus 0.0 0.0 0.0 0.0 0.0 0.3 6.0<br />

eu-27 13.1 13.8 13.0 13.9 14.6 16.7 21.0<br />

This overview summarises the currently available statistics (cf. sources). These data can diverge from<br />

national statistics. The reasons <strong>for</strong> this <strong>in</strong>clude differences <strong>in</strong> methods.<br />

Source: Eurostat [119]


enewables-baseD eleCtrICIty suPPly In the eu<br />

1990 1997 2000 2002 2003 2004 2005 2006 2007 1) 2008 1)<br />

Biomass 2) 17.3 28.7 40.5 49.7 57.9 68.9 80.7 90.1 100.8 107.9<br />

Hydropower 3) 288.8 332.5 354.7 315.4 306.0 323.3 307.4 308.6 310.1 327.4<br />

W<strong>in</strong>d energy 0.8 7.3 22.3 35.7 44.4 58.8 70.5 82.3 104.3 118.4<br />

Geoth. energy 3.2 4.0 4.8 4.8 5.4 5.5 5.4 5.6 5.8 5.7<br />

Photovoltaics 0.01 0.04 0.1 0.3 0.5 0.7 1.5 2.5 3.8 7.4<br />

Solar thermal<br />

energy<br />

[twh]<br />

– – – – – – – – 0.01 0.02<br />

Total 310.1 372.6 422.4 405.9 414.2 457.2 465.4 489.2 524.8 566.7<br />

re share of<br />

gross elec.<br />

consump. [%]<br />

11.8 13.1 13.9 13.0 12.9 13.9 14.0 14.6 15.5 16.7<br />

S<strong>in</strong>ce the entry <strong>in</strong>to <strong>for</strong>ce of the EU<br />

Electricity Directive (cf. also page<br />

44), renewables-based electricity<br />

generation <strong>in</strong> the EU has <strong>in</strong>creased<br />

by an average of 3.4 % p. a., reach<strong>in</strong>g<br />

a level of about 567 TWh <strong>in</strong><br />

2008. On the basis of the available<br />

data, renewable energies’ contribution<br />

to the total electricity supply <strong>in</strong><br />

2008 can be placed at 16.7 %. A look<br />

at the development of renewablesbased<br />

electricity generation apart<br />

from hydropower shows that renewable<br />

energies’ absolute contribution<br />

dur<strong>in</strong>g the same period more than<br />

tripled, and it <strong>in</strong>creased by an average<br />

of about 18 % per year. In 2008,<br />

renewables-based electricity generation<br />

<strong>in</strong>creased its output by an<br />

renewables-based electricity supply <strong>in</strong> the eu<br />

<strong>Renewable</strong>s-based electricity generation [TWh]<br />

50<br />

0<br />

estimated 42 TWh. Assum<strong>in</strong>g an<br />

average household electricity consumption<br />

of 3,500 kWh/a, that figure<br />

amounts to an additional renewables-based<br />

electricity supply <strong>for</strong><br />

about 12 million households <strong>in</strong> the<br />

European Union.<br />

The <strong>in</strong>crease to date is due especially<br />

to development <strong>in</strong> two areas of<br />

renewable energies: w<strong>in</strong>d energy,<br />

with average growth dur<strong>in</strong>g the period<br />

under consideration of about<br />

24 % p. a., and biomass-based electricity<br />

generation, with estimated<br />

growth of 16,4 % p. a. Development<br />

<strong>in</strong> the photovoltaic sector has also<br />

been favourable. That area regis-<br />

300<br />

250<br />

200<br />

373 391 396<br />

422<br />

447<br />

406 414<br />

457<br />

465 489<br />

525<br />

567 600<br />

500<br />

400<br />

310<br />

150<br />

EU Directive<br />

300<br />

100<br />

2001/77/EC<br />

200<br />

1990 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

EU: ELECTRICITY SUPPLY<br />

1) provisional figures<br />

2) <strong>in</strong>clud<strong>in</strong>g municipal waste<br />

and biogas<br />

3) <strong>for</strong> pumped-storage power<br />

stations, only generation<br />

from natural <strong>in</strong>flow<br />

The overview summarises the<br />

currently available statistics<br />

(cf. sources). These data can<br />

diverge from relevant national<br />

statistics. The reasons <strong>for</strong> this<br />

<strong>in</strong>clude differences <strong>in</strong> methods.<br />

<strong>Sources</strong>: Eurostat [119]; Observ’ER<br />

[120]; ZSW [1]<br />

tered average growth of 69 % – from<br />

a low <strong>in</strong>itial level.<br />

Another renewable energies sector,<br />

solar thermal power stations, could<br />

well be poised to also make a significant<br />

contribution <strong>in</strong> the com<strong>in</strong>g<br />

years. Accord<strong>in</strong>g to EurObserv’ER,<br />

<strong>in</strong>stallations with total capacity of<br />

232.4 MW el were <strong>in</strong> operation <strong>in</strong><br />

the EU as of the end of 2009. Spa<strong>in</strong>,<br />

which promotes this technology<br />

via feed-<strong>in</strong> tariffs, is a global leader<br />

<strong>in</strong> development of solar thermal<br />

power stations. Some 25 solar thermal<br />

projects with a total capacity of<br />

2,100 MW th are currently under development<br />

<strong>in</strong> Spa<strong>in</strong> [122].<br />

100<br />

0<br />

<strong>Renewable</strong>s-based elec. <strong>in</strong>cl.<br />

hydropower [TWh]<br />

<strong>Renewable</strong>sbased<br />

elec. <strong>in</strong>cl.<br />

hydropower<br />

Photovoltaics<br />

Geoth. energy<br />

W<strong>in</strong>d energy<br />

Biomass<br />

<strong>Sources</strong>: cf. the table above<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

45


EU: ELECTRICITY SUPPLY<br />

Installed capacity <strong>for</strong> renewables-based electricity supply <strong>in</strong> the eu, 2008<br />

4.7 %<br />

(9.5 GW)<br />

44.7 %<br />

(89.7 GW)<br />

0.3 %<br />

(0.7 GW)<br />

0.03 %<br />

(0.06 GW)<br />

6.3 %<br />

(12.6 GW)<br />

32.1 %<br />

(64.4 GW)<br />

46 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

2.8 %<br />

(5.7 GW)<br />

7.0 %<br />

(14.0 GW)<br />

2.1 %<br />

(4.2 GW)<br />

Total <strong>in</strong>stalled capacity <strong>for</strong> renewables-based<br />

electricity supply: about 200 GW<br />

(Share of total electricity generation capacity: 25 %)<br />

Hydropower > 10 MW<br />

Hydropower < 10 MW<br />

Waste<br />

Wood/wood waste<br />

Biogas<br />

Source: Eurostat [119]<br />

structure of renewables-based electricity supply <strong>in</strong> the eu <strong>in</strong> 2008<br />

Belgium<br />

Bulgaria<br />

Denmark<br />

Germany<br />

Estonia<br />

F<strong>in</strong>land<br />

France<br />

Greece<br />

Ireland<br />

Italy<br />

Latvia<br />

Lithuania<br />

Luxembourg<br />

Netherlands<br />

Austria<br />

Poland<br />

Portugal<br />

Romania<br />

Sweden<br />

Slovakia<br />

Slovenia<br />

Spa<strong>in</strong><br />

Czech. Republic<br />

Hungary<br />

United K<strong>in</strong>gdom<br />

0 % 20 % 40 % 60 % 80 %<br />

The figure summarises the currently available<br />

statistics (cf. sources). These data can diverge<br />

from national statistics. The reasons <strong>for</strong> this<br />

<strong>in</strong>clude differences <strong>in</strong> methods.<br />

100 %<br />

For Malta, the sources used conta<strong>in</strong> no figures<br />

on renewables-based electricity generation. In<br />

Cyprus, renewables-based electricity generation<br />

is still at a negligible level.<br />

<strong>Sources</strong>: cf. the table on p. 43<br />

Hydropower<br />

W<strong>in</strong>d energy<br />

Solid biomass<br />

Biogas<br />

W<strong>in</strong>d energy<br />

Solar thermal en.<br />

Geoth. energy<br />

Photovoltaics<br />

Liquid biomass<br />

Waste<br />

Geothermal en.<br />

Photovoltaics<br />

In terms of structure, the renewables-based<br />

electricity mix varies<br />

widely throughout the EU Member<br />

States.<br />

Hydropower dom<strong>in</strong>ates <strong>in</strong> 4 countries,<br />

at a level of over 90 %<br />

(Bulgaria, Latvia, Romania, Slovenia).<br />

In Denmark, Estonia and Ireland<br />

w<strong>in</strong>d power, at 64 %, 68 % and 69 %<br />

respectively, has a particularly significant<br />

share.<br />

Biogenic resources make particularly<br />

important contributions <strong>in</strong> Hungary<br />

(82 %) and Belgium (79 %). In the<br />

UK, the Netherlands, Luxembourg<br />

and Belgium, modern biomass systems’<br />

share of the renewables-based<br />

electricity sector ranges between 30<br />

and 37 %.<br />

Italy is a pioneer <strong>in</strong> the area of deep<br />

geothermal energy. That country <strong>in</strong>stalled<br />

its first geothermal system<br />

<strong>for</strong> electricity generation <strong>in</strong> 1904 (<strong>in</strong><br />

Larderello). Today, geothermal energy<br />

plays a significant role <strong>in</strong> Italy’s<br />

renewables-based electricity supply,<br />

account<strong>in</strong>g <strong>for</strong> a share of 9 %. Photovoltaic<br />

power already plays an important<br />

role <strong>in</strong> the renewables-based<br />

electricity mix <strong>in</strong> Luxembourg, Germany<br />

and Spa<strong>in</strong>, with shares of 6 %,<br />

5 % and 4 %, respectively.


wInD energy use In the eu<br />

Installed w<strong>in</strong>d energy capacity<br />

<strong>in</strong> the eu 2009 (<strong>in</strong> Mw)<br />

Portugal<br />

3,535<br />

EU-27 – 74,767 MW<br />

Of which offshore 2,061 MW<br />

Ireland<br />

1,260<br />

Spa<strong>in</strong><br />

19,149<br />

<strong>Sources</strong>: EWEA [121]; GWEC [135]<br />

United<br />

K<strong>in</strong>gdom<br />

4,051<br />

Belgium<br />

563<br />

France<br />

4,492<br />

The steady expansion of w<strong>in</strong>d energy<br />

use <strong>in</strong> the EU cont<strong>in</strong>ued <strong>in</strong> 2009.<br />

Pursuant to the European W<strong>in</strong>d <strong>Energy</strong><br />

Association (EWEA), added<br />

w<strong>in</strong>d energy capacity <strong>in</strong> 2009, at<br />

about 10.2 GW, was higher than the<br />

capacity added <strong>in</strong> all other renewable<br />

energies sectors, as was also the<br />

case <strong>in</strong> the previous year. At the end<br />

of 2009, w<strong>in</strong>d energy capacity of<br />

about 75 GW was <strong>in</strong> place <strong>in</strong> the EU.<br />

This figure represents a 47 % share<br />

of global w<strong>in</strong>d energy capacity,<br />

which amounted to nearly 158 GW.<br />

The growth <strong>in</strong> w<strong>in</strong>d energy use <strong>in</strong><br />

the EU <strong>in</strong> recent years has been due<br />

especially to the sector’s expansion<br />

<strong>in</strong> Germany and Spa<strong>in</strong>. At the end of<br />

2009, these two countries accounted<br />

<strong>for</strong> 60 % of the EU’s total w<strong>in</strong>d<br />

Netherl.<br />

2,229<br />

Lux.<br />

35<br />

Denmark<br />

3,465<br />

Germany<br />

25,777<br />

Czech. R.<br />

192<br />

Italy<br />

4,850<br />

Austria<br />

995<br />

Sweden<br />

1,560<br />

Poland<br />

725<br />

Slovakia<br />

3<br />

Hungary<br />

201<br />

Estonia<br />

142<br />

Latvia<br />

28<br />

Lithuania<br />

91<br />

Greece<br />

1,087<br />

F<strong>in</strong>land<br />

146<br />

Romania<br />

14<br />

Bulgaria<br />

177<br />

energy capacities and about 28 % of<br />

global capacities. At the end of 2009,<br />

Germany, with a total of 25,777 MW,<br />

ranked second on the global Top-10<br />

list, after the USA (35,159 MW) and<br />

ahead of Ch<strong>in</strong>a (25,104 MW), Spa<strong>in</strong><br />

(19,149 MW) and India (10,926 MW).<br />

In 2009, Ch<strong>in</strong>a achieved a record<br />

net capacity addition of 13,000 MW,<br />

thereby doubl<strong>in</strong>g capacities <strong>in</strong> place<br />

at the end of 2008.<br />

At the end of 2009 a total of 2.1 GW<br />

of offshore w<strong>in</strong>d energy capacity<br />

were <strong>in</strong> place <strong>in</strong> the EU. All <strong>in</strong> all, a<br />

total of 8 new w<strong>in</strong>d farms, with total<br />

capacity of 577 MW, came on stream<br />

<strong>in</strong> Europe dur<strong>in</strong>g the course of the<br />

year. For 2010, the EWEA expects an<br />

additional 10 w<strong>in</strong>d farms to be commissioned,<br />

with a total capacity of<br />

America<br />

25 %<br />

Australia/<br />

Pacific 1 %<br />

Global: 157,899 MW<br />

Asia<br />

25 %<br />

Africa 1)<br />

1 %<br />

1) Incl. Middle East<br />

EU: WIND ENERGY<br />

Rest of Europe<br />

1 %<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

EU-27<br />

47 %<br />

No w<strong>in</strong>d energy use <strong>in</strong> Malta, Slovenia and<br />

Cyprus<br />

1,000 MW. By 2020, 40 to 55 GW of<br />

offshore w<strong>in</strong>d energy capacity could<br />

well be <strong>in</strong> service, feed<strong>in</strong>g 145 to<br />

198 TWh of electricity <strong>in</strong>to the EUgrid<br />

[137].<br />

Germany’s first offshore w<strong>in</strong>d farm,<br />

“alpha ventus”, reached maturity <strong>in</strong><br />

November 2009 with the <strong>in</strong>stallation<br />

of its f<strong>in</strong>al w<strong>in</strong>d turb<strong>in</strong>e. The w<strong>in</strong>d<br />

farm comprises a total of twelve<br />

5-MW-class w<strong>in</strong>d turb<strong>in</strong>es, erected<br />

at a distance of 45 kilometres from<br />

the coast [138]. In addition to generat<strong>in</strong>g<br />

electricity, the w<strong>in</strong>d farm will<br />

serve the German w<strong>in</strong>d energy <strong>in</strong>dustry<br />

as a test and demonstration<br />

w<strong>in</strong>d farm. The “Research at alpha<br />

ventus” (RAVE) research <strong>in</strong>itiative is<br />

coord<strong>in</strong>at<strong>in</strong>g the research projects.<br />

47


EU: WIND ENERGY<br />

Development of cumulative w<strong>in</strong>d energy capacity <strong>in</strong> the eu Member states<br />

EU<br />

Spa<strong>in</strong><br />

Germany<br />

The total w<strong>in</strong>d energy capacity<br />

<strong>in</strong> 2009 is not exactly the same<br />

as the sum of <strong>in</strong>stalled capacity<br />

at the end of 2008 plus<br />

the capacity addition <strong>in</strong> 2009;<br />

this is due to repower<strong>in</strong>g and<br />

decommission<strong>in</strong>g of exist<strong>in</strong>g<br />

w<strong>in</strong>d turb<strong>in</strong>es.<br />

<strong>Sources</strong>: EWEA [121]; Eurostat [119];<br />

Germany, cf. page 14<br />

[MW]<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

In 2009 Europe’s w<strong>in</strong>d energy sector<br />

added a total of 10,163 MW of capacity,<br />

thereby register<strong>in</strong>g growth of<br />

23 % over the previous year. Along<br />

with Spa<strong>in</strong> (2,459 MW) and Germany<br />

(1,917 MW), Italy (1,114 MW), France<br />

(1,088 MW) and the UK (1,077 MW)<br />

contributed significantly to that<br />

record capacity addition. Overall,<br />

these 5 EU Member States account<br />

<strong>for</strong> three quarters of the EU’s total<br />

w<strong>in</strong>d energy market.<br />

48 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

0<br />

483<br />

Capacity addition, 2009<br />

total: about 10,160 MW<br />

ES<br />

24 %<br />

DE<br />

19 %<br />

restl. EU<br />

25 %<br />

IT<br />

11 %<br />

FR<br />

11 %<br />

UK<br />

11 %<br />

17,147<br />

12,796<br />

4,798<br />

8,902<br />

6,223 3,244<br />

2,472<br />

3,392 4,609 2,274 11,994<br />

8,754<br />

6,104<br />

40,512<br />

47,685<br />

56,270<br />

64,719<br />

74,767<br />

34,288<br />

28,531<br />

15,097<br />

23,123<br />

11,736<br />

9,918<br />

8,317<br />

6,234<br />

16,629<br />

18,415<br />

20,622 22,247<br />

14,609<br />

23,897<br />

19,149<br />

16,689<br />

25,777<br />

1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009<br />

At the end of 2009, the EU’s total<br />

w<strong>in</strong>d energy capacity amounted to<br />

74,767 MW (2008: 64,719 MW).<br />

Germany cont<strong>in</strong>ues to hold the top<br />

position <strong>in</strong> this sector, followed by<br />

Spa<strong>in</strong>, Italy, France and the UK. The<br />

<strong>in</strong>stalled w<strong>in</strong>d energy capacity <strong>in</strong><br />

the EU generated a total of 129 TWh<br />

of electricity <strong>in</strong> 2009 - an estimated<br />

4 % of the EU’s total gross electricity<br />

consumption 1) .<br />

Development of electricity generation from w<strong>in</strong>d energy <strong>in</strong> the eu<br />

Italy<br />

Portugal<br />

Denmark<br />

France<br />

United K<strong>in</strong>gdom<br />

Spa<strong>in</strong><br />

Germany<br />

Rest of EU<br />

<strong>Figures</strong> <strong>for</strong> 2009 are provisional<br />

<strong>Sources</strong>: Eurostat [119]; Observ’ER [120]<br />

[TWh]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

2009<br />

Total: about 128.5 TWh<br />

ES<br />

28.2 % UK<br />

7.2 %<br />

DE<br />

29.2 %<br />

Rest<br />

of EU<br />

14.3 %<br />

FR<br />

6.1 %<br />

DK<br />

5.2 %<br />

PT<br />

IT 5.2 %<br />

4.7 %<br />

In 2008, the EU’s w<strong>in</strong>d energy sector<br />

accounted <strong>for</strong> a total of some<br />

155,200 jobs. Accord<strong>in</strong>g to a recent<br />

EWEA study, that work<strong>for</strong>ce could<br />

nearly triple by 2020, to about<br />

446,400. The number of jobs <strong>in</strong> the<br />

EU’s land-based w<strong>in</strong>d energy sector<br />

is expected to double by 2020.<br />

Growth potential is also seen <strong>in</strong> the<br />

offshore sector, however; and by<br />

2020 could already account <strong>for</strong> onethird<br />

of the sector’s jobs [136].<br />

1) Basis <strong>for</strong> the calculation: Gross electricity<br />

consumption <strong>in</strong> 2007, pursuant to Eurostat<br />

0<br />

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008


enewables-baseD heat suPPly In the eu<br />

About half of the EU-27’s total f<strong>in</strong>al<br />

energy supply is tied to the heat<br />

sector. <strong>Renewable</strong> energies’ contribution<br />

<strong>in</strong> this segment has amounted<br />

only to 10 %, however. <strong>Renewable</strong><br />

energies’ role <strong>in</strong> the heat market<br />

is thus considerably less signifi-<br />

cant than their role <strong>in</strong> the electricity<br />

market (cf. the preced<strong>in</strong>g pages).<br />

With a share of about 97 %, or<br />

646 TWh, biomass is far and away<br />

the most important resource <strong>in</strong> the<br />

heat sector, and wood-based heat<br />

EU: HEAT SUPPLY<br />

generation <strong>in</strong> private households accounts<br />

<strong>for</strong> the majority of that share.<br />

The other two relevant sectors, solar<br />

thermal and geothermal energy,<br />

have relatively <strong>in</strong>significant roles,<br />

with shares of about 2 % and 1 %,<br />

respectively.<br />

1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

f<strong>in</strong>al energy [twh]<br />

Biomass, of which 419.4 477.4 532.8 528.5 533.5 565.3 576.6 586.7 602.7 634.8 645.5<br />

Wood/wood waste 414.8 472.9 521.4 513.4 516.1 553.4 563.9 573.9 589.6 603.0 612.1<br />

Biogas 4.0 3.8 4.8 7.1 8.6 4.0 4.1 4.2 4.5 11.5 12.9<br />

Municipal waste 0.7 0.8 6.6 7.9 8.8 8.0 8.7 8.7 8.6 20.2 20.5<br />

Solar thermal energy 1.8 3.2 4.8 5.5 6.0 6.4 7.1 7.9 9.0 10.9 12.6<br />

Geothermal energy 4.8 5.2 5.3 6.5 6.9 6.9 6.8 7.3 7.7 8.1 8.6<br />

total renewablesbased<br />

heat<br />

426.0 485.8 542.9 540.4 546.4 578.6 590.6 602.0 619.3 653.8 666.8<br />

Source: pursuant to Eurostat [119]<br />

Development <strong>in</strong> the solar thermal market<br />

Sales <strong>in</strong> the EU’s solar thermal<br />

market were down slightly <strong>in</strong> 2009<br />

(-9.6 %), follow<strong>in</strong>g an extremely positive<br />

development <strong>in</strong> 2008, with<br />

growth of 50.9 %. Nonetheless,<br />

an estimated 2,916.2 MW th (2008:<br />

3,226.8 MW th ) of solar collector output<br />

were added. That figure is equivalent<br />

to an additional collector area<br />

of about 4.2 million m 2 . At the end<br />

of 2009 the cumulative solar collector<br />

capacity <strong>in</strong> the EU amounted to<br />

about 22.8 MW th (equivalent to a collector<br />

area of 32.6 million m 2 ). However,<br />

market penetration with solar<br />

thermal applications differs widely<br />

from country to country. As <strong>in</strong> previous<br />

years, the top position <strong>in</strong> this<br />

category is held by Cyprus, with<br />

<strong>in</strong>stalled capacity of about 612 kW th<br />

per 1,000 <strong>in</strong>habitants. The EU average<br />

is only about 46 kW th per 1,000<br />

<strong>in</strong>habitants [130].<br />

To date, water-heat<strong>in</strong>g is the most<br />

important application area <strong>for</strong> solar<br />

thermal systems. In recent years,<br />

however, <strong>in</strong>creas<strong>in</strong>g numbers of<br />

combi-systems have been <strong>in</strong>stalled,<br />

which both heat water and boost<br />

central heat<strong>in</strong>g systems. In 2009,<br />

<strong>for</strong> example, the number of combi-<br />

systems <strong>in</strong> place <strong>in</strong> Germany, as a<br />

share of added systems, amounted<br />

to about 50 %. With respect to rated<br />

output, it amounted to nearly 70 %.<br />

At the end of 2008, a total of 150<br />

large <strong>in</strong>stallations (≥ 500 m 2 ;<br />

350 kW th ), with output totall<strong>in</strong>g<br />

160 MW th , were <strong>in</strong> operation <strong>in</strong><br />

Europe. Many of those <strong>in</strong>stallations<br />

are used <strong>for</strong> solar-based local and<br />

district heat<strong>in</strong>g [140].<br />

The world’s largest solar districtheat<br />

<strong>in</strong>stallation is located <strong>in</strong> Marstal<br />

(Denmark). With a collector area<br />

of 18,365 m 2 and a thermal output<br />

of 12.9 MW th , the system meets<br />

one-third of Marstal’s heat requirements.<br />

Germany’s largest solar local<br />

and district heat<strong>in</strong>g <strong>in</strong>stallation is<br />

currently be<strong>in</strong>g built <strong>in</strong> Crailsheim.<br />

That system will have an output of<br />

7 MW th and 10,000 m 2 of collector<br />

area [118, 123].<br />

At the end of 2008, around 152 GW th<br />

of solar collector capacity were <strong>in</strong><br />

place worldwide (<strong>for</strong> 2009 the SHC<br />

[140] estimates <strong>in</strong>stalled capacity at<br />

189 GW th ). That <strong>in</strong>stalled capacity<br />

provided a total output of some<br />

110 TWh th (395 PJ), enough to<br />

prevent about 39 million tonnes of<br />

carbon dioxide emissions. Globally,<br />

the solar thermal sector employed<br />

an estimated 260,000 people <strong>in</strong><br />

2008.<br />

total <strong>in</strong>stalled solar collector<br />

capacity <strong>in</strong> the eu<br />

at the end of 2009<br />

40 %<br />

Austria<br />

Greece<br />

France<br />

Italy<br />

Spa<strong>in</strong><br />

Rest of EU<br />

Germany<br />

13 %<br />

EU-27 total:<br />

about<br />

22,800 MW th<br />

16 %<br />

13 %<br />

6 %<br />

6 %<br />

6 %<br />

Source: Observ’ER [130]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

49


EU: BIOFUELS<br />

renewables-baseD fuels In the eu<br />

Alongside the electricity and heat<br />

sectors, the transport sector is also<br />

of significance <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g the replacement<br />

of fossil fuels with renewable<br />

energy sources, s<strong>in</strong>ce the transport<br />

sector accounts <strong>for</strong> one-third of<br />

the EU’s total f<strong>in</strong>al energy consumption.<br />

EurObserv’ER estimates the EU’s<br />

total consumption of biofuels <strong>in</strong><br />

2008 at about 122 TWh (2007: about<br />

93 TWh), i.e. about 29 TWh over the<br />

previous year. That growth, amount<strong>in</strong>g<br />

to 31.4 %, is markedly down,<br />

however, from the growth rates seen<br />

<strong>in</strong> 2007 (45.7 %) and 2006 (70.9 %!).<br />

Germany and France are the most<br />

important players <strong>in</strong> the EU’s biofuels<br />

market. Together, those two countries<br />

account <strong>for</strong> over half of the EU’s<br />

total biofuels consumption.<br />

The most important biofuel <strong>in</strong> the<br />

EU is biodiesel; it has a 78 % share of<br />

total biofuels consumption. It is produced<br />

primarily from rapeseed oil,<br />

and it can be added to fossil-based<br />

diesel fuel. In 2008, some 95 TWh<br />

of biodiesel were consumed throughout<br />

the EU. Biodiesel consumption<br />

thus <strong>in</strong>creased by about 36 %<br />

(+ 25.1 TWh) over 2007. Globally,<br />

biodiesel accounts <strong>for</strong> only about a<br />

quarter of total biofuels production.<br />

Ethanol, and ethanol-based ETBE<br />

(ethyl tertiary butyl ether), are the<br />

preferred alternatives.<br />

In the EU, ethanol is produced primarily<br />

by fermentation of sugar beet<br />

and/or gra<strong>in</strong>. It can be added directly<br />

to petrol or processed <strong>in</strong>to ETBE.<br />

In 2008 bioethanol consumption <strong>in</strong>creased<br />

by about 55 % (consumption<br />

<strong>in</strong> 2007: 13.9 TWh). Overall, a total of<br />

21.5 TWh of that biogenic fuel were<br />

used.<br />

With a 4 % share, vegetable oil fuel<br />

plays only a subord<strong>in</strong>ate role with<strong>in</strong><br />

the biofuels portfolio. Only Germany<br />

has a significant market <strong>for</strong> that<br />

biogenic fuel – of the EU-wide sales<br />

totall<strong>in</strong>g 5 TWh, 4.4 TWh were consumed<br />

<strong>in</strong> Germany.<br />

The importance of the transport sector<br />

<strong>for</strong> the expansion of renewable<br />

50 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

biofuels consumption <strong>in</strong> road transports <strong>in</strong><br />

the eu, 2007 and 2008<br />

Germany<br />

France<br />

United<br />

K<strong>in</strong>gdom<br />

Italy<br />

Spa<strong>in</strong><br />

Poland<br />

Rest of EU<br />

4.1<br />

4.5<br />

1.6<br />

5.3<br />

1.1<br />

7.5<br />

9.3<br />

8.7<br />

17.3<br />

Consumption 2008<br />

Consumption 2007<br />

18.7<br />

25.0<br />

28.2<br />

37.9<br />

Segments of the EU biofuels<br />

market <strong>in</strong> 2008<br />

Biodiesel<br />

78 %<br />

Total<br />

<strong>for</strong> 2008:<br />

about<br />

122 TWh<br />

Bioethanol<br />

18 %<br />

0 5 10 15 20 25 30 35 [TWh]<br />

45.4<br />

Vegetable oil<br />

4 %<br />

The figure summarises the currently available statistics (cf. sources). These data can diverge<br />

from relevant national statistics. The reasons <strong>for</strong> this <strong>in</strong>clude differences <strong>in</strong> methods. <strong>Figures</strong><br />

<strong>for</strong> 2008 are estimates.<br />

Source: Observ’ER [122]<br />

energies is obvious – and not only<br />

with regard to the need to reduce<br />

dependency on energy imports.<br />

Biofuels contribute significantly to<br />

reductions of greenhouse gas emissions<br />

<strong>in</strong> road transport.<br />

The Biofuels Directive, 2003/30/EC,<br />

<strong>for</strong>mulated the first <strong>in</strong>dicative targets<br />

<strong>for</strong> biofuels at the EU level: a<br />

2 % share <strong>in</strong> 2005 and a 5.75 %<br />

share <strong>in</strong> 2010. The targets are not<br />

b<strong>in</strong>d<strong>in</strong>g, and the <strong>in</strong>tensity with<br />

which they are be<strong>in</strong>g implemented<br />

at the national level differs from<br />

country to country. Accord<strong>in</strong>g to<br />

EurObserv’ER, biofuels’ share of total<br />

road transport consumption <strong>in</strong> the<br />

EU <strong>in</strong>creased from 2.6 % <strong>in</strong> 2007 to<br />

3.4 % 1) , <strong>in</strong> 2008 [122].<br />

The new EU Directive (2009/28/EC)<br />

def<strong>in</strong>es the first relevant b<strong>in</strong>d<strong>in</strong>g target<br />

<strong>for</strong> the transport sector. By 2020,<br />

at least 10 % of f<strong>in</strong>al energy consumption<br />

<strong>in</strong> the transport sector<br />

(all modes of transport) are to be<br />

provided by the various renewable<br />

energies available <strong>in</strong> the different<br />

EU Member States.<br />

The Directive is not geared to an<br />

explicit share <strong>for</strong> biofuel, but refers<br />

to renewables-based energy <strong>in</strong> general.<br />

Consequently, <strong>in</strong> meet<strong>in</strong>g their<br />

m<strong>in</strong>imum targets, Member States<br />

will have a number of options <strong>in</strong> addition<br />

to the biofuels already established<br />

<strong>in</strong> the fuel sector. These will<br />

<strong>in</strong>clude a number of biofuels that<br />

have not yet reached market maturity<br />

(such as BtL fuels, and bioethanol<br />

from lignocellulosic raw materials),<br />

and renewables-based electricity<br />

and hydrogen.<br />

1) With respect to total fuel consumption of<br />

3,594 TWh <strong>in</strong> 2008 <strong>in</strong> the road transport<br />

sector


soCIo-eConoMIC asPeCts of renewable energIes<br />

In seleCteD eu CountrIes, 2008<br />

turnover from renewable energies <strong>in</strong> 2008<br />

Photovoltaics<br />

w<strong>in</strong>d<br />

energy<br />

solid<br />

biomass<br />

biofuels<br />

geoth.<br />

energy<br />

solar<br />

thermal<br />

energy<br />

small<br />

hydropower<br />

2)<br />

biogas<br />

total<br />

countries<br />

Germany<br />

[mill. eur]<br />

1) 9,500 5,800 3,110 3,500 1,840 1,700 374 430 26,254<br />

Spa<strong>in</strong> 16,380 3,270 1,250 360 5 375 170 N/A 21,810<br />

France 870 2,700 2,500 2,850 1,900 735 360 365 12,280<br />

Denmark < 5 11,400 400 N/A < 5 50 N/A 35 11,895<br />

Italy 1,700 1,410 550 1,235 N/A 400 440 N/A 5,735<br />

Sweden 122 628 2,400 1,150 570 60 280 N/A 5,210<br />

Austria 275 300 650 N/A 220 590 84 64 2,183<br />

United K<strong>in</strong>gdom 25 1,500 300 N/A N/A 130 150 N/A 2,105<br />

F<strong>in</strong>land < 5 N/A 1,250 7 135 < 5 25 9 1,436<br />

Netherlands 413 400 62 150 50 60 - 62 1,197<br />

Poland 5 83 400 5 15 100 40 4 652<br />

Slovakia < 5 N/A 150 4 < 5 10 4 < 1 179<br />

Slovenia 5 - 100 N/A < 5 10 8 N/A 128<br />

Luxembourg < 5 N/A 5 - - < 2 4 < 1 17<br />

total 29,310 27,491 13,127 9,261 4,750 4,227 1,939 971 91,081<br />

Pursuant to Observ’ER, 14 selected<br />

EU countries achieved total turnover<br />

of over 91 billion euros <strong>in</strong> 2008 with<br />

renewable energies. Germany heads<br />

up the rank<strong>in</strong>g <strong>in</strong> this group, with<br />

total revenue of about 26 billion euros<br />

1) , followed by Spa<strong>in</strong> (about 21.8<br />

billion euros), France (12.3 billion euros)<br />

and Denmark (about 12 billion<br />

euros). This means that these countries<br />

account <strong>for</strong> about 80 % of the total<br />

turnover of the countries studied.<br />

W<strong>in</strong>d<br />

energy<br />

28 %<br />

The photovoltaic sector, with turnover<br />

of about 29.3 billion euros, was<br />

the strongest sector <strong>in</strong> this regard,<br />

followed by the w<strong>in</strong>d energy sector,<br />

with about 27.5 billion euros.<br />

All <strong>in</strong> all, accord<strong>in</strong>g to Observ’ER,<br />

the renewable energies sector accounted<br />

<strong>for</strong> nearly 660,000 jobs <strong>in</strong><br />

2008. Of those, 266,300 were <strong>in</strong> Germany<br />

and 128,540 <strong>in</strong> France. This<br />

corresponded to 60 % of the total<br />

work<strong>for</strong>ce <strong>in</strong> the renewables sector.<br />

Jobs <strong>in</strong> the renewable energies sector <strong>in</strong> selected eu countries, 2008<br />

Photovoltaics<br />

16 %<br />

accord<strong>in</strong>g to<br />

sectors<br />

Solid biomass<br />

31 %<br />

Total about 657,600 jobs<br />

Solar thermal energy<br />

6 %<br />

Geoth. energy<br />

4 %<br />

Small hydropower<br />

Biogas<br />

4 %<br />

1)<br />

Biofuels<br />

9 %<br />

2 %<br />

FR<br />

128,540<br />

ES<br />

86,000<br />

accord<strong>in</strong>g to<br />

countries 3)<br />

DE 2)<br />

266,200<br />

DK 33,375<br />

SE 29,790<br />

IT 28,400<br />

AT 24,400<br />

PL 20,820<br />

FI 17,620<br />

UK 12,000<br />

NL 4,395<br />

SK 3,950<br />

SI 1,680<br />

EU: SOCIO-ECONOMIC ASPECTS<br />

The data <strong>in</strong>clude production,<br />

sales, <strong>in</strong>stallation, operation<br />

and ma<strong>in</strong>tenance of systems<br />

1) To ensure consistency, the<br />

figures <strong>for</strong> Germany were<br />

taken from the source used;<br />

discrepancies with figures<br />

on page 26 are due (<strong>for</strong><br />

example) to differences <strong>in</strong><br />

delimitation of technology<br />

areas<br />

2) < 10 MW <strong>in</strong>stalled capacity<br />

Source: Observ’ER [122]<br />

With about 195,000 jobs, the biomass<br />

sector is the most important<br />

<strong>in</strong> this category, followed closely by<br />

the w<strong>in</strong>d energy sector with about<br />

187,000 jobs.<br />

1) Total value added <strong>in</strong> the “<strong>Energy</strong> and<br />

water supply” economic sector <strong>in</strong> 2007 <strong>in</strong><br />

Germany amounted to about 48 billion<br />

euros [37].<br />

1) < 10 MW <strong>in</strong>stalled output<br />

2) The figures <strong>for</strong> Germany differ<br />

from those presented on page 27,<br />

s<strong>in</strong>ce EurObserver only considered<br />

jobs <strong>in</strong> the area of small<br />

hydropower systems. In addition,<br />

jobs result<strong>in</strong>g through use of<br />

public / non-profit fund<strong>in</strong>g are<br />

not shown.<br />

3) Luxembourg, with 300 jobs, is not<br />

shown <strong>in</strong> the figure<br />

Source: Observ’ER [122]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

51


EU: PROMOTION OF RENEWABLES-BASED ELECTRICITY<br />

InstruMents <strong>for</strong> the ProMotIon of renewable energy<br />

sourCes In the eu eleCtrICIty Market<br />

The EU’s new Directive <strong>for</strong> renewable<br />

energies (2009/28/EC) is aimed<br />

at <strong>in</strong>creas<strong>in</strong>g the renewables’ share<br />

of total f<strong>in</strong>al energy consumption <strong>in</strong><br />

the EU to 20 % by 2020 (cf. also page<br />

39). <strong>Renewable</strong>s-based electricity<br />

will contribute significantly to the<br />

achievement of that target.<br />

As the examples of w<strong>in</strong>d energy and<br />

other renewable energy technologies<br />

show, the various EU Member<br />

States differ widely <strong>in</strong> terms of their<br />

success <strong>in</strong> expand<strong>in</strong>g use of renewable<br />

energies <strong>in</strong> the electricity sector<br />

(cf. also page 44 “Expansion of electricity<br />

generation ...”). This is due<br />

primarily to differences <strong>in</strong> their respective<br />

energy-policy frameworks.<br />

Currently, a total of 21 EU Member<br />

States rely wholly or partly on feed<strong>in</strong><br />

tariffs as a support <strong>in</strong>strument.<br />

That <strong>in</strong>strument has been highly<br />

successful throughout Europe <strong>in</strong> expand<strong>in</strong>g<br />

renewable energies’ share<br />

of electricity generation. Germany’s<br />

<strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act (EEG),<br />

has been especially successful.<br />

For example, <strong>in</strong> its report of January<br />

2008, the European Commission<br />

found that well-<strong>for</strong>mulated feed-<strong>in</strong><br />

regulations <strong>for</strong> electricity from renewable<br />

energy sources are more<br />

effective and more efficient than<br />

other <strong>in</strong>struments <strong>for</strong> promot<strong>in</strong>g<br />

renewable energies. Quota systems<br />

with tradable certificates, which<br />

some countries have been us<strong>in</strong>g,<br />

have thus far failed to produce comparable<br />

results.<br />

A project supported by the Federal<br />

M<strong>in</strong>istry <strong>for</strong> the Environment, Nature<br />

Conservation and Nuclear Safety<br />

(BMU) operates a free-of-charge,<br />

freely accessible Internet database,<br />

at www.res-legal.eu, entitled RES<br />

LEGAL, the website on legislation on<br />

renewable energy generation. The<br />

database is a resource <strong>for</strong> key legal<br />

<strong>in</strong><strong>for</strong>mation relative to promotion<br />

of, and network access <strong>for</strong>, renewable<br />

energies <strong>in</strong> the 27 EU Member<br />

States. The database also lists technology-specific<br />

provisions.<br />

52 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

PT<br />

PT<br />

ES<br />

IE<br />

UK<br />

FR<br />

NL<br />

BE<br />

LU<br />

DK<br />

DE<br />

IT<br />

SE<br />

PL<br />

FI<br />

EE<br />

LA<br />

LT<br />

CZ<br />

SK<br />

AT<br />

SI<br />

HU<br />

RO<br />

MT<br />

Feed-<strong>in</strong> regulation<br />

CY<br />

Quotas system<br />

Further promotion <strong>in</strong>struments<br />

Technology-specific application<br />

of quota and feed-<strong>in</strong> tariffs Source: updated on the basis of Kle<strong>in</strong> et al. [133]<br />

the International feed-In<br />

Cooperation (IfIC)<br />

At the 2004 International Conference<br />

<strong>for</strong> <strong>Renewable</strong> Energies <strong>in</strong><br />

Bonn, Spa<strong>in</strong> and Germany agreed<br />

to share their experience with their<br />

regulations <strong>for</strong> feed-<strong>in</strong> tariffs <strong>for</strong> renewables-based<br />

electricity. They also<br />

agreed to <strong>in</strong>tensify their cooperation<br />

<strong>in</strong> this area (International Feed-In<br />

Cooperation). In October 2005, this<br />

cooperation was placed on a <strong>for</strong>mal<br />

basis by the sign<strong>in</strong>g of a jo<strong>in</strong>t declaration.<br />

In January 2007, Slovenia<br />

jo<strong>in</strong>ed the IFIC by sign<strong>in</strong>g the jo<strong>in</strong>t<br />

declaration.<br />

The aims of the cooperation <strong>in</strong>clude<br />

promot<strong>in</strong>g exchange of experience<br />

EL<br />

BG<br />

with feed-<strong>in</strong> systems; optimis<strong>in</strong>g<br />

such systems; support<strong>in</strong>g other<br />

countries <strong>in</strong> improv<strong>in</strong>g and develop<strong>in</strong>g<br />

feed-<strong>in</strong> systems; and shar<strong>in</strong>g<br />

relevant experience <strong>in</strong> the framework<br />

of <strong>in</strong>ternational <strong>for</strong>ums, especially<br />

<strong>in</strong> political debate with<strong>in</strong> the<br />

European Union.<br />

At the beg<strong>in</strong>n<strong>in</strong>g of 2010, a total of<br />

50 countries worldwide, along with<br />

25 other states/prov<strong>in</strong>ces/regions,<br />

had <strong>in</strong>troduced regulations perta<strong>in</strong><strong>in</strong>g<br />

to feed-<strong>in</strong> of renewables-based<br />

electricity [134].<br />

Further <strong>in</strong><strong>for</strong>mation is available at<br />

www.feed-<strong>in</strong>-cooperation.org.


Part III:<br />

global use of renewable energy<br />

sourCes<br />

WELT: GLOBAL USE OF RENEWABLE ENERGIES<br />

Meet<strong>in</strong>g the energy demands of a grow<strong>in</strong>g world population <strong>in</strong> a susta<strong>in</strong>-<br />

able manner is one of the major challenges fac<strong>in</strong>g us <strong>in</strong> the future.<br />

renewable energy sources already make an important contribution <strong>in</strong> this<br />

respect – around 16 % of global f<strong>in</strong>al energy consumption is from renewable sources.<br />

Even on a global scale, our future<br />

energy supply will not satisfy the criteria<br />

of susta<strong>in</strong>ability unless there is<br />

a substantial and cont<strong>in</strong>uous expansion<br />

<strong>in</strong> renewable energy sources.<br />

Further expansion is also crucial <strong>for</strong><br />

implement<strong>in</strong>g the targets under the<br />

Kyoto Protocol <strong>in</strong> order to limit emissions<br />

of climate-damag<strong>in</strong>g greenhouse<br />

gases.<br />

Furthermore, renewable energy<br />

sources represent an important opportunity<br />

<strong>for</strong> develop<strong>in</strong>g countries,<br />

s<strong>in</strong>ce access to energy is a key factor<br />

<strong>in</strong> combat<strong>in</strong>g poverty. A large<br />

proportion of the population <strong>in</strong><br />

such countries <strong>in</strong>habit rural areas <strong>in</strong><br />

which a lack of transmission grids<br />

makes conventional energy supply<br />

impossible. The decentralised nature<br />

of renewables means that they are<br />

able to provide a basic supply, e.g.<br />

<strong>in</strong> the <strong>for</strong>m of off-grid photovoltaic<br />

plants <strong>for</strong> domestic demands. An<br />

estimated 3 million households <strong>in</strong><br />

develop<strong>in</strong>g countries currently produce<br />

electricity from a photovoltaic<br />

system [134]. <strong>Renewable</strong> energies<br />

thus broaden access to modern energy<br />

– especially electricity – which <strong>in</strong><br />

turn improves liv<strong>in</strong>g conditions and<br />

offers opportunities <strong>for</strong> economic development.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

53


WORLD: GLOBAL USE OF RENEWABLE ENERGIES<br />

The huge importance of renewable<br />

energy sources <strong>for</strong> susta<strong>in</strong>able development<br />

is widely recognised. At<br />

the national level, a range of mechanisms<br />

are currently used to promote<br />

the development of renewable energy<br />

sources (cf. pages 28 – 32 and 52).<br />

A look at the absolute figures shows<br />

that some 62,400 PJ of renewable primary<br />

energy were produced globally<br />

<strong>in</strong> 2007 (2006: about 60,800 PJ). On<br />

average, renewables have <strong>in</strong>creased<br />

by 1.7 % per annum s<strong>in</strong>ce 1990.<br />

Nevertheless, renewables’ share of<br />

global primary energy consumption<br />

has tended to rema<strong>in</strong> between 12 %<br />

and 13 % s<strong>in</strong>ce the 1980s (2007:<br />

12.4 %). This means that the <strong>in</strong>crease<br />

<strong>in</strong> total primary energy consumption<br />

is only just compensated by the<br />

54 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

<strong>in</strong>crease <strong>in</strong> the supply of renewable<br />

energy.<br />

Nearly one-fifth of the global population<br />

(OECD) cont<strong>in</strong>ues to consume<br />

around half of the world’s primary<br />

energy. That statistic is supported<br />

by per capita consumption figures,<br />

which <strong>in</strong> <strong>in</strong>dustrialised countries<br />

(OECD), at nearly 200 GJ, are<br />

2.6 times higher than the global<br />

average (76 GJ per capita). In Ch<strong>in</strong>a<br />

and India, the most densely populated<br />

countries on earth, per capita<br />

energy demand is only 62 and 22 GJ<br />

respectively. However, the energy<br />

demands of develop<strong>in</strong>g and newly<br />

<strong>in</strong>dustrialis<strong>in</strong>g countries are on the<br />

<strong>in</strong>crease.<br />

Development of the global population and global primary energy consumption<br />

3.8<br />

1971<br />

4.4<br />

5.3<br />

6.1<br />

World population [bn.]<br />

6.5<br />

6.6<br />

194<br />

OECD<br />

Primary energy consumption<br />

2007 [GJ/per capita]<br />

76 World<br />

62 India 56<br />

Ch<strong>in</strong>a 22 Rest of<br />

world<br />

232<br />

Aga<strong>in</strong>st this background, it becomes<br />

clear that the challenges of global<br />

energy supply and, <strong>in</strong> particular,<br />

climate protection, call <strong>for</strong> a more<br />

efficient use of energy and greater<br />

momentum <strong>in</strong> the development<br />

of renewable energy sources. This<br />

is particularly true <strong>for</strong> w<strong>in</strong>d, solar<br />

and ocean energy but it also applies<br />

to geothermal energy and modern<br />

techniques <strong>for</strong> the use of biomass.<br />

The common <strong>for</strong>ms of renewables<br />

use which have dom<strong>in</strong>ated until<br />

now – heat generation via combustion<br />

of firewood and charcoal (traditional<br />

biomass use) and electricity<br />

generation from hydropower – are<br />

fast approach<strong>in</strong>g their limits, and<br />

occasionally represent no susta<strong>in</strong>able<br />

use of renewables.<br />

Rest of world<br />

India<br />

Ch<strong>in</strong>a<br />

OECD<br />

1980 1990 2000 2005 2007 1971 1980 1990 2000 2005 2007<br />

303<br />

367<br />

419<br />

478<br />

504<br />

Global primary energy consumption [EJ]<br />

PEC calculated <strong>in</strong> accordance with the<br />

physical energy content method<br />

<strong>Sources</strong>: IEA (117)


global energy suPPly froM renewable energIes<br />

structure of global f<strong>in</strong>al energy consumption <strong>in</strong> 2007<br />

Fossil fuels<br />

81 %<br />

Nuclear energy<br />

3 %<br />

RE share<br />

16 %<br />

In 2007 some 16 % of global f<strong>in</strong>al<br />

energy demand was met with renewable<br />

energies. However, traditional<br />

biomass use accounts <strong>for</strong> the majority<br />

of this category, represent<strong>in</strong>g 12 % of<br />

such demand. Hydropower accounts<br />

<strong>for</strong> 3 %, while the rema<strong>in</strong><strong>in</strong>g share of<br />

1 % is spread over other renewable<br />

energy technologies.<br />

Traditional<br />

biomass 12.0 %<br />

Other renewables<br />

0.3 %<br />

Geoth. energy<br />

0.1 %<br />

Hydropower<br />

3.2 %<br />

Biofuels<br />

0.4 %<br />

Modern biomass<br />

0.2 %<br />

Development of global f<strong>in</strong>al energy<br />

consumption has followed the<br />

trend <strong>for</strong> primary energy consumption,<br />

which has more than doubled<br />

s<strong>in</strong>ce 1971 (2007: about 500,000 PJ).<br />

In 2007 alone, global demand <strong>for</strong><br />

energy rose by 1.7 %, or, <strong>in</strong> absolute<br />

terms, by 8,270 PJ (by way of comparison:<br />

<strong>in</strong> 2009, primary energy<br />

Development of global renewables-based primary energy production<br />

and of renewables’ share of primary energy consumption<br />

<strong>Renewable</strong>s-based energy production [PJ]<br />

WORLD: ENERGY SUPPLY<br />

The global f<strong>in</strong>al energy share is higher than<br />

the global primary energy share. This is<br />

partly due to traditional biomass use, all<br />

of which represents f<strong>in</strong>al energy consumption.<br />

In addition, the primary energy share<br />

depends on what method is used to calculate<br />

the primary energy equivalent <strong>for</strong> renewable<br />

energies.<br />

Other renewables = W<strong>in</strong>d, solar and<br />

ocean energy<br />

Source: pursuant to IEA [117]<br />

70,000 13.1<br />

13.2<br />

60,000 12.9<br />

13.0<br />

50,000<br />

12.8<br />

12.8<br />

40,000 12.7<br />

12.7<br />

12.6<br />

12.6<br />

30,000 12.4<br />

12.4<br />

12.4<br />

12.4 12.4<br />

20,000 12.3<br />

12.2<br />

10,000 12.0<br />

0 11.8<br />

1980 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007<br />

consumption <strong>in</strong> Germany totalled<br />

around 13,300 PJ). <strong>Renewable</strong> energies’<br />

share of global primary energy<br />

consumption <strong>in</strong> 2007 was 12.4 %,<br />

the same level seen <strong>in</strong> the previous<br />

year.<br />

<strong>Renewable</strong>s’ share of PEC [%]<br />

Other renewables<br />

Hydropower<br />

Biomass/waste 1)<br />

Share of RE<br />

1) Only renewable<br />

fraction of waste<br />

taken <strong>in</strong>to account<br />

PEC calculated <strong>in</strong><br />

accordance with the<br />

physical energy content<br />

method<br />

<strong>Sources</strong>: IEA [116], [117]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

55


WORLD: GROWTH/APPLICATION EXAMPLES<br />

Mean growth rates <strong>for</strong> primary energy consumption<br />

and renewable energies, 1990 to 2007<br />

Growth rate [%/a]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1.9<br />

1.2 1.7 1.9 2.1<br />

PEC RE total Hydro- Geoth.<br />

power energy<br />

Aga<strong>in</strong>st the background of the Kyoto<br />

Protocol’s climate protection targets,<br />

the development of renewable energy<br />

sources has been a particular<br />

focus s<strong>in</strong>ce 1990. However up to<br />

now, ef<strong>for</strong>ts to significantly raise<br />

their importance <strong>in</strong> the energy supply<br />

have failed. Globally, the energy<br />

supply <strong>in</strong>creased by an average of<br />

1.7 % per year until 2007, thereby<br />

slightly lagg<strong>in</strong>g beh<strong>in</strong>d growth <strong>in</strong><br />

56 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

0.4<br />

2.2<br />

0.7 1.2 1.2<br />

Solid<br />

biomass<br />

12.9<br />

10.4 9.8<br />

Other<br />

biomass 1)<br />

primary energy consumption, which<br />

amounted to 1.9 %.<br />

A chang<strong>in</strong>g trend has been seen <strong>in</strong><br />

<strong>in</strong>dustrialised countries s<strong>in</strong>ce 2005,<br />

<strong>in</strong> that growth of renewable energy<br />

generation, at 1.5 % <strong>for</strong> a 5-year period,<br />

has exceeded growth <strong>in</strong> total<br />

primary energy consumption <strong>for</strong> the<br />

first time (2005: 1.4 % per year). In<br />

2007, renewable energies reached<br />

a growth rate of 1.9 % per annum,<br />

5.9<br />

Solar<br />

energy<br />

Shares of renewable energies <strong>in</strong> energy demand <strong>in</strong> the various sectors, 2007<br />

[Share <strong>in</strong> %]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

52.3<br />

17.4<br />

63.3<br />

Priv. households,<br />

services and<br />

public sector<br />

24.4<br />

Globally, around 52 % of the renewable<br />

energy supply is now used to<br />

provide heat <strong>in</strong> private households<br />

and <strong>in</strong> the public and services sectors.<br />

In the ma<strong>in</strong>, such heat provision<br />

<strong>in</strong>volves wood and charcoal.<br />

The second ma<strong>in</strong> area of application<br />

49.5<br />

16.5<br />

Power plants Other trans<strong>for</strong>mation/<br />

energy sectors<br />

25.0<br />

18.6<br />

6.2 7.3 5.9<br />

12.3<br />

10.3<br />

4.8<br />

7.2<br />

is electricity generation. However,<br />

there are substantial regional differences:<br />

whereas <strong>in</strong> the western <strong>in</strong>dustrialised<br />

countries (OECD), half of<br />

renewable energy sources are used<br />

to generate electricity, <strong>in</strong> non-OECD<br />

countries the correspond<strong>in</strong>g figure is<br />

Industry Other<br />

24.0<br />

W<strong>in</strong>d<br />

energy<br />

global<br />

OECD<br />

The OECD member<br />

states are listed <strong>in</strong><br />

Annex (8)<br />

1) Biogenic fraction<br />

of municipal waste;<br />

biogas, liquid biomass<br />

Source: IEA (116)<br />

while growth of the OECD’s total primary<br />

energy consumption showed<br />

a slightly downward trend, mov<strong>in</strong>g<br />

from 1.3 % per annum <strong>in</strong> 2006 to<br />

1.2 % per annum <strong>in</strong> 2007. <strong>Renewable</strong><br />

energies’ percentage share of the<br />

OECD’s primary energy consumption<br />

<strong>in</strong> 2007 was 6.5 %, just 0.7 % higher<br />

than the correspond<strong>in</strong>g share <strong>for</strong><br />

1990. For 2008, the International<br />

<strong>Energy</strong> Agency estimates the share<br />

at 6.8 %.<br />

4.0<br />

global<br />

OECD<br />

Non-OECD<br />

The OECD member<br />

states are listed <strong>in</strong><br />

Annex (8)<br />

Source: pursuant<br />

to IEA (116)<br />

only 16.5 %. The share attributable<br />

to decentralised heat provision is accord<strong>in</strong>gly<br />

high <strong>in</strong> those countries, at<br />

just under 63 %, compared with only<br />

around 17 % <strong>in</strong> the OECD countries.


egIonal use of renewable energIes In 2007 –<br />

arounD the globe<br />

PeC<br />

of which,<br />

renewable<br />

re as a<br />

share of PeC<br />

[PJ] [PJ] [%]<br />

hydro-<br />

power<br />

Pr<strong>in</strong>cipal re<br />

as a share of total re [%]<br />

biomass/<br />

waste 1)<br />

other 2)<br />

Africa 26,415 12,753 48.3 2.7 97.0 0.3<br />

Lat<strong>in</strong> America 3) 23,074 7,047 30.5 34.2 64.2 1.3<br />

Asia 3) 57,654 15,709 27.2 5.9 89.8 4.3<br />

Ch<strong>in</strong>a 82,461 10,103 12.3 17.3 80.6 2.1<br />

Middle East 22,957 167 0.7 48.2 30.1 21.7<br />

Trans. economies 46,952 1,708 3.6 61.5 37.1 1.5<br />

OECD 230,158 14,985 6.5 30.2 56.6 13.2<br />

Global 4) 503,517 62,477 12.4 17.7 77.3 4.9<br />

biomass/waste<br />

about 48,300 PJ (77.4 %)<br />

64.3 %<br />

1.3 %<br />

17.6 %<br />

16.9 %<br />

OECD Develop<strong>in</strong>g countries Ch<strong>in</strong>a<br />

1)<br />

Transition economies<br />

The share of energy that is generally<br />

considered renewable is particularly<br />

high <strong>in</strong> Africa, due to that region’s<br />

traditional use of biomass. However,<br />

much of the biomass use is not susta<strong>in</strong>able.<br />

Basic <strong>for</strong>ms of cook<strong>in</strong>g<br />

and heat<strong>in</strong>g that use open fires can<br />

impair health and also lead to de<strong>for</strong>estation,<br />

which can often be irreversible.<br />

In develop<strong>in</strong>g countries,<br />

particularly <strong>in</strong> rural regions, around<br />

2.5 billion people – or 40 % of the<br />

world’s population – rely solely on<br />

hydropower<br />

about 11,060 PJ (17.7 %)<br />

33.8 %<br />

9.5 %<br />

15.8 %<br />

40.9 %<br />

traditional biomass <strong>for</strong> their cook<strong>in</strong>g<br />

and heat<strong>in</strong>g requirements. Allow<strong>in</strong>g<br />

<strong>for</strong> population growth, the IEA<br />

expects that figure to rise to more<br />

than 2.6 billion by the year 2015<br />

(2030: 2.7 billion).<br />

Hydropower from large dams can<br />

also be an unsusta<strong>in</strong>able use of renewable<br />

energy, s<strong>in</strong>ce such dams<br />

can have serious social and ecological<br />

consequences.<br />

WORLD: REGIONAL DIFFERENCES<br />

Transition economies: Countries that are <strong>in</strong><br />

transition from a planned economy to a market<br />

economy; the IEA uses this term to refer to the<br />

countries of non-OECD Europe and the countries<br />

of the <strong>for</strong>mer USSR.<br />

1) <strong>for</strong> OECD, biogenic portion of waste only;<br />

other regions also <strong>in</strong>clude non-biogenic<br />

portions<br />

2) Geothermal energy, solar energy, w<strong>in</strong>d<br />

energy, ocean energy<br />

3) Lat<strong>in</strong> America exclud<strong>in</strong>g Mexico, and Asia<br />

exclud<strong>in</strong>g Ch<strong>in</strong>a<br />

4) Includ<strong>in</strong>g high sea bunkers<br />

PEC calculated <strong>in</strong> accordance with the physical<br />

energy content method<br />

Source: IEA [116]<br />

geothermal energy, solar,<br />

w<strong>in</strong>d, ocean energy<br />

about 3,060 PJ (4.9 %)<br />

27.6 %<br />

6.9 %<br />

0.8 %<br />

64.6 %<br />

1) Exclud<strong>in</strong>g Ch<strong>in</strong>a<br />

Source: IEA [116]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

57


WORLD: ELECTRICITY GENERATION<br />

global eleCtrICIty generatIon froM renewable energIes<br />

electricity generation from renewable energies, <strong>in</strong> various regions, <strong>in</strong> 2007<br />

Geoth. energy<br />

W<strong>in</strong>d energy<br />

380<br />

Canada 359<br />

513<br />

eu-27<br />

248<br />

<strong>for</strong>mer<br />

ussr<br />

99<br />

Japan<br />

Other biomass<br />

38<br />

23<br />

496<br />

Solid biomass/waste<br />

Hydropower<br />

99<br />

Middle<br />

east<br />

Ch<strong>in</strong>a<br />

africa<br />

19<br />

699<br />

lat<strong>in</strong><br />

america<br />

77.1 %<br />

9.2 %<br />

2.0 %<br />

9.2 %<br />

2.5 %<br />

95.6 %<br />

2.0 %<br />

1.2 %<br />

1.1 %<br />

australia<br />

1)<br />

usa<br />

Mexico<br />

<strong>Figures</strong> <strong>in</strong> TWh<br />

World total about 3,540 TWh<br />

oeCD<br />

about 1,640 TWh<br />

non-oeCD<br />

about 1,900 TWh<br />

1) Asia exclud<strong>in</strong>g Ch<strong>in</strong>a and Japan;<br />

Lat<strong>in</strong> America exclud<strong>in</strong>g Mexico<br />

Solar energy / ocean energy not shown.<br />

In 2007, these energy <strong>for</strong>ms contributed a<br />

total of 5.3 TWh to the world’s electricity<br />

generation. Source: IEA [117]<br />

renewable energies’ shares of global<br />

electricity generation, 2007<br />

Oil<br />

5.7 %<br />

Gas<br />

20.9 %<br />

Coal 1)<br />

41.8 %<br />

Nuclear<br />

energy<br />

13.8 %<br />

RE share<br />

17.9 %<br />

The share <strong>for</strong> global electricity generation<br />

from hydropower, at 15.6 %, is higher than<br />

that <strong>for</strong> nuclear energy (13.8 %). When<br />

shares of PEC are considered the relationship<br />

reverses: nuclear energy provides a<br />

considerably larger share of PEC – 5.9 % –<br />

than hydropower (2.2 %). The reason <strong>for</strong><br />

this distortion is that electricity from<br />

nuclear energy is assessed with an average<br />

conversion efficiency of 33 %, <strong>in</strong> keep<strong>in</strong>g<br />

with relevant <strong>in</strong>ternational agreements,<br />

Nearly one-fifth of global electricity<br />

generation <strong>in</strong> 2007 was based on renewable<br />

energies. But with a share<br />

of 19.2 % <strong>in</strong> 1990 and 17.9 % <strong>in</strong> 2007,<br />

renewables-based global electricity<br />

generation proved unable to sur-<br />

58 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Total RE<br />

about 3,540 TWh<br />

Other 2)<br />

1.2 %<br />

Hydropower<br />

15.6 %<br />

Biomass/waste<br />

1.1 %<br />

while assessment of electricity generation<br />

from hydropower pursuant to the physical<br />

energy content method applies an efficiency<br />

of 100 %.<br />

1) Includes the non-renewable fraction of<br />

waste (0.2%)<br />

2) Geothermal, solar, w<strong>in</strong>d, ocean energy<br />

Source: IEA (116), (117)<br />

pass the 20 % mark – and its share<br />

of global electricity generation actually<br />

decreased. The further development<br />

of this share is <strong>in</strong>fluenced by<br />

the various framework conditions<br />

prevail<strong>in</strong>g <strong>in</strong> the OECD’s <strong>in</strong>dustr-<br />

294<br />

asia 1)<br />

ialised countries and <strong>in</strong> non-OECD<br />

countries.<br />

The relatively slow growth of hydro-<br />

power <strong>in</strong> the OECD is the ma<strong>in</strong><br />

reason <strong>for</strong> the decrease <strong>in</strong> renewable<br />

energies’ global share. Hydropower<br />

accounts <strong>for</strong> the largest share<br />

– about 80 % – of renewables-based<br />

electricity generation. Admittedly,<br />

most <strong>in</strong>dustrialised countries have<br />

no further capacities <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g<br />

hydropower. In such countries, the<br />

growth push needed to <strong>in</strong>crease the<br />

global share can only be achieved by<br />

stepp<strong>in</strong>g up the use of other renewable<br />

technologies.<br />

In non-OECD countries, which generate<br />

more than half of the world’s<br />

renewables-based electricity, future<br />

growth <strong>in</strong> total electricity demand<br />

is expected to be higher than <strong>in</strong> the<br />

OECD, due to non-OECD countries’<br />

sharper growth <strong>in</strong> population compared<br />

with <strong>in</strong>dustrialised countries,<br />

and to ris<strong>in</strong>g <strong>in</strong>come levels <strong>in</strong> those<br />

countries. This means that to ma<strong>in</strong>ta<strong>in</strong><br />

their global share of electricity<br />

generation, renewable energies must<br />

at least keep pace.


InternatIonal renewable energy agenCy<br />

The International <strong>Renewable</strong> <strong>Energy</strong><br />

Agency (IRENA), a German <strong>in</strong>itiative,<br />

was founded on 26 January 2009<br />

<strong>in</strong> Bonn. To date, nearly 150 countries,<br />

along with the European Union,<br />

have signed the Statute of the<br />

Agency. IRENA is the first <strong>in</strong>ternational<br />

organisation whose sole purpose<br />

is to promote use of renewable<br />

energies.<br />

An <strong>in</strong>ternational, government-mandated<br />

organisation, IRENA has been<br />

established to support both <strong>in</strong>dustrialised<br />

and develop<strong>in</strong>g countries<br />

<strong>in</strong> expand<strong>in</strong>g their use of renewable<br />

energies. IRENA will serve as<br />

a knowledge resource <strong>for</strong> successful<br />

political frameworks and practical<br />

applications, and it will provide<br />

technological know-how relative to<br />

renewable energies.<br />

Until the Statute’s entry <strong>in</strong>to <strong>for</strong>ce<br />

and the first session of the body’s assembly,<br />

a preparatory commission,<br />

compris<strong>in</strong>g representatives of all signatories,<br />

took the decisions necessary<br />

<strong>for</strong> IRENA’s establishment. The<br />

Statute then is go<strong>in</strong>g to enter <strong>in</strong>to<br />

<strong>for</strong>ce <strong>in</strong> July 2010, follow<strong>in</strong>g deposition<br />

of the required number of 25 <strong>in</strong>struments<br />

of ratification.<br />

In June 2009, the preparatory commission,<br />

meet<strong>in</strong>g <strong>in</strong> Sharm El-Sheikh,<br />

elected Hélène Pelosse (France) as its<br />

Interim Director-General. The Secretariat’s<br />

headquarters is <strong>in</strong> Abu Dhabi.<br />

An IRENA Innovation and Technology<br />

Centre (IITC)) is be<strong>in</strong>g established<br />

<strong>in</strong> Bonn, and a liaison office is be<strong>in</strong>g<br />

established <strong>in</strong> Vienna, to ma<strong>in</strong>ta<strong>in</strong><br />

contact with other organisations active<br />

<strong>in</strong> the field of renewable energy<br />

(<strong>in</strong>clud<strong>in</strong>g the UN).<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

IRENA<br />

In January 2010, the preparatory<br />

commission, meet<strong>in</strong>g <strong>in</strong> Abu Dhabi,<br />

approved the Agency’s work programme<br />

and budget <strong>for</strong> 2010. The<br />

budget amounts to some 14 million<br />

USD. The IITC <strong>in</strong> Bonn and the liaison<br />

office <strong>in</strong> Vienna are be<strong>in</strong>g additionally<br />

f<strong>in</strong>anced by Germany and<br />

Austria respectively. The work programme<br />

also def<strong>in</strong>es the tasks <strong>for</strong><br />

the Agency’s three locations. The<br />

IITC, work<strong>in</strong>g <strong>in</strong> cooperation with<br />

headquarters, will concentrate especially<br />

on the areas of renewable energy<br />

potential, scenarios and technology<br />

road maps. It will also focus<br />

on research, technology assessment<br />

and implementation of the Technology<br />

Action Plans put together <strong>in</strong> the<br />

framework of the Major Economies<br />

Forum.<br />

Further <strong>in</strong><strong>for</strong>mation is available at<br />

www.irena.org.<br />

Dr Sultan Al Jaber, United Arab Emirates, Chair of the 3rd session of the Preparatory Commission of IRENA and<br />

Hélène Pelosse, Interim Director-General, on 17 January 2010 <strong>in</strong> Abu Dhabi<br />

59


RENEWABLES2004<br />

InternatIonal ConferenCe <strong>for</strong> renewable energy sourCes<br />

– renewables2004 – anD Its follow-uP ProCess<br />

The International Conference <strong>for</strong> <strong>Renewable</strong><br />

Energies – renewables2004<br />

– <strong>in</strong>itiated a breakthrough <strong>in</strong> the<br />

expansion of renewable energies <strong>in</strong><br />

a global context. Successful implementation<br />

of nearly 200 activities<br />

under the Bonn International Action<br />

Programme (IAP) is already contribut<strong>in</strong>g<br />

to global climate protection<br />

and susta<strong>in</strong>able development; if<br />

the IAP is implemented <strong>in</strong> full, CO 2<br />

emissions could be reduced by a total<br />

of 1.2 billion tonnes per annum<br />

by the year 2015. This is equivalent<br />

to about 5 % of global emissions <strong>in</strong><br />

2015. Moreover, implementation of<br />

the IAP will provide up to 300 million<br />

people with access to electricity<br />

<strong>for</strong> the first time. F<strong>in</strong>al records<br />

of the event, <strong>in</strong>clud<strong>in</strong>g conference<br />

documents and an assessment of the<br />

IAP, are available at<br />

http://renewables2004.de/.<br />

A further outcome of the conference<br />

is the found<strong>in</strong>g of the global <strong>Renewable</strong><br />

<strong>Energy</strong> Policy Network (REN21).<br />

Governments, <strong>in</strong>ternational organisations<br />

and representatives of civil<br />

society are work<strong>in</strong>g together <strong>in</strong><br />

REN21 to promote renewables worldwide.<br />

Each year, REN21 publishes a<br />

global status report that provides a<br />

comprehensive overview of relevant<br />

support policies, markets, <strong>in</strong>vestments<br />

and jobs (available at www.<br />

ren21.net). In addition, REN21 supports<br />

the “Global Trends <strong>in</strong> Susta<strong>in</strong>-<br />

60 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

able <strong>Energy</strong> Investments” report (at<br />

www.sefi.unep.org), and monitors<br />

implementation of the IAP. REN21<br />

also supported implementation of<br />

the United Nations Bonn Resolutions,<br />

particularly those taken <strong>in</strong> the<br />

framework of the UN Commission<br />

on Susta<strong>in</strong>able Development.<br />

Follow<strong>in</strong>g the Bonn renewables conference,<br />

a process of follow-up conferences<br />

became established.<br />

In 2005, the Ch<strong>in</strong>ese Government<br />

held the first follow-up conference<br />

– the Beij<strong>in</strong>g International <strong>Renewable</strong><br />

<strong>Energy</strong> Conference (BIREC 2005)<br />

– with the support of the German<br />

Government. The conference was attended<br />

by 1,300 delegates from 100<br />

countries, <strong>in</strong>clud<strong>in</strong>g 30 government<br />

representatives at m<strong>in</strong>isterial level,<br />

and was a great success.<br />

In 2008, the second follow-up conference,<br />

the Wash<strong>in</strong>gton International<br />

<strong>Renewable</strong> <strong>Energy</strong> Conference<br />

(WIREC), was hosted by the US<br />

Government. The pr<strong>in</strong>cipal outcome<br />

was an action programme compris<strong>in</strong>g<br />

more than 90 declarations of<br />

commitment by governments, companies<br />

and civil associations. These<br />

declarations of commitment are<br />

available at the conference website<br />

www.wirec2008.gov.<br />

The third follow-up conference is<br />

be<strong>in</strong>g hosted by the Indian Government,<br />

and will take place from<br />

27 – 29 October 2010 <strong>in</strong> New Delhi.<br />

The Delhi International <strong>Renewable</strong><br />

<strong>Energy</strong> Conference (DIREC) aims to<br />

highlight the role of renewable energies<br />

<strong>in</strong> <strong>in</strong>ternational energy and<br />

climate policy. Further <strong>in</strong><strong>for</strong>mation<br />

is available at<br />

http://direc2010.gov.<strong>in</strong>/.<br />

The German Government also supports<br />

relevant regional activities<br />

and cooperation with key develop<strong>in</strong>g<br />

and newly <strong>in</strong>dustrialis<strong>in</strong>g countries.<br />

In one such ef<strong>for</strong>t, the German<br />

Government promotes use of<br />

renewable energies <strong>in</strong> Arab countries<br />

– <strong>for</strong> example, via the Arab <strong>in</strong>itiative<br />

of the Middle East and North<br />

Africa <strong>Renewable</strong> <strong>Energy</strong> Conferences<br />

(MENAREC). In 2004, this was<br />

held <strong>in</strong> Sana’a (Yemen), <strong>in</strong> 2005 <strong>in</strong><br />

Amman (Jordan), <strong>in</strong> 2006 <strong>in</strong> Cairo<br />

(Egypt) and <strong>in</strong> 2007 <strong>in</strong> Damascus<br />

(Syria). Morocco has agreed to host<br />

the fifth conference.<br />

Expansion of renewable energies is<br />

also be<strong>in</strong>g promoted with<strong>in</strong> the context<br />

of the Indo-German <strong>Energy</strong><br />

Forum (IGEF) and the German-Brazilian<br />

energy agreement.<br />

The <strong>Renewable</strong> <strong>Energy</strong> Technology<br />

Deployment (RETD) Implement<strong>in</strong>g<br />

Agreement was established on<br />

the <strong>in</strong>itiative of the BMU. The RETD<br />

is an overarch<strong>in</strong>g, cross-technology<br />

agreement that, <strong>in</strong> the framework<br />

of the International <strong>Energy</strong> Agency<br />

(IEA), is designed to boost market<br />

<strong>in</strong>troduction of renewable energy<br />

technologies. Concluded <strong>in</strong><br />

2005, the agreement now <strong>in</strong>cludes<br />

the active participation of 10 countries<br />

(Germany, France, Japan, Italy,<br />

the UK, Denmark, Netherlands, Canada,<br />

Ireland and Norway). The RETD<br />

supports relevant renewable energy<br />

projects and carries out expert conferences,<br />

the most recent of which<br />

was held <strong>in</strong> April 2009.<br />

Further <strong>in</strong><strong>for</strong>mation is available at<br />

http://iea-retd.org/.


annex: MethoDologICal notes<br />

Some of the data published here<br />

reflects provisional results only. <strong>Figures</strong><br />

may still change <strong>in</strong> comparison<br />

with earlier publications until f<strong>in</strong>al<br />

data is published. Differences between<br />

the figures <strong>in</strong> the tables and<br />

the correspond<strong>in</strong>g column or l<strong>in</strong>e to-<br />

tals are due to round<strong>in</strong>g up or down.<br />

The commonly used energy statistics<br />

term<strong>in</strong>ology <strong>in</strong>cludes the term<br />

(primary) energy consumption,<br />

although that term is not correct <strong>in</strong><br />

a physical sense – energy is neither<br />

extracted nor consumed, but can<br />

schematic diagramme of energy flows <strong>in</strong> germany <strong>in</strong> 2008 [PJ]<br />

Removal<br />

from stocks<br />

Statistical<br />

differences<br />

35<br />

2,645<br />

Industry<br />

* All figures are provisional/estimated.<br />

29.308 petajoules (PJ) ^ 1 Mtce<br />

=<br />

51<br />

Source: Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

09/2009; available at www.ag-energiebilanzen.de.<br />

Domestic<br />

production<br />

4,147<br />

16,358<br />

Imports<br />

Domestic energy production<br />

14,280<br />

Primary energy consumption *<br />

9,126<br />

F<strong>in</strong>al energy consumption<br />

2,575<br />

Transport<br />

12,160<br />

Exports and bunker<strong>in</strong>g<br />

2,078<br />

Non-energy-related consumption<br />

1,030<br />

Conversion losses<br />

519<br />

Consumption <strong>in</strong> energy sectors<br />

2,502<br />

Households<br />

3,570<br />

ANNEX: METHODOLOGICAL NOTES<br />

merely be converted <strong>in</strong>to different<br />

<strong>for</strong>ms of energy (such as heat, electricity,<br />

mechanical energy). S<strong>in</strong>ce<br />

such conversion is never completely<br />

reversible, it always entails some<br />

losses of useful energy.<br />

1,404<br />

Commerce, trade,<br />

services<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

61


ANNEX: METHODOLOGICAL NOTES<br />

1. energy supply from photovoltaic and solar thermal systems<br />

Photovoltaic power<br />

The figure given <strong>for</strong> electricity generation<br />

<strong>in</strong> 2009 is based on net <strong>in</strong>stallation<br />

construction pursuant to<br />

data of the Federal Network Agency.<br />

The electricity generation figures <strong>for</strong><br />

the period 2002 to 2008 correspond<br />

to those given <strong>in</strong> the yearly summaries<br />

of the Association of German<br />

network operators (VDN) and BDEW<br />

(Bundesverband der Energie- und<br />

Wasserwirtschaft – Federal association<br />

of the energy and water <strong>in</strong>dustry)<br />

relative to the <strong>Renewable</strong> <strong>Energy</strong><br />

<strong>Sources</strong> Act (EEG). For the period<br />

through 2001 electricity generation<br />

was calculated on the basis of<br />

the <strong>in</strong>stalled capacity at the beg<strong>in</strong>n<strong>in</strong>g<br />

of each relevant year and half<br />

of the net capacity growth <strong>for</strong> the<br />

year, multiplied by a specific electricity<br />

yield, provided by Solarener-<br />

2. Co 2 - and so 2 equivalent<br />

The key greenhouse gases are the<br />

so-called “Kyoto gases”, CO 2 , CH 4 ,<br />

N 2 O, SF 6 , PFC and HFC. The Kyoto<br />

Protocol calls <strong>for</strong> emissions of these<br />

gases to be reduced. The gases contribute<br />

<strong>in</strong> vary<strong>in</strong>g degrees to the<br />

greenhouse effect. To make it possible<br />

to compare the greenhouse<br />

effects of the different <strong>in</strong>dividual<br />

gases, each gas is assigned a factor,<br />

62 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

gie-Fördervere<strong>in</strong> (Solar energy promotion<br />

association) [26] <strong>in</strong> the <strong>for</strong>m<br />

of an average value <strong>for</strong> Germany.<br />

The reason why only half of the net<br />

capacity growth was taken <strong>in</strong>to account<br />

<strong>for</strong> each year is that only part<br />

of each year’s net capacity growth is<br />

available <strong>for</strong> electricity generation<br />

<strong>in</strong> the relevant year.<br />

Solar thermal systems<br />

The heat supply figures given are<br />

calculated on the basis of the <strong>in</strong>stalled<br />

collector area and a mean<br />

annual heat yield. For water heat<strong>in</strong>g<br />

systems, that factor is 450 kWh/<br />

m 2 *a. In addition to systems designed<br />

only <strong>for</strong> heat<strong>in</strong>g water, <strong>in</strong> recent<br />

years more and more solar thermal<br />

systems have been <strong>in</strong>stalled that<br />

comb<strong>in</strong>e water heat<strong>in</strong>g and central<br />

heat<strong>in</strong>g support functions.<br />

known as the “greenhouse warm<strong>in</strong>g<br />

potential” (GWP), which expresses<br />

the greenhouse effect of the gas <strong>in</strong><br />

comparison with the reference substance<br />

CO 2 .<br />

The CO 2 equivalent of each Kyoto<br />

gas is derived by multiply<strong>in</strong>g the<br />

relative GWP of the gas by the relevant<br />

mass of the gas. The result <strong>in</strong>-<br />

gas relative greenhouse potential 1)<br />

CO 2<br />

CH 4<br />

1<br />

21<br />

N 2 O 310<br />

gas relative acidification potential<br />

1<br />

SO 2<br />

NO x<br />

NH 3<br />

0.696<br />

1.88<br />

The acidification potential of SO 2 ,<br />

NO X , HF, HCl, H 2 S and NH 3 is determ<strong>in</strong>ed<br />

with the same method as the<br />

CO 2 equivalent. The SO 2 equivalent<br />

of each of these air pollutants expresses<br />

the quantity of SO 2 which<br />

Because systems that support central<br />

heat<strong>in</strong>g systems cannot operate to<br />

full capacity <strong>in</strong> summer months<br />

(i.e. their full capacity cannot be<br />

made use of), a reduced heat yield<br />

of 300 kWh/m 2 *a is used <strong>in</strong> calculations<br />

<strong>for</strong> such systems. A factor of<br />

300 kWh/m 2 *a is also used <strong>for</strong> calculations<br />

relative to swimm<strong>in</strong>g pool<br />

absorber systems.<br />

S<strong>in</strong>ce systems are cont<strong>in</strong>ually be<strong>in</strong>g<br />

added, the available collector area at<br />

any given time dur<strong>in</strong>g a given year<br />

will be lower than the <strong>in</strong>stalled area<br />

at year’s end. Consequently, only<br />

half of the net area growth <strong>for</strong> any<br />

given year is used <strong>for</strong> calculation of<br />

heat production <strong>in</strong> the relevant year.<br />

dicates the quantity of CO 2 which<br />

would develop the same greenhouse<br />

effect over an observation period of<br />

100 years.<br />

Due to limited data availability the<br />

calculation of avoided emissions<br />

only takes the greenhouse gases<br />

CO 2 , CH 4 and N 2 O <strong>in</strong>to account.<br />

1) The calculations <strong>in</strong> this brochure have been<br />

made on the basis of the values pursuant to<br />

IPCC, from 1995 [108]. The UNFCCC Guidel<strong>in</strong>es<br />

[111], stipulate use of those values <strong>for</strong><br />

report<strong>in</strong>g on greenhouse gases under the<br />

UN Framework Convention on Climate<br />

Change (UNFCCC), and under the Kyoto<br />

Protocol.<br />

The GWP is oriented to a time horizon of 100<br />

years; CO is the reference substance.<br />

2<br />

would produce the same acidify<strong>in</strong>g<br />

effect (i.e. as the relevant pollutant).<br />

Due to limited data availability, the<br />

calculation of avoided emissions<br />

only takes the air pollutants SO 2 and<br />

NO X <strong>in</strong>to account.


ANNEX: METHODOLOGICAL NOTES<br />

3. Calculation of avoidance factors and avoided emissions <strong>for</strong> renewables-based electricity<br />

generation<br />

Calculation of emissions avoided<br />

through the use of renewable energies<br />

takes account of structures <strong>in</strong><br />

the renewables-based electricity sector<br />

and of relevant substitution and<br />

emission factors. In each case, a substitution<br />

factor shows what fossil<br />

fuels a renewable energy source is<br />

replac<strong>in</strong>g. Emission factors express<br />

the quantities of greenhouse gases<br />

and air pollutants that are emitted<br />

per kWh of fossil-based or renewables-based<br />

electricity. They reflect<br />

both direct emissions tied to electricity<br />

generation itself and emissions<br />

produced <strong>in</strong> the related upstream<br />

stages. The upstream stages<br />

<strong>in</strong>clude emissions released <strong>in</strong> production<br />

of relevant generation <strong>in</strong>stallations<br />

and emissions produced<br />

<strong>in</strong> production, process<strong>in</strong>g and transport<br />

of energy sources (fossil and<br />

renewable). In cases <strong>in</strong>volv<strong>in</strong>g comb<strong>in</strong>ed<br />

electricity and heat generation,<br />

emissions are allocated pursuant<br />

to the “F<strong>in</strong>nish method” def<strong>in</strong>ed<br />

<strong>in</strong> EU Directive 2004/8/EC.<br />

The substitution factors used are<br />

based on the “Gutachten zur CO 2 -<br />

M<strong>in</strong>derung im Stromsektor durch<br />

den E<strong>in</strong>satz erneuerbarer Energien<br />

im Jahr 2006 und 2007” (“Report on<br />

CO 2 reduction <strong>in</strong> the electricity sector<br />

via use of renewable energies <strong>in</strong><br />

2006 and 2007”; Klobasa et al. [88]).<br />

Us<strong>in</strong>g an electricity market model,<br />

the study determ<strong>in</strong>ed the extent to<br />

which renewable energies can replace<br />

conventional energy sources,<br />

given the current power plant park.<br />

The pert<strong>in</strong>ent emissions reductions<br />

were calculated with the substitution<br />

factors from 2006. Accord<strong>in</strong>g<br />

to the report, renewable energies at<br />

present are not substitut<strong>in</strong>g <strong>for</strong> any<br />

of the base load capacity provided<br />

by nuclear power stations, s<strong>in</strong>ce nuclear<br />

base load capacity has lower<br />

variable costs than relevant capacity<br />

of lignite-fired power stations.<br />

The emission factors <strong>for</strong> fossil-based<br />

and renewables-based electricity<br />

generation were obta<strong>in</strong>ed from various<br />

databases and from research<br />

projects.<br />

The direct emission factors <strong>for</strong> fossilbased<br />

electricity generation are calculated<br />

with an implicit procedure,<br />

and on the basis of the Federal Environment<br />

Agency (UBA) database <strong>for</strong><br />

national emissions report<strong>in</strong>g (CSE)<br />

[99]. In addition, calculation of the<br />

implicit emission factors takes account<br />

of the fuel-use efficiencies<br />

<strong>for</strong> the different types of power stations<br />

concerned. The data resources<br />

<strong>for</strong> this purpose are the “Sondertabelle<br />

Bruttostromerzeugung nach<br />

Energieträgern” (“Special table on<br />

gross electricity generation, by energy<br />

sources”) [143] and the “Auswer-<br />

substitution factors <strong>for</strong> renewables-based electricity 1)<br />

nuclear<br />

energy<br />

lignite hard coal<br />

natural<br />

gas<br />

M<strong>in</strong>eral<br />

oils<br />

Hydropower 0 30<br />

[%]<br />

45 25 0<br />

W<strong>in</strong>d energy 0 11 63 24 2<br />

Photovoltaic power 0 0 50 50 0<br />

Solid biomass 0 16 59 25 0<br />

Liquid biomass 0 5 62 32 1<br />

Biogas 0 5 62 32 1<br />

Landfill gas 0 5 62 32 1<br />

Sewage gas 0 5 62 32 1<br />

Biogenic fraction of waste 2) 0 16 59 25 0<br />

Geothermal energy 0 30 45 25 0<br />

tungstabellen zur Energiebilanz”<br />

(“<strong>Energy</strong>-Balance evaluation tables”)<br />

[5] of the Work<strong>in</strong>g Group on <strong>Energy</strong><br />

Balances (AGEB). Compared to the<br />

previous year, there were changes<br />

<strong>in</strong> the underly<strong>in</strong>g fuel-use efficiencies,<br />

which led to a lower emissions<br />

avoidance figure achieved with renewables-based<br />

electricity of 2.4<br />

million tonnes of CO 2 . These changes<br />

result from alterations made by<br />

the AGEB <strong>in</strong> energy-balance calculation<br />

of primary energy <strong>in</strong>puts <strong>for</strong><br />

comb<strong>in</strong>ed electricity / heat generation.<br />

In particular, allocation pursuant<br />

to the “F<strong>in</strong>nish method” yields<br />

higher fuel-use efficiencies <strong>for</strong> power<br />

stations subject to substitution.<br />

The largest change occurred <strong>in</strong> the<br />

fuel-use efficiency <strong>for</strong> natural gas.<br />

The emissions data <strong>for</strong> fossil-based<br />

upstream stages were taken from<br />

the GEMIS database of the Öko-Institut<br />

e.V. (Institute <strong>for</strong> Applied Ecology<br />

[90]). For the emission factors<br />

<strong>for</strong> renewable energies, representative<br />

data records were selected from<br />

various databases and adapted as<br />

necessary. The ma<strong>in</strong> sources used <strong>in</strong>cluded<br />

Öko-Institut [90], Eco<strong>in</strong>vent<br />

[84], UBA [99], Vogt et al. [89], Ciroth<br />

[83] and Frick et al. [86]. Comprehensive<br />

<strong>in</strong><strong>for</strong>mation about the calculation<br />

methods and data sources used<br />

is provided <strong>in</strong> UBA [75].<br />

1) This should be <strong>in</strong>terpreted as follows: <strong>for</strong><br />

example, of every kWh of hydroelectric<br />

power, 30 % substitutes <strong>for</strong> electricity from<br />

lignite-fired power stations, 45 % substitutes<br />

<strong>for</strong> electricity from hard-coal-fired power<br />

stations and 25 % substitutes <strong>for</strong> electricity<br />

from gas-fired power stations.<br />

2) Biogenic waste fraction set at 50 %<br />

Source: Klobasa et al. [88]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

63


ANNEX: METHODOLOGICAL NOTES<br />

4. Calculation of avoidance factors and avoided emissions <strong>for</strong> renewables-based heat generation<br />

The greenhouse gas and air pollution<br />

emissions avoided via use of renewable<br />

energies <strong>in</strong> the heat sector<br />

are calculated <strong>in</strong> a three-step procedure:<br />

Firstly, substitution factors are determ<strong>in</strong>ed<br />

<strong>for</strong> each of the renewablesbased<br />

heat supply paths. These factors<br />

describe the additional primary<br />

and secondary (such as district heat<br />

and electricity) fossil-based energy<br />

sources that would have to be used<br />

<strong>for</strong> heat generation if the renewables-based<br />

heat generation capacities<br />

were unavailable. An empirical<br />

study on use of solar thermal systems,<br />

heat pumps and wood-fired<br />

systems <strong>in</strong> private households has<br />

provided important <strong>in</strong><strong>for</strong>mation <strong>in</strong><br />

this regard [87]. In<strong>for</strong>mation published<br />

by the Work<strong>in</strong>g Group on En-<br />

64 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

ergy Balances (AGEB) relative to energy<br />

consumption <strong>in</strong> the <strong>in</strong>dustry<br />

sectors<br />

manufactur<strong>in</strong>g of non-metallic m<strong>in</strong>erals,<br />

paper <strong>in</strong>dustry and other <strong>in</strong>dustry<br />

(<strong>in</strong>clud<strong>in</strong>g the wood <strong>in</strong>dustry),<br />

as well as <strong>in</strong> private households,<br />

was also used. With regard to renewables-based<br />

district and local<br />

heat produced from wood, from biogenic<br />

fractions of waste and from<br />

geothermal energy, it is assumed<br />

that this replaces 100% of fossilbased<br />

district heat<strong>in</strong>g, with comparable<br />

grid losses.<br />

In a second step, emission factors <strong>for</strong><br />

the renewables-based heat supply <strong>for</strong><br />

private households, agriculture and<br />

<strong>in</strong>dustry, and <strong>for</strong> the correspond<strong>in</strong>g<br />

avoided fossil-based heat production,<br />

are taken or derived from UBA<br />

Substitution factors <strong>for</strong> renewables-based heat<br />

[99], Öko-Institut [90], Eco<strong>in</strong>vent [84],<br />

Vogt et al. [89], Ciroth [83], Frick et<br />

al. [86]. The emission factors used<br />

take account of the entire upstream<br />

cha<strong>in</strong> <strong>for</strong> provision of fossil-based<br />

and renewable energy sources. In<br />

cases <strong>in</strong>volv<strong>in</strong>g comb<strong>in</strong>ed electricity/<br />

heat generation, emissions are<br />

allocated to electricity and to heat<br />

pursuant to the “F<strong>in</strong>nish method”<br />

def<strong>in</strong>ed <strong>in</strong> EU Directive 2004/8/EC.<br />

In a f<strong>in</strong>al summ<strong>in</strong>g step, the result<strong>in</strong>g<br />

avoided fossil-based emissions<br />

are compared to the emissions occurr<strong>in</strong>g<br />

<strong>in</strong> relevant use of renewable<br />

energies, to determ<strong>in</strong>e the net avoidance<br />

of greenhouse gases and air<br />

pollution. Comprehensive <strong>in</strong><strong>for</strong>mation<br />

about the calculation methods<br />

and data sources used is provided <strong>in</strong><br />

UBA [75].<br />

Heat<strong>in</strong>g oil Natural gas Hard coal Lignite District heat Elec. heat<strong>in</strong>g<br />

[%]<br />

Wood - stand-alone stoves (households) 41 50 0 1 2 6<br />

Wood - central heat<strong>in</strong>g systems (households) 65 20 2 3 0 10<br />

Solid biomass (<strong>in</strong>dustry) 17 55 10 12 7 0<br />

Solid biomass (CHP/HP) 0 0 0 0 100 0<br />

Liquid biomass (<strong>in</strong>dustry) 5 74 9 1 11 0<br />

Liquid biomass (households) 33 48 1 1 8 8<br />

Biogas, sewage gas, landfill gas (BCHP) 61 33 6 0 0 0<br />

Biogenic fraction of waste (CHP/HP) 0 0 0 0 100 0<br />

Deep geothermal energy (CHP/HP) 0 0 0 0 100 0<br />

Solar thermal energy (households) 45 51 0 0 2 3<br />

Heat pumps (households) 45 44 1 2 5 3<br />

Total 36 38 3 2 16 4<br />

Source: UBA [75], [99] on the basis of AGEE-Stat and Frondel et al. [87]; AGEB [2], [4]


5. Calculation of avoidance factors and avoided emissions <strong>for</strong> use of biofuels<br />

Calculation of the greenhouse gas<br />

emissions avoided via use of biofuels<br />

is based on the follow<strong>in</strong>g basic pr<strong>in</strong>ciples:<br />

ó Consideration of the nature and<br />

orig<strong>in</strong> of the raw materials used to<br />

produce biofuels, and <strong>in</strong>clusion of<br />

biofuel imports<br />

ó Allocation of ma<strong>in</strong> products and<br />

by-products on the basis of lower<br />

net calorific values<br />

ó Consideration of differences<br />

between production technologies/<br />

energy supply systems<br />

ó Reference to the relevant typical<br />

values <strong>in</strong> the EU <strong>Renewable</strong> <strong>Energy</strong><br />

Directive<br />

The substitution relationships have<br />

been kept as simple as possible:<br />

1 kWh of bioethanol replaces 1 kWh<br />

of petrol, and 1 kWh of biodiesel or<br />

vegetable oil replaces 1 kWh of m<strong>in</strong>eral-based<br />

diesel fuel. In a procedure<br />

Different raw materials’ shares of total biofuel used <strong>in</strong> Germany, 2009<br />

Rapeseed Soy Palm oil Waste Gra<strong>in</strong> Sugar cane Sugar beets Other<br />

[%] (figures rounded)<br />

Biodiesel 79 10 5 6 – – – –<br />

Vegetable oil 100 0 0 0 – – – –<br />

Bioethanol – – – – 42 35 21 2<br />

In addition, the emissions reduction<br />

quantity <strong>in</strong>volved is determ<strong>in</strong>ed us<strong>in</strong>g<br />

the applicable emission factors<br />

<strong>for</strong> the various biogenic and fossil<br />

fuels. The relevant greenhouse gas<br />

emission reductions are calculated<br />

To date, direct and <strong>in</strong>direct land-use<br />

changes – which play an important<br />

role especially <strong>in</strong> connection with<br />

biofuels – have not been taken <strong>in</strong>to<br />

account <strong>in</strong> such balanc<strong>in</strong>g. Land-use<br />

changes can produce high levels of<br />

greenhouse gas emissions and thus<br />

are of considerable relevance. Consequently,<br />

they have to be taken <strong>in</strong>to<br />

account <strong>in</strong> the balance. Relevant<br />

methods are still be<strong>in</strong>g developed<br />

and are not yet available <strong>for</strong> calculations.<br />

Direct land-use changes are <strong>in</strong>significant<br />

with regard to raw materials<br />

produced on German land areas.<br />

In the case of imports, little is<br />

known about relevant direct landuse<br />

changes.<br />

on the basis of the typical values<br />

given <strong>in</strong> the new EU <strong>Renewable</strong><br />

<strong>Energy</strong> Directive (2009/28/EC). In a<br />

f<strong>in</strong>al step, the net avoidance of CO 2<br />

and all other greenhouse gases is<br />

determ<strong>in</strong>ed by offsett<strong>in</strong>g the rele-<br />

Greenhouse gas emission<br />

factors used<br />

Fuel (underly<strong>in</strong>g Emission factor<br />

raw material) [g CO -eq/kWh]<br />

2<br />

Petrol/diesel (fossil) 301.7<br />

Biodiesel (rapeseed) 165.6<br />

Biodiesel (soy) 180.0<br />

Biodiesel (palm oil) 115.2<br />

Biodiesel (waste) 36.0<br />

Vegetable oil (rapeseed) 126.0<br />

Vegetable oil (soy) 152.6<br />

Bioethanol (gra<strong>in</strong>) 180.0<br />

Bioethanol (beets) 118.8<br />

Bioethanol (sugar cane) 86.4<br />

Bioethanol (other) 36.0<br />

Biodiesel (weighted) 157<br />

Vegetable oil (weighted) 126<br />

Bioethanol (weighted) 132<br />

ANNEX: METHODOLOGICAL NOTES<br />

similar to that used <strong>for</strong> fossil fuels,<br />

biofuels are allocated to specific<br />

vehicle types/transport modes (structural<br />

elements <strong>in</strong> the TREMOD database<br />

and <strong>in</strong> the CSE). There is no differentiation<br />

of vehicle-related emissions<br />

aris<strong>in</strong>g from the use of biofuels<br />

<strong>in</strong>stead of conventional fuels.<br />

The bases and orig<strong>in</strong> of the raw<br />

materials are a key factor <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

emissions avoided through<br />

biofuel use. The follow<strong>in</strong>g table<br />

provides a relevant overview.<br />

<strong>Sources</strong>: UBA [75], on the basis of<br />

BDBe [82]; VDB [81], [98] and [142];<br />

OVID [77]; TFZ [91], Greenpeace [78],<br />

BLE [103], destatis [104]<br />

vant avoided fossil-based emissions<br />

aga<strong>in</strong>st the emissions occurr<strong>in</strong>g <strong>in</strong><br />

renewable energy use. Comprehensive<br />

<strong>in</strong><strong>for</strong>mation about the calculation<br />

methods and data sources used<br />

is provided <strong>in</strong> UBA [75].<br />

<strong>Sources</strong>: UBA [75], on the basis of AGEE-Stat and<br />

EP/ER [85]; BR [79] and BR [80]<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

65


ANNEX: METHODOLOGICAL NOTES<br />

6. fossil fuel sav<strong>in</strong>gs via use of renewable energy sources<br />

Consumption of<br />

primary energy<br />

(fossil fuels)<br />

energy sources [kwh prim /kwh el ]<br />

Lignite (power plant) 2.72<br />

Hard coal (power plant) 2.69<br />

Natural gas (power plant) 2.00<br />

Petroleum (power plant) 3.04<br />

Hydropower 0.01<br />

W<strong>in</strong>d energy 0.04<br />

Photovoltaics 0.31<br />

Solid biomass (CHP) 0.06<br />

Liquid biomass (BCHP) 0.26<br />

Biogas (BCHP) 0.37<br />

Sewage/landfill gas (BCHP) 0.00<br />

Biogenic fraction of waste 0.03<br />

Geothermal energy 0.47<br />

<strong>Sources</strong>: Öko-Institut [90]; Eco<strong>in</strong>vent [84];<br />

Vogt et al. [89]; Frick et al. [86]<br />

Consumption of<br />

primary energy<br />

(fossil fuels)<br />

energy sources [kwh /kwh ]<br />

prim <strong>in</strong>put<br />

Natural gas (heat<strong>in</strong>g<br />

systems)<br />

Heat<strong>in</strong>g oil (heat<strong>in</strong>g<br />

systems)<br />

1.15<br />

1.18<br />

Lignite briquettes (stoves) 1.22<br />

Hard-coal coke (stoves) 1.38<br />

Distric heat<br />

(<strong>in</strong>cl./excl. grid losses)<br />

1.12/1.03<br />

Electricity (basic load,<br />

<strong>in</strong>cl. grid losses)<br />

1.71<br />

Firewood<br />

(heat<strong>in</strong>g systems)<br />

0.04<br />

Wood pellets<br />

(heat<strong>in</strong>g systems)<br />

0.11<br />

Biomass (<strong>in</strong>dustry) 0.15<br />

Biomass (CHP) 0.02<br />

Liquid biomass (BCHP) 0.09<br />

Biogas (BCHP) 0.06<br />

Biogenic fraction of waste 0.01<br />

Deep geothermal energy 0.47<br />

Heat pumps 0.59<br />

Solar thermal energy 0.12<br />

<strong>Sources</strong>: Öko-Institut [90]; Eco<strong>in</strong>vent [84];<br />

Vogt et al. [89]; Frick et al. [86]<br />

66 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

The method <strong>for</strong> calculat<strong>in</strong>g fossil<br />

fuel sav<strong>in</strong>gs via use of renewable energies,<br />

<strong>in</strong> the electricity, heat and<br />

transport sectors, is oriented closely<br />

to the methods and data sources<br />

used <strong>in</strong> the energy balances (cf. also<br />

Annex (3)-(5)). The various different<br />

renewables-based energy supply<br />

paths save different quantities of fossil<br />

fuels, <strong>in</strong> keep<strong>in</strong>g with their applicable<br />

substitution relationships and<br />

upstream cha<strong>in</strong>s.<br />

Sav<strong>in</strong>gs of fossil fuels <strong>in</strong> the electricity<br />

sector are calculated us<strong>in</strong>g the<br />

renewable energies substitution<br />

factors determ<strong>in</strong>ed by Klobasa et al.<br />

[88] (cf. Annex (3)), as well as from<br />

the average fuel-use efficiencies <strong>in</strong><br />

German power stations and the cumulative<br />

<strong>in</strong>puts of primary energy<br />

The primary-energy sav<strong>in</strong>gs <strong>in</strong> the<br />

heat sector are also calculated from<br />

the relevant substitution factors and<br />

the cumulative fossil-fuel <strong>in</strong>puts <strong>for</strong><br />

fossil-based and renewables-based<br />

heat generation (cf. Annex (4)).<br />

In the process, sav<strong>in</strong>gs of the secondary<br />

energy sources district heat and<br />

electricity are divided proportionally<br />

among the primary energy sources<br />

required to provide the relevant district<br />

heat and electricity. In the results<br />

obta<strong>in</strong>ed, the fuel-mix sav<strong>in</strong>gs<br />

<strong>for</strong> district heat break down <strong>in</strong>to<br />

required to provide fossil fuels.<br />

In a subsequent step, the gross fossil<br />

energy sources<br />

average fuel-use efficiency<br />

of the pert<strong>in</strong>ent<br />

power-station sector<br />

[%]<br />

Lignite 38.2<br />

Hard coal 41.1<br />

Natural gas 55.5<br />

M<strong>in</strong>eral oil 38.1<br />

Source: AGEB [2], [4]<br />

fuel sav<strong>in</strong>gs are compared with the<br />

fossil-based primary energy <strong>in</strong>puts<br />

required to provide biogenic energy<br />

sources and to produce and operate<br />

renewables-based electricity generation<br />

<strong>in</strong>stallations.<br />

61 % natural gas, 23 % hard coal,<br />

1 % petroleum, 8 % lignite and 6 %<br />

municipal waste. The fuel mix assumed<br />

<strong>for</strong> electricity generation<br />

breaks down <strong>in</strong>to 25 % lignite, 23 %<br />

nuclear power, 18 % hard coal, 13 %<br />

natural gas, 4 % other and 16 %<br />

renewable energies. Grid losses and<br />

other losses are assumed to amount<br />

to 8 % <strong>for</strong> district heat and 14 % <strong>for</strong><br />

electricity. The result<strong>in</strong>g comb<strong>in</strong>ed<br />

and weighted sav<strong>in</strong>gs factor is<br />

1.10 kWh primary-energy per kWh<br />

of renewables-based heat.


Sav<strong>in</strong>gs of fossil-based primary energy<br />

<strong>in</strong> the transport sector are calculated<br />

on the basis of substitution of<br />

biodiesel and vegetable oil <strong>for</strong> diesel<br />

fuel, and substitution of bioethanol<br />

<strong>for</strong> petrol. The primary energy<br />

sav<strong>in</strong>gs achieved with biofuels depend<br />

on the agricultural production<br />

methods <strong>in</strong>volved and the biofuels’<br />

orig<strong>in</strong>s, as well as (especially) on the<br />

method used to allocate energy consumption<br />

to ma<strong>in</strong> products and byproducts<br />

(such as soy meal and soy<br />

oil). In the present case relevant data,<br />

allocated <strong>in</strong> accordance with products’<br />

energy content, were obta<strong>in</strong>ed<br />

from the GEMIS database of the Öko-<br />

Institut e.V. Institute <strong>for</strong> Applied Ecology<br />

[90]. The result showed that each<br />

kilowatt hour of biodiesel used saves<br />

0.69 kilowatt hours (primary energy)<br />

compared with diesel fuel. For bioethanol<br />

and vegetable oil, the average<br />

sav<strong>in</strong>gs factors are 0.85 kWh primary<br />

energy and 0.90 kWh of primary<br />

energy respectively.<br />

7. sales revenue from the use of renewable energy sources<br />

Revenue from the electricity generation<br />

may be estimated on the basis<br />

of the quantities of electricity<br />

fed <strong>in</strong>to the grid and the payments<br />

made under the <strong>Renewable</strong> <strong>Energy</strong><br />

<strong>Sources</strong> Act. The revenues from <strong>in</strong>stallations<br />

that fall outside the scope<br />

of the Act must also be added, especially<br />

hydropower plants with over<br />

5 MW capacity and electricity generation<br />

from thermal waste treatment<br />

(biogenic fraction only). An average<br />

value of 6.9 cents/kWh is assumed,<br />

based on the electricity exchange<br />

price <strong>for</strong> base load electricity. With<br />

electricity generation of about 23<br />

TWh <strong>in</strong> 2009, this gives a figure of<br />

approximately 1.6 billion euros.<br />

The value of heat supplied from renewable<br />

energy sources is disregarded,<br />

s<strong>in</strong>ce the bulk of the heat is used<br />

<strong>in</strong>ternally. One conceivable valuation<br />

here, however, would be to calculate<br />

the avoided costs <strong>for</strong> heat<strong>in</strong>g<br />

oil or natural gas. Assum<strong>in</strong>g a substituted<br />

heat quantity of approximately<br />

105 TWh, an average heat<strong>in</strong>g oil<br />

price of 53 cents per litre as well as<br />

an average natural gas price of<br />

6.7 cents/kWh, this approach would<br />

produce a figure of approximately<br />

6.4 billion euros <strong>for</strong> the private<br />

household sector. The costs of the<br />

ma<strong>in</strong>tenance and repair of heat generat<strong>in</strong>g<br />

plants, as well as the revenues<br />

from the sale of heat <strong>in</strong> district/local<br />

heat<strong>in</strong>g systems, are not<br />

considered here here. This leaves the<br />

ANNEX: METHODOLOGICAL NOTES<br />

energy sources<br />

Consumption of<br />

primary energy<br />

(fossil fuels)<br />

[kwh /kwh ]<br />

prim <strong>in</strong>put<br />

Petrol 1.21<br />

Diesel fuel 1.15<br />

Biodiesel (rapeseed) 0.47<br />

Biodiesel (soy) 0.39<br />

Biodiesel (palm oil) 0.65<br />

Vegetable oil (rapeseed) 0.24<br />

Vegetable oil (soy) 0.18<br />

Bioethanol (sugar beet) 0.28<br />

Bioethanol (sugar cane) 0.23<br />

Bioethanol (wheat) 0.50<br />

Source: Öko-Institut [90]<br />

valuation of biogenic <strong>in</strong>put materials<br />

such as residual wood from <strong>for</strong>ests,<br />

<strong>in</strong>dustrial residual wood, wood<br />

pellets etc. as well as a proportion of<br />

applicable firewood <strong>in</strong>puts. The total<br />

value of these materials has been estimated<br />

at 1.6 billion euros.<br />

For the fuel sector, the revenues<br />

can be calculated directly from the<br />

sale of biofuels. That approach has<br />

to take <strong>in</strong>to account the different<br />

types of fuel and distribution channels<br />

<strong>in</strong>volved. An average price of<br />

75.2 cents/litre net (107.3 cents/litre<br />

gross), <strong>for</strong> example, was estimated<br />

<strong>for</strong> biodiesel sale by public petrol<br />

stations, while lower prices were assumed<br />

<strong>for</strong> sales to vehicle fleets and<br />

<strong>for</strong> blend<strong>in</strong>g with diesel fuel.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

67


ANNEX: METHODOLOGICAL NOTES<br />

8. oeCD<br />

The Organisation <strong>for</strong> Economic Cooperation<br />

and Development was<br />

founded on 30 September 1961. Its<br />

ma<strong>in</strong> tasks <strong>in</strong>clude coord<strong>in</strong>ation of<br />

economic policy, particularly macroeconomic<br />

and currency policy, and<br />

coord<strong>in</strong>ation and <strong>in</strong>tensification of<br />

68 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

development aid from its 31 Member<br />

States: Australia, Austria, Belgium,<br />

Canada, Chile, Czech Republic, Denmark,<br />

F<strong>in</strong>land, France, Germany,<br />

Greece, Hungary, Iceland, Ireland,<br />

Italy, Japan, Korea, Luxembourg,<br />

Mexico, Netherlands, New Zealand,<br />

Norway, Poland Portugal, Slovak<br />

Republic, Spa<strong>in</strong> Sweden, Switzerland,<br />

Turkey, United K<strong>in</strong>gdom, United<br />

States. The OECD headquarters is<br />

<strong>in</strong> Paris. The International <strong>Energy</strong><br />

Agency (IEA) is a sub-organisation of<br />

the OECD, and is also based <strong>in</strong> Paris.<br />

9. Calculation of the primary energy equivalent of renewable energy sources <strong>for</strong> the eu<br />

In statistics of Eurostat (Statistical Office<br />

of the European Communities),<br />

the primary energy equivalent <strong>for</strong><br />

electricity from hydroelectric <strong>in</strong>stallations,<br />

w<strong>in</strong>d energy and photovoltaics<br />

is equated with electricity generation<br />

accord<strong>in</strong>g to the physical energy<br />

content method. In the case of<br />

electricity and heat generation from<br />

biomass, either a) the relevant net<br />

calorific value and fuel <strong>in</strong>puts are<br />

used to determ<strong>in</strong>e the primary energy<br />

or b) the primary energy equivalent<br />

is determ<strong>in</strong>ed from the generated<br />

electricity and/or generated<br />

heat, us<strong>in</strong>g typical <strong>in</strong>stallation efficiencies.<br />

For geothermal electricity<br />

generation, an efficiency of 10 % is<br />

assumed, while <strong>for</strong> geothermal heat<br />

generation the efficiency is assumed<br />

to be 50 %. In other words, 1 GWh<br />

of electricity from geothermal energy<br />

is rated at 36 TJ of primary energy,<br />

while 1 GWh of heat from geothermal<br />

energy is rated at 7.2 TJ. For<br />

heat generation outside of the trans<strong>for</strong>mation<br />

sector (CHP <strong>in</strong>stallations,<br />

heat-only <strong>in</strong>stallations), e.g. us<strong>in</strong>g<br />

firewood, heat pumps and solar thermal<br />

plants, the f<strong>in</strong>al energy supplied<br />

is considered equal to the relevant<br />

primary energy.<br />

Thus far, statistics have tended to<br />

focus on primary energy. With the<br />

entry <strong>in</strong>to <strong>for</strong>ce of the new Directive<br />

2009/28/EC on the promotion<br />

of the use of energy from renewable<br />

sources, f<strong>in</strong>al energy is ga<strong>in</strong><strong>in</strong>g importance<br />

as a statistical measure <strong>for</strong><br />

energy use (cf. also p. 40).


ConversIon faCtors<br />

terawatt hour: 1 TWh = 1 billion kWh<br />

gigawatt hour: 1 GWh = 1 million kWh<br />

Megawatt hour: 1 MWh = 1,000 kWh<br />

units <strong>for</strong> energy and power<br />

ANNEX:CONVERSION FACTORS, GREENHOUSE GASES AND AIR POLLUTANTS<br />

kilo k 10 3 tera t 10 12<br />

Mega M 10 6 Peta P 10 15<br />

giga g 10 9 exa e 10 18<br />

Joule J <strong>for</strong> energy, work heat quantity<br />

watt w <strong>for</strong> power, energy flux, heat flux<br />

1 Joule (J) = 1 1 newton-metre (nm) = 1 watt-second (ws)<br />

Conversion factors<br />

PJ twh Mtce Mtoe<br />

1 Petajoule PJ 1 0.2778 0.0341 0.0239<br />

1 terawatt hour twh 3.6 1 0.123 0.0861<br />

1 million tonnes coal<br />

equivalent<br />

1 million tonnes crude oil<br />

equivalent<br />

greenhouse gases<br />

Co 2<br />

Ch 4<br />

Carbon dioxide<br />

Methane<br />

n 2 o Nitrous oxide<br />

sf 6<br />

Mtce<br />

Mtoe<br />

Sulphur hexafluoride<br />

hfC Hydrofluorocarbons<br />

PfC Perfluorocarbons<br />

other air pollutants<br />

so 2<br />

no x<br />

hCl<br />

Sulphur dioxide<br />

Nitrogen oxides<br />

29.308<br />

41.869<br />

Hydrogen chloride (Hydrochloric acid)<br />

hf Hydrogen fluoride (Hydrofluoric acid)<br />

Co Carbon monoxide<br />

nMvoC Non-methane volatile organic compounds<br />

8.14<br />

11.63<br />

1<br />

1.429<br />

0.7<br />

1<br />

These have been the b<strong>in</strong>d<strong>in</strong>g statutory units<br />

<strong>in</strong> Germany s<strong>in</strong>ce 1978. The calorie, and units<br />

derived from it, such as coal equivalent and<br />

crude oil equivalent, are still used <strong>for</strong> <strong>in</strong><strong>for</strong>mation<br />

purposes.<br />

The figures refer to calorific value.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

69


ANNEX: LIST OF ABBREVIATIONS<br />

lIst of abbrevIatIons<br />

ausglMechv<br />

Ord<strong>in</strong>ance on the equalisation mechanism<br />

(Ausgleichsmechanismusverordnung)<br />

baugb Federal Build<strong>in</strong>g code (Baugesetzbuch)<br />

biokraftQug Biofuels Quota Act (Biokraftstoffquotengesetz)<br />

biost-nachv<br />

Biomass-electricity susta<strong>in</strong>ability ord<strong>in</strong>ance<br />

(Biomassestrom-Nachhaltigkeitsverordnung)<br />

bChP Block-type heat<strong>in</strong>g power station<br />

btl Biomass-to-Liquids<br />

ChP Comb<strong>in</strong>ed heat and power plant<br />

ChP act Comb<strong>in</strong>ed Heat and Power (Cogeneration) Act<br />

eeg<br />

eewärmeg<br />

<strong>Renewable</strong> <strong>Energy</strong> <strong>Sources</strong> Act<br />

(Erneuerbare-Energien-Gesetz)<br />

Act on the Promotion of <strong>Renewable</strong> Energies<br />

<strong>in</strong> the Heat Sector (Erneuerbare-Energien-<br />

Wärmegesetz)<br />

energiestg <strong>Energy</strong> Taxation Act (Energiesteuergesetz)<br />

feC F<strong>in</strong>al energy consumption<br />

gg Greenhouse gas<br />

gDP Gross domestic product<br />

hh Households<br />

hP Heat<strong>in</strong>g plant<br />

MaP<br />

Market Incentive Programme<br />

(Marktanreizprogramm)<br />

M<strong>in</strong>östg M<strong>in</strong>eral Oil Tax Act (M<strong>in</strong>eralölsteuergesetz)<br />

n/a Not available<br />

PeC Primary energy consumption<br />

streg<br />

Act on the Sale of Electricity to the Grid<br />

(Strome<strong>in</strong>speisungsgesetz)<br />

treMoD Transport Emission Model<br />

tso Transmission system operator<br />

70 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

Country codes:<br />

be<br />

bg<br />

Dk<br />

De<br />

ee<br />

Belgium<br />

Bulgaria<br />

Denmark<br />

Germany<br />

Estonia<br />

fI F<strong>in</strong>land<br />

fr France<br />

el Greece<br />

Ie Ireland<br />

It<br />

lv<br />

Italy<br />

Latvia<br />

lt Lithuania<br />

lu<br />

Mt<br />

Luxembourg<br />

Malta<br />

nl Netherlands<br />

at Austria<br />

Pl Poland<br />

Pt<br />

ro<br />

Portugal<br />

Romania<br />

se Sweden<br />

sk Slovakia<br />

sI Slovenia<br />

es<br />

CZ<br />

hu<br />

uk<br />

Cy<br />

Spa<strong>in</strong><br />

Czech Republic<br />

Hungary<br />

United K<strong>in</strong>gdom<br />

Cyprus


lIst of sourCes<br />

Communications from:<br />

[1] Zentrum für Sonnenenergie- und<br />

Wasserstoff-Forschung<br />

Baden-Württemberg (ZSW).<br />

[4] Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen (AGEB), Berl<strong>in</strong>.<br />

[6] Bundesverband der Energie- und<br />

Wasserwirtschaft e.V. (BDEW),<br />

Berl<strong>in</strong>.<br />

[15] Bundesm<strong>in</strong>isterium für Ernäh-<br />

rung, Landwirtschaft und Verbraucherschutz<br />

(BMELV), Bonn.<br />

[19] Deutsches Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW), Berl<strong>in</strong> 2009.<br />

[21] Statistisches Bundesamt (StBA),<br />

Wiesbaden.<br />

[26] Solarenergie-Fördervere<strong>in</strong><br />

Deutschland e.V. (SFV), Aachen.<br />

[31] Arbeitsgeme<strong>in</strong>schaft Qualitäts-<br />

management Biodiesel e.V.<br />

(AGQM).<br />

[32] Union zur Förderung von<br />

literature:<br />

[2] Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen (AGEB): „Auswertungstabellen<br />

zu den Energiebilanzen<br />

1990 bis 2008“, Berl<strong>in</strong>, Stand<br />

September 2008.<br />

[3] Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen (AGEB): Konjunktur<br />

bremst Energieverbrauch –<br />

Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen passt Prognose an/<br />

Industrie reduziert Bedarf,<br />

Pressedienst Nr. 01/09 vom<br />

16. Feb. 09, Berl<strong>in</strong>/Köln.<br />

[5] Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen (AGEB): Auswertungs-<br />

tabellen zur Energiebilanz für die<br />

Bundesrepublik Deutschland von<br />

1990 bis 2008, Berl<strong>in</strong>, 2009,<br />

www.ag-energiebilanzen.de.<br />

[7] Ingenieurbüro für neue Energien<br />

(IfnE): Beschaffungsmehrkosten<br />

für Stromlieferanten durch das<br />

Erneuerbare-Energien-Gesetz<br />

2009 – EEG-Differenzkosten, im<br />

Auftrag des BMU, Juni 2010,<br />

www.erneuerbare-energien.de/<br />

<strong>in</strong>halt/45793/40870/.<br />

[8] Verband der Elektrizitätswirt-<br />

schaft e.V. (VDEW): Endenergie-<br />

verbrauch <strong>in</strong> Deutschland,<br />

Oel- und Prote<strong>in</strong>pflanzen e.V.<br />

(UFOP).<br />

[39] Erdwärme-Kraft GbR, Berl<strong>in</strong>.<br />

[40] geo x GmbH, Landau.<br />

[41] EnBW Kraftwerke AG, Stuttgart,<br />

2007 und Vorjahre.<br />

[42] Fichtner GmbH & Co. KG, Stuttgart.<br />

[51] Bundesverband Solarwirtschaft<br />

(BSW), Berl<strong>in</strong>.<br />

[52] Bundesnetzagentur (BNetzA),<br />

Bonn.<br />

[54] ZfS Rationelle Energietechnik<br />

GmbH, Hilden.<br />

[60] Fachagentur Nachwachsende Rohstoffe<br />

e.V. (FNR), Gülzow.<br />

[66] Interessengeme<strong>in</strong>schaft der<br />

Thermischen Abfallbehandlungsanlagen<br />

(ITAD).<br />

[67] EEFA GmbH, Münster.<br />

VDEW-Materalien, Frankfurt a. M.<br />

1998/1999/2000/2001/2002/2003.<br />

[9] Verband der Elektrizitätswirtschaft<br />

e.V. (VDEW): Energie Spezial –<br />

Endenergieverbrauch <strong>in</strong> Deutschland<br />

2004, Berl<strong>in</strong> 2006.<br />

[10] Verband der Elektrizitätswirtschaft<br />

e.V. (VDEW): Energie Info – Endenergieverbrauch<br />

<strong>in</strong> Deutschland<br />

2005, Berl<strong>in</strong> 2007.<br />

[11] Bundesverband der Energie- und<br />

Wasserwirtschaft e.V. (BDEW):<br />

Energie-Info Endenergieverbrauch<br />

<strong>in</strong> Deutschland 2006, Berl<strong>in</strong> Feb.<br />

2008.<br />

[12] Bundesverband der Energie- und<br />

Wasserwirtschaft e.V. (BDEW):<br />

Energie-Info Endenergieverbrauch<br />

<strong>in</strong> Deutschland 2007,<br />

Berl<strong>in</strong> Dez. 2008.<br />

[13] Deutsches Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW): Verkehr <strong>in</strong> Zahlen<br />

2008/2009, Bundesm<strong>in</strong>isterium<br />

für Verkehr, Bau- und Stadtentwicklung<br />

(Hrsg.).<br />

[14] „Erster/Zweiter/Dritter/Vierter/<br />

Fünfter und Sechster nationaler<br />

Bericht zur Umsetzung der Richt-<br />

l<strong>in</strong>ie 2003/30/EG vom 08.05.2003<br />

zur Förderung der Verwendung<br />

LIST OF SOURCES<br />

[72] Institut für Thermodynamik und<br />

Wärmetechnik (ITW),<br />

Universität Stuttgart.<br />

[77] Brankatschk, G.: Verband der<br />

ölsaatenverarbeitenden Industrie<br />

<strong>in</strong> Deutschland e.V. (OVID).<br />

[81] Daum, J.: Verband der Deutschen<br />

Biokraftstoff<strong>in</strong>dustrie e.V. vom<br />

27.05.2010.<br />

[91] Remmele, E.: Technologie- und<br />

Förderzentrum (TFZ).<br />

[97] Bundesamt für Wirtschaft und<br />

Ausfuhrkontrolle (BAFA), 2009.<br />

[109] Bundesverband WärmePumpe<br />

(BWP) e.V., Berl<strong>in</strong>, 2008 und<br />

Vorjahre.<br />

[110] Deutscher Energie-Pellet-Verband<br />

(DEPV), www.depv.de.<br />

[145] Ingenieurbüro für neue Energien<br />

(IfnE).<br />

von Biokraftstoffen oder anderen<br />

erneuerbaren Kraftstoffen im Verkehrssektor“,<br />

Bundesm<strong>in</strong>isterium<br />

für Umwelt, Naturschutz und<br />

Reaktorsicherheit (BMU) 2007,<br />

Vorjahre Bundesm<strong>in</strong>isterium für<br />

Ernährung, Landwirtschaft und<br />

Verbraucherschutz (BMELV).<br />

[16] Bundesamt für Wirtschaft<br />

und Ausfuhrkontrolle (BAFA),<br />

Amtliche M<strong>in</strong>eralölstatistik,<br />

www.bafa.de.<br />

[17] Grawe, J.; Wagner, E.: Nutzung<br />

erneuerbarer Energien durch<br />

die Elektrizitätswirtschaft 1992.<br />

In: Verband der Elektrizitätswirtschaft<br />

– VDEW – e.V. (Hrsg.), ew<br />

(Elektrizitätswirtschaft), Jg. 92<br />

(1993), Heft 24.<br />

[18] Grawe, J.; Wagner, E.: Nutzung<br />

erneuerbarer Energien durch<br />

die Elektrizitätswirtschaft 1994.<br />

In: Verband der Elektrizitätswirtschaft<br />

– VDEW – e.V. (Hrsg.), ew<br />

(Elektrizitätswirtschaft), Jg. 94<br />

(1995), Heft 24.<br />

[20] Grawe, J.; Nitschke, J.; Wagner, E.:<br />

Nutzung erneuerbarer Energien<br />

durch die Elektrizitätswirtschaft<br />

1990/91. In: Verband der<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

71


LIST OF SOURCES<br />

Elektrizitätswirtschaft – VDEW –<br />

e.V., Elektrizitätswirtschaft, Jg. 90<br />

(1991), Heft 24.<br />

[22] Böhmer, T.: Nutzung erneuerbarer<br />

Energien zur Stromerzeugung<br />

im Jahr 2000. In: Verband der<br />

Elektrizitätswirtschaft – VDEW –<br />

e.V. (Hrsg.), ew (Elektrizitätswirtschaft),<br />

Jg.101 (2002), Heft 7.<br />

[23] Bundesverband der Energie- und<br />

Wasserwirtschaft e.V. (BDEW):<br />

EEG-Mittelfristprognose: Entwick-<br />

lungen 2000 bis 2014,<br />

www.bdew.de.<br />

[24] Bundesverband der Energie- und<br />

Wasserwirtschaft e.V. (BDEW)<br />

(vormals VDN e.V.): EEG-Jahresabrechnung,<br />

2000 – 2008,<br />

www.bdew.de.<br />

[25] Scholz, Y.: „Ergebnisse der Modellierung<br />

e<strong>in</strong>er 100%igen EE-Stromversorgung<br />

im Jahr 2050“; DLR/<br />

STB Stuttgart; Beitrag (Arbeitsbericht)<br />

zur Stellungnahme Nr. 15<br />

des SRU vom 5.5. 2010.<br />

[27] Grawe, J.; Wagner, E.: Nutzung<br />

erneuerbarer Energien durch<br />

die Elektrizitätswirtschaft 1996.<br />

In: Verband der Elektrizitätswirtschaft<br />

– VDEW e.V (Hrsg.), ew<br />

(Elektrizitätswirtschaft), Jg. 96<br />

(1997), Heft 24.<br />

[28] Wagner, E.: Nutzung erneuer-<br />

barer Energien durch die Elek-<br />

trizitätswirtschaft 1997. In: Verband<br />

der Elektrizitätswirtschaft<br />

– VDEW – e.V. (Hrsg.), ew (Elektrizitätswirtschaft),<br />

Jg. 97 (1998),<br />

Heft 24.<br />

[29] Wagner, E.: Nutzung erneuerbarer<br />

Energien durch die Elektrizitätswirtschaft<br />

1998. In: Verband<br />

der Elektrizitätswirtschaft –<br />

VDEW – e.V. (Hrsg.), ew (Elektrizitätswirtschaft),<br />

Jg. 98 (1999),<br />

Heft 24.<br />

[30] Wagner, E.: Nutzung erneuerbarer<br />

Energien durch die Elektrizitätswirtschaft<br />

1999. In: Verband<br />

der Elektrizitätswirtschaft,<br />

– VDEW – e.V. (Hrsg.), ew (Elektrizitätswirtschaft),<br />

Jg. 99 (2000), Heft 24.<br />

[33] Verband der Netzbetreiber VDN<br />

e.V. beim VDEW: Entwicklung<br />

EEG 2000, Stand 22.01.2003.<br />

[34] Institut für Energetik und Umwelt<br />

GmbH (IE): Fortschreibung<br />

der Daten zur Stromerzeugung<br />

aus Biomasse 2004, Leipzig,<br />

Februar 2005.<br />

72 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

[35] Kiesel, F.: Ergebnisse der VDEW-<br />

Erhebung Regenerativanlagen<br />

2005. In: Verband der Elektrizitätswirtschaft<br />

– VDEW – e.V.<br />

(Hrsg.), ew (Elektrizitätswirtschaft),<br />

Jg. 105 (2006) Heft 26.<br />

[36] Bundesm<strong>in</strong>isterium für Umwelt,<br />

Naturschutz und Reaktorsicherheit<br />

(BMU): Strom aus erneuer-<br />

baren Energien – Was kostet<br />

uns das? April 2009,<br />

www.erneuerbare-energien.de.<br />

[37] Statistisches Bundesamt: Statis-<br />

tisches Jahrbuch 2009 für die<br />

Bundesrepublik Deutschland,<br />

Wiesbaden, 2009,<br />

www.destatis.de.<br />

[38] Bundesm<strong>in</strong>isterium für Umwelt,<br />

Naturschutz und Reaktorsicherheit<br />

(BMU): In<strong>for</strong>mationen zur<br />

Anwendung von § 40 ff. EEG<br />

(Besondere Ausgleichsregelung)<br />

für das Jahr 2010,<br />

Stand: 21.05.2010, Referat KI III 1,<br />

www.erneuerbare-energien.de/<br />

<strong>in</strong>halt/45416/4590/.<br />

[43] Bundesverband W<strong>in</strong>dEnergie e.V.<br />

(BWE): Zahlen zur W<strong>in</strong>denergie,<br />

11.06.2002.<br />

[44] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI), Verband Deutscher<br />

Masch<strong>in</strong>en- und Anlagenbau<br />

e.V. (VDMA), Bundesverband<br />

W<strong>in</strong>denergie e.V. (BWE): Status<br />

der W<strong>in</strong>denergienutzung <strong>in</strong><br />

Deutschland, Stand 31.12.2002.<br />

[45] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2003,<br />

DEWI Magaz<strong>in</strong> Nr. 24, Feb. 2004.<br />

[46] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2004,<br />

DEWI Magaz<strong>in</strong> Nr. 26, Feb. 2005.<br />

[47] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2005,<br />

DEWI Magaz<strong>in</strong> Nr. 28, Feb. 2006.<br />

[48] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2006,<br />

DEWI Magaz<strong>in</strong> Nr. 30, Feb. 2007.<br />

[49] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2007,<br />

DEWI Magaz<strong>in</strong> Nr. 32, Feb. 2008.<br />

[50] Deutsches W<strong>in</strong>denergie-Institut<br />

GmbH (DEWI): W<strong>in</strong>denergienutzung<br />

<strong>in</strong> der Bundesrepublik<br />

Deutschland, Stand 31.12.2008,<br />

DEWI Magaz<strong>in</strong> Nr. 34, Feb. 2009.<br />

[53] Fraunhofer-Institut für System-<br />

und Innovations<strong>for</strong>schung (ISI),<br />

Karlsruhe; Gesellschaft für wirtschaftliche<br />

Struktur<strong>for</strong>schung<br />

(GWS), Osnabrück; Institut für<br />

ZukunftsEnergie-Systeme (IZES),<br />

Saarbrücken; Deutsches Institut<br />

für Wirtschafts<strong>for</strong>schung (DIW),<br />

Berl<strong>in</strong>: E<strong>in</strong>zel- und gesamtwirtschaftliche<br />

Analyse von Kosten-<br />

und Nutzenwirkungen des Ausbaus<br />

der Erneuerbaren Energien<br />

im deutschen Strom- und Wärmemarkt<br />

– Zwischenbericht zu<br />

Arbeitspaket 1 (Bestandsaufnahme<br />

und Bewertung vorliegender<br />

Ansätze). Im Auftrag des Bundesm<strong>in</strong>isteriums<br />

für Umwelt, Naturschutz<br />

und Reaktorsicherheit.<br />

Bericht abrufbar unter<br />

www.erneuerbare-energien.de/<br />

<strong>in</strong>halt/45801/45802/.<br />

[55] Fraunhofer-Institut für System-<br />

und Innovations<strong>for</strong>schung (ISI),<br />

Gesellschaft für Wirtschaftliche<br />

Struktur<strong>for</strong>schung (GWS),<br />

Institut für ZukunftsEnergie-Systeme<br />

(IZES), Deutsches Institut<br />

für Wirtschafts<strong>for</strong>schung (DIW):<br />

E<strong>in</strong>zel- und gesamtwirtschaftliche<br />

Analyse von Kosten- und Nutzenwirkungen<br />

des Ausbaus Erneuerbarer<br />

Energien im Deutschen<br />

Strom- und Wärmemarkt, Update<br />

der quantifizierten Kosten- und<br />

Nutzenwirkungen für das Jahr<br />

2009; Untersuchung im Auftrag<br />

des BMU, Mai 2010.<br />

[56] Institut für Energetik und Umwelt<br />

GmbH (IE), Institut für Zukunfts-<br />

EnergieSysteme gGmbH (IZES):<br />

Monitor<strong>in</strong>g zur Wirkung der Biomasseverordnung,<br />

Forschungs-<br />

und Entwicklungsvorhaben im<br />

Auftrag des BMU und des UBA,<br />

Zwischenbericht, 2006.<br />

[57] Deutsches BiomasseForschungs-<br />

Zentrum GmbH (DBFZ) <strong>in</strong> Kooperation<br />

mit der Thür<strong>in</strong>ger Landesanstalt<br />

für Landwirtschaft<br />

(TLL): Monitor<strong>in</strong>g zur Wirkung<br />

des Erneuerbare-Energien-Gesetzes<br />

(EEG) auf die Entwicklung<br />

der Stromerzeugung aus Biomasse,<br />

Zwischenbericht „Entwicklung<br />

der Stromerzeugung aus


Biomasse 2008“, Forschungsvorhaben<br />

im Auftrag des BMU,<br />

März 2009.<br />

[58] Institut für Energetik und Umwelt<br />

GmbH (IE), Leipzig, Fichtner<br />

GmbH & Co. KG, Stuttgart, Thür<strong>in</strong>ger<br />

Landesanstalt für Landwirtschaft,<br />

Jena, Prof. Dr. jur. Stefan<br />

Kl<strong>in</strong>ski, Berl<strong>in</strong>: Monitor<strong>in</strong>g<br />

zur Wirkung des Erneuerbare-<br />

Energien-Gesetzes (EEG) auf die<br />

Stromerzeugung aus Biomasse –<br />

Endbericht, im Auftrag des BMU,<br />

März 2008.<br />

[59] Kiesel, F.: Ergebnisse der BDEW-<br />

Erhebung Regenerativanlagen<br />

2006. In: ew (Elektrizitätswirtschaft),<br />

Jg. 106 (2007), Heft 25-26.<br />

[61] Böhmer, T.: Nutzung erneuerbarer<br />

Energien zur Stromerzeugung<br />

im Jahr 2001. In: ew (Elektrizitätswirtschaft),<br />

Jg. 102 (2003), Heft 7.<br />

[62] Böhmer, T.: Nutzung erneuerbarer<br />

Energien zur Stromerzeugung<br />

im Jahr 2002. In: ew (Elektrizitätswirtschaft),<br />

Jg. 101 (2002), Heft<br />

10.<br />

[63] Böhmer, T.: Nutzung erneuerbarer<br />

Energien zur Stromerzeugung<br />

im Jahr 2003. In: ew (Elektrizitätswirtschaft),<br />

Jg. 104 (2005), Heft<br />

10.<br />

[64] Kiesel, F.: Ergebnisse der VDEW-<br />

Erhebung Regenerativanlagen<br />

2004. In: ew (Elektrizitätswirtschaft),<br />

Jg. 105 (2006), Heft 10.<br />

[65] International <strong>Energy</strong> Agency<br />

(IEA), Statistische Amt der Europäischen<br />

Geme<strong>in</strong>schaften Eurostat,<br />

United Nations/Economic<br />

Commission <strong>for</strong> Europe (UNECE):<br />

<strong>Energy</strong> Questionnaire – Rene-<br />

wables and Wastes 2007.<br />

[68] Po<strong>in</strong>tCarbon: www.po<strong>in</strong>tcarbon.<br />

com/, Zugriff nur für registrierte<br />

Nutzer.<br />

[69] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

(AGEB), Berl<strong>in</strong>: Satellitenbilanz<br />

Erneuerbare Energieträger<br />

1995 – 2003.<br />

[70] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

(AGEB), Berl<strong>in</strong>: Satellitenbilanz<br />

„Erneuerbare Energieträger“<br />

für das Jahr 2004, 2005,<br />

2006.<br />

[71] Klobasa, M.; Ragwitz, M.: Gutachten<br />

zur CO 2 -M<strong>in</strong>derung im Stromsektor<br />

durch den E<strong>in</strong>satz erneuerbarer<br />

Energien, Bericht für die<br />

AGEE-Stat, Karlsruhe, 2005.<br />

[73] Arbeitsgeme<strong>in</strong>schaft Energie-<br />

bilanzen (AGEB): Energiebilanz<br />

für Deutschland, 1990 bis 2007,<br />

Berl<strong>in</strong>, 2009.<br />

[74] Fraunhofer Institut für System-<br />

und Innovations<strong>for</strong>schung<br />

(FhG-ISI): Gutachten zur CO 2 -<br />

M<strong>in</strong>derung im Stromsektor durch<br />

den E<strong>in</strong>satz erneuerbarer Energien,<br />

Karlsruhe, 2005.<br />

[75] Umweltbundesamt (UBA): Emissionsbilanz<br />

erneuerbarer Energieträger.<br />

Durch E<strong>in</strong>satz erneuerbarer<br />

Energien vermiedene<br />

Emissionen im Jahr 2007. Climate<br />

Change 12/2009, Dessau-Roßlau,<br />

2009.<br />

[76] Breitschopf, B.; Diekmann, J.:<br />

„Vermeidung externer Kosten<br />

durch erneuerbare Energien –<br />

methodischer Ansatz und Schätzung<br />

für 2009; Untersuchung im<br />

Rahmen des Projekts „E<strong>in</strong>zel- und<br />

gesamtwirtschaftliche Analyse<br />

von Kosten- und Nutzenwirkungen<br />

des Ausbaus erneuerbarer<br />

Energien im deutschen Strom-<br />

und Wärmemarkt“ (Arbeitspaket<br />

3); Veröffentlichung geplant im<br />

Sommer 2010.<br />

[78] Greenpeace e.V.: Untersuchung<br />

der Agrosprit-Beimischungen<br />

zum Sommerdiesel 2009 und<br />

W<strong>in</strong>terdiesel 2010<br />

(www.greenpeace.de/fileadm<strong>in</strong>/<br />

gpd/user/Agrosprit_Unter<br />

suchungen.pdf – 27.05.2010).<br />

[79] Bundesregierung (BR): Verordnung<br />

über An<strong>for</strong>derungen an<br />

e<strong>in</strong>e nachhaltige Herstellung<br />

von Biokraftstoffen (Biokraftstoff-<br />

Nachhaltigkeitsverordnung – Biokraft-NachV)<br />

vom 30. September<br />

2009 (BGBl. I S. 3182).<br />

[80] Bundesregierung (BR): Verordnung<br />

über An<strong>for</strong>derungen an<br />

e<strong>in</strong>e nachhaltige Herstellung von<br />

flüssiger Biomasse zur Strom-<br />

erzeugung (Biomassestrom-Nachhaltigkeitsverordnung<br />

– BioSt-<br />

NachV) vom 23. Juli 2009 (BGBl.<br />

I S. 2174).<br />

[82] Bundesverband der deutschen<br />

Bioethanolwirtschaft (BDBe): Bioethanolproduktion<br />

<strong>in</strong> Deutschland<br />

2009 (http://www.bdbe.de/<br />

Zahlen_2009.html – 27.05.2010).<br />

[83] Ciroth, A.: Validierung der Emissionsfaktoren<br />

ausgewählter erneuerbarerEnergiebereitstellungsketten,<br />

Berl<strong>in</strong>, 2009.<br />

LIST OF SOURCES<br />

[84] Eco<strong>in</strong>vent v2.01: Datenbank des<br />

Schweizer Zentrums für Öko<strong>in</strong>ventare<br />

v2.0. EMPA, St. Gallen, 2008.<br />

[85] EP/ER: Richtl<strong>in</strong>ie 2009/28/EG des<br />

Europäischen Parlaments und des<br />

Rates vom 23. April 2009 zur Förderung<br />

der Nutzung von Energie<br />

aus erneuerbaren Quellen<br />

und zur Änderung und anschließenden<br />

Aufhebung der Richtl<strong>in</strong>ien<br />

2001/77/EG und 2003/30/EG,<br />

Amtsblatt der EU L140/15<br />

v. 5. Juni 2009.<br />

[86] Frick, S.; Schröder, G.; Rychtyk, M.<br />

et al.: Umwelteffekte e<strong>in</strong>er geothermischen<br />

Stromerzeugung.<br />

Analyse und Bewertung der<br />

kle<strong>in</strong>- und großräumigen Umwelteffekte<br />

e<strong>in</strong>er geothermischen<br />

Stromerzeugung, Leipzig, 2008.<br />

[87] Frondel, M.; Grösche, P.; Tauchmann,<br />

H. et al.: Erhebung des<br />

Energieverbrauchs der privaten<br />

Haushalte für das Jahr 2005.<br />

Forschungsprojekt Nr. 15/06 des<br />

Bundesm<strong>in</strong>isteriums für Wirtschaft<br />

und Technologie, 2008.<br />

[88] Klobasa, M.; Sensfuß, F.; Ragwitz,<br />

M.: CO 2 -M<strong>in</strong>derung im Stromsektor<br />

durch den E<strong>in</strong>satz erneuer-<br />

barer Energien im Jahr 2006 und<br />

2007 – Gutachten, Bericht für<br />

die Arbeitsgruppe Erneuerbare<br />

Energien-Statistik (AGEE-Stat) im<br />

Auftrag des Zentrums für Sonnenenergie-<br />

und Wasserstoff-<br />

Forschung Baden-Württemberg<br />

(ZSW), Karlsruhe, 2009.<br />

[89] Vogt, R.; Gärtner, S.; Münch, J.<br />

et. al.: Optimierungen für e<strong>in</strong>en<br />

nachhaltigen Ausbau der Biogaserzeugung<br />

und -nutzung <strong>in</strong><br />

Deutschland, Heidelberg, 2008.<br />

[90] Öko-Institut: Globales Emissions-<br />

Modell Integrierter Systeme<br />

(GEMIS), Version 4.5, 2008.<br />

[92] Rentz, O.; Karl, U.; Peter, H.:<br />

Ermittlung und Evaluierung von<br />

Emissionsfaktoren für Feuerungsanlagen<br />

<strong>in</strong> Deutschland für die<br />

Jahre 1995, 2000 und 2010, Karlsruhe,<br />

2002.<br />

[93] Struschka, M; Kilgus, D.; Spr<strong>in</strong>gmann,<br />

M.; Baumbach, G.: Effiziente<br />

Bereitstellung aktueller Emis-<br />

sionsdaten für die Luftre<strong>in</strong>haltung,<br />

Stuttgart, 2008.<br />

[94] Umweltbundesamt (UBA): Nationale<br />

Trendtabellen für die deutsche<br />

Berichterstattung atmosphärischer<br />

Emissionen, Submission<br />

2010.<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

73


LIST OF SOURCES<br />

[95] Übertragungsnetzbetreiber<br />

(ÜNB): In<strong>for</strong>mationsplatt<strong>for</strong>m der<br />

Netzbetreiber (www.eeg-kwk.net/<br />

cps/rde/xchg/eeg_kwk/hs.xsl/<br />

<strong>in</strong>dex.htm): Prognose der EEG-<br />

Umlage 2010 nach AusglMechV;<br />

Prognosekonzept und Berechnung<br />

der ÜNB vom 15. Oktober<br />

2009.<br />

[96] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

(AGEB): Energiebilanz<br />

für Deutschland, 1990 bis 2006,<br />

Berl<strong>in</strong>, 2008.<br />

[98] Verband der Deutschen Biokraftstoff<strong>in</strong>dustrie<br />

e.V.: Biodiesel aus<br />

Palmöl fast ausschließlich aus<br />

dem Ausland importiert. PM vom<br />

04.05.2010<br />

(http://www.biokraftstoffverband.<br />

de/downloads/1288/100504_PM_<br />

VDB_Palml – 27.05.2010).<br />

[99] Umweltbundesamt (UBA): Zentrales<br />

System Emissionen. UBA-Datenbank<br />

zur Unterstützung der<br />

Emissionsberichterstattung,<br />

Submission 2010, Stand: Februar<br />

2010.<br />

[100] Nitsch, J.: Datengerüst zur Basisvariante<br />

des Leitszenarios 2010.<br />

Unveröffentlichtes Arbeitspapier<br />

im Rahmen des Projekts: „Langfristszenarien<br />

und Strategien für<br />

den Ausbau von erneuerbaren<br />

Energien“ für das BMU, Stuttgart,<br />

20. April 2010.<br />

[101] Ramesohl, S. et al.: Entwicklung<br />

e<strong>in</strong>er Gesamtstrategie zur E<strong>in</strong>führung<br />

alternativer Kraftstoffe,<br />

<strong>in</strong>sbesondere regenerativ erzeugten<br />

Wasserstoffs. Arbeitsgeme<strong>in</strong>schaft<br />

WI, DLR, IFEU, im Auftrag<br />

des Umweltbundesamtes, Berl<strong>in</strong>,<br />

März 2006.<br />

[102] Bundesm<strong>in</strong>isterium für Umwelt,<br />

Naturschutz und Reaktorsicherheit<br />

(BMU): E<strong>in</strong>fluss der Förde-<br />

rung erneuerbarer Energien auf<br />

den Haushaltsstrompreis im Jahr<br />

2009 mit Ausblick auf das Jahr<br />

2010, Referat KI III 1,<br />

www.erneuerbare-energien.de/<br />

<strong>in</strong>halt/45415/4590/.<br />

[103] Bundesanstalt für Landwirtschaft<br />

und Ernährung (BLE): Abgang<br />

von Ölen und Fetten der Ölmühle/der<br />

Raff<strong>in</strong>erie/des Härtungsbetriebes/des<br />

Herstellers von Fischöl,<br />

Monatsmeldungen 2009.<br />

74 <strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

[104] Statistisches Bundesamt: Statistik<br />

zum Außenhandel WA38249091<br />

Erzeugung d. chem. Industrie,<br />

Fettsäurenmonoalkylester für das<br />

Jahr 2009.<br />

[105] NEEDS, New <strong>Energy</strong> Externality<br />

Developments <strong>for</strong> Susta<strong>in</strong>ability<br />

(04/09), Integrated Project, DG<br />

Research EC, 6th Framework Programme,<br />

Mai 2004 bis 2009; Deliverable<br />

n° 6.1 – RS1a, „External<br />

costs from emerg<strong>in</strong>g electricity<br />

generation technologies“,<br />

www.needs-project.org download<br />

im Juni 2009.<br />

[106] Umweltbundesamt (UBA): Ökonomische<br />

Bewertung von Umweltschäden.<br />

Methodenkonvention<br />

zur Schätzung externer Umweltkosten.<br />

Dessau-Roßlau 2007.<br />

[107] International <strong>Energy</strong> Agency –<br />

Solar Heat<strong>in</strong>g and Cool<strong>in</strong>g Programme<br />

(IEA-SHC) and several<br />

solar thermal trade associations:<br />

Worldwide capacity of solar thermal<br />

energy greatly underestimated,<br />

Press release 10. November<br />

2004, www.iea-shc.org.<br />

[108] Intergovernmental Panel on<br />

Climate Change (IPCC): Second<br />

Assessment Report Climate<br />

Change 1995; weitere In<strong>for</strong>ma-<br />

tionen unter www.ipcc.de.<br />

[111] United Nations Framework Convention<br />

on Climate Change<br />

(UNFCCC): Guidel<strong>in</strong>es <strong>for</strong> the<br />

preparation of national communications<br />

by Parties <strong>in</strong>cluded <strong>in</strong><br />

Annex I to the Convention, Part<br />

I: UNFCCC report<strong>in</strong>g guidel<strong>in</strong>es<br />

on annual <strong>in</strong>ventories (follow<strong>in</strong>g<br />

<strong>in</strong>-curporation of the provisions<br />

of decision 13/CP.9); FCCC/SBS-<br />

TA/2004/8.<br />

[112] Amprion GmbH, EnBW Transportnetze<br />

AG, transpower stromübertragungs<br />

gmbh und Vattenfall<br />

Europe Transmission GmbH,<br />

Anlagenstammdaten, Stand<br />

November 2009.<br />

[113] Bundesnetzagentur für Elektrizität,<br />

Gas, Telekommunikation, Post<br />

und Eisenbahnen (BNetzA): EEG-<br />

Statistikbericht 2007 – Statistikbericht<br />

zur Jahresendabrechnung<br />

2007 nach dem Erneuerbaren-<br />

Energien-Gesetz (EEG), Redaktionsschluss<br />

31. Juli 2009,<br />

www.bundesnetzagentur.de.<br />

[114] Bracke, R.; Platt, M.; Exner, St.:<br />

Analyse des deutschen Wärmepumpenmarktes<br />

– Bestandsaufnahme<br />

und Trends. Geothermie-<br />

Zentrum Bochum (GZB) im Auf-<br />

trag des Zentrums für Sonnenenergie-<br />

und Wasserstoff-For-<br />

schung Baden-Württemberg,<br />

November 2009.<br />

[115] Leipzig-Institut für Angewandte<br />

Geophysik (LIAG) (Hrsg.): Geothermisches<br />

In<strong>for</strong>mations-<br />

system für Deutschland,<br />

www.geotis.de.<br />

[116] International <strong>Energy</strong> Agency<br />

(IEA), Paris: <strong>Renewable</strong>s In<strong>for</strong>mation,<br />

Edition 2009, IEA/OECD.<br />

[117] International <strong>Energy</strong> Agency<br />

(IEA): <strong>Energy</strong> Balances of Non-<br />

OECD Countries, 2009 Edition.<br />

[118] Aeroe: The Worlds Largest Solar<br />

Panel Plant and Solar Technology;<br />

Download 02/05/2008;<br />

www.aeroeisland.com.<br />

[119] Eurostat, Statistisches Amt der<br />

Europäischen Geme<strong>in</strong>schaften,<br />

Luxemburg: Onl<strong>in</strong>e Database,<br />

http://epp.eurostat.ec.europa.eu/<br />

portal/page/portal/energy/<strong>in</strong>troduction.<br />

[120] Observatoire des énergies renouvelables<br />

(Observ’ER): W<strong>in</strong>d<br />

Power Barometer ; Studie von<br />

EUROBSERV’ER, <strong>in</strong>: le journal de<br />

l’éolien, N° 6 – 2010, Systèmes<br />

Solaires (Ed.), www.energies-<br />

renouvelables.org.<br />

[121] European W<strong>in</strong>d <strong>Energy</strong> Association<br />

(EWEA): W<strong>in</strong>d <strong>in</strong> power –<br />

2009 European Statistics, February<br />

2010, www.ewea.org.<br />

[122] Observatoire des énergies renouvelables<br />

(Observ’ER): The state of<br />

renewable energies <strong>in</strong> Europe,<br />

9th EurObserv’ER report,<br />

www.energies-renouvelables.org.<br />

[123] Multiply<strong>in</strong>g Susta<strong>in</strong>able <strong>Energy</strong><br />

Communities Crailsheim (MUSEC<br />

Crailsheim): Solare Nahwärme<br />

Hirtenwiesen II,<br />

www.musec-crailsheim.de.<br />

[124] Eurostat, Statistisches Amt der<br />

Europäischen Geme<strong>in</strong>schaften,<br />

Luxemburg: <strong>Energy</strong> – Yearly<br />

statistics 2008, Edition 2010.


[125] Zentrum für Sonnenenergie- und<br />

Wasserstoff-Forschung Baden-<br />

Württemberg (ZSW), Deutsches<br />

Zentrum für Luft- und Raumfahrt<br />

(DLR), Deutsches Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW), Gesellschaft<br />

für Wirtschaftliche Struktur<strong>for</strong>schung<br />

(GWS): Erneuerbare<br />

Energien: Arbeitsplatzeffekte<br />

2006, Abschlussbericht im Auftrag<br />

des BMU, September 2007,<br />

http://www.erneuerbare-<br />

energien.de/<strong>in</strong>halt/40294/4592/.<br />

[126] Deutsches Zentrum für Luft- und<br />

Raumfahrt (DLR), Deutsches<br />

Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW), Zentrum für Sonnenenergie-<br />

und Wasserstoff-Forschung<br />

Baden-Württemberg (ZSW):<br />

Bruttobeschäftigung 2007 –<br />

e<strong>in</strong>e erste Abschätzung, Stand:<br />

14.03.2008, Zwischenbericht im<br />

Auftrag des BMU, 2008.<br />

[127] Deutsches Zentrum für Luft- und<br />

Raumfahrt (DLR), Deutsches<br />

Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW), Zentrum für Sonnen-<br />

energie- und Wasserstoff-Forschung<br />

Baden-Württemberg<br />

(ZSW), Gesellschaft für Wirtschaftliche<br />

Struktur<strong>for</strong>schung<br />

(GWS): Bruttobeschäftigung<br />

durch erneuerbare Energien <strong>in</strong><br />

Deutschland im Jahr 2008 – e<strong>in</strong>e<br />

erste Abschätzung, Stand:<br />

06. März 2009, Forschungsvorhaben<br />

„Kurz- und langfristige<br />

Auswirkungen des Ausbaus der<br />

erneuerbaren Energien auf den<br />

deutschen Arbeitsmarkt“, zweiter<br />

Bericht zur Bruttobeschäftigung,<br />

im Auftrag des BMU, 2009,<br />

http://www.erneuerbare-<br />

energien.de/<strong>in</strong>halt/43441/5466/.<br />

[128] Deutsches Zentrum für Luft-<br />

und Raumfahrt (DLR), Deutsches<br />

Institut für Wirtschafts<strong>for</strong>schung<br />

(DIW), Zentrum für Sonnen-<br />

energie- und Wasserstoff-Forschung<br />

Baden-Württemberg<br />

(ZSW), Gesellschaft für Wirtschaftliche<br />

Struktur<strong>for</strong>schung<br />

(GWS): Bruttobeschäftigung<br />

durch erneuerbare Energien <strong>in</strong><br />

Deutschland im Jahr 2009 – e<strong>in</strong>e<br />

erste Abschätzung, Stand: März<br />

2010, dritter Bericht zur Bruttobeschäftigung,<br />

im Auftrag des BMU,<br />

http://www.erneuerbare-<br />

energien.de/<strong>in</strong>halt/45794/4590/.<br />

129] Observatoire des énergies renouvelables<br />

(Observ’ER) (Ed.): Worldwide<br />

electricity<br />

production from renewable energy<br />

sources, Eleventh <strong>in</strong>ventory,<br />

Edition 2009,<br />

www.energies-renouvelables.org.<br />

[130] Observatoire des énergies renouvelables<br />

(Observ’ER): Solar Thermal<br />

Barometer – EurObserv’ER –<br />

May 2009, Systèmes Solaires –<br />

Le Journal des Énergies Renouvelables<br />

(Ed.), N° 197 – 2010,<br />

www.energies-renouvelables.org.<br />

[131] Observatoire des énergies renouvelables<br />

(Observ’ER): Photovoltaic<br />

Barometer – EurObserv’ER – April<br />

2010, Systèmes Solaires (Ed.) – le<br />

journal du photovoltaique, N° 3 –<br />

2010, www.energies-renouve-<br />

lables.org.<br />

[132] Eurostat, Statistisches Amt der<br />

Europäischen Geme<strong>in</strong>schaften,<br />

Luxemburg: Statistik der erneuerbaren<br />

Energieträger 2005; Daten<br />

kurzgefasst, Reihe Umwelt und<br />

Energie, 19/2007,<br />

http://epp.eurostat.ec.europa.eu/.<br />

[133] Kle<strong>in</strong>, A.; Pfluger, B.; Held, A.;<br />

Ragwitz, M.; Resch, G.; Faber, T.:<br />

Evaluation of different feed-<strong>in</strong> tariff<br />

design options – Best practice<br />

paper <strong>for</strong> the International Feed-<br />

In Coope-ration. 2nd edition,<br />

update by October 2008,<br />

http://www.feed-<strong>in</strong>-cooperation.<br />

org.<br />

[134] REN21: <strong>Renewable</strong>s 2010 Global<br />

Status Report (Paris: REN21<br />

Secretariat), 2010 Edition,<br />

www.ren21.de.<br />

[135] Global W<strong>in</strong>d <strong>Energy</strong> Council<br />

(GWEC): Global <strong>in</strong>stalled w<strong>in</strong>d<br />

power capacity 2008/2009 (MW),<br />

www.gwec.net.<br />

[136] European W<strong>in</strong>d <strong>Energy</strong> Asso-<br />

ciation (EWEA): Pure Power –<br />

W<strong>in</strong>d energy targets <strong>for</strong> 2020<br />

and 2030, 2009 update,<br />

www.ewea.org.<br />

[137] European W<strong>in</strong>d <strong>Energy</strong> Association<br />

(EWEA): The European offshore<br />

w<strong>in</strong>d <strong>in</strong>dustry – key trends<br />

and statistics 2009, January 2010,<br />

www.ewea.org.<br />

LIST OF SOURCES<br />

[138] Alpha Ventus: Das Dutzend ist<br />

voll: EWE, E.ON und Vattenfall<br />

errichten zwölfte und letzte<br />

W<strong>in</strong>dkraftanlage für alpha ventus,<br />

Pressemeldung, 16. November<br />

2009,<br />

www.alpha-ventus.de.<br />

[139] Bundesm<strong>in</strong>isterium für Umwelt,<br />

Naturschutz und Reaktorsicherheit<br />

(BMU): Innovation durch Forschung<br />

– Jahresbericht 2008 zur<br />

Forschungsförderung im Bereich<br />

der erneuerbaren Energien,<br />

Januar 2009,<br />

www.erneuerbare-energien.de.<br />

[140] Weiss, W.; Mauthner, F: Solar<br />

Heat Worldwide – Markets and<br />

Contribution to the <strong>Energy</strong><br />

Supply 2008, Edition 2010,<br />

IEA Solar Heat<strong>in</strong>g & Cool<strong>in</strong>g<br />

Programme (SHC), May 2010,<br />

www.iea-shc.org.<br />

[141] European Photovoltaic Industry<br />

Association (EPIA): Global market<br />

outlook <strong>for</strong> photovoltaics until<br />

2014, 04/10, www.epia.org.<br />

[142] o.V.: VDB: Palmöl-Diskussion<br />

schadet Branche nicht. Dow Jones<br />

Marktreport Agrar Mittwoch,<br />

5. Mai 2010 | Nr. 86.<br />

[143] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen<br />

(AGEB); Bruttostromerzeugung<br />

<strong>in</strong> Deutschland 1990 –<br />

2009 nach Energieträgern, Stand<br />

15.02.2010<br />

[144] Lehr, U.; Lutz, C.: „Gesamtwirtschaftliche<br />

Effekte des Ausbaus<br />

erneuerbarer Energien – erste<br />

Ergebnisse“, Stand 17.6.2010; Bericht<br />

im Rahmen des Vorhabens<br />

„Kurz- und langfristige Auswirkungen<br />

des Ausbaus erneuerbarer<br />

Energien auf den deutschen<br />

Arbeitsmarkt; Veröffentlichung<br />

durch BMU unter:<br />

http://www.erneuerbare-<br />

energien.de/<strong>in</strong>halt/46156/20049/.<br />

In<strong>for</strong>MatIon<br />

about renewable energIes<br />

(<strong>in</strong>clud<strong>in</strong>g documents of the bMu,<br />

press releases, research f<strong>in</strong>d<strong>in</strong>gs,<br />

publications) is available at the bMu’s<br />

erneuerbare energIe<br />

(renewable energy) theme page<br />

<strong>in</strong> the Internet, at<br />

www.erneuerbare-energien.de<br />

<strong>Renewable</strong> energy sources <strong>in</strong> figures<br />

75


PUBLICATION ORDER:<br />

Federal M<strong>in</strong>istry <strong>for</strong> the Environment, Nature Conservation and Nuclear Safety (BMU)<br />

Postfach 30 03 61<br />

53183 Bonn<br />

Germany<br />

Tel.: +49 228 99 305 - 33 55<br />

Fax: +49 228 99 305 - 33 56<br />

Email: bmu@broschuerenversand.de<br />

Website: www.bmu.de/english<br />

This publication is part of the public relations work of the Federal M<strong>in</strong>istry <strong>for</strong> the<br />

Environment, Nature Conservation and Nuclear Safety. It is distributed free of<br />

charge and is not <strong>in</strong>tended <strong>for</strong> sale. Pr<strong>in</strong>ted on recycled paper.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!