25.10.2013 Views

Nonlinear Optics - Fotonica.ifsc.usp.br - USP

Nonlinear Optics - Fotonica.ifsc.usp.br - USP

Nonlinear Optics - Fotonica.ifsc.usp.br - USP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction to <strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

fs-laser microfa<strong>br</strong>ication<<strong>br</strong> />

Prof. Dr. Cleber R. Mendonca


Sao Carlos<<strong>br</strong> />

University of Sao Paulo - Brazil<<strong>br</strong> />

students 77.000<<strong>br</strong> />

52.000 undergrad.<<strong>br</strong> />

25.000 grad.<<strong>br</strong> />

employers 15.000<<strong>br</strong> />

professors 6.000<<strong>br</strong> />

• Sao Paulo<<strong>br</strong> />

• Sao Carlos (9.000)<<strong>br</strong> />

• Ribeirao Preto


University of Sao Paulo – in Sao Carlos


Picosecond laser<<strong>br</strong> />

Laser Nd:YAG<<strong>br</strong> />

Qswitched/modelocked<<strong>br</strong> />

532nm and 1064 nm<<strong>br</strong> />

100 ps<<strong>br</strong> />

150-fs laser system<<strong>br</strong> />

Amplifier Ti:safira<<strong>br</strong> />

775 nm<<strong>br</strong> />

150 fs<<strong>br</strong> />

800 μJ


30-fs amplified laser system


microfa<strong>br</strong>ication lab


Part 1: Introduction to <strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

Prof. Dr. Cleber R. Mendonca


Linear optics<<strong>br</strong> />

Outline<<strong>br</strong> />

Part 1: Introduction to nonlinear optics<<strong>br</strong> />

Introduction to nonlinear optics<<strong>br</strong> />

Second order nonlinearities<<strong>br</strong> />

Third order nonlinearities<<strong>br</strong> />

Two-photon absorption<<strong>br</strong> />

Part 2: fs-laser microfa<strong>br</strong>ication<<strong>br</strong> />

Applications of nonlinear optics in<<strong>br</strong> />

laser microfa<strong>br</strong>ication


Linear optics vs <strong>Nonlinear</strong> optics<<strong>br</strong> />

<strong>Optics</strong> is a <strong>br</strong>anch of physics that describes the behavior and properties of light<<strong>br</strong> />

and the interaction of light with matter. Explains optical phenomena.<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

The <strong>br</strong>anch of optics that describes optical phenomena that occur when very<<strong>br</strong> />

intense light is used


Linear optics<<strong>br</strong> />

Maxwell equations<<strong>br</strong> />

ρ: charge density<<strong>br</strong> />

J: current density<<strong>br</strong> />

P: electric polarization<<strong>br</strong> />

M: magnetization


Linear optics<<strong>br</strong> />

P e M: response of the media to the applied field<<strong>br</strong> />

Electric Polarization<<strong>br</strong> />

p


Linear optics<<strong>br</strong> />

Maxwell equations can be combined, leading to an equation<<strong>br</strong> />

describing the electromagnetism<<strong>br</strong> />

Constitutive relationships<<strong>br</strong> />

r r<<strong>br</strong> />

P = χE<<strong>br</strong> />

r r<<strong>br</strong> />

M = χ H m<<strong>br</strong> />

r r<<strong>br</strong> />

J = σE<<strong>br</strong> />

response of the media<<strong>br</strong> />

to the applied field


Linear optics<<strong>br</strong> />

wave equation ( = 0 ; J = 0 )<<strong>br</strong> />

r<<strong>br</strong> />

ρ<<strong>br</strong> />

left<<strong>br</strong> />

Light propagation in vacuum<<strong>br</strong> />

right<<strong>br</strong> />

Matter-light interaction


harmonic oscillator<<strong>br</strong> />

Linear optics<<strong>br</strong> />

electron on a spring<<strong>br</strong> />

k<<strong>br</strong> />

E rad.


electron on a spring<<strong>br</strong> />

equation of motion<<strong>br</strong> />

Linear optics


Linear optics<<strong>br</strong> />

harmonic oscillator<<strong>br</strong> />

Steady state: electron oscillates at driving frequency


Oscillating dipole<<strong>br</strong> />

Polarization oscillator<<strong>br</strong> />

P(<<strong>br</strong> />

t)<<strong>br</strong> />

Linear optics<<strong>br</strong> />

Ne m<<strong>br</strong> />

= E<<strong>br</strong> />

2<<strong>br</strong> />

ω − iωγ<<strong>br</strong> />

( 2<<strong>br</strong> />

−ω<<strong>br</strong> />

)<<strong>br</strong> />

0<<strong>br</strong> />

2 /<<strong>br</strong> />

0<<strong>br</strong> />

P = χE<<strong>br</strong> />

linear response


y comparison<<strong>br</strong> />

then<<strong>br</strong> />

Linear optics<<strong>br</strong> />

~ Ne<<strong>br</strong> />

χ = 2<<strong>br</strong> />

m<<strong>br</strong> />

( 2<<strong>br</strong> />

ω −ω<<strong>br</strong> />

) − iωγ<<strong>br</strong> />

0<<strong>br</strong> />

2 /<<strong>br</strong> />

0<<strong>br</strong> />

which is a complex number<<strong>br</strong> />

where and are the real and imaginary parts of the complex index of refraction<<strong>br</strong> />

refraction absorption


Linear optics


absorption<<strong>br</strong> />

Linear optical process<<strong>br</strong> />

refraction<<strong>br</strong> />

α 0 does not depend on light intensity n 0 does not depend on light intensity<<strong>br</strong> />

absorption of 10 % index of refraction 1.3


<strong>Nonlinear</strong> optics<<strong>br</strong> />

high light intensity<<strong>br</strong> />

E rad. ~ E inter.<<strong>br</strong> />

How high should be the light intensity ?


Inter-atomic electric field<<strong>br</strong> />

e = 1.6 × 10 -19 C<<strong>br</strong> />

r ~ 4 Å<<strong>br</strong> />

E ~ 1 × 10 10 V/m<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

cw laser<<strong>br</strong> />

P = 20 W<<strong>br</strong> />

w o = 20 μm<<strong>br</strong> />

I<<strong>br</strong> />

2P<<strong>br</strong> />

=<<strong>br</strong> />

πw<<strong>br</strong> />

I = 3 × 10 10 W/m 2<<strong>br</strong> />

E o = 4 × 10 6 V/m<<strong>br</strong> />

2<<strong>br</strong> />

0


Inter-atomic electric field<<strong>br</strong> />

E ~ 1 × 10 10 V/m<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

pulsed laser<<strong>br</strong> />

I = 10 GW/cm 2 =<<strong>br</strong> />

10 × 10 13 W/m 2<<strong>br</strong> />

E o = 1 × 10 8 V/m


<strong>Nonlinear</strong> optics<<strong>br</strong> />

anharmonic oscillator<<strong>br</strong> />

anharmonic term<<strong>br</strong> />

high light intensity<<strong>br</strong> />

E rad. ~ E inter.


P<<strong>br</strong> />

=<<strong>br</strong> />

potential energy<<strong>br</strong> />

χ<<strong>br</strong> />

anharmonic oscillator<<strong>br</strong> />

E<<strong>br</strong> />

charge displacement<<strong>br</strong> />

nonlinear polarization response<<strong>br</strong> />

( 1 )<<strong>br</strong> />

+<<strong>br</strong> />

χ<<strong>br</strong> />

( 2 )<<strong>br</strong> />

E<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

2<<strong>br</strong> />

+<<strong>br</strong> />

χ<<strong>br</strong> />

( 3 )<<strong>br</strong> />

E<<strong>br</strong> />

3<<strong>br</strong> />

+<<strong>br</strong> />

...<<strong>br</strong> />

P<<strong>br</strong> />

E


anharmonic oscillator<<strong>br</strong> />

P<<strong>br</strong> />

=<<strong>br</strong> />

χ<<strong>br</strong> />

( 1 )<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

nonlinear polarization response<<strong>br</strong> />

E<<strong>br</strong> />

+<<strong>br</strong> />

χ<<strong>br</strong> />

( 2 )<<strong>br</strong> />

E<<strong>br</strong> />

2<<strong>br</strong> />

+<<strong>br</strong> />

high light intensity<<strong>br</strong> />

E rad. ~E inter.<<strong>br</strong> />

χ<<strong>br</strong> />

( 3 )<<strong>br</strong> />

E<<strong>br</strong> />

3<<strong>br</strong> />

+ ...


wave equation ( = 0 ; J = 0 )<<strong>br</strong> />

r<<strong>br</strong> />

ρ<<strong>br</strong> />

left<<strong>br</strong> />

Light propagation in vacuum<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

right<<strong>br</strong> />

Matter-light interaction


P = χ<<strong>br</strong> />

nonlinear expansion of the polarization<<strong>br</strong> />

( 1)<<strong>br</strong> />

r<<strong>br</strong> />

. E + χ<<strong>br</strong> />

linear<<strong>br</strong> />

processes<<strong>br</strong> />

<strong>Nonlinear</strong> optics<<strong>br</strong> />

( 2 )<<strong>br</strong> />

r r<<strong>br</strong> />

(<<strong>br</strong> />

: EE<<strong>br</strong> />

+ χ<<strong>br</strong> />

3 )<<strong>br</strong> />

r r r<<strong>br</strong> />

MEEE<<strong>br</strong> />

+ ...<<strong>br</strong> />

SHG THG<<strong>br</strong> />

Kerr effect


<strong>Nonlinear</strong> optics<<strong>br</strong> />

nonlinear expansion of the polarization


χ<<strong>br</strong> />

( 2)<<strong>br</strong> />

Second order processes<<strong>br</strong> />

ω 1<<strong>br</strong> />

ω 2<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

χ (2)<<strong>br</strong> />

–If ω 1 = ω 2<<strong>br</strong> />

– second harmonic generation: 2 ω<<strong>br</strong> />

– optical retification: 0<<strong>br</strong> />

ω 1 +ω 2<<strong>br</strong> />

ω 1 −ω 2


( 2 )<<strong>br</strong> />

χ<<strong>br</strong> />

Second Harmonic Generation<<strong>br</strong> />

Phase Matching<<strong>br</strong> />

( ω) v(<<strong>br</strong> />

2ω)<<strong>br</strong> />

v =


Second order processes<<strong>br</strong> />

Second Harmonic Generation<<strong>br</strong> />

ω 2ω<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

( 2<<strong>br</strong> />

χ<<strong>br</strong> />

λ = 1064nm λ = 532nm<<strong>br</strong> />

)


( 2<<strong>br</strong> />

χ<<strong>br</strong> />

)<<strong>br</strong> />

Second Harmonic Generation<<strong>br</strong> />

1- higher energy light<<strong>br</strong> />

2- transparent material


<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

in medium with inversion symmetry<<strong>br</strong> />

and consequently


Third order processes<<strong>br</strong> />

ω 1<<strong>br</strong> />

ω 2<<strong>br</strong> />

ω 3<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

)<<strong>br</strong> />

3<<strong>br</strong> />

(<<strong>br</strong> />

χ<<strong>br</strong> />

χ (3)<<strong>br</strong> />

–If ω 1 = ω 2 = ω 3<<strong>br</strong> />

– Third harmonic generation: 3 ω<<strong>br</strong> />

– Self phase modulation: ω<<strong>br</strong> />

ω 1 +ω 2 +ω 3<<strong>br</strong> />

ω 1 −ω 2 −ω 3<<strong>br</strong> />

ω 1 −ω 2 +ω 3


(<<strong>br</strong> />

χ<<strong>br</strong> />

2 )<<strong>br</strong> />

=<<strong>br</strong> />

0<<strong>br</strong> />

<strong>Nonlinear</strong> polarization<<strong>br</strong> />

Third order polarization<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

χ<<strong>br</strong> />

( 3)<<strong>br</strong> />

Third order processes


consequently<<strong>br</strong> />

and<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong><<strong>br</strong> />

Kerr media<<strong>br</strong> />

n n0<<strong>br</strong> />

n2I<<strong>br</strong> />

+ =


χ (3) is a complex quantity<<strong>br</strong> />

<strong>Nonlinear</strong> <strong>Optics</strong>


Third order processes: χ (3)<<strong>br</strong> />

Refractive process:<<strong>br</strong> />

n n0<<strong>br</strong> />

n2I<<strong>br</strong> />

+ =<<strong>br</strong> />

• self-phase modulation<<strong>br</strong> />

• lens-like effect<<strong>br</strong> />

Absorptive process:<<strong>br</strong> />

α = α + β 0 I<<strong>br</strong> />

• nonlinear absorption<<strong>br</strong> />

• two-photon absorption


Two-photon absorption (2PA) process<<strong>br</strong> />

Phenomenon does not described for the Classical Physics and does not<<strong>br</strong> />

observed until the development of the Laser.<<strong>br</strong> />

1-photon absorption<<strong>br</strong> />

(Linear)<<strong>br</strong> />

2-photon absorption<<strong>br</strong> />

(<strong>Nonlinear</strong>)<<strong>br</strong> />

Theoretical model: Maria Göppert-Mayer, 1931<<strong>br</strong> />

Two photons from an intense laser light beam are simultaneously absorbed<<strong>br</strong> />

in the same “quantum act”, leading the molecule to some excited state with<<strong>br</strong> />

energy equivalent to the absorbed two photons.


2ω<<strong>br</strong> />

two-photon absorption<<strong>br</strong> />

ω<<strong>br</strong> />

ω<<strong>br</strong> />

Applications:<<strong>br</strong> />

Abs<<strong>br</strong> />

optical limiting<<strong>br</strong> />

fluorescence microscopy<<strong>br</strong> />

microfa<strong>br</strong>ication<<strong>br</strong> />

α = α0<<strong>br</strong> />

+ βI<<strong>br</strong> />

λ


2PA<<strong>br</strong> />

localization of the excitation with 2PA<<strong>br</strong> />

dilute solution of fluorescent dye<<strong>br</strong> />

1PA<<strong>br</strong> />

spatial confinement of excitation


excitation profile along z<<strong>br</strong> />

Radius, area and intensity of focused beam<<strong>br</strong> />

I(<<strong>br</strong> />

one photon<<strong>br</strong> />

two photon<<strong>br</strong> />

⎛ z<<strong>br</strong> />

ω(<<strong>br</strong> />

z ) = ω0<<strong>br</strong> />

⎜<<strong>br</strong> />

⎜1+<<strong>br</strong> />

⎝ z<<strong>br</strong> />

2 2<<strong>br</strong> />

A( z ) = πω = πω0<<strong>br</strong> />

z ) =<<strong>br</strong> />

E<<strong>br</strong> />

At<<strong>br</strong> />

1<<strong>br</strong> />

∝ =<<strong>br</strong> />

A<<strong>br</strong> />

0<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

1 ⎟<<strong>br</strong> />

0<<strong>br</strong> />

⎟<<strong>br</strong> />

⎛ z ⎞<<strong>br</strong> />

⎜ +<<strong>br</strong> />

⎝ z ⎠<<strong>br</strong> />

1<<strong>br</strong> />

2<<strong>br</strong> />

0 1<<strong>br</strong> />

⎛<<strong>br</strong> />

πω ⎜ +<<strong>br</strong> />

⎝<<strong>br</strong> />

z<<strong>br</strong> />

z<<strong>br</strong> />

Normalized excitation rates<<strong>br</strong> />

(ignoring beam attenuation)<<strong>br</strong> />

I(<<strong>br</strong> />

I(<<strong>br</strong> />

I(<<strong>br</strong> />

I(<<strong>br</strong> />

z ) ⎛<<strong>br</strong> />

= 1<<strong>br</strong> />

0 ⎜ +<<strong>br</strong> />

) ⎝<<strong>br</strong> />

z ) ⎛<<strong>br</strong> />

= 1<<strong>br</strong> />

0 ⎜ +<<strong>br</strong> />

) ⎝<<strong>br</strong> />

z<<strong>br</strong> />

z<<strong>br</strong> />

0<<strong>br</strong> />

z<<strong>br</strong> />

z<<strong>br</strong> />

0<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

−2<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

0<<strong>br</strong> />

−4<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

2<<strong>br</strong> />

2


This is the end of Part 1<<strong>br</strong> />

for a copy of this presentation<<strong>br</strong> />

www.fotonica.<strong>ifsc</strong>.<strong>usp</strong>.<strong>br</strong><<strong>br</strong> />

presentation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!