24.10.2013 Views

Wildland fire in ecosystems: effects of fire on soils and water

Wildland fire in ecosystems: effects of fire on soils and water

Wildland fire in ecosystems: effects of fire on soils and water

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

United States<br />

Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture<br />

Forest Service<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong><br />

General Technical<br />

Report RMRS-GTR-42volume<br />

4<br />

September 2005<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Ecosystems<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Soil <strong>and</strong> Water


Abstract _____________________________________<br />

Neary, Daniel G.; Ryan, Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C.; DeBano, Le<strong>on</strong>ard F., eds. 2005. (revised 2008). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong>. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden,<br />

UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 250 p.<br />

This state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge review about the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> can assist l<strong>and</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

managers with <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the physical, chemical, <strong>and</strong> biological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> needed to successfully<br />

c<strong>on</strong>duct ecosystem management, <strong>and</strong> effectively <str<strong>on</strong>g>in</str<strong>on</strong>g>form others about the role <strong>and</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Chapter topics <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the soil resource, soil physical properties <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, soil chemistry <str<strong>on</strong>g>effects</str<strong>on</strong>g>, soil<br />

biology resp<strong>on</strong>ses, the hydrologic cycle <strong>and</strong> <strong>water</strong> resources, <strong>water</strong> quality, aquatic biology, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> wetl<strong>and</strong> <strong>and</strong> riparian systems, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> models, <strong>and</strong> <strong>water</strong>shed rehabilitati<strong>on</strong>.<br />

Keywords: ecosystem, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, soil, <strong>water</strong>, <strong>water</strong>sheds, rehabilitati<strong>on</strong>, soil<br />

properties, hydrology, hydrologic cycle, soil chemistry, soil biology, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> models<br />

The larger bold check-mark boxes <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate the volumes <str<strong>on</strong>g>in</str<strong>on</strong>g> “The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series” currently published. To order, check any box or<br />

boxes below, fill <str<strong>on</strong>g>in</str<strong>on</strong>g> the address form, <strong>and</strong> send to the mail<str<strong>on</strong>g>in</str<strong>on</strong>g>g address listed below. Or send your order <strong>and</strong> your address <str<strong>on</strong>g>in</str<strong>on</strong>g> mail<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

label form to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the other listed media.<br />

RMRS-GTR-42-vol. 1. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fauna.<br />

RMRS-GTR-42-vol. 2. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora.<br />

RMRS-GTR-42-vol. 3. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> cultural resources <strong>and</strong> archeology.<br />

RMRS-GTR-42-vol. 4. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <strong>and</strong> <strong>water</strong>.<br />

RMRS-GTR-42-vol. 5. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> air.<br />

Send to: ________________________________________________________________________________<br />

Name<br />

________________________________________________________________________________<br />

Address<br />

Cover photo—Left photo: Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> encroach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a riparian area, M<strong>on</strong>tana, 2002.<br />

(Photo courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management, Nati<strong>on</strong>al Interagency Fire<br />

Center, Image Portal); Right photo: BAER team member, Norm Ambos, T<strong>on</strong>to<br />

Nati<strong>on</strong>al Forest, test<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <strong>water</strong> repellancy, Co<strong>on</strong> Creek Fire 2002, Sierra Ancha<br />

Experimental Forest, Ariz<strong>on</strong>a.


Authors<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Ecosystems<br />

Editors<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Soil <strong>and</strong> Water<br />

Daniel G. Neary, Project Leader, Forestry Sciences Laboratory, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Flagstaff, AZ 86001<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan, Project Leader, Fire Sciences Laboratory, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>,<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Missoula, MT 59807<br />

Le<strong>on</strong>ard F. DeBano, Adjunct Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable Natural Resources, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a, Tucs<strong>on</strong>, AZ 85721<br />

Jan L. Beyers, Research Ecologist, Pacific Southwest<br />

Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Riverside, CA 92507<br />

James K. Brown, Research Forester, Systems for Envir<strong>on</strong>mental<br />

Management, Missoula, MT 59802 (formerly<br />

with Fire Sciences Laboratory, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service).<br />

Matt D. Busse, Research Microbiologist, Pacific Southwest<br />

Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Redd<str<strong>on</strong>g>in</str<strong>on</strong>g>g, CA 96001<br />

Le<strong>on</strong>ard F. DeBano, Adjunct Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable<br />

Natural Resources, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a, Tucs<strong>on</strong>,<br />

AZ 85721<br />

William J. Elliot, Project Leader, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Moscow, ID 83843<br />

Peter F. Ffolliott, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable Natural<br />

Resources, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a, Tucs<strong>on</strong>, AZ 85721<br />

Gerald R. Jacoby, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Emeritus, Eastern New<br />

Mexico University, Portales, NM 88130<br />

Jennifer D. Knoepp, Research Soil Scientist, Southern<br />

Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Otto, NC 28763<br />

i<br />

Johanna D. L<strong>and</strong>sberg, Research Soil Scientist (Retired),<br />

Pacific Northwest Research Stati<strong>on</strong>, U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Wenatchee, WA<br />

98801<br />

Daniel G. Neary, Project Leader, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Flagstaff, AZ 86001<br />

James R. Reard<strong>on</strong>, Physical Science Technician, Rocky<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Missoula, MT59807<br />

John N. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, Research Fisheries Biologist, Rocky<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Flagstaff, AZ 86001<br />

Peter R. Robichaud, Research Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Moscow, ID 83843<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan, Project Leader, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Missoula, MT59807<br />

Arthur R. Tiedemann, Research Soil Scientist (Retired),<br />

Pacific Northwest Research Stati<strong>on</strong>, U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Wenatchee, WA<br />

98801<br />

Malcolm J. Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski, Assistant Director <strong>and</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable Natural Resources, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ariz<strong>on</strong>a, Tucs<strong>on</strong>, AZ 85721


Preface _____________________________________<br />

In 1978, a nati<strong>on</strong>al workshop <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Denver, Colorado provided the impetus for the<br />

“Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire <strong>on</strong> Ecosystems” series. Recogniz<str<strong>on</strong>g>in</str<strong>on</strong>g>g that knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> was<br />

needed for l<strong>and</strong> management plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g, state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-knowledge reviews were produced that<br />

became known as the “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series.” The series c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> six publicati<strong>on</strong>s, each with<br />

a different colored cover (frequently referred to as the Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow series), describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil (Wells <strong>and</strong> others 1979), <strong>water</strong> (Tiedemann <strong>and</strong> others 1979), air (S<strong>and</strong>berg <strong>and</strong><br />

others 1979), flora (Lotan <strong>and</strong> others 1981), fauna (Ly<strong>on</strong> <strong>and</strong> others 1978), <strong>and</strong> fuels (Mart<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>and</strong> others 1979).<br />

The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series proved popular <str<strong>on</strong>g>in</str<strong>on</strong>g> provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> for pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als,<br />

students, <strong>and</strong> others. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ted supplies eventually ran out, but knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued to grow. To meet the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g dem<strong>and</strong> for summaries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> knowledge,<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency Nati<strong>on</strong>al Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g Group asked Forest Service research leaders<br />

to update <strong>and</strong> revise the series. To fulfill this request, a meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g for organiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the revisi<strong>on</strong> was<br />

held January 46, 1993 <str<strong>on</strong>g>in</str<strong>on</strong>g> Scottsdale, AZ. The series name was then changed to “The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow<br />

Series.” The five-volume series covers air, soil <strong>and</strong> <strong>water</strong>, fauna, flora <strong>and</strong> fuels, <strong>and</strong> cultural<br />

resources.<br />

The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series emphasizes pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <strong>and</strong> processes rather than serv<str<strong>on</strong>g>in</str<strong>on</strong>g>g as a<br />

summary <str<strong>on</strong>g>of</str<strong>on</strong>g> all that is known. However, it does provide a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> useful <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>and</strong> sources<br />

for more detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. The five volumes, taken together, provide a wealth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>and</strong> examples to advance underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> basic c<strong>on</strong>cepts regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the United States <strong>and</strong> Canada. While this volume focuses <strong>on</strong> the United States <strong>and</strong> Canada,<br />

there are references to <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>and</strong> examples from elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g> the world (e.g. Australia,<br />

South Africa, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>, Zimbabwe, <strong>and</strong> others) to support the statements made. As c<strong>on</strong>ceptual<br />

background, they provide technical support to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> resource managers for carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terdiscipl<str<strong>on</strong>g>in</str<strong>on</strong>g>ary plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g, which is essential to manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g wildl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> an ecosystem c<strong>on</strong>text.<br />

Planners <strong>and</strong> managers will f<str<strong>on</strong>g>in</str<strong>on</strong>g>d the series helpful <str<strong>on</strong>g>in</str<strong>on</strong>g> many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem-based<br />

management, but they also have the resp<strong>on</strong>sibility to seek out <strong>and</strong> synthesize the detailed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> needed to resolve specific management questi<strong>on</strong>s.<br />

–– The Authors<br />

Acknowledgments____________________________<br />

The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series was completed under the sp<strong>on</strong>sorship <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t Fire Sciences<br />

Program, a cooperative <str<strong>on</strong>g>fire</str<strong>on</strong>g> science effort <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture (USDA) Forest<br />

Service <strong>and</strong> the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Affairs, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong><br />

Management, Fish <strong>and</strong> Wildlife Service, <strong>and</strong> Nati<strong>on</strong>al Park Service. We thank Marcia Patt<strong>on</strong>-<br />

Mallory <strong>and</strong> Louise K<str<strong>on</strong>g>in</str<strong>on</strong>g>gsbury for support <strong>and</strong> persistence to make this revisi<strong>on</strong> possible. We<br />

would like to dedicate this particular volume to a former USDA Forest Service Pacific<br />

Southwest Research Stati<strong>on</strong> research scientist, Steve S. Sackett, for his career-l<strong>on</strong>g commitment<br />

to research <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong>, to a former Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong><br />

research scientist Roger D. Hungerford for his c<strong>on</strong>tributi<strong>on</strong>s to organic soil c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong><br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> to the late Benee F. Sw<str<strong>on</strong>g>in</str<strong>on</strong>g>del, a former USDA Forest Service, Southern<br />

Research Stati<strong>on</strong> scientist <strong>and</strong> Project Leader, for his counsel<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the art <str<strong>on</strong>g>of</str<strong>on</strong>g> “perseverance”.<br />

The lead editor wishes to thank the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>in</str<strong>on</strong>g>sightful <strong>and</strong> helpful reviews, suggesti<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>, <strong>and</strong> assistance that led to substantial technical <strong>and</strong> editorial improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

manuscript: Le<strong>on</strong>ard DeBano, Peter Ffolliott, R<strong>and</strong>y Gimblett, George Ice, Marty Jurgensen,<br />

Karen Koestner, Dave Maurer, Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> Ryan, Peter Robichaud, <strong>and</strong> Larry Schmidt.<br />

ii


C<strong>on</strong>tents________________________________________________<br />

Summary .......................................................................... vii<br />

Chapter 1: Introducti<strong>on</strong> .................................................... 1<br />

by Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Johanna D. L<strong>and</strong>sberg<br />

James K. Brown<br />

Background ......................................................................... 1<br />

Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire to Soil <strong>and</strong> Water .......................... 2<br />

Scope.......................................................................... 3<br />

Fire Regimes ....................................................................... 4<br />

Fire Severity ........................................................................ 5<br />

Fire Intensity versus Fire Severity .............................. 7<br />

Fire Intensity Measures .............................................. 8<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Burn Measures ............................................. 9<br />

Fire Severity Classificati<strong>on</strong> ....................................... 13<br />

A C<strong>on</strong>ceptual Model ................................................. 15<br />

Fire-Related Disturbances ................................................ 17<br />

Fire............................................................................ 17<br />

Fire Suppressi<strong>on</strong> ...................................................... 17<br />

Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Effects .......................................................... 17<br />

This Book’s Objective ....................................................... 17<br />

Part A Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Soil.......................................... 19<br />

Part A—The Soil Resource: Its Importance,<br />

Characteristics, <strong>and</strong> General Resp<strong>on</strong>ses<br />

to Fire ...................................................................... 21<br />

by Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Introducti<strong>on</strong> ....................................................................... 21<br />

The General Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil ............................................... 22<br />

Soil Properties—Characteristics, Reacti<strong>on</strong>s, <strong>and</strong><br />

Processes ..................................................................... 22<br />

Soil Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile ......................................................................... 22<br />

Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Matter ........................................... 23<br />

Fire Effects—General C<strong>on</strong>cepts <strong>and</strong> Relati<strong>on</strong>ships .......... 24<br />

Severity <strong>and</strong> Fire Intensity ........................................ 24<br />

Combusti<strong>on</strong>............................................................... 24<br />

Heat Transfer ............................................................ 25<br />

Depth <strong>and</strong> Magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ....................... 25<br />

Temperature Thresholds <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Properties .............. 26<br />

Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Properties ........................................ 26<br />

Assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g Fire Effects <strong>on</strong> Soils ......................................... 27<br />

Management Implicati<strong>on</strong>s ................................................. 27<br />

Summary ........................................................................... 27<br />

Chapter 2: Soil Physical Properties .............................. 29<br />

by Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Peter F. Ffolliott<br />

Introducti<strong>on</strong> ....................................................................... 29<br />

Soil Physical Characteristics ............................................. 29<br />

Soil Texture <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy ..................................... 29<br />

Soil Structure ............................................................ 30<br />

Bulk Density <strong>and</strong> Porosity ......................................... 31<br />

Physical Processes ........................................................... 31<br />

Heat Transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils ............................................... 31<br />

Water Repellency ..................................................... 37<br />

Page Page<br />

iii<br />

Soil Erosi<strong>on</strong> ....................................................................... 41<br />

Processes <strong>and</strong> Mechanics ........................................ 41<br />

Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Sediment Yields .......................................... 46<br />

Management Implicati<strong>on</strong>s ................................................. 51<br />

Summary ........................................................................... 51<br />

Chapter 3: Soil Chemistry .............................................. 53<br />

by Jennifer D. Knoepp<br />

Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Introducti<strong>on</strong> Soil Chemical Characteristics ....................... 53<br />

Organic Matter <strong>and</strong> Carb<strong>on</strong> ...................................... 55<br />

Cati<strong>on</strong> Exchange Capacity ....................................... 59<br />

Cati<strong>on</strong>s...................................................................... 62<br />

Soil pH <strong>and</strong> Buffer Capacity ..................................... 62<br />

Nitrogen .................................................................... 63<br />

Phosphorus .............................................................. 64<br />

Sulfur ........................................................................ 64<br />

Soil Chemical Processes .................................................. 65<br />

Nutrient Cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g ........................................................ 65<br />

Nutrient Loss Mechanisms ....................................... 65<br />

Nutrient Availability ................................................... 66<br />

Ash-Bed Effect .................................................................. 69<br />

Management Implicati<strong>on</strong>s ................................................. 70<br />

Summary ........................................................................... 71<br />

Chapter 4: Soil Biology................................................... 73<br />

by Matt D. Busse<br />

Le<strong>on</strong>ard F. DeBano<br />

Introducti<strong>on</strong> ....................................................................... 73<br />

Biological Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils ........................................ 73<br />

Soil Microorganisms ................................................. 74<br />

Soil Meso- <strong>and</strong> Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna ...................................... 78<br />

Roots <strong>and</strong> Reproductive Structures .......................... 78<br />

Amphibians, Reptiles, <strong>and</strong> Small Mammals ............. 78<br />

Biologically Mediated Processes <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils .......................... 78<br />

Decompositi<strong>on</strong> <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> ............................ 79<br />

Nitrogen Cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g Processes ..................................... 79<br />

Fire Effects <strong>on</strong> Organisms <strong>and</strong> Biological Processes ....... 80<br />

Soil Microorganisms ................................................. 80<br />

Soil Meso- <strong>and</strong> Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna ...................................... 86<br />

Roots <strong>and</strong> Reproductive Structures .......................... 87<br />

Amphibians, Reptiles, <strong>and</strong> Small Mammals ............. 87<br />

Biologically Mediated Processes .............................. 88<br />

Management Implicati<strong>on</strong>s ......................................... 89<br />

Summary ........................................................................... 91<br />

Part B Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Water ...................................... 93<br />

Part B—The Water Resource: Its Importance,<br />

Characteristics, <strong>and</strong> General Resp<strong>on</strong>ses<br />

to Fire ...................................................................... 95<br />

by Daniel G. Neary<br />

Peter F. Ffolliott<br />

Introducti<strong>on</strong> ....................................................................... 95<br />

Hydrologic Cycle ............................................................... 95<br />

Intercepti<strong>on</strong> ............................................................... 97<br />

Infiltrati<strong>on</strong> .................................................................. 98<br />

Evapotranspirati<strong>on</strong> .................................................... 99


Soil Water Storage ................................................. 100<br />

Snow Accumulati<strong>on</strong> <strong>and</strong> Melt Patterns ................... 101<br />

Overl<strong>and</strong> Flow......................................................... 101<br />

Baseflows <strong>and</strong> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs ........................................... 102<br />

Pathways <strong>and</strong> Processes ................................................ 102<br />

Watershed C<strong>on</strong>diti<strong>on</strong> .............................................. 103<br />

Streamflow Discharge ............................................ 104<br />

Water Quality .................................................................. 105<br />

Aquatic Biology ............................................................... 105<br />

Chapter 5: Fire <strong>and</strong> Streamflow Regimes ................... 107<br />

by Daniel G. Neary<br />

Peter F. Ffolliott<br />

Johanna D. L<strong>and</strong>sberg<br />

Introducti<strong>on</strong> ..................................................................... 107<br />

Soil Water Storage .......................................................... 108<br />

Baseflows <strong>and</strong> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs ................................................... 109<br />

Streamflow Regimes ....................................................... 109<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s .................................................. 109<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Prescribed Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g ................................. 110<br />

Peakflows ........................................................................ 111<br />

Peakflow Mechanisms ............................................ 114<br />

Fire Effects.............................................................. 115<br />

Management Implicati<strong>on</strong>s ............................................... 117<br />

Summary ......................................................................... 117<br />

Chapter 6: Water Quality .............................................. 119<br />

by Daniel G. Neary<br />

Johanna D. L<strong>and</strong>sberg<br />

Arthur R. Tiedemann<br />

Peter F. Ffolliott<br />

Introducti<strong>on</strong> ..................................................................... 119<br />

Water Quality Characteristics <strong>and</strong> St<strong>and</strong>ards ................. 119<br />

Soil Erosi<strong>on</strong> <strong>and</strong> Sedimentati<strong>on</strong> Processes .................... 120<br />

Physical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Water ................................... 121<br />

Sediment................................................................. 121<br />

Water Temperature................................................. 123<br />

pH <str<strong>on</strong>g>of</str<strong>on</strong>g> Water............................................................. 124<br />

Chemical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Water .................................. 124<br />

Dissolved Chemical C<strong>on</strong>stituents ........................... 124<br />

Nitrogen .................................................................. 125<br />

Phosphorus ............................................................ 127<br />

Sulfur ...................................................................... 128<br />

Chloride .................................................................. 128<br />

Bicarb<strong>on</strong>ate ............................................................ 128<br />

Total Dissolved Solids ............................................ 128<br />

Nutrients <strong>and</strong> Heavy Metals ................................... 128<br />

Biological Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Water .............................................. 129<br />

Fire Retardants ............................................................... 129<br />

Rodeo-Chediski Fire, 2002: A Water Quality<br />

Case History .......................................................... 131<br />

Management Implicati<strong>on</strong>s ............................................... 132<br />

Summary ......................................................................... 134<br />

Chapter 7: Aquatic Biota .............................................. 135<br />

by John N. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne<br />

Gerald R. Jacoby<br />

Fire Effects <strong>on</strong> Fish ......................................................... 135<br />

Direct Fire Effects ................................................... 136<br />

Indirect Fire Effects ................................................. 136<br />

Other Anthropogenic Influenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g Factors ............... 138<br />

Temporal-Spatial Scales ........................................ 138<br />

iv<br />

Species C<strong>on</strong>siderati<strong>on</strong>s .......................................... 139<br />

Summary <strong>and</strong> General Management<br />

Implicati<strong>on</strong>s for Fish ................................................ 139<br />

Birds ............................................................................... 140<br />

Reptiles <strong>and</strong> Amphibians ................................................ 140<br />

Mammals......................................................................... 140<br />

Invertebrates ................................................................... 140<br />

Resp<strong>on</strong>se to Fire .................................................... 141<br />

Invertebrate Summary ............................................ 143<br />

Part C Other Topics ...................................................... 145<br />

Part C—Other Topics .................................................... 147<br />

by Daniel G. Neary<br />

Chapter 8: Wetl<strong>and</strong>s <strong>and</strong> Riparian Systems ............... 149<br />

by James R. Reard<strong>on</strong><br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Introducti<strong>on</strong> ..................................................................... 149<br />

Wetl<strong>and</strong>s ......................................................................... 149<br />

Wetl<strong>and</strong> <strong>and</strong> Hydric Soil Classificati<strong>on</strong> ................... 151<br />

Wetl<strong>and</strong> Hydrology <strong>and</strong> Fire ................................... 153<br />

Wetl<strong>and</strong> Fire Effects <strong>and</strong> Soil Nutrient Resp<strong>on</strong>ses . 162<br />

Wetl<strong>and</strong> Management C<strong>on</strong>siderati<strong>on</strong>s ................... 166<br />

Riparian Ecosystems ...................................................... 166<br />

Riparian Def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <strong>and</strong> Classificati<strong>on</strong> ..................... 167<br />

Hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> Riparian Systems .............................. 167<br />

Riparian Fire Effects ............................................... 167<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Large Woody Debris .................................. 168<br />

Riparian Management C<strong>on</strong>siderati<strong>on</strong>s ................... 168<br />

Summary ......................................................................... 169<br />

Chapter 9: Fire Effects <strong>and</strong> Soil Erosi<strong>on</strong> Models ....... 171<br />

by Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> Ryan<br />

William J. Elliot<br />

Introducti<strong>on</strong> ..................................................................... 171<br />

First Order Fire Effects Model (FOFEM) ......................... 171<br />

Descripti<strong>on</strong>, Overview, <strong>and</strong> Features ..................... 172<br />

Applicati<strong>on</strong>s, Potential Uses, Capabilities, <strong>and</strong><br />

Goals ...................................................................... 172<br />

Scope <strong>and</strong> Primary Geographic Applicati<strong>on</strong>s ......... 172<br />

Input Variables <strong>and</strong> Data Requirements ................. 172<br />

Output, Products, <strong>and</strong> Performance ....................... 172<br />

Advantages, Benefits, <strong>and</strong> Disadvantages ............. 172<br />

System <strong>and</strong> Computer Requirements .................... 172<br />

Models for Heat <strong>and</strong> Moisture Transport <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils ............ 173<br />

WEPP, WATSED, <strong>and</strong> RUSLE Soil Erosi<strong>on</strong> Models ...... 173<br />

Model Selecti<strong>on</strong> ...................................................... 176<br />

DELTA-Q <strong>and</strong> FOREST Models ..................................... 176<br />

Models Summary ............................................................ 176<br />

Chapter 10: Watershed Rehabilitati<strong>on</strong> ........................ 179<br />

by Peter R. Robichaud<br />

Jan L. Beyers<br />

Daniel G. Neary<br />

Burned Area Emergency Rehabilitati<strong>on</strong> (BAER) ............. 179<br />

BAER Program Analysis ......................................... 181<br />

Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Rehabilitati<strong>on</strong> Treatment Decisi<strong>on</strong>s ................... 183<br />

The BAER Team <strong>and</strong> BAER Report ....................... 183<br />

Erosi<strong>on</strong> Estimates from BAER Reports .................. 183<br />

Hydrologic Resp<strong>on</strong>se Estimates ............................. 183


Hillslope Treatments <strong>and</strong> Results ................................... 185<br />

Hillslope Treatments ............................................... 185<br />

Hillslope Treatment Effectiveness .......................... 188<br />

Research <strong>and</strong> M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Results .......................... 189<br />

Channel Treatments <strong>and</strong> Results ................................... 191<br />

Channel Treatments ............................................... 191<br />

Channel Treatment Effectiveness .......................... 192<br />

Road <strong>and</strong> Trail Treatments <strong>and</strong> Results ......................... 194<br />

Road <strong>and</strong> Trail Treatments ..................................... 194<br />

Road Treatment Effectiveness ............................... 195<br />

Summary, C<strong>on</strong>clusi<strong>on</strong>s, <strong>and</strong> Recommendati<strong>on</strong>s ............ 196<br />

Recommendati<strong>on</strong>s: Models <strong>and</strong> Predicti<strong>on</strong>s .......... 196<br />

Recommendati<strong>on</strong>s: Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Rehabilitati<strong>on</strong><br />

Treatment ............................................................... 196<br />

Recommendati<strong>on</strong>s: Effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g ........ 197<br />

Chapter 11: Informati<strong>on</strong> Sources ................................ 199<br />

by Malcolm J. Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski<br />

Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Introducti<strong>on</strong> ..................................................................... 199<br />

Databases ....................................................................... 200<br />

U.S. Fire Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> .......................................... 200<br />

Current <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Informati<strong>on</strong> ........................... 200<br />

Fire Effects Informati<strong>on</strong> System ............................. 200<br />

Nati<strong>on</strong>al Climatic Data Center ................................ 200<br />

PLANTS .................................................................. 200<br />

Fire Ecology Database ........................................... 200<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Assessment System ......................... 201<br />

Nati<strong>on</strong>al FIA Database Systems ............................. 201<br />

v<br />

Web Sites ........................................................................ 201<br />

USDA Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Research<br />

Program, Missoula, M<strong>on</strong>tana .................................. 201<br />

Fire <strong>and</strong> Fire Surrogate Program ............................ 201<br />

Nati<strong>on</strong>al Fire Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Centers ........................ 201<br />

Other Web Sites ..................................................... 202<br />

Textbooks........................................................................ 203<br />

Journals <strong>and</strong> Magaz<str<strong>on</strong>g>in</str<strong>on</strong>g>es ................................................. 204<br />

Other Sources ................................................................. 205<br />

Chapter 12: Summary <strong>and</strong> Research Needs .............. 207<br />

by Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Volume Objective ............................................................ 207<br />

Soil Physical Properties Summary .................................. 207<br />

Soil Chemistry Summary................................................. 208<br />

Soil Biology Summary ..................................................... 208<br />

Fire <strong>and</strong> Streamflow Regimes Summary ........................ 208<br />

Water Quality Summary .................................................. 208<br />

Aquatic Biota Summary .................................................. 209<br />

Wetl<strong>and</strong>s Summary ......................................................... 210<br />

Models Summary ............................................................ 210<br />

Watershed Rehabilitati<strong>on</strong> Summary ............................... 211<br />

Informati<strong>on</strong> Sources Summary ....................................... 211<br />

Research Needs ............................................................. 211<br />

References ...................................................................... 213<br />

Appendix A: Glossary ..................................................... 235


Summary<br />

Fire is a natural disturbance that occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> most terrestrial<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. It is also a tool that has been used by<br />

humans to manage a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

worldwide. As such, it can produce a spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> <strong>soils</strong>, <strong>water</strong>, riparian biota, <strong>and</strong> wetl<strong>and</strong> comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Fire scientists, l<strong>and</strong> managers, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

suppressi<strong>on</strong> pers<strong>on</strong>nel need to evaluate <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

these comp<strong>on</strong>ents, <strong>and</strong> balance the overall benefits <strong>and</strong><br />

costs associated with the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem management.<br />

This publicati<strong>on</strong> has been written to provide upto-date<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> ecosystem resources<br />

that can be used as a basis for plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

implement<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> management activities. It is a compani<strong>on</strong><br />

publicati<strong>on</strong> to the recently published book, Fire’s<br />

Effects <strong>on</strong> Ecosystems by DeBano <strong>and</strong> others (1998).<br />

In the late 1970s, the USDA Forest Service published<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge papers about <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> vegetati<strong>on</strong>, <strong>soils</strong>, <strong>water</strong>, wildlife, <strong>and</strong> other ecosystem<br />

resources. These papers, collectively called “The Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow<br />

Series” because <str<strong>on</strong>g>of</str<strong>on</strong>g> their covers, were widely used by<br />

forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> pers<strong>on</strong>nel. This publicati<strong>on</strong> updates both the<br />

Tiedemann <strong>and</strong> others (1979) paper <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>’s <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

<strong>water</strong> <strong>and</strong> the Wells <strong>and</strong> others (1979) paper <strong>on</strong> <strong>soils</strong>.<br />

This publicati<strong>on</strong> is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three major parts (A, B,<br />

C) <strong>and</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>troductory chapter that provides discussi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> related<br />

disturbances. Part A describes the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

resource, its importance, characteristics <strong>and</strong> the resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

features to ecosystem functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability.<br />

Part A is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three ma<str<strong>on</strong>g>in</str<strong>on</strong>g> chapters (2, 3, <strong>and</strong> 4) that<br />

describe specific <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the physical, chemical,<br />

<strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, respectively. Likewise,<br />

Part B discusses the basic hydrologic processes<br />

that are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hydrologic cycle,<br />

<strong>water</strong> quality, <strong>and</strong> aquatic biology. It also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s three<br />

vii<br />

chapters which specifically discuss the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

the hydrologic cycle, <strong>water</strong> quality, <strong>and</strong> aquatic biology <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chapters 5, 6, <strong>and</strong> 7, respectively. Part C has five chapters<br />

that cover a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> related topics. Chapter 8<br />

analyzes the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the hydrology <strong>and</strong> nutrient<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> al<strong>on</strong>g with management<br />

c<strong>on</strong>cerns. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> models to describe heat transfer<br />

throughout the ecosystem <strong>and</strong> erosi<strong>on</strong>al resp<strong>on</strong>se models<br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 9. Chapter 10 deals<br />

with important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed rehabilitati<strong>on</strong> <strong>and</strong><br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Burned Area Emergency<br />

Rehabilitati<strong>on</strong> (BAER) program. Chapter 11 directs the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> specialists <strong>and</strong> managers to important <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

sources <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g data bases, Web sites, textbooks,<br />

journals, <strong>and</strong> other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. A<br />

summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the important highlights <str<strong>on</strong>g>of</str<strong>on</strong>g> the book are<br />

provided <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 12. Last, a glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> terms is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> the appendix. The material provided <str<strong>on</strong>g>in</str<strong>on</strong>g> each<br />

chapter has been prepared by <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g specific<br />

expertise <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular subject.<br />

This publicati<strong>on</strong> has been written as an <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

source text for pers<strong>on</strong>nel <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong> <strong>and</strong><br />

management, planners, decisi<strong>on</strong>makers, l<strong>and</strong> managers,<br />

public relati<strong>on</strong>s pers<strong>on</strong>nel, <strong>and</strong> technicians who<br />

rout<str<strong>on</strong>g>in</str<strong>on</strong>g>ely <strong>and</strong> occasi<strong>on</strong>ally are <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong><br />

<strong>and</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> as a tool <str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem management.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> widespread <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous<br />

<strong>and</strong> current “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series” publicati<strong>on</strong>s, the<br />

Internati<strong>on</strong>al System <str<strong>on</strong>g>of</str<strong>on</strong>g> Units (Systeme Internati<strong>on</strong>al<br />

d’Unites, SI), <str<strong>on</strong>g>in</str<strong>on</strong>g>formally called the metric system (centimeters,<br />

cubic meters, grams), is used al<strong>on</strong>g with English<br />

units throughout the volume. In some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances <strong>on</strong>e or<br />

the other units are used exclusively where c<strong>on</strong>versi<strong>on</strong>s<br />

would be awkward or space does not allow presentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both units.


Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Johanna D. L<strong>and</strong>sberg<br />

James K. Brown<br />

Chapter 1:<br />

Introducti<strong>on</strong><br />

Background ____________________<br />

At the request <str<strong>on</strong>g>of</str<strong>on</strong>g> public <strong>and</strong> private wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

managers, who recognize a need to assimilate current<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> knowledge, the Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong> has produced a state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> documents relative to management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

(Smith 2000, Brown <strong>and</strong> Smith 2000, S<strong>and</strong>berg<br />

<strong>and</strong> others 2002, Neary <strong>and</strong> others this volume, <strong>and</strong><br />

J<strong>on</strong>es <strong>and</strong> Ryan <str<strong>on</strong>g>in</str<strong>on</strong>g> preparati<strong>on</strong>). The series covers our<br />

technical underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>, an underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that has grown c<strong>on</strong>siderably s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the first versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this series, the “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series,” was published <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

1979. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce that time our awareness has grown that<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> is a fundamental process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> that must<br />

be understood <strong>and</strong> managed to meet resource <strong>and</strong><br />

ecosystem management goals. The volumes <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

current series are <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to be useful for l<strong>and</strong> management<br />

plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g, development <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental assessments<br />

<strong>and</strong> envir<strong>on</strong>mental impact statements,<br />

tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> educati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>form<str<strong>on</strong>g>in</str<strong>on</strong>g>g others such as c<strong>on</strong>servati<strong>on</strong><br />

groups <strong>and</strong> regulatory agencies, <strong>and</strong> access<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

technical literature. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> has<br />

risen <str<strong>on</strong>g>in</str<strong>on</strong>g> importance to l<strong>and</strong> managers because <str<strong>on</strong>g>fire</str<strong>on</strong>g>, as<br />

a disturbance process, is an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral part <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem management <strong>and</strong> restorati<strong>on</strong> ecology.<br />

Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>itiates changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> that affect<br />

the compositi<strong>on</strong>, structure, <strong>and</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

<strong>on</strong> the l<strong>and</strong>scape. It also affects the soil <strong>and</strong> <strong>water</strong><br />

resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> that are critical to overall<br />

functi<strong>on</strong>s <strong>and</strong> processes.<br />

Fire is a dynamic process, predictable but uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

that varies over time <strong>and</strong> l<strong>and</strong>scape space. It has<br />

shaped plant communities for as l<strong>on</strong>g as vegetati<strong>on</strong><br />

<strong>and</strong> lightn<str<strong>on</strong>g>in</str<strong>on</strong>g>g have existed <strong>on</strong> earth (Pyne 1982).<br />

Recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> (C) <strong>and</strong> nutrients depends <strong>on</strong><br />

biological decompositi<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In regi<strong>on</strong>s where<br />

decay is c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed either by dry or cold climates or<br />

saturated (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words, anaerobic) c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

plays a dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant role <str<strong>on</strong>g>in</str<strong>on</strong>g> recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter<br />

(DeBano <strong>and</strong> others 1998). In warmer, moist climates,<br />

decay plays the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant role <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Harvey 1994), except <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> that are predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly<br />

saturated (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words, hydric <strong>soils</strong>).<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Soils<br />

<strong>and</strong> Water, is to assist l<strong>and</strong> managers with ecosystem<br />

restorati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g resp<strong>on</strong>sibilities<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> their efforts to <str<strong>on</strong>g>in</str<strong>on</strong>g>form others about the<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> these ecosystem resources. The<br />

geographic coverage <str<strong>on</strong>g>in</str<strong>on</strong>g> this volume is North America,<br />

but the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> can be applied to any<br />

ecosystem <str<strong>on</strong>g>in</str<strong>on</strong>g> which <str<strong>on</strong>g>fire</str<strong>on</strong>g> is a major disturbance process.<br />

This publicati<strong>on</strong> is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three major parts<br />

<strong>and</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>troductory chapter that provides discussi<strong>on</strong>s<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 1


<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

related disturbances. Part A describes the nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil resource, its importance, characteristics <strong>and</strong><br />

the resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these features to ecosystem functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability. Part A beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s with a general overview<br />

<strong>and</strong> then is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three chapters (2, 3, <strong>and</strong> 4).<br />

Likewise, part B beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s with a general overview then<br />

is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three chapters (5, 6, <strong>and</strong> 7) that discuss<br />

the basic hydrologic processes that are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hydrologic cycle, <strong>water</strong> quality, <strong>and</strong><br />

aquatic biology. Part C has five chapters that cover a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> related topics. Chapter 8 analyzes the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the hydrology <strong>and</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wetl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> al<strong>on</strong>g with management c<strong>on</strong>cerns.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> models to describe heat transfer throughout<br />

the ecosystem <strong>and</strong> erosi<strong>on</strong>al resp<strong>on</strong>se models to <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 9. Chapter 10 deals with<br />

important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed rehabilitati<strong>on</strong> <strong>and</strong><br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Burned Area Emergency<br />

Rehabilitati<strong>on</strong> (BAER) program. Chapter 11<br />

directs the <str<strong>on</strong>g>fire</str<strong>on</strong>g> specialists <strong>and</strong> mangers to important<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> sources <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g databases, Web sites,<br />

textbooks, journals, <strong>and</strong> other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the important highlights<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the book are provided <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 12. The book<br />

c<strong>on</strong>cludes with a list <str<strong>on</strong>g>of</str<strong>on</strong>g> references used <str<strong>on</strong>g>in</str<strong>on</strong>g> the volume,<br />

<strong>and</strong> a glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> terms.<br />

Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire to Soil <strong>and</strong> Water<br />

Soil is the unc<strong>on</strong>solidated, variable-thickness layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <strong>and</strong> organic matter <strong>on</strong> the Earth’s surface that<br />

forms the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between the geosphere <strong>and</strong> the<br />

atmosphere. It has formed as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> physical,<br />

chemical, <strong>and</strong> biological processes functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g simultaneously<br />

<strong>on</strong> geologic parent material over l<strong>on</strong>g periods<br />

(Jenny 1941, S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munns 1996). Soil is formed<br />

where there is c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ual <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> between the soil<br />

system <strong>and</strong> the biotic (faunal <strong>and</strong> floral), climatic (atmospheric<br />

<strong>and</strong> hydrologic), <strong>and</strong> topographic comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment. Soil <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelates with other<br />

ecosystem resources <str<strong>on</strong>g>in</str<strong>on</strong>g> several ways. It supplies air,<br />

<strong>water</strong>, nutrients, <strong>and</strong> mechanical support for the sustenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plants. Soil also receives <strong>and</strong> processes ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall.<br />

By do<str<strong>on</strong>g>in</str<strong>on</strong>g>g so, it partly determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es how much becomes<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> how much is stored for<br />

delivery slowly from upstream slopes to channels where<br />

it becomes streamflow, <strong>and</strong> by how much is stored <strong>and</strong><br />

used for soil processes (for example, transpirati<strong>on</strong>,<br />

leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> so forth). When the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall is exceeded, organic <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

soil particles are eroded from the soil surface <strong>and</strong><br />

become a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment, nutrients, <strong>and</strong><br />

pollutants <str<strong>on</strong>g>in</str<strong>on</strong>g> streams that affect <strong>water</strong> quality. There is<br />

also an active <strong>and</strong> <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> gases between<br />

the soil <strong>and</strong> the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g atmosphere. Soil also<br />

provides a repository for many cultural artifacts, which<br />

can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil for thous<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> years without<br />

undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g appreciable change.<br />

Fire can produce a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>and</strong>scape<br />

appearance (fig. 1.1ABC; DeBano <strong>and</strong> others<br />

Figure 1.1—Fire produced a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the forest l<strong>and</strong>scape <str<strong>on</strong>g>of</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Ariz<strong>on</strong>a where their appearance ranged from (A) unburned<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e to those burned at (B) low-tomoderate<br />

severity <strong>and</strong> those burned at (C) high severity.<br />

(Photos by Peter Ffolliott).<br />

2 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005<br />

A<br />

B<br />

C


1998). The <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related changes associated with different<br />

severities <str<strong>on</strong>g>of</str<strong>on</strong>g> burn produce diverse resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

<strong>water</strong>, soil, floral, <strong>and</strong> faunal comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terdependency between<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> ecosystem resp<strong>on</strong>se. Both immediate<br />

<strong>and</strong> l<strong>on</strong>g-term resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> occur (fig. 1.2). Immediate<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> also occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash created by combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass.<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> biological comp<strong>on</strong>ents (soil microorganisms<br />

<strong>and</strong> ecosystem vegetati<strong>on</strong>) to these changes<br />

is both dramatic <strong>and</strong> rapid. Another immediate effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> is the release <str<strong>on</strong>g>of</str<strong>on</strong>g> gases <strong>and</strong> other air pollutants<br />

by the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass <strong>and</strong> soil organic matter.<br />

Air quality <str<strong>on</strong>g>in</str<strong>on</strong>g> large-scale airsheds can be affected<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Hardy <strong>and</strong> others 1998,<br />

S<strong>and</strong>berg <strong>and</strong> others 2002). The l<strong>on</strong>g-term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> which are usually subtle, can<br />

persist for years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, or be permanent as<br />

occurs when cultural resources are damaged (DeBano<br />

<strong>and</strong> others 1998, J<strong>on</strong>es <strong>and</strong> Ryan <str<strong>on</strong>g>in</str<strong>on</strong>g> preparati<strong>on</strong>).<br />

Other l<strong>on</strong>g-term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> arise from the relati<strong>on</strong>ships<br />

between <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>soils</strong>, hydrology, nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> site productivity (Neary <strong>and</strong> others 1999).<br />

In the previous “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow” series published after the<br />

1978 Nati<strong>on</strong>al Fire Effects Workshop that reviewed<br />

the state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, separate<br />

reports were published <strong>on</strong> soil (Wells <strong>and</strong> others 1979)<br />

<strong>and</strong> <strong>water</strong> (Tiedemann <strong>and</strong> others 1979). Because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>tricate l<str<strong>on</strong>g>in</str<strong>on</strong>g>kage between soil <strong>and</strong> <strong>water</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>,<br />

this volume comb<str<strong>on</strong>g>in</str<strong>on</strong>g>es both.<br />

Scope<br />

The scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong> covers <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> disturbances<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> forest, woodl<strong>and</strong>, <strong>and</strong> shrubl<strong>and</strong>, <strong>and</strong> grassl<strong>and</strong><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States <strong>and</strong> Canada.<br />

However, it is applicable to any area <str<strong>on</strong>g>in</str<strong>on</strong>g> the world<br />

hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g similar forest types <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes. In<br />

some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, research <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> from <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

outside <str<strong>on</strong>g>of</str<strong>on</strong>g> North America will be used to<br />

Figure 1.2—Immediate <strong>and</strong> l<strong>on</strong>g-term ecosystem resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. (Adapted<br />

from Borchers <strong>and</strong> Perry 1990. In: Natural <strong>and</strong> Prescribed Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific<br />

Northwest Forests, edited by J.D. Walstad, S.R. Radosevich, <strong>and</strong> D.V. S<strong>and</strong>berg.<br />

Copyright © 1990 Oreg<strong>on</strong> State University Press. Reproduced by permissi<strong>on</strong>).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 3


elucidate specific <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong>. Fire<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> can be described at several<br />

spatial <strong>and</strong> temporal scales (Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt <strong>and</strong> others<br />

2001). In this chapter we will describe <str<strong>on</strong>g>fire</str<strong>on</strong>g> relati<strong>on</strong>ships<br />

suitable to each spatial <strong>and</strong> temporal scale.<br />

The <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related disturbances <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> this review<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, both<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> natural <strong>and</strong> management activity fuels. It also<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes disturbances from <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong> such as<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <strong>and</strong> roads, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant applicati<strong>on</strong>s.<br />

Fire Regimes ___________________<br />

The general character <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> that occurs with<str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

particular vegetati<strong>on</strong> type or ecosystem across l<strong>on</strong>g<br />

successi<strong>on</strong>al time frames, typically centuries, is comm<strong>on</strong>ly<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the characteristic <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime. The<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regime describes the typical or modal <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

that occurs. But it is recognized that, <strong>on</strong> occasi<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greater or lesser severity also occur with<str<strong>on</strong>g>in</str<strong>on</strong>g> a vegetati<strong>on</strong><br />

type. For example, a st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g crown<str<strong>on</strong>g>fire</str<strong>on</strong>g> is<br />

comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>-return-<str<strong>on</strong>g>in</str<strong>on</strong>g>terval forests (fig. 1.3).<br />

Figure 1.3—High severity, st<strong>and</strong> replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

(Photo by USDA Forest Service).<br />

The <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime c<strong>on</strong>cept is useful for compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

relative role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> between <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> for describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> departure from historical c<strong>on</strong>diti<strong>on</strong>s<br />

(Hardy <strong>and</strong> others 2001, Schmidt <strong>and</strong> others<br />

2002). The <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime classificati<strong>on</strong> used <str<strong>on</strong>g>in</str<strong>on</strong>g> this volume<br />

is the same as that used <str<strong>on</strong>g>in</str<strong>on</strong>g> the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

series (Brown 2000) <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora.<br />

Brown (2000) c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime classificati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> characteristics<br />

<strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (Agee 1993), comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

factors <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, periodicity, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,<br />

size, pattern, seas<strong>on</strong>, <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn (He<str<strong>on</strong>g>in</str<strong>on</strong>g>selman<br />

1978), severity (Kilgore 1981), <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> periodicity,<br />

seas<strong>on</strong>, frequency, <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (Frost 1998). Hardy <strong>and</strong><br />

others (1998, 2001) used modal severity <strong>and</strong> frequency<br />

to map <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United States<br />

(table 1.1).<br />

The <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes described <str<strong>on</strong>g>in</str<strong>on</strong>g> table 1.1 are def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as<br />

follows:<br />

• Understory Fire Regime: Fires are generally<br />

n<strong>on</strong>lethal to the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant vegetati<strong>on</strong> <strong>and</strong><br />

do not substantially change the structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant vegetati<strong>on</strong>. Approximately 80<br />

percent or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the aboveground dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant<br />

vegetati<strong>on</strong> survives <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. This <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime applies<br />

to certa<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-resistant forest <strong>and</strong> woodl<strong>and</strong><br />

vegetati<strong>on</strong> types.<br />

• St<strong>and</strong> Replacement: Fires are lethal to<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant aboveground vegetati<strong>on</strong>.<br />

Approximately 80 percent or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

aboveground dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant vegetati<strong>on</strong> is either<br />

c<strong>on</strong>sumed or dies as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, substantially<br />

chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g the aboveground vegetative<br />

structure. This regime applies to <str<strong>on</strong>g>fire</str<strong>on</strong>g>-susceptible<br />

forests <strong>and</strong> woodl<strong>and</strong>s, shrubl<strong>and</strong>s, <strong>and</strong><br />

grassl<strong>and</strong>s.<br />

• Mixed: The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s varies between<br />

n<strong>on</strong>lethal understory <strong>and</strong> lethal st<strong>and</strong> replacement<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s with the variati<strong>on</strong> occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> space<br />

or time. First, spatial variability occurs when<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity varies, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a spectrum from<br />

Table 1.1—Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime classificati<strong>on</strong>s accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Hardy <strong>and</strong> others (1998, 2001) <strong>and</strong> Brown (2000).<br />

Hardy <strong>and</strong> others 1998, 2001 Brown 2000<br />

Fire regime group Frequency (years) Severity Severity <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> Fire regime<br />

I 0-35 Low Understory <str<strong>on</strong>g>fire</str<strong>on</strong>g> 1<br />

II 0-35 St<strong>and</strong> replacement St<strong>and</strong> replacement 2<br />

III 35-100+ Mixed Mixed 3<br />

IV 35-100+ St<strong>and</strong> replacement St<strong>and</strong> replacement 2<br />

V Greater than 200 St<strong>and</strong> replacement St<strong>and</strong> replacement 2<br />

N<strong>on</strong>-<str<strong>on</strong>g>fire</str<strong>on</strong>g> regime 4<br />

4 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


understory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g to st<strong>and</strong> replacement with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

an <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This results from small-scale<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ment (fuels, terra<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

or weather) <strong>and</strong> r<strong>and</strong>om changes <str<strong>on</strong>g>in</str<strong>on</strong>g> plume<br />

dynamics. With<str<strong>on</strong>g>in</str<strong>on</strong>g> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle <str<strong>on</strong>g>fire</str<strong>on</strong>g>, st<strong>and</strong> replacement<br />

can occur with the peak <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity at the<br />

head <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> while a n<strong>on</strong>lethal <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurs <strong>on</strong><br />

the flanks. These changes create gaps <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

canopy <strong>and</strong> small to medium sized open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

The result is a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> young, older, <strong>and</strong><br />

multiple-aged vegetati<strong>on</strong> patches. While this<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime has not been explicitly described<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> previous classificati<strong>on</strong>s, it comm<strong>on</strong>ly<br />

occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> because <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ment (DeBano <strong>and</strong><br />

others 1998, Ryan 2002). For example, complex<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> favors mixed severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s because fuel<br />

moisture <strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d vary <strong>on</strong> small spatial scales.<br />

Sec<strong>on</strong>dly, temporal variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

occurs when <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual <str<strong>on</strong>g>fire</str<strong>on</strong>g>s alternate over<br />

time between <str<strong>on</strong>g>in</str<strong>on</strong>g>frequent low-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> l<strong>on</strong>g-<str<strong>on</strong>g>in</str<strong>on</strong>g>terval st<strong>and</strong> replacement <str<strong>on</strong>g>fire</str<strong>on</strong>g>s,<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a variable <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime (Brown <strong>and</strong><br />

Smith 2000, Ryan 2002). Temporal variability<br />

also occurs when periodic cool-moist climate<br />

cycles are followed by warm dry periods lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to cyclic (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words, multiple decade-level)<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem dynamics.<br />

For example <str<strong>on</strong>g>in</str<strong>on</strong>g> an upl<strong>and</strong> forest, reduced<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> occurrence dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the cool-moist cycle<br />

leads to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased st<strong>and</strong> density <strong>and</strong> fuel<br />

build-up. Fires that occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the transiti<strong>on</strong><br />

between cool-moist <strong>and</strong> warm-dry periods<br />

can be expected to be more severe <strong>and</strong> have<br />

l<strong>on</strong>g-last<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> patch <strong>and</strong> st<strong>and</strong> dynamics<br />

(Kauffman <strong>and</strong> others 2003).<br />

• N<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> Regime: Fire is not likely to occur.<br />

Subsequently, Schmidt <strong>and</strong> others (2002) used these<br />

criteria to map <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <strong>and</strong> departure from historical<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes for the c<strong>on</strong>tiguous United States.<br />

This coarser-scale assessment was <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the USDA Forest Service’s Cohesive Strategy for protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

people <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g resources <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> adapted<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Laverty <strong>and</strong> Williams 2000). It is explicitly<br />

referred to <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States as the 2003<br />

Healthy Forest Restorati<strong>on</strong> Act (HR 1904). The classificati<strong>on</strong><br />

system used by Brown (2000) found <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Flora volume (Brown <strong>and</strong> Smith 2000)<br />

is also based <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> modal severity, emphasizes <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>, but does not use frequency. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

types representative <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime types<br />

are listed <str<strong>on</strong>g>in</str<strong>on</strong>g> tables 1.2a,b,c. These vegetati<strong>on</strong> types are<br />

described <str<strong>on</strong>g>in</str<strong>on</strong>g> the Brown <strong>and</strong> Smith (2000) volume.<br />

Fire Severity____________________<br />

At f<str<strong>on</strong>g>in</str<strong>on</strong>g>er spatial <strong>and</strong> temporal scales the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

specific <str<strong>on</strong>g>fire</str<strong>on</strong>g> can be described at the st<strong>and</strong> <strong>and</strong> community<br />

level (Wells <strong>and</strong> others 1979, Rowe 1983, Turner<br />

<strong>and</strong> others 1994, DeBano <strong>and</strong> others 1998, Feller<br />

1998, Ryan 2002). The comm<strong>on</strong>ly accepted term for<br />

describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a specific <str<strong>on</strong>g>fire</str<strong>on</strong>g> is <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity. Fire severity describes the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

disturbance <strong>and</strong>, therefore, reflects the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> change<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem comp<strong>on</strong>ents. Fire affects both the<br />

aboveground <strong>and</strong> belowground comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Table 1.2a—Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> types associated with understory <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

United States <strong>and</strong> Canada. Some widely distributed vegetati<strong>on</strong> types occur<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> more than <strong>on</strong>e <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime. Variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime result from regi<strong>on</strong>al<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> climate.<br />

Communities Source<br />

L<strong>on</strong>gleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Slash p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Shortleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>e flatwoods <strong>and</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e rockl<strong>and</strong>s Myers 2000<br />

P<strong>on</strong>dcypress wetl<strong>and</strong>s Myers 2000<br />

Cabbage palmetto savannas <strong>and</strong> forests Myers 2000<br />

Oak-hickory forests Wade <strong>and</strong> others 2000<br />

Live oak forests Myers 2000<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000, Paysen <strong>and</strong> others 2000<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-mixed c<strong>on</strong>ifer Arno 2000<br />

Jeffrey p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

Redwood Arno 2000<br />

Oreg<strong>on</strong> oak woodl<strong>and</strong>s Arno 2000<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 5


Table 1.2b—Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> types associated with mixed severity <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States <strong>and</strong> Canada. Some widely distributed<br />

vegetati<strong>on</strong> types occur <str<strong>on</strong>g>in</str<strong>on</strong>g> more than <strong>on</strong>e <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime. Variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

regime result from regi<strong>on</strong>al differences <str<strong>on</strong>g>in</str<strong>on</strong>g> terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> climate.<br />

Communities Source<br />

Aspen Duchesne <strong>and</strong> Hawkes 2000<br />

Eastern white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duchesne <strong>and</strong> Hawkes 2000<br />

Red p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duchesne <strong>and</strong> Hawkes 2000<br />

Jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duchesne <strong>and</strong> Hawkes 2000<br />

Virg<str<strong>on</strong>g>in</str<strong>on</strong>g>ia p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

P<strong>on</strong>d p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Mixed mesophytic hardwoods Wade <strong>and</strong> others 2000<br />

Northern hardwoods Wade <strong>and</strong> others 2000<br />

Bottoml<strong>and</strong> hardwoods Wade <strong>and</strong> others 2000<br />

Coast Douglas-fir <strong>and</strong> Douglas-fir/hardwoods Arno 2000<br />

Giant sequoia Arno 2000<br />

California red fir Arno 2000<br />

Sierra/Cascade lodgepole p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> lodgepole p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

Interior Douglas-fir Arno 2000<br />

Western larch Arno 2000<br />

Whitebark p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper Paysen <strong>and</strong> others 2000<br />

Texas savanna Paysen <strong>and</strong> others 2000<br />

Western oaks Paysen <strong>and</strong> others 2000<br />

Table 1.2c—Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> types associated with st<strong>and</strong> replacement <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

United States <strong>and</strong> Canada. Some widely distributed vegetati<strong>on</strong> types occur <str<strong>on</strong>g>in</str<strong>on</strong>g> more<br />

than <strong>on</strong>e <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime. Variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime result from regi<strong>on</strong>al differences <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> climate.<br />

Communities Source<br />

Boreal spruce-fir Duchesne <strong>and</strong> Hawkes 2000<br />

C<strong>on</strong>ifer bogs Duchesne <strong>and</strong> Hawkes 2000<br />

Tundra Duchesne <strong>and</strong> Hawkes 2000<br />

Wet grassl<strong>and</strong>s Wade <strong>and</strong> others 2000<br />

Prairie Wade <strong>and</strong> others 2000<br />

Bay forests Wade <strong>and</strong> others 2000<br />

S<strong>and</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Table mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wade <strong>and</strong> others 2000<br />

Eastern spruce-fir Wade <strong>and</strong> others 2000<br />

Atlantic white-cedar Wade <strong>and</strong> others 2000<br />

Salt <strong>and</strong> brackish marshes Wade <strong>and</strong> others 2000<br />

Fresh <strong>and</strong> oligohal<str<strong>on</strong>g>in</str<strong>on</strong>g>e marshes <strong>and</strong> wet prairie Myers 2000, Wade <strong>and</strong> others 2000<br />

Florida coastal prairies Myers 2000<br />

Florida tropical hardwood forests Myers 2000<br />

Hawaiian forests <strong>and</strong> grassl<strong>and</strong>s Myers 2000<br />

Forests <str<strong>on</strong>g>of</str<strong>on</strong>g> Puerto Rico <strong>and</strong> the Virg<str<strong>on</strong>g>in</str<strong>on</strong>g> Isl<strong>and</strong>s Myers 2000<br />

Coast Douglas-fir Arno 2000<br />

Coastal true fir/mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> hemlock Arno 2000<br />

Interior true fir-Douglas-fir-western larch Arno 2000<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> lodgepole p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

Western white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-cedar-hemlock Arno 2000<br />

Western spruce-fir-whitebark p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Arno 2000<br />

Aspen Arno 2000<br />

Grassl<strong>and</strong>s (annual <strong>and</strong> perennial) Paysen <strong>and</strong> others 2000<br />

Sagebrush Paysen <strong>and</strong> others 2000<br />

Desert shrubl<strong>and</strong>s Paysen <strong>and</strong> others 2000<br />

Southwestern shrubsteppe Paysen <strong>and</strong> others 2000<br />

Chaparral-mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> shrub Paysen <strong>and</strong> others 2000<br />

6 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


ecosystem. Thus severity <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrates both the heat<br />

pulse above ground <strong>and</strong> the heat pulse transferred<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil. It reflects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy (heat) that is released by a <str<strong>on</strong>g>fire</str<strong>on</strong>g> that ultimately<br />

affects resources <strong>and</strong> their functi<strong>on</strong>s. It can be used to<br />

describe the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil <strong>and</strong> <strong>water</strong> system,<br />

ecosystem flora <strong>and</strong> fauna, the atmosphere, <strong>and</strong> society<br />

(Simard 1991). It reflects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

(heat) that is released by a <str<strong>on</strong>g>fire</str<strong>on</strong>g> that ultimately affects<br />

resource resp<strong>on</strong>ses. Fire severity is largely dependent<br />

up<strong>on</strong> the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuels available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong><br />

the combusti<strong>on</strong> characteristics (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words, flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

versus smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g) that occur when these fuels are<br />

burned. This chapter emphasizes the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity to soil resp<strong>on</strong>ses because the most is<br />

known about this relati<strong>on</strong>ship, <strong>and</strong> because soil resp<strong>on</strong>ses<br />

(see chapters 2, 3, 4, <strong>and</strong> 10) are closely related<br />

to hydrologic resp<strong>on</strong>ses (see chapters 5 <strong>and</strong> 6) <strong>and</strong><br />

ecosystem productivity (see chapters 4 <strong>and</strong> 8).<br />

Fire Intensity versus Fire Severity<br />

Although the literature historically c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>fusi<strong>on</strong><br />

between the terms <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity,<br />

a fairly c<strong>on</strong>sistent dist<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> between the two terms<br />

has been emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> recent years. Fire managers<br />

tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States <strong>and</strong> Canada <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior<br />

predicti<strong>on</strong> systems use the term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

strict thermodynamic sense to describe the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy released (Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> others 1977, Stocks<br />

<strong>and</strong> others 1989). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is c<strong>on</strong>cerned ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

with the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong>,<br />

therefore the energy release rate (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1976,<br />

Alex<strong>and</strong>er 1982). The faster a given quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel<br />

burns, the greater the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> the shorter the<br />

durati<strong>on</strong> (Byram 1959, McArthur <strong>and</strong> Cheney 1966,<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1976, Rothermel <strong>and</strong> Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1980, Alex<strong>and</strong>er<br />

1982). Because the rate at which energy can be transmitted<br />

through the soil is limited by the soil’s thermal<br />

properties, the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is critically important<br />

to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> (Fr<strong>and</strong>sen <strong>and</strong> Ryan 1986,<br />

Campbell <strong>and</strong> others 1995). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is not necessarily<br />

related to the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy produced<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. Most energy released by<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels is not transmitted<br />

downward (Packham <strong>and</strong> Pompe 1971,<br />

Fr<strong>and</strong>sen <strong>and</strong> Ryan 1985). For example, Packham <strong>and</strong><br />

Pompe (1971) found that <strong>on</strong>ly about 5 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

heat released by a surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> was transmitted <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the ground. Therefore, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is not necessarily<br />

a good measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy transmitted<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil, or the associated changes that<br />

occur <str<strong>on</strong>g>in</str<strong>on</strong>g> physical, chemical, <strong>and</strong> biological properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. For example, it is possible that a high<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> fast mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> will c<strong>on</strong>sume<br />

little <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface litter because <strong>on</strong>ly a small amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the energy released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels<br />

is transferred downward to the litter surface (Rowe<br />

1983, VanWagner 1983, Ryan 2002). In this case the<br />

surface litter is blackened (charred) but not c<strong>on</strong>sumed.<br />

In the extreme, <strong>on</strong>e author <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter has seen<br />

examples <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska <strong>and</strong> North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a where fast<br />

spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s did not even scorch all <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

surface fuels. However, if the <str<strong>on</strong>g>fire</str<strong>on</strong>g> also c<strong>on</strong>sumes substantial<br />

surface <strong>and</strong> ground fuels, the residence time<br />

<strong>on</strong> a site is greater, <strong>and</strong> more energy is transmitted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil. In such cases, a “white ash” layer is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

the <strong>on</strong>ly post<str<strong>on</strong>g>fire</str<strong>on</strong>g> material left <strong>on</strong> the soil surface (Wells<br />

<strong>and</strong> others 1979, Ryan <strong>and</strong> Noste 1985) (fig. 1.4).<br />

Because <strong>on</strong>e can rarely measure the actual energy<br />

release <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity can have<br />

limited practical applicati<strong>on</strong> when evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ecosystem<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, the term <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity is used to <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

different ecosystem comp<strong>on</strong>ents (Agee 1993, DeBano<br />

<strong>and</strong> others 1998, Ryan 2002). Fire severity has been<br />

used describe the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> negative <str<strong>on</strong>g>fire</str<strong>on</strong>g> impacts<br />

<strong>on</strong> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the past (Simard 1991), but<br />

a wider usage <str<strong>on</strong>g>of</str<strong>on</strong>g> the term to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude all <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> is<br />

proposed. In this c<strong>on</strong>text severity is a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> does<br />

not necessarily imply negative c<strong>on</strong>sequences. Thus, a<br />

low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> may restore <strong>and</strong> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ecological attributes that are generally viewed as<br />

positive, as for example <str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>-adapted l<strong>on</strong>gleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

(P<str<strong>on</strong>g>in</str<strong>on</strong>g>us palustris) or p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. p<strong>on</strong>derosa)<br />

ecosystem. In c<strong>on</strong>trast a high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> may be a<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant, albeit <str<strong>on</strong>g>in</str<strong>on</strong>g>frequent, disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> a n<strong>on</strong>-<str<strong>on</strong>g>fire</str<strong>on</strong>g>adapted<br />

ecosystem, for example, spruce (Picea spp.)<br />

whereas it is abnormal <str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>-adapted ecosystem.<br />

Figure 1.4—Gray to white ash rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g after a<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper slash pile was burned at high temperatures<br />

for a l<strong>on</strong>g durati<strong>on</strong>, Apache-Sitgreaves<br />

Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a. (Photo by Steve Overby).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 7


While all high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s may have significant<br />

negative social impacts, <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the latter case is the<br />

l<strong>on</strong>g-term functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the ecosystem significantly<br />

altered.<br />

Fire Intensity Measures<br />

Byram’s (1959) def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity has<br />

become a st<strong>and</strong>ard quantifiable measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

(Van Wagner 1983, Agee 1993, DeBano <strong>and</strong> others<br />

1998). It is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> energy release <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It does not<br />

address the residual flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the fr<strong>on</strong>t nor<br />

subsequent smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> (Rothermel <strong>and</strong><br />

Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1980, Alex<strong>and</strong>er 1982). Firel<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

can be written as a simple equati<strong>on</strong>:<br />

I = Hwr<br />

where<br />

I = <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (BTU/ft/sec or kW/m/sec)<br />

H = heat yield (BTU/lb or kW/kg <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel)<br />

w = mass <str<strong>on</strong>g>of</str<strong>on</strong>g> available fuel burned (lb/ft 2 or kg/m 2 )<br />

r = rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread (ft/sec or m/sec)<br />

Firel<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is proporti<strong>on</strong>al to the flame length <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> is a useful measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential<br />

to cause damage to aboveground structures (Van<br />

Wagner 1973, Rothermel <strong>and</strong> Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1980, Alex<strong>and</strong>er<br />

1982, Ryan <strong>and</strong> Noste 1985). The Canadian forest <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

danger rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g system calculates the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s based <strong>on</strong> Byram’s equati<strong>on</strong><br />

(Stocks <strong>and</strong> others 1989). Rothermel (1972) def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed a<br />

somewhat different measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, heat per<br />

unit area, which is comm<strong>on</strong>ly used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior<br />

predicti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1976, Rothermel<br />

<strong>and</strong> Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1980, Andrews 1986, Scott 1998, Scott<br />

<strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt 2001). One problem with us<str<strong>on</strong>g>in</str<strong>on</strong>g>g current<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior predicti<strong>on</strong> systems <str<strong>on</strong>g>in</str<strong>on</strong>g> ecological studies<br />

is that they focus <strong>on</strong> flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels<br />

<strong>and</strong> do not predict all <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> <strong>and</strong> fuel<br />

c<strong>on</strong>sumned, or quantify all <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy released,<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Johns<strong>on</strong> <strong>and</strong> Miyanishi 2001). The<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> residual combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large woody fuels is<br />

modeled <str<strong>on</strong>g>in</str<strong>on</strong>g> the BURNUP Model (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt<br />

1995, Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others 1996) <strong>and</strong> the energy release<br />

rate from duff c<strong>on</strong>sumpti<strong>on</strong> is modeled <str<strong>on</strong>g>in</str<strong>on</strong>g> the First<br />

Order Fire Effects Model (FOFEM) v.5.0 (Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt<br />

2003).<br />

Fires burn throughout a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>of</str<strong>on</strong>g> energy release<br />

rates (table 1.3) (Artsybashev 1983, Rowe 1983,<br />

Van Wagner 1983, Rothermel 1991). Ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

burn <str<strong>on</strong>g>in</str<strong>on</strong>g> compact fermentati<strong>on</strong> <strong>and</strong> humus layers <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> organic muck <strong>and</strong> peat <strong>soils</strong> where they spread<br />

predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly by smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g (glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g) combusti<strong>on</strong><br />

<strong>and</strong> typically burn for hours to weeks (fig. 1.5). Forward<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>in</str<strong>on</strong>g> ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s range <strong>on</strong> the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (decimeters) to yards (meters) per<br />

day. Temperatures are comm<strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> 572 °F<br />

(300 °C) for several hours (Fr<strong>and</strong>sen <strong>and</strong> Ryan 1986,<br />

Ryan <strong>and</strong> Fr<strong>and</strong>sen 1991, Hartford <strong>and</strong> Fr<strong>and</strong>sen<br />

1992, Agee 1993). The c<strong>on</strong>diti<strong>on</strong>s necessary for ground<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are organic soil horiz<strong>on</strong>s greater than about 1.6 to<br />

2.4 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (4 to 6 cm) deep <strong>and</strong> extended dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Brown<br />

<strong>and</strong> others 1985, Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt <strong>and</strong> others 1997, Johns<strong>on</strong><br />

<strong>and</strong> Miyanishi 2001). Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s spread by flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

combusti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> loose litter, woody debris, herbaceous<br />

plants <strong>and</strong> shrubs <strong>and</strong> trees roughly less than 6 feet<br />

Table 1.3—Representative ranges for <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior characteristics for ground, surface, <strong>and</strong> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (From Ryan 2002).<br />

Fire Behavior Characteristics<br />

Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant General Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Spread Flame Length Firel<str<strong>on</strong>g>in</str<strong>on</strong>g>e Intensity<br />

Fire type Combusti<strong>on</strong> Descripti<strong>on</strong> (meters/m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute) (meters) (kW/meter)<br />

Ground Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g Creep<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3.3E-4 to 1.6E-2 0.0 < 10<br />

Surface Flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g Creep<str<strong>on</strong>g>in</str<strong>on</strong>g>g


Figure 1.5—Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>. (Photo by<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> Ryan).<br />

(about 2 m) tall. Under marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s creep al<strong>on</strong>g the ground at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 feet/<br />

hour (less than 1 m/hr) with flames less than 19 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(less than 0.5 m) high (table 1.3). As fuel, weather, <strong>and</strong><br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s become more favorable for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s become progressively more active with<br />

spread rates rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> from tens <str<strong>on</strong>g>of</str<strong>on</strong>g> yards<br />

(meters) to miles (kilometers) per day. The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 to a few m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes<br />

(Vas<strong>and</strong>er <strong>and</strong> L<str<strong>on</strong>g>in</str<strong>on</strong>g>dholm 1985, Fr<strong>and</strong>sen <strong>and</strong> Ryan<br />

1986, Hartford <strong>and</strong> Fr<strong>and</strong>sen 1992) except where<br />

extended residual burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g occurs beneath logs or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy woody debris. Here flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

combusti<strong>on</strong> may last a few hours result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> substantial<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Hartford <strong>and</strong> Fr<strong>and</strong>sen 1992). However,<br />

the surface area occupied by l<strong>on</strong>g-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g woody<br />

fuels is typically small, less than 10 percent <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

much less (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1976, Ryan <strong>and</strong> Noste 1985, Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i<br />

<strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt 1995). If canopy fuels are plentiful <strong>and</strong><br />

sufficiently dry, surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s beg<str<strong>on</strong>g>in</str<strong>on</strong>g> to transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Van Wagner 1977, Scott <strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt<br />

2001). Crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn <str<strong>on</strong>g>in</str<strong>on</strong>g> the foliage, twigs, <strong>and</strong><br />

epiphytes <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest or shrub canopy located above<br />

the surface fuels. Such <str<strong>on</strong>g>fire</str<strong>on</strong>g>s exhibit the maximum<br />

energy release rate but are typically <str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong>,<br />

30 to 80 sec<strong>on</strong>ds.<br />

Fires burn <str<strong>on</strong>g>in</str<strong>on</strong>g> vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ground, surface,<br />

<strong>and</strong> crown fuels depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the local c<strong>on</strong>diti<strong>on</strong>s<br />

at the specific time a <str<strong>on</strong>g>fire</str<strong>on</strong>g> passes a given po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. Ground<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently from surface <strong>and</strong> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten occur some hours after passage <str<strong>on</strong>g>of</str<strong>on</strong>g> the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

fr<strong>on</strong>t (Artsybashev 1983, Rowe 1983, Van Wagner<br />

1983, Hungerford <strong>and</strong> others 1995a, Hungerford<br />

<strong>and</strong> others 1995b). Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> surface <strong>and</strong> ground<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior occur <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to subtle changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the microenvir<strong>on</strong>ment, st<strong>and</strong> structure, <strong>and</strong> weather<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> treatments at multiple<br />

scales <str<strong>on</strong>g>in</str<strong>on</strong>g> the ground, surface, <strong>and</strong> canopy strata (Ryan<br />

2002).<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Burn Measures<br />

The relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity to <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s largely undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed because <str<strong>on</strong>g>of</str<strong>on</strong>g> difficulties encountered<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g resource resp<strong>on</strong>ses to the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

process (Hungerford <strong>and</strong> others 1991, Hartford<br />

<strong>and</strong> Fr<strong>and</strong>sen 1992, Ryan 2002). While quantitative<br />

relati<strong>on</strong>ships have been developed to describe changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil, <strong>and</strong> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

temperature <strong>and</strong> <strong>water</strong> c<strong>on</strong>tent beneath surface <strong>and</strong><br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, these relati<strong>on</strong>ships have not been thoroughly<br />

extrapolated to field c<strong>on</strong>diti<strong>on</strong>s (Campbell <strong>and</strong><br />

others 1994, 1995). It is not always possible to estimate<br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil, vegetati<strong>on</strong>, <strong>and</strong> air when<br />

these <str<strong>on</strong>g>effects</str<strong>on</strong>g> are judged by <strong>on</strong>ly <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity measurements<br />

because other factors overwhelm <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior.<br />

The range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil resources can be<br />

expected to vary directly with the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn as<br />

reflected <str<strong>on</strong>g>in</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> duff c<strong>on</strong>sumed <strong>and</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large woody fuel c<strong>on</strong>sumpti<strong>on</strong> (Ryan 2002). Thus, for<br />

example, the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> lethal heat (approximately 140 °F<br />

or 60 °C) penetrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil can be expected to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g depth <str<strong>on</strong>g>of</str<strong>on</strong>g> surface duff that<br />

is burned (fig. 1.6).<br />

Figure 1.6—Temperature ranges associated with<br />

various <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (top) (from Hungerford <strong>and</strong> others<br />

1991) compared to the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> heat penetrati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (bottom) for a crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> over<br />

exposed m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (observed <str<strong>on</strong>g>in</str<strong>on</strong>g> jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e P<str<strong>on</strong>g>in</str<strong>on</strong>g>us<br />

banksiana <str<strong>on</strong>g>in</str<strong>on</strong>g> the Canadian Northwest Territories) or<br />

for ground <str<strong>on</strong>g>fire</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> 5-, 15-, <strong>and</strong> 25-cm <str<strong>on</strong>g>of</str<strong>on</strong>g> duff<br />

(predicted via Campbell <strong>and</strong> others1994, 1995).<br />

C<strong>on</strong>diti<strong>on</strong>s are for coarse dry soil, which provides<br />

the best c<strong>on</strong>ducti<strong>on</strong> (i.e., a worst-case scenario).<br />

(From Ryan 2002).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 9


Numerous authors have used measures <str<strong>on</strong>g>of</str<strong>on</strong>g> the depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>in</str<strong>on</strong>g>to the organic soil horiz<strong>on</strong>s or visual observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant materials to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity for <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong>, plants, <strong>and</strong> early successi<strong>on</strong><br />

(C<strong>on</strong>rad <strong>and</strong> Poult<strong>on</strong> 1966, Miller 1977, Viereck <strong>and</strong><br />

Dyrness 1979, Viereck <strong>and</strong> Sch<strong>and</strong>elmeier 1980,<br />

Dyrness <strong>and</strong> Norum 1983, Rowe 1983, Zasada <strong>and</strong><br />

others 1983, Ryan <strong>and</strong> Noste 1985, Morgan <strong>and</strong><br />

Neuenschw<strong>and</strong>er 1988, Schimmel <strong>and</strong> Granström<br />

1996, DeBano <strong>and</strong> others 1998, Feller 1998). Depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn is directly related to the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

woody fuels (Anders<strong>on</strong> 1969, Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt<br />

1995) <strong>and</strong> duff (Fr<strong>and</strong>sen 1991a, 1991b, Johns<strong>on</strong> <strong>and</strong><br />

Miyanishi 2001). In heterogeneous fuels, depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn can vary substantially over short distances (for<br />

example, beneath a shrub or tree canopy versus the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ter-canopy area, or beneath a log versus not (Tunstall<br />

<strong>and</strong> others 1976, Ryan <strong>and</strong> Fr<strong>and</strong>sen 1991). At the<br />

spatial scale <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample plot with<str<strong>on</strong>g>in</str<strong>on</strong>g> a given <str<strong>on</strong>g>fire</str<strong>on</strong>g>, depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn can be classified <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> visual observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

residual plant <strong>and</strong> soil surfaces (Ryan <strong>and</strong> Noste 1985,<br />

Ryan 2002).<br />

Ryan <strong>and</strong> Noste (1985) summarized literature <strong>on</strong><br />

the relati<strong>on</strong>ships between depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <strong>and</strong> the charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plant materials. An adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their table 2,<br />

updated to reflect subsequent literature (Moreno <strong>and</strong><br />

Oechel 1989, Pérez <strong>and</strong> Moreno 1998, DeBano <strong>and</strong><br />

others 1998, <strong>and</strong> Feller 1998) <strong>and</strong> experience, particularly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> peat <strong>and</strong> muck <strong>soils</strong>, is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> table 1.4.<br />

This table can be used as a field guide to classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <strong>on</strong> small plots (for example, quadrats).<br />

A brief descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn characteristics is<br />

provided for clarificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>:<br />

• Unburned: Plant parts are green <strong>and</strong> unaltered,<br />

there is no direct effect from heat. The<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned patches (mosaics) varies<br />

c<strong>on</strong>siderably with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> between burns as the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ment (fuels, weather, <strong>and</strong> terra<str<strong>on</strong>g>in</str<strong>on</strong>g>)<br />

varies. Unburned patches are important<br />

rufugia for many species <strong>and</strong> are a source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants <strong>and</strong> animals for recol<str<strong>on</strong>g>in</str<strong>on</strong>g>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent<br />

burned areas.<br />

• Scorched: Fire did not burn the area, but<br />

radiated or c<strong>on</strong>vected heat from adjacent<br />

burned areas caused visible damage. Mosses<br />

<strong>and</strong> leaves are brown or yellow but species<br />

characteristics are still identifiable. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

is negligible. Scorched areas occur to<br />

vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g degrees al<strong>on</strong>g the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> more severely<br />

burned areas. As it occurs <strong>on</strong> edges,<br />

the area with<str<strong>on</strong>g>in</str<strong>on</strong>g> the scorched class is typically<br />

small (Dyrness <strong>and</strong> Norum 1983) <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

are typically similar to those <str<strong>on</strong>g>in</str<strong>on</strong>g> light burned<br />

areas. The scorched class may, however, have<br />

utility <str<strong>on</strong>g>in</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> microvariati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

• Light: In forests the surface litter, mosses, <strong>and</strong><br />

herbaceous plants are charred-to-c<strong>on</strong>sumed<br />

but the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest duff or organic soil is<br />

unaltered. F<str<strong>on</strong>g>in</str<strong>on</strong>g>e dead twigs up to 0.25 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(0.6 cm) are charred or c<strong>on</strong>sumed, but larger<br />

unburned branches rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. Logs may be blackened<br />

but are not deeply charred except where<br />

two logs cross. Leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> understory shrubs<br />

<strong>and</strong> trees are charred or c<strong>on</strong>sumed, but f<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

twigs <strong>and</strong> branches rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. In n<strong>on</strong>forest vegetati<strong>on</strong>,<br />

plants are similarly charred or c<strong>on</strong>sumed,<br />

herbaceous plant bases are not deeply<br />

burned <strong>and</strong> are still identifiable, <strong>and</strong> charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is negligible. Light depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn is associated with short durati<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

either because <str<strong>on</strong>g>of</str<strong>on</strong>g> light fuel loads (mass per<br />

unit area), high w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds, moist fuels, or a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these three factors. Typical forestfloor<br />

moisture c<strong>on</strong>tents associated with light<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn are litter (Oi) 15 to 25 percent<br />

<strong>and</strong> duff (Oe+Oa) greater than 125 percent.<br />

• Moderate: In forests the surface litter, mosses,<br />

<strong>and</strong> herbaceous plants are c<strong>on</strong>sumed. Shallow<br />

duff layers are completely c<strong>on</strong>sumed, <strong>and</strong> charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> the top 0.5 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1.2 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. Where deep duff layers or organic<br />

<strong>soils</strong> occur, they are deeply burned to completely<br />

c<strong>on</strong>sumed, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> deep char <strong>and</strong><br />

ash deposits but the texture <strong>and</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil are not visibly<br />

altered. Trees <str<strong>on</strong>g>of</str<strong>on</strong>g> late-successi<strong>on</strong>al, shallowrooted<br />

species are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten left <strong>on</strong> root pedestals<br />

or topple. F<str<strong>on</strong>g>in</str<strong>on</strong>g>e dead twigs are completely c<strong>on</strong>sumed,<br />

larger branches <strong>and</strong> rotten logs are<br />

mostly c<strong>on</strong>sumed, <strong>and</strong> logs are deeply charred.<br />

Burned-out stump holes <strong>and</strong> rodent middens<br />

are comm<strong>on</strong>. Leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> understory shrubs <strong>and</strong><br />

trees are completely c<strong>on</strong>sumed. F<str<strong>on</strong>g>in</str<strong>on</strong>g>e twigs<br />

<strong>and</strong> branches <str<strong>on</strong>g>of</str<strong>on</strong>g> shrubs are mostly c<strong>on</strong>sumed<br />

(this effect decreases with height above the<br />

ground), <strong>and</strong> <strong>on</strong>ly the larger stems rema<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Stems <str<strong>on</strong>g>of</str<strong>on</strong>g> these plants frequently burn <str<strong>on</strong>g>of</str<strong>on</strong>g>f at<br />

the base dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the ground <str<strong>on</strong>g>fire</str<strong>on</strong>g> phase leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

residual aerial stems that were not c<strong>on</strong>sumed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g phase ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the ground. In<br />

n<strong>on</strong>forest vegetati<strong>on</strong>, plants are similarly c<strong>on</strong>sumed,<br />

herbaceous plant bases are deeply<br />

burned <strong>and</strong> unidentifiable. In shrubl<strong>and</strong>s, average<br />

char-depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 0.4 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1 cm), but soil<br />

texture <strong>and</strong> structure are not noticeably altered.<br />

Charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g may extend 0.8 to 1.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(2.0 to 3.0 cm) beneath shrubs with deep leaf<br />

10 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 1.4—Visual characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>in</str<strong>on</strong>g> forests, shrubl<strong>and</strong>s, <strong>and</strong> grassl<strong>and</strong>s from observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ground surface characteristics,<br />

charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> fuel c<strong>on</strong>sumpti<strong>on</strong> for unburned <strong>and</strong> light (part A), moderate (part B), <strong>and</strong> deep (part C) classes (Modified from Ryan <strong>and</strong><br />

Noste 1985).<br />

Table 1.4 Part A<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong> type<br />

burn class Forests Shrubl<strong>and</strong>s Grassl<strong>and</strong>s<br />

Unburned<br />

Surface: Fire did not burn <strong>on</strong> the surface. See Forests See Forests<br />

Fuels: Some vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>jury may occur See Forests See Forests<br />

from radiated or c<strong>on</strong>vected heat<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> dead<br />

fuel mass.<br />

Occurrence: A wide range exists <str<strong>on</strong>g>in</str<strong>on</strong>g> the percent See Forests See Forests<br />

unburned <str<strong>on</strong>g>in</str<strong>on</strong>g> natural fuels. Under<br />

marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

the area may be >50 percent.<br />

Under severe burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<br />


Table 1.4 Part B<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong> type<br />

burn class Forests Shrubl<strong>and</strong>s Grassl<strong>and</strong>s<br />

Moderate<br />

Surface: In upl<strong>and</strong> forests litter is c<strong>on</strong>sumed In upl<strong>and</strong> shrubl<strong>and</strong>s litter is c<strong>on</strong>sumed. In upl<strong>and</strong> grassl<strong>and</strong>s litter is c<strong>on</strong>sumed.<br />

<strong>and</strong> duff deeply charred or c<strong>on</strong>sumed, Where present, leaf mold deeply Charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g extends to 1.0 cm. altered. Gray or white ash quickly In grassl<strong>and</strong>s, sedge meadows <strong>and</strong><br />

Gray or white ash persists until leached disappears. In shrub-scrub wetl<strong>and</strong>s prairies grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> organic <strong>soils</strong><br />

by ra<str<strong>on</strong>g>in</str<strong>on</strong>g> or redistributed by ra<str<strong>on</strong>g>in</str<strong>on</strong>g> or w<str<strong>on</strong>g>in</str<strong>on</strong>g>d. grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> organic <strong>soils</strong> moderate moderate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>s partially<br />

In forests grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> organic <strong>soils</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>s partially burn burn the root-mat but not the<br />

moderate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>s partially the root-mat but not the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat or muck.<br />

burn the root-mat but not the peat or muck.<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat or muck.<br />

Fuels: Herbaceous plants, low woody shrubs, Herbaceous plants are c<strong>on</strong>sumed to Herbaceous plants are c<strong>on</strong>sumed<br />

foliage <strong>and</strong> woody debris 1 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> organic <strong>soils</strong> deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn the root-mat <strong>and</strong><br />

appears black due to charred or <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn the root-mat <strong>and</strong> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat or muck to depths<br />

deposited organic material. Fusi<strong>on</strong> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat or muck to depths that vary with the <strong>water</strong> table.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil may occur under heavy woody that vary with the <strong>water</strong> table.<br />

fuel c<strong>on</strong>centrati<strong>on</strong>s. In forests grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> organic <strong>soils</strong> deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn the root-mat <strong>and</strong> the<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat or muck to depths that<br />

vary with the <strong>water</strong> table.<br />

Fuels: In upl<strong>and</strong>s twigs <strong>and</strong> small branches In upl<strong>and</strong>s twigs <strong>and</strong> small branches All above ground fuel is c<strong>on</strong>sumed to<br />

are completely c<strong>on</strong>sumed. Few large, are completely c<strong>on</strong>sumed. Large charcoal <strong>and</strong> ash.<br />

deeply charred branches rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. branches <strong>and</strong> stems are mostly<br />

Sound logs are deeply charred <strong>and</strong> c<strong>on</strong>sumed. In wetl<strong>and</strong>s twigs, branches,<br />

rotten logs are completely c<strong>on</strong>sumed. <strong>and</strong> stems not burned <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface<br />

In wetl<strong>and</strong>s twigs, branches, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> may rema<str<strong>on</strong>g>in</str<strong>on</strong>g> even after subsequent<br />

stems not burned <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> a ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

may rema<str<strong>on</strong>g>in</str<strong>on</strong>g> even after subsequent<br />

passage <str<strong>on</strong>g>of</str<strong>on</strong>g> a ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Occurrence: In upl<strong>and</strong>s deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn occurs In upl<strong>and</strong>s deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn typically In upl<strong>and</strong>s deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<br />

under logs, beneath piles, <strong>and</strong> around is limited to small areas beneath shrubs is limited to areas beneath the<br />

burned-out stump holes, <strong>and</strong> typically where c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> deadwood occasi<strong>on</strong>al log or anthropogenic<br />

occupies


•<br />

litter. Typical forest-floor moisture c<strong>on</strong>tents<br />

associated with moderate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn are<br />

litter (Oi) 10 to 20 percent <strong>and</strong> duff (Oe+Oa) less than 75 percent.<br />

Deep: In forests grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil the<br />

surface litter, mosses, herbaceous plants,<br />

shrubs, <strong>and</strong> woody branches are completely<br />

c<strong>on</strong>sumed. Sound logs are c<strong>on</strong>sumed or deeply<br />

charred. Rotten logs <strong>and</strong> stumps are c<strong>on</strong>sumed.<br />

The top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is visibly<br />

oxidized, reddish to yellow. Surface soil texture<br />

is altered <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> extreme cases fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles occurs. A black b<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charred organic<br />

matter 0.4 to 0.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1 to 2 cm) thick<br />

occurs at variable depths below the surface.<br />

The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> this b<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The temperatures<br />

associated with oxidized m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil are<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> those associated with flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g (greater<br />

than 932 °F or 500 °C) rather than smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(less than 932 °F or 500 °C). Thus, deep depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn typically <strong>on</strong>ly occurs where woody<br />

fuels burn for extended durati<strong>on</strong> such as beneath<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual logs or <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

woody debris <strong>and</strong> litter-filled burned out stump<br />

holes. Representative forest-floor moisture<br />

c<strong>on</strong>tents associated with deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<br />

are litter (Oi) less than 15 percent <strong>and</strong> duff<br />

(Oe+Oa) less than 30 percent. In areas with<br />

deep organic <strong>soils</strong> deep depth-<str<strong>on</strong>g>of</str<strong>on</strong>g>-burn occurs<br />

when ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s c<strong>on</strong>sume the root-mat or<br />

burn beneath the root-mat. Trees <str<strong>on</strong>g>of</str<strong>on</strong>g>ten topple<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> from which the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> fr<strong>on</strong>t approached (Artsybashev 1983,<br />

We<str<strong>on</strong>g>in</str<strong>on</strong>g> 1983, Hungerford <strong>and</strong> others 1995a,b).<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn varies c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously <strong>and</strong>, as is typical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>s, there is some ambiguity at the class<br />

boundaries. The moderate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn class is a<br />

broad class. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators have chosen to divide<br />

the class <str<strong>on</strong>g>in</str<strong>on</strong>g>to two classes (Morgan <strong>and</strong><br />

Neuenschw<strong>and</strong>er 1988, Feller 1998). The most comm<strong>on</strong><br />

criteria for splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g the moderate class are between<br />

areas with shallow versus deep duff. Partial<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a deep layer may be more severe than<br />

complete c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a shallow layer for some<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> but not others. For example, c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (20 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> a 12-<str<strong>on</strong>g>in</str<strong>on</strong>g>ch (30-cm) duff layer represents<br />

greater fuel c<strong>on</strong>sumpti<strong>on</strong>, smoke producti<strong>on</strong>,<br />

energy release, <strong>and</strong> nutrient release than complete<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 4-<str<strong>on</strong>g>in</str<strong>on</strong>g>ch (10-cm) layer, but because<br />

organic matter (duff) is a good <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator, heat <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

are limited to less than an <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1 to 2 cm) below the<br />

duff-burn boundary. In c<strong>on</strong>trast, complete c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 4-<str<strong>on</strong>g>in</str<strong>on</strong>g>ch (10-cm) layer can be expected to have<br />

similar thermal <str<strong>on</strong>g>effects</str<strong>on</strong>g> at three to five times greater<br />

depth (fig. 1.6). Duff c<strong>on</strong>sumpti<strong>on</strong> is a complex process<br />

(Johns<strong>on</strong> <strong>and</strong> Miyanishi 2001). Depth, bulk density,<br />

heat c<strong>on</strong>tent, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent, moisture c<strong>on</strong>tent,<br />

<strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d speed all affect the energy release rate<br />

<strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. As these factors cannot be readily<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, it is difficult to describe<br />

postburn criteria that can be used to c<strong>on</strong>sistently<br />

split the class. While post<str<strong>on</strong>g>fire</str<strong>on</strong>g> exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground<br />

charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>e may not be adequate for classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn, the actual depth can be <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from<br />

the prep<strong>on</strong>derance <str<strong>on</strong>g>of</str<strong>on</strong>g> the evidence, which <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes<br />

rec<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g the pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetative structure. Careful<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soil characteristics, fuel<br />

c<strong>on</strong>sumpti<strong>on</strong>, <strong>and</strong> the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> residual<br />

plant materials can be used to classify the depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the descriptive characteristics provided<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> table 1.4.<br />

Fire Severity Classificati<strong>on</strong><br />

Judg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity solely <strong>on</strong> ground-based processes<br />

ignores the aboveground dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> severity<br />

implied <str<strong>on</strong>g>in</str<strong>on</strong>g> the ecological def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

disturbance (White <strong>and</strong> Pickett 1985). This is especially<br />

important because soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g is comm<strong>on</strong>ly<br />

shallow even when surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are <str<strong>on</strong>g>in</str<strong>on</strong>g>tense (Wright<br />

<strong>and</strong> Bailey 1982, Vas<strong>and</strong>er <strong>and</strong> L<str<strong>on</strong>g>in</str<strong>on</strong>g>dholm 1985,<br />

Fr<strong>and</strong>sen <strong>and</strong> Ryan 1986, Hartford <strong>and</strong> Fr<strong>and</strong>sen<br />

1992, Ryan 2002). Ryan <strong>and</strong> Noste (1985) comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity classes with depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn (char) classes<br />

to develop a two-dimensi<strong>on</strong>al matrix approach to def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Their system is based <strong>on</strong> two<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: (1) an aboveground heat<br />

pulse due to radiati<strong>on</strong> <strong>and</strong> c<strong>on</strong>vecti<strong>on</strong> associated with<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong>, <strong>and</strong> (2) a belowground heat pulse<br />

due pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally to c<strong>on</strong>ducti<strong>on</strong> from smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

where duff is present or radiati<strong>on</strong> from flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

combusti<strong>on</strong> where duff is absent—<str<strong>on</strong>g>in</str<strong>on</strong>g> other words,<br />

bare m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. Fire-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity classes qualify the<br />

relative peak energy release rate for a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, whereas<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn classes qualify the relative durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Their c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> severity focuses <strong>on</strong> the ecological<br />

work performed by <str<strong>on</strong>g>fire</str<strong>on</strong>g> both above ground <strong>and</strong><br />

below ground. Ryan (2002) comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> characteristic<br />

classes (table 1.3) <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn classes<br />

(table 1.4) to revise the Ryan <strong>and</strong> Noste (1985) <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity matrix (table 1.5). By this nomenclature two<br />

burned areas would be c<strong>on</strong>trasted as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g had, for<br />

example, an active spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g-light depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

versus an <str<strong>on</strong>g>in</str<strong>on</strong>g>tense-moderate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The<br />

matrix provides an approach to classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> treatment or severity for ecological studies at the<br />

scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual plant, sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g quadrat, <strong>and</strong><br />

the community. The Ryan <strong>and</strong> Noste (1985) approach<br />

has been used to <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret differences <str<strong>on</strong>g>in</str<strong>on</strong>g> plant survival<br />

<strong>and</strong> regenerati<strong>on</strong> (Willard <strong>and</strong> others 1995, Smith <strong>and</strong><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 13


Fischer 1997, Feller 1998) <strong>and</strong> to field-validate satellite-based<br />

maps <str<strong>on</strong>g>of</str<strong>on</strong>g> burned areas (White <strong>and</strong> others<br />

1996). The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn characteristics are appropriate<br />

for quadrat-level descripti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> species resp<strong>on</strong>se<br />

studies <strong>and</strong> for describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>on</strong> small plots<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> a burned area.<br />

In the literature there is comm<strong>on</strong> usage <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>edimensi<strong>on</strong><br />

rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity (Wells <strong>and</strong> others 1979,<br />

Morris<strong>on</strong> <strong>and</strong> Swans<strong>on</strong> 1990, Agee 1993, DeBano <strong>and</strong><br />

others 1998, <strong>and</strong> many others). The s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-adjective<br />

rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g describes the overall severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

usually focuses primarily <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the soil<br />

resource. The <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> table 1.5 provides<br />

guidance for mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g comparis<strong>on</strong>s to the two-dimensi<strong>on</strong>al<br />

severity rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Ryan <strong>and</strong> Noste (1985) <strong>and</strong> Ryan<br />

(2002), <strong>and</strong> for st<strong>and</strong>ardiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the term. At the<br />

spatial scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<strong>and</strong> or community, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

needs to be based <strong>on</strong> a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity classes. In the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow volume <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong>, Wells <strong>and</strong> others 1979 (see also<br />

14 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Ryan <strong>and</strong> Noste 1985, DeBano <strong>and</strong> others 1998) developed<br />

the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g criteria to do this:<br />

• Low severity burn—less than 2 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

area is severely burned, less than 15 percent<br />

moderately burned, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

area burned at a low severity or unburned.<br />

• Moderate severity burn—less than 10 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the area is severely burned, but more than<br />

15 percent is burned moderately, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

is burned at low severity or unburned.<br />

• High severity burn—more than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the area has spots that are burned at high<br />

severity, more than 80 percent moderately or<br />

severely burned, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der is burned<br />

at a low severity.<br />

The Wells <strong>and</strong> others (1979) criteria for def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

burn severity class boundaries are somewhat arbitrary<br />

but were selected <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> experience<br />

recogniz<str<strong>on</strong>g>in</str<strong>on</strong>g>g that even the most severe <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s has<br />

spatial variati<strong>on</strong> due to r<strong>and</strong>om variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

envir<strong>on</strong>ment (fuels, weather, <strong>and</strong> terra<str<strong>on</strong>g>in</str<strong>on</strong>g>), <strong>and</strong> particularly<br />

localized fuel c<strong>on</strong>diti<strong>on</strong>s. Recently, Key <strong>and</strong><br />

Bens<strong>on</strong> (2004) have developed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> procedures<br />

for document<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> field<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> satellite images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Their<br />

procedures result <str<strong>on</strong>g>in</str<strong>on</strong>g> a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous score, called the<br />

Composite Burn Index (CBI), which is based <strong>on</strong> visual<br />

observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

several classes <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels <strong>and</strong> vegetati<strong>on</strong>.<br />

In most situati<strong>on</strong>s, depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn is the primary<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern when assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

soil <strong>and</strong> <strong>water</strong> resources (fig. 1.7). Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<br />

relates directly to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> bare m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

exposed to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>-splash, the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> lethal heat penetrati<strong>on</strong>,<br />

the depth at which a hydrophobic layer will<br />

form, the depth at which other chemical alterati<strong>on</strong>s<br />

occur, <strong>and</strong> the depth to which microbial populati<strong>on</strong>s<br />

will be affected. As such it affects many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

erodability <strong>and</strong> hydrologic recovery (Wright <strong>and</strong> Bailey<br />

1982, DeBano <strong>and</strong> others 1998, Gresswell 1999,<br />

Pannkuk <strong>and</strong> others 2000). However, depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn is<br />

not the <strong>on</strong>ly c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor (Ryan 2002). For example,<br />

the surface microenvir<strong>on</strong>ment, shaded versus<br />

exposed, <str<strong>on</strong>g>in</str<strong>on</strong>g> surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s versus crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be<br />

expected to affect post<str<strong>on</strong>g>fire</str<strong>on</strong>g> species dynamics regardless<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn (Rowe 1983). In a surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, needles are killed by heat ris<str<strong>on</strong>g>in</str<strong>on</strong>g>g above the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(Van Wagner 1973, Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> <strong>and</strong> Johns<strong>on</strong> 2001),<br />

thereby reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g their nutrients. Thus, litterfall <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scorched needles versus no litterfall <str<strong>on</strong>g>in</str<strong>on</strong>g> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

areas can be expected to affect post<str<strong>on</strong>g>fire</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Further, ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall simulator experiments have<br />

shown that needle cast from underburned trees reduced<br />

erosi<strong>on</strong> <strong>on</strong> sites where duff was completely<br />

c<strong>on</strong>sumed <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> areas with similar<br />

Figure 1.7—Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn mosaics show<str<strong>on</strong>g>in</str<strong>on</strong>g>g: (A) moderate<br />

to deep burn depths; <strong>and</strong> (B) light to moderate<br />

depths. (Photos by USDA Forest Service).<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn (Pannkuk <strong>and</strong> others 2000). Thus, a<br />

lethal st<strong>and</strong> replacement crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words, a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> that kills the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant overstory; Brown 2000)<br />

represents a more severe <str<strong>on</strong>g>fire</str<strong>on</strong>g> treatment than a lethal<br />

st<strong>and</strong> replacement surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> even when both have<br />

similar depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn (fig. 1.8). Thus for many ecological<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s it is desirable to use the twodimensi<strong>on</strong>al<br />

approach to rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity to account<br />

for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> both the aboveground <strong>and</strong><br />

belowground heat pulses.<br />

A C<strong>on</strong>ceptual Model<br />

The previous discussi<strong>on</strong> leads to development <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>ceptual model to help planners, managers, <strong>and</strong><br />

decisi<strong>on</strong>makers appreciate the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. The c<strong>on</strong>ceptual model describes<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity as rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from low <strong>water</strong> resource<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 15<br />

A<br />

B


Figure 1.9—A c<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity.<br />

Figure 1.8—Site <strong>and</strong> weather factors associated with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> erosi<strong>on</strong> potential.<br />

resp<strong>on</strong>ses likely to be experienced with a prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> no accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrologic events to high<br />

resource resp<strong>on</strong>ses that could be expected from st<strong>and</strong>replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> forests <strong>and</strong> major storm events<br />

(fig. 1.9). Once aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity is not directly<br />

related to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity for the reas<strong>on</strong>s discussed<br />

above.<br />

Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (generally low <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity)<br />

are depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.9 <strong>on</strong> the lower porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> resource resp<strong>on</strong>se curve. These<br />

c<strong>on</strong>diti<strong>on</strong>s are typically characterized by lower air<br />

temperature, higher relative humidity, <strong>and</strong> higher<br />

soil moisture burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s, where fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g is<br />

low <strong>and</strong> fuel moisture can be high. These c<strong>on</strong>diti<strong>on</strong>s<br />

produce lower <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities <strong>and</strong>, as a c<strong>on</strong>sequence,<br />

lower <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to reduced potential for<br />

subsequent damage to soil <strong>and</strong> <strong>water</strong> resources. Prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, by its design, usually has m<str<strong>on</strong>g>in</str<strong>on</strong>g>or impacts<br />

<strong>on</strong> these resources.<br />

Fire at the other end <str<strong>on</strong>g>of</str<strong>on</strong>g> the severity spectrum (left<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> fig. 1.9) more nearly represents c<strong>on</strong>diti<strong>on</strong>s that<br />

are present dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, where temperatures,<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>d speeds, <strong>and</strong> fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are high, <strong>and</strong> humidity<br />

<strong>and</strong> fuel moisture are low. In c<strong>on</strong>trast to prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten has a major effect <strong>on</strong> soil <strong>and</strong><br />

<strong>water</strong>shed processes, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased sensitivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the burned site to vegetative loss, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

erosi<strong>on</strong>, reduced l<strong>and</strong> stability, <strong>and</strong> adverse aquatic<br />

ecosystem impacts (Agee 1993, Pyne <strong>and</strong> others 1996,<br />

DeBano <strong>and</strong> others 1998).<br />

Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>shed resp<strong>on</strong>se al<strong>on</strong>g the spectrum<br />

between prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> or with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

an <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual <str<strong>on</strong>g>fire</str<strong>on</strong>g> depend largely up<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

<strong>and</strong> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrologic events follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Although significant soil physical, chemical, <strong>and</strong> biological<br />

impacts would occur with a st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, there would be no immediate <strong>water</strong>shed<br />

resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrologic event. As<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.9, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed<br />

16 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


esp<strong>on</strong>se is keyed to the size (return period) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hydrologic event or storm <strong>and</strong> the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g relative to<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. In additi<strong>on</strong> to climate <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s with <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity,<br />

topography also has a major <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> <strong>water</strong>shed<br />

resp<strong>on</strong>se. Forested <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>ous<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the West or East resp<strong>on</strong>d to storm events<br />

very differently than those <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coastal Pla<str<strong>on</strong>g>in</str<strong>on</strong>g> or<br />

Great Lakes where relief is at a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum.<br />

Fire-Related Disturbances ________<br />

Fire<br />

As discussed above, the primary disturbance to soil<br />

<strong>and</strong> <strong>water</strong> resources is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity.<br />

Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> al<strong>on</strong>e is sufficient to produce<br />

significant soil <strong>and</strong> <strong>water</strong>shed resp<strong>on</strong>ses (Anders<strong>on</strong><br />

<strong>and</strong> others 1976, Swank <strong>and</strong> Crossley 1988, Neary <strong>and</strong><br />

Hornbeck 1994). In areal extent <strong>and</strong> severity level, the<br />

disturbance produced by <str<strong>on</strong>g>fire</str<strong>on</strong>g> can be small or large, <strong>and</strong><br />

uniform or a chaotic matrix. Bey<strong>on</strong>d the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial vegetati<strong>on</strong><br />

<strong>and</strong> <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, suppressi<strong>on</strong> activities can add further<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance to both <strong>soils</strong> <strong>and</strong> <strong>water</strong>. These<br />

disturbances need to be evaluated al<strong>on</strong>g with those<br />

produced by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Fire Suppressi<strong>on</strong><br />

Fire managers need to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <strong>and</strong> <strong>water</strong><br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> suppressi<strong>on</strong> activities. The major soil <strong>and</strong><br />

<strong>water</strong> disturbances associated with <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong><br />

are <str<strong>on</strong>g>fire</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, roads, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants. Fire c<strong>on</strong>trol<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>es created by h<strong>and</strong> or large equipment disturb the<br />

soil, alter <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, become sources <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment,<br />

<strong>and</strong> can alter run<str<strong>on</strong>g>of</str<strong>on</strong>g>f patterns (see chapter 2). Suppressi<strong>on</strong><br />

activities <str<strong>on</strong>g>in</str<strong>on</strong>g> boreal forests have been known to<br />

lead to decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g permafrost depth result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

downcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slope failures (Viereck 1982). Roads<br />

are already major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>water</strong>sheds<br />

(Brown <strong>and</strong> B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley 1994; Megahan 1984, Swift<br />

1984). Temporary roads built dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g suppressi<strong>on</strong> operati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease the size <str<strong>on</strong>g>of</str<strong>on</strong>g> road networks <strong>and</strong> erosi<strong>on</strong><br />

hazard areas with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>sheds. In additi<strong>on</strong>, traffic<br />

from heavy equipment <strong>and</strong> trucks can deteriorate the<br />

surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g roads, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g them more pr<strong>on</strong>e to<br />

erosi<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall. Although <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants are<br />

basically fertilizers, they can produce serious shortterm<br />

<strong>water</strong> quality problems if dropped <str<strong>on</strong>g>in</str<strong>on</strong>g>to perennial<br />

streams.<br />

Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Effects<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <strong>and</strong> <strong>water</strong> resources can be<br />

direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct. They occur at many scales (microsite<br />

to ecosystem level), <str<strong>on</strong>g>in</str<strong>on</strong>g> different patterns, <strong>and</strong> over<br />

variable periods. In most <strong>water</strong>sheds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> dependent<br />

or dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> impacts to <strong>soils</strong> <strong>and</strong><br />

<strong>water</strong> are significant comp<strong>on</strong>ents <strong>and</strong> variable backgrounds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative <strong>water</strong>shed <str<strong>on</strong>g>effects</str<strong>on</strong>g>. An underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>effects</str<strong>on</strong>g> is important for l<strong>and</strong> managers<br />

who deal with wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> use prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> to<br />

accomplish ecosystem management objectives.<br />

This Book’s Objective ____________<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume <str<strong>on</strong>g>in</str<strong>on</strong>g> the Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow series is<br />

to provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. It is meant to be an <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

guide to assist l<strong>and</strong> managers with <str<strong>on</strong>g>fire</str<strong>on</strong>g> management<br />

plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> public educati<strong>on</strong>, <strong>and</strong> a reference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> processes, pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent publicati<strong>on</strong>s, <strong>and</strong> other<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> sources. Although it c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s far more<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>and</strong> detailed site-specific <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

<strong>soils</strong> <strong>and</strong> <strong>water</strong> than the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al 1979 Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow volumes,<br />

it is not designed to be a comprehensive research-level<br />

treatise or compendium. That challenge<br />

is left to several textbooks (Ch<strong>and</strong>ler <strong>and</strong> others 1991,<br />

Agee 1993, Pyne <strong>and</strong> others 1996, DeBano <strong>and</strong> others<br />

1998). The challenge <str<strong>on</strong>g>in</str<strong>on</strong>g> develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g this volume was <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful summary for North American<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> resources despite enormous<br />

variati<strong>on</strong>s produced by climate, topography, fuel<br />

load<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 17


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

18 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Part A<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fire <strong>on</strong> Soil<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 19


20 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Part A—The Soil<br />

Resource: Its Importance,<br />

Characteristics, <strong>and</strong> General<br />

Resp<strong>on</strong>ses to Fire<br />

Introducti<strong>on</strong> ____________________<br />

Soil is a heterogeneous mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles<br />

<strong>and</strong> organic matter that is found <str<strong>on</strong>g>in</str<strong>on</strong>g> the uppermost<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> Earth’s crust. The soil is formed as a product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ual <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s am<strong>on</strong>g the biotic (faunal<br />

<strong>and</strong> floral), climatic (atmospheric <strong>and</strong> hydrologic),<br />

topographic, <strong>and</strong> geologic features <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment<br />

over l<strong>on</strong>g periods (Jenny 1941, S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munns<br />

1996). Soils are important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability because they supply air <strong>and</strong> <strong>water</strong>,<br />

nutrients, <strong>and</strong> mechanical support for the sustenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plants. Soils also absorb <strong>water</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>.<br />

By do<str<strong>on</strong>g>in</str<strong>on</strong>g>g so, they provide storage for <strong>water</strong> as well as<br />

act<str<strong>on</strong>g>in</str<strong>on</strong>g>g as a c<strong>on</strong>duit that delivers <strong>water</strong> slowly from<br />

upstream slopes to channels where it c<strong>on</strong>tributes to<br />

streamflow. There is also an active <strong>and</strong> <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g exchange<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gases between the soil <strong>and</strong> the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

atmosphere. When the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

is exceeded, organic <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic soil materials are<br />

eroded <strong>and</strong> become major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment, nutrients,<br />

<strong>and</strong> pollutants <str<strong>on</strong>g>in</str<strong>on</strong>g> streams. These <strong>water</strong> <strong>and</strong><br />

erosi<strong>on</strong>al processes are described <str<strong>on</strong>g>in</str<strong>on</strong>g> part B <strong>and</strong> chapters<br />

5, 6, <strong>and</strong> 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong>.<br />

To fully evaluate the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> a soil, it is first<br />

necessary to quantitatively describe the soil <strong>and</strong> then<br />

to discuss the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through the soil<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s or prescribed burns). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the process <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, significant changes can<br />

occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the physical, chemical, <strong>and</strong> biological properties<br />

that are relevant to the future productivity <strong>and</strong><br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> sites support<str<strong>on</strong>g>in</str<strong>on</strong>g>g wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

This <str<strong>on</strong>g>in</str<strong>on</strong>g>troductory part A presents a general<br />

discussi<strong>on</strong> <strong>on</strong> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> <strong>and</strong> the heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <strong>and</strong> provides<br />

some general <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the physical, chemical,<br />

<strong>and</strong> biological resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This part is also<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tended as an extended executive summary for those<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terested <str<strong>on</strong>g>in</str<strong>on</strong>g> the general c<strong>on</strong>cepts c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong>. Readers who are <str<strong>on</strong>g>in</str<strong>on</strong>g>terested <str<strong>on</strong>g>in</str<strong>on</strong>g> more<br />

detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> are directed<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>depth discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual physical,<br />

chemical, <strong>and</strong> biological properties <strong>and</strong> processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil that are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> (see chapters 2, 3, <strong>and</strong><br />

4, respectively).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 21


The General Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil ________<br />

The features <strong>and</strong> the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> are usually<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>spicuous to the average pers<strong>on</strong>. Soil is simply the<br />

substrate that is walked <strong>on</strong>, that is used to grow trees<br />

or a garden, that creates a source <str<strong>on</strong>g>of</str<strong>on</strong>g> dust when the<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>d blows, that provides material that washes down<br />

the hillslope dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, or that is bared when the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>fighter builds a <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. However, closer exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

shows that soil is a complex matrix made up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles, organic matter,<br />

air, <strong>and</strong> <strong>water</strong>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>organic c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong><br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a wide array <str<strong>on</strong>g>of</str<strong>on</strong>g> primary (for example, quartz)<br />

<strong>and</strong> sec<strong>on</strong>dary (for example, clays) m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals.<br />

Organic matter is the organic porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <strong>and</strong><br />

is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dead biomass that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutrients. The liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomass <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> plant roots, microorganisms, <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates,<br />

<strong>and</strong> small <strong>and</strong> large vertebrate fauna that<br />

burrow <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. The n<strong>on</strong>liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter is<br />

made up primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> dead bark, large woody debris<br />

(dead trees, limbs, <strong>and</strong> so forth), litter, duff, <strong>and</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely<br />

decomposed humus materials. Organic matter is broken<br />

down <strong>and</strong> decomposed by the acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> animals<br />

<strong>and</strong> microorganisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. An important<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter is humus, the colloidal<br />

soil organic matter (particles smaller than 3.9 to 20 x<br />

10 -6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches [0.001 to 0.005 mm] <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter) that<br />

decomposes slowly. Humus provides negative adsorpti<strong>on</strong><br />

sites similar to clay m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <strong>and</strong> also acts as an<br />

organic glue that helps to hold m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles<br />

together to form aggregates. This c<strong>on</strong>tributes to soil<br />

structure that creates pore space soil <strong>and</strong> provides<br />

passageways for the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> air <strong>and</strong> <strong>water</strong>. The<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter also plays a central<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> the cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients essential<br />

for plant growth. Organic matter also provides a<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy necessary to support microbial populati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil.<br />

Water <strong>and</strong> air occupy the empty spaces (pore space)<br />

created by the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral-organic matter matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil. A delicate balance exists between the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pore space filled with <strong>water</strong> <strong>and</strong> that filled with air,<br />

which is essential for root respirati<strong>on</strong> by liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants.<br />

Too much soil <strong>water</strong> can limit plant growth if the pore<br />

space is saturated with <strong>water</strong> (for example, <strong>water</strong>logged,<br />

anaerobic <strong>soils</strong>). In c<strong>on</strong>trast, when too little<br />

<strong>water</strong> is available, plant growth can be limited by the<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> necessary for transpirati<strong>on</strong> <strong>and</strong> other<br />

physiological functi<strong>on</strong>s necessary for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants. Soil <strong>water</strong> also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s dissolved i<strong>on</strong>s (cati<strong>on</strong>s<br />

<strong>and</strong> ani<strong>on</strong>s), <strong>and</strong> this is called the “soil soluti<strong>on</strong>.” Many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil soluti<strong>on</strong> are absorbed by plant<br />

roots <strong>and</strong> used for plant growth.<br />

A comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic materials described<br />

above, al<strong>on</strong>g with variable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely divided<br />

<strong>and</strong> partially decomposed organic matter (humus),<br />

provides structure to the soil. Soil structure is the<br />

arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to aggregates hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive patterns (for example,<br />

columnar, prismatic, blocky). These aggregates<br />

are stabilized by organic matter that provides an<br />

overall porous structure to the soil.<br />

Soil Properties—Characteristics,<br />

Reacti<strong>on</strong>s, <strong>and</strong> Processes ________<br />

The reader needs to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> some general def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s<br />

<strong>and</strong> term<str<strong>on</strong>g>in</str<strong>on</strong>g>ology that are used <str<strong>on</strong>g>in</str<strong>on</strong>g> reference to<br />

soil properties when read<str<strong>on</strong>g>in</str<strong>on</strong>g>g chapters 2, 3, <strong>and</strong> 4. The<br />

term “soil properties” is collectively used to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the<br />

characteristics, reacti<strong>on</strong>s, <strong>and</strong> processes that occur <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>soils</strong>. Traditi<strong>on</strong>ally, <strong>soils</strong> have been described <str<strong>on</strong>g>in</str<strong>on</strong>g> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physical, chemical, <strong>and</strong> biological properties. This<br />

classificati<strong>on</strong> is arbitrary, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> many cases the three<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> soil properties are not mutually exclusive<br />

but are so closely <str<strong>on</strong>g>in</str<strong>on</strong>g>terc<strong>on</strong>nected that it is impossible<br />

to clearly place a soil property <str<strong>on</strong>g>in</str<strong>on</strong>g> any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the three<br />

categories. This <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ship is particularly apparent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the discussi<strong>on</strong>s <strong>on</strong> organic matter <strong>and</strong> the<br />

different processes resp<strong>on</strong>sible for nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>in</str<strong>on</strong>g>terdependency, we attempted to<br />

discuss the physical, chemical, <strong>and</strong> biological dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> organic matter separately,<br />

<strong>and</strong> then to cross-reference these discussi<strong>on</strong>s<br />

am<strong>on</strong>g the three general categories.<br />

Soil Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile _____________________<br />

Variable amounts <strong>and</strong> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals,<br />

organic matter, air, <strong>and</strong> <strong>water</strong> produce a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physical, chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

soil. However, these properties are not r<strong>and</strong>omly<br />

distributed but occur <str<strong>on</strong>g>in</str<strong>on</strong>g> an orderly arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

horiz<strong>on</strong>tal layers called soil horiz<strong>on</strong>s. The arrangement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these layers extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the surface litter<br />

downward to bedrock is referred to as the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

A schematic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure A.1, <strong>and</strong> a real<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>in</str<strong>on</strong>g> figure A.2. Some pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles have dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

horiz<strong>on</strong>s as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure A.2, but some <strong>soils</strong> have<br />

horiz<strong>on</strong>s that are not so dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct. The uppermost<br />

layers c<strong>on</strong>sist ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> various<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>. The surface litter layer (Llayer)<br />

is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> undecomposed organic material<br />

that reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al plant material<br />

(leaves, stems, twigs, bark, <strong>and</strong> so forth). Immediately<br />

below the undecomposed layer is another<br />

organic layer that is <str<strong>on</strong>g>in</str<strong>on</strong>g> various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>.<br />

It is called the fermentati<strong>on</strong> layer (F-layer). In<br />

the F-layer, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al plant structure may<br />

still be discernable depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>.<br />

The lowermost surface organic matter<br />

layer is the humus layer (H-layer) that is completely<br />

22 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure A.1—A schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> a well-developed (mature)<br />

soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a complete suite <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic soil horiz<strong>on</strong>s. (Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

USDA Forest Service, Nati<strong>on</strong>al Advanced Fire <strong>and</strong><br />

Resource Institute, Tucs<strong>on</strong>, AZ).<br />

decomposed organic matter. The H-layer is an important<br />

site for nutrient availability <strong>and</strong> storage. The<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely decomposed organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> the H-layer is<br />

also the source <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregat<str<strong>on</strong>g>in</str<strong>on</strong>g>g substances that comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

with the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic horiz<strong>on</strong>s to produce soil structure. The<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al plant structure is no l<strong>on</strong>ger identifiable <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the H-layer. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed F-<strong>and</strong> H-layer is comm<strong>on</strong>ly<br />

referred to as the duff.<br />

More recent designati<strong>on</strong>s have been developed for<br />

the L-, F-, <strong>and</strong> H-layers described above. Current<br />

tax<strong>on</strong>omic term<str<strong>on</strong>g>in</str<strong>on</strong>g>ology refers to the organic horiz<strong>on</strong> as<br />

the O horiz<strong>on</strong>. The L-layer is referred to as the O i or O 1<br />

horiz<strong>on</strong>. The F-layer is designated as the O e, or part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the O 2 horiz<strong>on</strong> <strong>and</strong> the H-layer is denser than the L<strong>and</strong><br />

F-layers <strong>and</strong> is designated as the O a or O 2 horiz<strong>on</strong>.<br />

The m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil horiz<strong>on</strong>s beg<str<strong>on</strong>g>in</str<strong>on</strong>g> with the uppermost<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the A-horiz<strong>on</strong> <strong>and</strong> extend downward to bedrock.<br />

Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> the age <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, there can be several <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

horiz<strong>on</strong>s (for example, E-, B-, <strong>and</strong> C-horiz<strong>on</strong>). The Ahoriz<strong>on</strong><br />

is the top m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral layer, <strong>and</strong> the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely<br />

decomposed organic matter (humus). The m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral Ehoriz<strong>on</strong><br />

is located immediately below the A-horiz<strong>on</strong>. It<br />

is the site where substantial amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate, clay,<br />

ir<strong>on</strong>, alum<str<strong>on</strong>g>in</str<strong>on</strong>g>um, carb<strong>on</strong>ate, gypsum, or silic<strong>on</strong> are lost<br />

by weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g that occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

development. Materials leached downward from the<br />

Figure A.2—Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> a Pom<strong>on</strong>a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e s<strong>and</strong> (Ultic<br />

Haplaquod, s<strong>and</strong>y, siliceous, hyperthermic family)<br />

from a slash p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us elliottii) st<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the flatwoods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> northern Florida. (Photo by Daniel Neary).<br />

E-horiz<strong>on</strong> accumulate ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the B-horiz<strong>on</strong>. In<br />

well-developed (mature) soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al rock<br />

structure can no l<strong>on</strong>ger be recognized <str<strong>on</strong>g>in</str<strong>on</strong>g> the B-horiz<strong>on</strong>.<br />

The C-horiz<strong>on</strong> is unc<strong>on</strong>solidated parent rock material<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g above the R-horiz<strong>on</strong> that is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> hard<br />

c<strong>on</strong>solidated bedrock.<br />

Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Matter _____<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> cannot be fully evaluated<br />

unless the role <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> the functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is understood.<br />

Organic matter is the most important soil c<strong>on</strong>stituent<br />

that is found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. Although it is c<strong>on</strong>centrated <strong>on</strong><br />

the soil surface where it makes up most <str<strong>on</strong>g>of</str<strong>on</strong>g> the L-, F-,<br />

<strong>and</strong> H-layers, it also plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 23


properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil horiz<strong>on</strong>s.<br />

Ecologically, organic matter plays three major roles:<br />

• Organic matter enhances the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong>.<br />

The most important physical functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter is its role <str<strong>on</strong>g>in</str<strong>on</strong>g> creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil aggregates. A porous well-structured<br />

soil is essential for the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, air,<br />

<strong>and</strong> nutrients through <strong>soils</strong> <strong>and</strong> as a result<br />

organic matter c<strong>on</strong>tributes directly to the<br />

productivity <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

• Chemically, organic matter ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong><br />

regulates the biogeochemical cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients<br />

by provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g an active medium for susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

numerous chemical <strong>and</strong> biological<br />

transformati<strong>on</strong>s. As such, it plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Its specific<br />

roles <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>clude: provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a storage reservoir for all plant nutrients,<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a balanced supply <str<strong>on</strong>g>of</str<strong>on</strong>g> available<br />

nutrients, creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a large cati<strong>on</strong> exchange<br />

capacity for stor<str<strong>on</strong>g>in</str<strong>on</strong>g>g available nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>,<br />

<strong>and</strong> functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g as a chelat<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent for essential<br />

plant micr<strong>on</strong>utrients (for example, ir<strong>on</strong>).<br />

• Soil provides a habitat for plant <strong>and</strong> animal<br />

organisms that range <str<strong>on</strong>g>in</str<strong>on</strong>g> size from bacteria <strong>and</strong><br />

viruses to small mammals. The microbiological<br />

populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil are usually <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>spicuous<br />

to most observers although the soil<br />

can be teem<str<strong>on</strong>g>in</str<strong>on</strong>g>g with hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> each h<strong>and</strong>ful <str<strong>on</strong>g>of</str<strong>on</strong>g> forest soil.<br />

Their activity <strong>and</strong> diversity far exceeds that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the other biological comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

(for example, vegetati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, wildlife,<br />

<strong>and</strong> so forth). Soil organic matter is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particular importance to soil microorganisms<br />

because it provides the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

for susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g soil microorganisms. Soil microorganisms<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

processes resp<strong>on</strong>sible for the cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients such as decompositi<strong>on</strong>,<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>, <strong>and</strong> nitrogen (N) fixati<strong>on</strong>.<br />

Fire Effects—General C<strong>on</strong>cepts <strong>and</strong><br />

Relati<strong>on</strong>ships___________________<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil properties must be evaluated<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex organic <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile described above.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

depends largely up<strong>on</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, combusti<strong>on</strong><br />

<strong>and</strong> heat transfer, magnitude <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil property to the soil<br />

surface, <strong>and</strong> the threshold temperatures at which the<br />

different soil properties change.<br />

Severity <strong>and</strong> Fire Intensity<br />

When discuss<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil resource<br />

it is important to differentiate between <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity because frequently they are not the<br />

same (Hartford <strong>and</strong> Fr<strong>and</strong>sen 1992). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is a<br />

term that is used to describe the rate at which a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

produces thermal energy (Brown <strong>and</strong> Davis 1973, Ch<strong>and</strong>ler<br />

<strong>and</strong> others 1991). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is most frequently<br />

quantified <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity because this<br />

measure is related to flame length, which is easily<br />

measured (DeBano <strong>and</strong> others 1998). Fire severity, <strong>on</strong><br />

the other h<strong>and</strong>, is a more qualitative term that is used<br />

to describe ecosystem resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> is particularly<br />

useful for describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil<br />

<strong>and</strong> <strong>water</strong> system (Simard 1991). Severity reflects the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (heat) that is released by a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> the<br />

degree that it affects the soil <strong>and</strong> <strong>water</strong> resources. It is<br />

classified accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> criteria <strong>on</strong> the site burned<br />

<strong>and</strong> has been classified <str<strong>on</strong>g>in</str<strong>on</strong>g>to low, moderate, <strong>and</strong> high <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity. Detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the appearances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these three severity levels for timber, shrubl<strong>and</strong>s, <strong>and</strong><br />

grassl<strong>and</strong>s are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> table 1.4, Parts A,B,C<br />

respectively. (Note: this table <strong>and</strong> the parts can be<br />

found <strong>on</strong> pages 11 <strong>and</strong> 12 <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 1).<br />

The level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity depends up<strong>on</strong>:<br />

• Length <str<strong>on</strong>g>of</str<strong>on</strong>g> time fuel accumulates between <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

<strong>and</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> these accumulated fuels<br />

that are combusted dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Wells <strong>and</strong><br />

others 1979).<br />

• Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuels (size, flammability,<br />

moisture c<strong>on</strong>tent, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent, <strong>and</strong> so forth)<br />

that are available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

• The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these fuels.<br />

• Heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels <strong>and</strong> surface organic layers.<br />

High <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can produce high severity changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil, but this is not always the case. For example,<br />

low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> roots or duff can cause<br />

extensive soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> produce large changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

nearby m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. In c<strong>on</strong>trast, high severity crown<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s may not cause substantial heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the soil<br />

surface because they sweep so rapidly over a l<strong>and</strong>scape<br />

that not much <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat generated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

is transferred downward to the soil surface.<br />

Combusti<strong>on</strong><br />

Energy generated as heat dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aboveground <strong>and</strong> surface fuels provides the driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

force that causes a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

properties dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (DeBano <strong>and</strong> others 1998).<br />

Combusti<strong>on</strong> is the rapid physical-chemical destructi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter that releases the large amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy stored <str<strong>on</strong>g>in</str<strong>on</strong>g> fuels as heat. These fuels c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

24 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


dead <strong>and</strong> live st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g biomass, fallen logs, surface<br />

litter (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g bark, leaves, stems, <strong>and</strong> twigs), humus,<br />

<strong>and</strong> sometimes roots. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong><br />

process heat <strong>and</strong> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous <strong>and</strong> particulate<br />

byproducts are released. Flames are the most visual<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> process.<br />

Three comp<strong>on</strong>ents are necessary <str<strong>on</strong>g>in</str<strong>on</strong>g> order for a <str<strong>on</strong>g>fire</str<strong>on</strong>g> to<br />

ignite <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>itiate the combusti<strong>on</strong> process (Countryman<br />

1975). First, burnable fuel must be available.<br />

Sec<strong>on</strong>d, sufficient heat must be applied to the fuel to<br />

raise its temperature to the igniti<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. And last,<br />

sufficient oxygen (O 2) is needed to be present to keep<br />

the combusti<strong>on</strong> process go<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the heat<br />

supply necessary for igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned fuel. These<br />

three comp<strong>on</strong>ents are familiar to <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers as the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> triangle.<br />

A comm<strong>on</strong> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> physical processes occurs <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

all these fuels before the energy c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> them is<br />

released <strong>and</strong> transferred upward, laterally, or downward<br />

where it heats the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil <strong>and</strong> other<br />

ecosystem comp<strong>on</strong>ents. There are five physical phases<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, namely: preigniti<strong>on</strong>, igniti<strong>on</strong>,<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g, smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g (DeBano <strong>and</strong><br />

others 1998). These different phases have been described<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> more detail by several authors (Ryan <strong>and</strong><br />

McMah<strong>on</strong> 1976, S<strong>and</strong>berg <strong>and</strong> others 1979, Pyne <strong>and</strong><br />

others 1996). Preigniti<strong>on</strong> is the first phase when the<br />

fuel is heated sufficiently to cause dehydrati<strong>on</strong> <strong>and</strong><br />

start the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuels<br />

(pyrolysis). After igniti<strong>on</strong>, the three phases <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong><br />

that occur are flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g, smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

combusti<strong>on</strong>. When active flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ish,<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, <strong>and</strong> combusti<strong>on</strong> dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes to<br />

the glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g phase, which f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally leads to ext<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Heat Transfer<br />

Heat produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aboveground fuels (for example, dead <strong>and</strong> live vegetati<strong>on</strong>,<br />

litter, duff) is transferred to the soil surface<br />

<strong>and</strong> downward through the soil by several heat transfer<br />

processes (radiati<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, c<strong>on</strong>ducti<strong>on</strong>, vaporizati<strong>on</strong>,<br />

<strong>and</strong> c<strong>on</strong>densati<strong>on</strong>). Radiati<strong>on</strong> is the transfer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat from <strong>on</strong>e body to another, not <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact<br />

with it, by electromagnetic wave moti<strong>on</strong>; it <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

the molecular activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g substance <strong>and</strong><br />

causes the temperature to rise (Countryman 1976b).<br />

C<strong>on</strong>ducti<strong>on</strong> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat by molecular activity<br />

from <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance to another, or between<br />

substances <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact, without appreciable<br />

movement or displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the substance as a<br />

whole (Countryman 1976a). C<strong>on</strong>vecti<strong>on</strong> is a process<br />

whereby heat is transferred from <strong>on</strong>e po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to another<br />

by the mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid with another<br />

fluid (Ch<strong>and</strong>ler <strong>and</strong> others 1991). Vaporizati<strong>on</strong> <strong>and</strong><br />

c<strong>on</strong>densati<strong>on</strong> are important <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong><br />

serve as a coupled reacti<strong>on</strong> facilitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g more rapid<br />

transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through <strong>soils</strong>. Vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

occurs when it is heated to a temperature at which it<br />

changes from a liquid to a gas. C<strong>on</strong>densati<strong>on</strong> occurs<br />

when <strong>water</strong> changes from a gas to a liquid with the<br />

simultaneous release <str<strong>on</strong>g>of</str<strong>on</strong>g> heat. The coupled reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong> provides a mechanism<br />

for the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> both <strong>water</strong> <strong>and</strong> organic<br />

materials through the soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (DeBano <strong>and</strong><br />

others 1998).<br />

The mechanisms for the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through<br />

different <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> comp<strong>on</strong>ents vary widely (table<br />

A.1). Although heat is transferred <str<strong>on</strong>g>in</str<strong>on</strong>g> all directi<strong>on</strong>s,<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat generated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> are<br />

lost <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere (al<strong>on</strong>g with smoke, gases, <strong>and</strong><br />

particulate matter generated by <str<strong>on</strong>g>fire</str<strong>on</strong>g>) by radiati<strong>on</strong>,<br />

c<strong>on</strong>vecti<strong>on</strong>, <strong>and</strong> mass transfer (DeBano <strong>and</strong> others<br />

1998). It has been estimated that <strong>on</strong>ly about 10 to 15<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat energy released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels is absorbed <strong>and</strong> transmitted<br />

directly downward to the litter <strong>and</strong> duff, or m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil if surface organic layers are absent. This occurs<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by radiati<strong>on</strong> (DeBano 1974, Rais<strong>on</strong> <strong>and</strong> others<br />

1986). With<str<strong>on</strong>g>in</str<strong>on</strong>g> the fuels themselves most <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat<br />

transfer is by radiati<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, <strong>and</strong> mass transfer.<br />

Meanwhile <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil, c<strong>on</strong>vecti<strong>on</strong> <strong>and</strong> vaporizati<strong>on</strong><br />

<strong>and</strong> c<strong>on</strong>densati<strong>on</strong> are the most important mechanisms<br />

for heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> a dry soil. In a wet or moist<br />

soil, c<strong>on</strong>ducti<strong>on</strong> can c<strong>on</strong>tribute significantly to heat<br />

transfer. The heat transfer processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil are described <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

publicati<strong>on</strong>. The transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

is important because it causes soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> produces<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil physical, chemical, <strong>and</strong><br />

biological properties described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 2, 3, <strong>and</strong> 4,<br />

respectively.<br />

Depth <strong>and</strong> Magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

As heat is transferred downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong> through<br />

the soil, it raises the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. The<br />

greatest <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> temperature occurs at, or near,<br />

the soil surface. With<str<strong>on</strong>g>in</str<strong>on</strong>g> short distances downward <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil, however, the temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases quickly<br />

dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ish so that with<str<strong>on</strong>g>in</str<strong>on</strong>g> 2.0 to 3.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5 to 10 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil surface the temperatures are scarcely above<br />

ambient temperature. A diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

with depth is called a temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>and</strong> is useful<br />

for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> change that occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases depends <strong>on</strong> the<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> as described above. Residence time<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) is a particularly<br />

important feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the depth <strong>and</strong><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong><br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles that can develop dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g grassl<strong>and</strong>,<br />

shrubl<strong>and</strong>, <strong>and</strong> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 25


Table A.1—Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> different heat transfer mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g> the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat with<str<strong>on</strong>g>in</str<strong>on</strong>g> different<br />

ecosystem comp<strong>on</strong>ents.<br />

Heat transfer mechanism Ecosystem comp<strong>on</strong>ent Importance to heat transfer<br />

Radiati<strong>on</strong> Air Medium<br />

Fuel High<br />

Soil Low<br />

C<strong>on</strong>ducti<strong>on</strong> Air Medium<br />

Fuel Low<br />

Soil Low (dry), high (wet)<br />

C<strong>on</strong>vecti<strong>on</strong> Air High<br />

Fuel Medium<br />

Soil Low<br />

Mass transfer Air High<br />

Fuel Low<br />

Soil Low<br />

Vaporizati<strong>on</strong>/c<strong>on</strong>densati<strong>on</strong> Air Low<br />

Fuel Medium<br />

Soil High<br />

Temperature Thresholds <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil<br />

Properties<br />

An important feature when assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil properties is the temperature at which<br />

nutrients are volatilized or that irreversible damage<br />

occurs to a particular soil property. This temperature<br />

is called the threshold temperature (DeBano <strong>and</strong> others<br />

1998). Temperature thresholds have been identified<br />

for numerous physical, chemical, <strong>and</strong> biological<br />

properties. The ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures over which<br />

some comm<strong>on</strong> soil properties change <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.6. These temperature<br />

thresholds have been classified <str<strong>on</strong>g>in</str<strong>on</strong>g>to three<br />

general classes, namely:<br />

• Relatively <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive soil properties that do<br />

not change until temperatures have reached<br />

over about 842 °F (450 °C). This class <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes<br />

clays, cati<strong>on</strong>s (calcium, magnesium, potassium)<br />

<strong>and</strong> other m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as manganese.<br />

• Moderately sensitive soil properties that are<br />

changed at temperatures between 212 <strong>and</strong><br />

752 °F (100 <strong>and</strong> 400 °C). Materials bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to this class <str<strong>on</strong>g>in</str<strong>on</strong>g>clude sulfur, organic matter, <strong>and</strong><br />

soil properties dependent up<strong>on</strong> organic matter.<br />

• Sensitive soil properties are those that are<br />

changed at temperatures less than 212 °F<br />

(100 °C). Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitive materials are<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms (for example, bacteria,<br />

fungi, mychorrizae), plant roots, <strong>and</strong> seeds.<br />

This class also <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes many <str<strong>on</strong>g>of</str<strong>on</strong>g> the biologically<br />

mediated nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>soils</strong>.<br />

Threshold values for specific physical, chemical, <strong>and</strong><br />

biological soil properties are described <str<strong>on</strong>g>in</str<strong>on</strong>g> greater detail<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 2, 3, <strong>and</strong> 4, respectively.<br />

Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Properties<br />

The natural differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

horiz<strong>on</strong>s creates a stratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical, chemical,<br />

<strong>and</strong> biological soil properties discussed above.<br />

Underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g this stratified arrangement is necessary<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> order to accurately assess the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the different soil properties. The soil<br />

properties near or <strong>on</strong> the soil surface are the most<br />

directly exposed to heat that is radiated downward<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g generally decreases rapidly<br />

with soil depth <str<strong>on</strong>g>in</str<strong>on</strong>g> a dry soil because dry soil is a poor<br />

c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat.<br />

The organic horiz<strong>on</strong>s that make up the forest floor<br />

are particularly important when discuss<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>,<br />

because they are directly subjected to heat<br />

produced by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> surface fuel, <strong>and</strong> they c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter found <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles (DeBano <strong>and</strong> others 1998). Although some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual nutrients c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the organic<br />

matter may not be volatilized, others such as N are<br />

vaporized <str<strong>on</strong>g>in</str<strong>on</strong>g> direct proporti<strong>on</strong> to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

material lost. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> produced<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper organic horiz<strong>on</strong>s,<br />

or <str<strong>on</strong>g>in</str<strong>on</strong>g> the top part <str<strong>on</strong>g>of</str<strong>on</strong>g> the A-horiz<strong>on</strong>. Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the B-horiz<strong>on</strong> <strong>and</strong> deeper <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile occurs<br />

<strong>on</strong>ly when roots are ignited <strong>and</strong> create localized<br />

subsurface heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

26 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g Fire Effects <strong>on</strong><br />

Soils __________________________<br />

The above general <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <strong>soils</strong> al<strong>on</strong>g with<br />

the detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> given <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 2, 3, <strong>and</strong> 4<br />

<strong>on</strong> physical, chemical, <strong>and</strong> biological soil properties,<br />

respectively, can be used to assess <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong>.<br />

This assessment requires be<str<strong>on</strong>g>in</str<strong>on</strong>g>g able to quantify the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> associated soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil properties<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes three ma<str<strong>on</strong>g>in</str<strong>on</strong>g> steps:<br />

• First, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy radiated downward<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels must be estimated.<br />

This energy is the driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g force resp<strong>on</strong>sible<br />

for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil properties.<br />

In general, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

soil properties is largely dependent<br />

up<strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy radiated <strong>on</strong>to the<br />

soil surface, <strong>and</strong> subsequently transferred<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil. This radiated heat <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the<br />

temperature <strong>and</strong> causes changes <str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

matter <strong>and</strong> other soil properties. Therefore,<br />

the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, litter,<br />

duff, <strong>and</strong> upper soil horiz<strong>on</strong>s can be used to<br />

estimate the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> surface heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

used to classify <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity as low, moderate,<br />

or high. The basic assumpti<strong>on</strong> used <str<strong>on</strong>g>in</str<strong>on</strong>g> this<br />

technique is that as the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat radiated<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, the severity <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

from low to moderate to high (<str<strong>on</strong>g>in</str<strong>on</strong>g> other<br />

words, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil<br />

property <str<strong>on</strong>g>in</str<strong>on</strong>g>creases). An earlier discussi<strong>on</strong> describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity provides the necessary<br />

framework for establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> different <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

• After the <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity has been established it<br />

can be used to estimate soil temperatures that<br />

develop when different <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are burned<br />

(for example, grassl<strong>and</strong>, shrubl<strong>and</strong>, forests).<br />

Representative soil temperatures for different<br />

severities <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g for different <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2.<br />

• F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, <strong>on</strong>ce the approximate soil temperatures<br />

have been established, the changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

specific soil properties can be estimated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

temperature threshold <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. The percentage<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> different nutrients can be used<br />

al<strong>on</strong>g with estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients<br />

affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> to estimate the total nutrient<br />

losses, or ga<str<strong>on</strong>g>in</str<strong>on</strong>g>s, which occurred <strong>on</strong> a specific<br />

site dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Specific <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the<br />

temperatures at which different physical,<br />

chemical, <strong>and</strong> biological soil properties changes<br />

are give <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 2, 3, <strong>and</strong> 4, respectively.<br />

Management Implicati<strong>on</strong>s ________<br />

The c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil is a key factor <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> the hydrologic<br />

functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds. Cumulative impacts that<br />

occur <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> can manifest themselves<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> significant changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical, chemical,<br />

or biological properties. These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude breakdown <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

soil structure, reduced moisture retenti<strong>on</strong> <strong>and</strong> capacity,<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellency, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient<br />

pools cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates, atmospheric losses <str<strong>on</strong>g>of</str<strong>on</strong>g> elements,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fsite erosi<strong>on</strong> losses, combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest<br />

floor, reducti<strong>on</strong> or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil organic matter, alterati<strong>on</strong>s<br />

or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial species <strong>and</strong> populati<strong>on</strong><br />

dynamics, reducti<strong>on</strong> or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, <strong>and</strong> partial<br />

elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (through decompositi<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> plant roots.<br />

Although the most serious <strong>and</strong> widespread impacts <strong>on</strong><br />

<strong>soils</strong> occur with st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s sometimes produce localized problems. Managers<br />

need to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts that <str<strong>on</strong>g>fire</str<strong>on</strong>g> can have<br />

<strong>on</strong> soil systems, <strong>and</strong> that these impacts can lead to<br />

undesired changes <str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity, susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability,<br />

biological diversity, <strong>and</strong> <strong>water</strong>shed hydrologic resp<strong>on</strong>se.<br />

L<strong>and</strong> managers need to be aware that some changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil systems after <str<strong>on</strong>g>fire</str<strong>on</strong>g> are quite obvious (for example,<br />

erosi<strong>on</strong>, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter), but others are<br />

subtle <strong>and</strong> can have equal c<strong>on</strong>sequences to the productivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>and</strong>scape. For example, carb<strong>on</strong> <strong>and</strong> N are<br />

the key nutrients affected by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The significance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these changes is directly tied to the productivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a given ecosystem. With a given change <str<strong>on</strong>g>in</str<strong>on</strong>g> N<br />

capital, the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a nutrient-rich soil system<br />

might not significantly change follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. A<br />

similar loss <str<strong>on</strong>g>in</str<strong>on</strong>g> N capital <str<strong>on</strong>g>in</str<strong>on</strong>g> a nutrient stressed system<br />

could result <str<strong>on</strong>g>in</str<strong>on</strong>g> a much greater change <str<strong>on</strong>g>in</str<strong>on</strong>g> productivity.<br />

Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> soil nutrient levels after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be fairly<br />

slow <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, particularly those with limited<br />

N; <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> semiarid regi<strong>on</strong>s such as the Southwestern<br />

United States <strong>and</strong> Northern Mexico nutrient fixati<strong>on</strong><br />

<strong>and</strong> turnover rates are slow.<br />

Summary ______________________<br />

This <str<strong>on</strong>g>in</str<strong>on</strong>g>troductory secti<strong>on</strong> to the chapters <str<strong>on</strong>g>in</str<strong>on</strong>g> part A<br />

has provided <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the general nature <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

systems, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the important soil properties, the<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, <strong>and</strong> important c<strong>on</strong>stituents<br />

such as organic matter. It also <str<strong>on</strong>g>in</str<strong>on</strong>g>troduces key c<strong>on</strong>cepts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer to <strong>soils</strong> <strong>and</strong> thresholds for important<br />

soil properties. The three chapters <str<strong>on</strong>g>in</str<strong>on</strong>g> part A address <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

greater detail <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual physical, chemical,<br />

<strong>and</strong> biological properties <strong>and</strong> processes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

systems (see chapters 2, 3, <strong>and</strong> 4, respectively).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 27


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

28 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Peter F. Ffolliott<br />

Chapter 2:<br />

Soil Physical Properties<br />

Introducti<strong>on</strong> ____________________<br />

Soil physical properties are those characteristics,<br />

processes, or reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil that are caused by<br />

physical forces that can be described by, or expressed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>, physical terms or equati<strong>on</strong>s (Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

America 2001). These physical properties (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

processes) <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

<strong>and</strong> how it <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with the other two comp<strong>on</strong>ents<br />

(chemical <strong>and</strong> biological). Plants depend <strong>on</strong> the physical<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> to provide the medium for<br />

growth <strong>and</strong> reproducti<strong>on</strong>. Fire can produce significant<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil that pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly affect the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants (Whelan 1995). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

soil physical properties depends <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>herent stability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil property affected <strong>and</strong> the temperatures<br />

to which a soil is heated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The<br />

physical mechanisms resp<strong>on</strong>sible for heat transfer<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>soils</strong> are also discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter al<strong>on</strong>g with<br />

the temperatures that develop dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g different severities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> several wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. The<br />

relati<strong>on</strong>ships between soil physical properties affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> erosi<strong>on</strong>al processes are also reviewed.<br />

Soil Physical Characteristics ______<br />

Important physical characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> soil that are<br />

affected by soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>clude: texture, clay c<strong>on</strong>tent,<br />

soil structure, bulk density, <strong>and</strong> porosity (amount <strong>and</strong><br />

size). The threshold temperatures for these soil physical<br />

characteristics are given <str<strong>on</strong>g>in</str<strong>on</strong>g> table 2.1. Physical<br />

properties such as wettability <strong>and</strong> structure are affected<br />

at relatively low temperatures, while quartz<br />

s<strong>and</strong> c<strong>on</strong>tent, which c<strong>on</strong>tributes to texture, is affected<br />

least <strong>and</strong> <strong>on</strong>ly at the most extreme soil temperatures.<br />

Soil Texture <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy<br />

Soil texture is based <strong>on</strong> the relative proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different-sized <str<strong>on</strong>g>in</str<strong>on</strong>g>organic c<strong>on</strong>stituents that are found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the 0.08 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (less than 2 mm) m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (DeBano <strong>and</strong> others 1998). Several<br />

soil textural classes have been specified accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

the relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>and</strong> (0.05 to 2 mm <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

diameter), silt (0.002 to 0.05 mm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter), <strong>and</strong> clay<br />

(less than 0.002 mm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter) particles <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil. Various proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<strong>and</strong>, silt, <strong>and</strong> clay<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 29


Table 2.1—Temperature thresholds for several physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> soil.<br />

Soil characteristic Threshold temperature Source<br />

°F °C<br />

Soil wettability 482 250 DeBano <strong>and</strong> Krammes 1966<br />

Soil structure 572 300 DeBano 1990<br />

Calcite formati<strong>on</strong> 572-932 300-500 Iglesias <strong>and</strong> others 1997<br />

Clay 860-1,796 460-980 DeBano 1990<br />

S<strong>and</strong> (quartz) 2,577 1,414 Lide 2001<br />

fracti<strong>on</strong>s are used as the basis for identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g 12<br />

textural classes (for example, s<strong>and</strong>, s<strong>and</strong>y loam, clay<br />

loam, silt loam). Clays are small-diameter silicate<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g complex molecular structures that<br />

c<strong>on</strong>tribute to both the physical <strong>and</strong> chemical properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a soil.<br />

The comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> soil texture (s<strong>and</strong>, silt, <strong>and</strong> clay)<br />

have high temperature thresholds <strong>and</strong> are not usually<br />

affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> unless they are subjected to high<br />

temperatures at the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface (A-horiz<strong>on</strong>).<br />

The most sensitive textural fracti<strong>on</strong> is clay, which<br />

beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g at soil temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> about 752 °F<br />

(400 °C) when clay hydrati<strong>on</strong> <strong>and</strong> clay lattice structure<br />

beg<str<strong>on</strong>g>in</str<strong>on</strong>g> to collapse. At temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,292 to 1,472 °F<br />

(700 to 800 °C), the complete destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal<br />

clay structure can occur. However, s<strong>and</strong> <strong>and</strong> silt are<br />

primarily quartz particles that have a melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2,577 °F (1,414 °C; Lide 2001). Only under extreme<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g do quartz materials at the soil surface become<br />

fused. When fusi<strong>on</strong> does occur, soil texture becomes<br />

more coarse <strong>and</strong> erodible. As a result, temperatures<br />

are rarely high enough to alter clays bey<strong>on</strong>d a couple<br />

centimeters below the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface. The effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> clays is further<br />

mitigated by the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clays dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

development <str<strong>on</strong>g>in</str<strong>on</strong>g> the B-horiz<strong>on</strong>s. These horiz<strong>on</strong>s are<br />

usually far removed from heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the soil surface<br />

<strong>and</strong> rarely <str<strong>on</strong>g>in</str<strong>on</strong>g>crease above ambient surface temperatures<br />

unless heated by smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g roots.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals other than<br />

clays has been studied to a limited extent. For example,<br />

a study <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g logs <strong>and</strong> slash piles <strong>on</strong><br />

soil <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that substantial changes can occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g severe heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

while burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> juniper (Juniperus spp.) <strong>and</strong> oak<br />

(Quercus spp.) woodl<strong>and</strong>s (Iglesias <strong>and</strong> others 1997).<br />

Although changes <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> the juniper<br />

st<strong>and</strong>s, they did not occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>soils</strong> under oak.<br />

Followup laboratory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments were d<strong>on</strong>e<br />

<strong>on</strong> calcite formati<strong>on</strong> <strong>and</strong> the alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vermiculite <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <strong>soils</strong> collected from the juniper <strong>and</strong> oak woodl<strong>and</strong><br />

sites. Temperatures required for calcite formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

oak <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the laboratory were found to be 932 °F<br />

(500 °C) compared to 572 °F (300 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> juniper <strong>soils</strong>.<br />

Soil Structure<br />

Soil structure has l<strong>on</strong>g been recognized as an important<br />

soil characteristic that can enhance productivity<br />

<strong>and</strong> <strong>water</strong> relati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> both agricultural <strong>and</strong> wildl<strong>and</strong><br />

<strong>soils</strong> (DeBano <strong>and</strong> others 1998). Improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil structure<br />

facilitates the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong> the percolati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> through the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, thereby reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> (see chapter 5). The <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter with m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles<br />

that create soil structure also <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the cati<strong>on</strong><br />

adsorpti<strong>on</strong> capacities <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil <strong>and</strong> nutrient-supply<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil (see chapter 3).<br />

Soil structure is the arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> primary soil<br />

particles <str<strong>on</strong>g>in</str<strong>on</strong>g>to aggregates hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive patterns<br />

(columnar, prismatic, blocky). Humus is an important<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> soil structure because it acts as a<br />

glue that helps hold m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles together to<br />

form aggregates <strong>and</strong> thus c<strong>on</strong>tributes to soil structure,<br />

particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

at the duff-upper A-horiz<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terface (see fig. A.1).<br />

However, further downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

B-horiz<strong>on</strong>), soil structure is more dependent <strong>on</strong> clay<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <strong>and</strong> the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cati<strong>on</strong>s found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil soluti<strong>on</strong>.<br />

Soil structure created as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil can easily be affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> for two reas<strong>on</strong>s.<br />

First, the organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> a soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile is c<strong>on</strong>centrated<br />

at, or near, the soil surface where it is directly exposed<br />

to heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g by radiati<strong>on</strong> produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels. Sec<strong>on</strong>d, the threshold value for<br />

irreversible changes <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter is low. Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

organisms can be killed by temperatures as low as 122<br />

to 140 °F (50 to 60 °C). N<strong>on</strong>liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 224 °F (200 °C) <strong>and</strong> is completely lost at<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 752 °F (400 °C) (DeBano 1990). The<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil structure reduces both the amount <strong>and</strong> size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil pore space, as is described below.<br />

Soil structure can also be changed by physical processes<br />

other than <str<strong>on</strong>g>fire</str<strong>on</strong>g>, such as deformati<strong>on</strong> <strong>and</strong> compressi<strong>on</strong><br />

by freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> thaw<str<strong>on</strong>g>in</str<strong>on</strong>g>g, as well as by wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> sal<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<strong>and</strong> alkali <strong>soils</strong> can provide an aggregat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect,<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a str<strong>on</strong>g prismlike structure. Hydrophobic<br />

30 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


substances discussed later <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter also tend to<br />

improve the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil aggregates by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

their resistance to dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> (slak<str<strong>on</strong>g>in</str<strong>on</strong>g>g) when wetted<br />

(Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> Lucchesi 1983, Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong><br />

others 1983).<br />

Bulk Density <strong>and</strong> Porosity<br />

Bulk density is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> dry soil per unit bulk<br />

volume (expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> g/cm 3 ) <strong>and</strong> is related to porosity,<br />

which is the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> pores <str<strong>on</strong>g>in</str<strong>on</strong>g> a soil sample (n<strong>on</strong>solid<br />

volume) divided by the bulk volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample.<br />

Pore space <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> c<strong>on</strong>trols the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> (soil<br />

soluti<strong>on</strong>) <strong>and</strong> air movement through the soil. Wellaggregated<br />

<strong>soils</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> macropores,<br />

which are greater than 0.02 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (greater than 0.6<br />

mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, <strong>and</strong> micropores, which are less than<br />

0.02 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (less than 0.6 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter (S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong><br />

Munns 1996). This balance <str<strong>on</strong>g>in</str<strong>on</strong>g> pore sizes allows a soil<br />

to transmit both <strong>water</strong> <strong>and</strong> air rapidly through<br />

macropores <strong>and</strong> reta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> by capillarity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

micropores. Macropores <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface soil horiz<strong>on</strong>s<br />

are especially important pathways for <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> its subsequent percolati<strong>on</strong><br />

downward through the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

Soil aggregati<strong>on</strong> improves soil structure, creates<br />

macropore space, <strong>and</strong> improves aerati<strong>on</strong>, <strong>and</strong> as a<br />

result decreases bulk density. Pore space not <strong>on</strong>ly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <strong>and</strong> percolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

through the soil, but the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> large pores also<br />

facilitates heat transfer by c<strong>on</strong>vecti<strong>on</strong>, <strong>and</strong> vaporizati<strong>on</strong><br />

<strong>and</strong> c<strong>on</strong>densati<strong>on</strong>.<br />

Fire <strong>and</strong> associated soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can destroy soil<br />

structure, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g both total porosity <strong>and</strong> pore size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface horiz<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil (DeBano<br />

<strong>and</strong> others 1998). These changes <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter<br />

decrease both total porosity <strong>and</strong> pore size. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macropores <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface soil reduces <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

rates <strong>and</strong> produces overl<strong>and</strong> flow. Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter can also lead to a <strong>water</strong> repellent soil<br />

c<strong>on</strong>diti<strong>on</strong> that further decreases <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates.<br />

The scenario occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

structure by <str<strong>on</strong>g>fire</str<strong>on</strong>g> is:<br />

• The soil structure collapses <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil because the organic matter<br />

that served as a b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent has been destroyed.<br />

• The collapse <str<strong>on</strong>g>in</str<strong>on</strong>g> soil structure reduces soil<br />

porosity (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly macropores).<br />

• The soil surface is further compacted by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops<br />

when surface soil particles <strong>and</strong> ash are<br />

displaced, <strong>and</strong> surface soil pores become partially<br />

or totally sealed.<br />

• F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the impenetrable soil surface reduces<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> produces<br />

rapid run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> hillslope erosi<strong>on</strong>.<br />

Physical Processes______________<br />

The soil matrix provides the envir<strong>on</strong>ment that c<strong>on</strong>trols<br />

several physical processes c<strong>on</strong>cerned with heat<br />

flow <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer<br />

are manifested <str<strong>on</strong>g>in</str<strong>on</strong>g> the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil temperatures that<br />

develop <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Hartford <strong>and</strong><br />

Fr<strong>and</strong>sen 1992). Other soil physical processes affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> are <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates <strong>and</strong> the heat transfer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic substances resp<strong>on</strong>sible for <strong>water</strong> repellency.<br />

Heat Transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils<br />

The energy generated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fuels provides the driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g force that is<br />

resp<strong>on</strong>sible for the changes that occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the physical,<br />

chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Countryman 1975). Mechanisms resp<strong>on</strong>sible for<br />

heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude radiati<strong>on</strong>, c<strong>on</strong>ducti<strong>on</strong>,<br />

c<strong>on</strong>vecti<strong>on</strong>, mass transport, <strong>and</strong> vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong><br />

(table A.1).<br />

Radiati<strong>on</strong> is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat from <strong>on</strong>e<br />

body to another, not <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with it, by electromagnetic<br />

wave moti<strong>on</strong> (Countryman 1976b). Radiated<br />

energy flows outward <str<strong>on</strong>g>in</str<strong>on</strong>g> all directi<strong>on</strong>s from the emitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

substance until it encounters a material capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g it. The absorbed radiati<strong>on</strong> energy <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

the molecular activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g substance,<br />

thereby <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g its temperature.<br />

C<strong>on</strong>ducti<strong>on</strong> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat by molecular<br />

activity from <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance to another part,<br />

or between substances <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact, without appreciable<br />

movement or displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the substance as<br />

a whole (Countryman 1976a). Metals are generally<br />

good c<strong>on</strong>ductors <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to dry m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, wood,<br />

<strong>and</strong> air that c<strong>on</strong>duct heat slowly. Water as a liquid is<br />

a good c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat up to the boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, <strong>and</strong><br />

has an especially high capacity for stor<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat until<br />

it evaporates.<br />

C<strong>on</strong>vecti<strong>on</strong> is a process whereby heat is transferred<br />

from <strong>on</strong>e po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to another by the mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid with another fluid (Ch<strong>and</strong>ler <strong>and</strong> others<br />

1991). Heat transfer by c<strong>on</strong>vecti<strong>on</strong> plays an important<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> spread through aboveground<br />

fuels. In <strong>soils</strong>, however, the complicated air spaces <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terc<strong>on</strong>necti<strong>on</strong>s between them provide little opportunity<br />

for the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through the soil by<br />

c<strong>on</strong>vecti<strong>on</strong>.<br />

Vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong> are important<br />

coupled heat transfer mechanisms that facilitate the<br />

rapid transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat through dry <strong>soils</strong>. Vaporizati<strong>on</strong><br />

is the process <str<strong>on</strong>g>of</str<strong>on</strong>g> add<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat to <strong>water</strong> until it changes<br />

phase from a liquid to a gas. C<strong>on</strong>densati<strong>on</strong> occurs<br />

when a gas is changed <str<strong>on</strong>g>in</str<strong>on</strong>g>to a liquid with heat be<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this process. Both <strong>water</strong> <strong>and</strong> organic<br />

materials can be moved through the soil by vaporizati<strong>on</strong><br />

<strong>and</strong> c<strong>on</strong>densati<strong>on</strong>.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 31


Heat Transfer Pathways <strong>and</strong> Models—The heat<br />

that is generated by the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <strong>and</strong><br />

aboveground fuels is transferred to the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

surface where it is transferred downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil by a series <str<strong>on</strong>g>of</str<strong>on</strong>g> complex pathways (fig. 2.1).<br />

Quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g these different pathways for heat flow requires<br />

the mathematical model<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior, duff<br />

igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong>, <strong>and</strong> the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat downward<br />

to <strong>and</strong> through moist <strong>and</strong> dry m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

(Dimitrakopoulos <strong>and</strong> others 1994).<br />

The heat radiated downward dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels is transferred either to the surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor (path A), or directly to the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil if organic surface layers are<br />

absent (path B). In most forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, heat is<br />

usually transferred to an organic layer <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong><br />

duff (path A). When duff is ignited it can produce<br />

additi<strong>on</strong>al heat that is subsequently transferred to the<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (path D). More details c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff<br />

Figure 2.1—A c<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> heat flow pathways<br />

from combust<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuels downward through the litter <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. (Adapted from<br />

Dimitrakopoulos <strong>and</strong> others 1994. A simulati<strong>on</strong> model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In Sala, M., <strong>and</strong> J. L.<br />

Rubio, editors. Soil Erosi<strong>on</strong> as a C<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Fires. Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>orma Edic<strong>on</strong>es, Logr<strong>on</strong>o, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

pp. 199-206. Copyright © 1994 Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>orma Edic<strong>on</strong>es,<br />

L<strong>on</strong>gro, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>, ISBN 84-87779-14-X, DL 7353-1994).<br />

<strong>on</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g is presented below. If duff does not<br />

ignite, it does not heat the underlay<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

(path C). The heat reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is either<br />

transferred through a dry soil (path E) or a moist soil<br />

(path F). Dry <strong>soils</strong> are comm<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s,<br />

whereas prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be planned so as to burn<br />

over wet or dry <strong>soils</strong>. The temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles that<br />

develop dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g>to moist <strong>and</strong> dry m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil vary widely <strong>and</strong> as a result affect the physical,<br />

chemical, <strong>and</strong> biological soil properties differently<br />

(DeBano <strong>and</strong> others 1998).<br />

The temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> moist <strong>soils</strong> does not rise much<br />

above 203 °F (95 °C) until all the <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a given soil<br />

layer has been vaporized. As a result, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

chemical <strong>and</strong> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil are not greatly<br />

affected by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g until the soil becomes dry. However,<br />

irreversible damage to liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms near the<br />

soil surface is likely to occur because soil temperatures<br />

can easily be elevated above lethal temperatures 140 °F<br />

(60 °C) for seeds <strong>and</strong> microorganisms (see part A).<br />

Also, the lethal temperatures for microorganisms are<br />

lower for moist <strong>soils</strong> than for those that are dry.<br />

The depth that heat penetrates a moist soil depends<br />

<strong>on</strong> the <strong>water</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, <strong>and</strong> <strong>on</strong> the magnitude<br />

<strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels, litter, <strong>and</strong> duff<br />

(Fr<strong>and</strong>sen 1987). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>g-durati<strong>on</strong> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, such<br />

as that occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g under a smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff <str<strong>on</strong>g>fire</str<strong>on</strong>g> or when<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash piles, substantial heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can occur 40<br />

to 50 cm downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. This prol<strong>on</strong>ged heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

produces temperatures that are lethal to soil organisms<br />

<strong>and</strong> plant roots. Increased thermal c<strong>on</strong>ductivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moist soil may also create lethal temperatures at<br />

much deeper soil depths than if the soil was dry, due<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased thermal c<strong>on</strong>ductivity.<br />

Organic-Rich Soils—Organic matter-rich <strong>soils</strong> are<br />

created when the primary productivity exceeds decompositi<strong>on</strong>.<br />

Organic matter accumulati<strong>on</strong>s can vary<br />

from thick surface duff layers located ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <strong>on</strong> the<br />

soil surface to deep deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> peat that have been<br />

accumulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g for thous<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> years. The igniti<strong>on</strong> <strong>and</strong><br />

combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these organic-rich <strong>soils</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

c<strong>on</strong>cern because <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (fig. 2.2). The<br />

primary combusti<strong>on</strong> process dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is by<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s is discussed<br />

further <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8 <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong>.<br />

General <str<strong>on</strong>g>fire</str<strong>on</strong>g> relati<strong>on</strong>ships: Although peatl<strong>and</strong> <strong>soils</strong><br />

are usually saturated, they can dry out dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g drought<br />

periods <strong>and</strong> become highly combustible. The <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that<br />

occur <str<strong>on</strong>g>in</str<strong>on</strong>g> peatl<strong>and</strong> <strong>soils</strong> can be extremely l<strong>on</strong>g last<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> cover extensive areas where c<strong>on</strong>tiguous deposits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> peat are present. Such was the case for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

largest <strong>and</strong> l<strong>on</strong>gest burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the world that<br />

occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> Kalimantan, Ind<strong>on</strong>esia (Kilmaskossu 1988,<br />

32 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 2.2—Burn out <str<strong>on</strong>g>of</str<strong>on</strong>g> surface organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Seney Nati<strong>on</strong>al Wildlife Refuge <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan.<br />

(Photo by Roger Hungerford)<br />

DeBano <strong>and</strong> others 1998). This <str<strong>on</strong>g>fire</str<strong>on</strong>g> was started dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

drought seas<strong>on</strong> when the farmers were clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g an<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g before plant<str<strong>on</strong>g>in</str<strong>on</strong>g>g agricultural<br />

crops. The <str<strong>on</strong>g>fire</str<strong>on</strong>g> started <str<strong>on</strong>g>in</str<strong>on</strong>g> 1983 <strong>and</strong> burned<br />

unchecked more-or-less c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously until the later<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1990s. The entire burn covered an area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

over 8.4 milli<strong>on</strong> acres (3.4 milli<strong>on</strong> ha).<br />

Although a thick accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter is<br />

comm<strong>on</strong>ly associated with tropical <strong>and</strong> semitropical<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, the largest areas <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong> are<br />

actually found <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the world.<br />

Although c<strong>on</strong>diti<strong>on</strong>s are usually cool <strong>and</strong> moist <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

boreal forests, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can occur periodically <str<strong>on</strong>g>in</str<strong>on</strong>g> underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wetl<strong>and</strong> <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g low ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall years, at which<br />

time these <str<strong>on</strong>g>fire</str<strong>on</strong>g>s mostly burn <strong>on</strong>ly the drier surface<br />

layers (We<str<strong>on</strong>g>in</str<strong>on</strong>g> 1983). The combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peatl<strong>and</strong> <strong>soils</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal forests dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that are started<br />

by lightn<str<strong>on</strong>g>in</str<strong>on</strong>g>g have been identified as a major source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 that is released <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere. It has been<br />

estimated that greater than 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmospheric<br />

emissi<strong>on</strong>s l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to global warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g are caused<br />

by these <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal forests worldwide (C<strong>on</strong>ard<br />

<strong>and</strong> Ivanova 1997). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the 1980s al<strong>on</strong>e, more<br />

than 138.3 milli<strong>on</strong> acres (56 milli<strong>on</strong> ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> boreal<br />

forest were estimated to have burned globally (Stocks<br />

1991). Research is currently under way to develop<br />

better methods for quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter lost as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

peatl<strong>and</strong>s (Turetsky <strong>and</strong> Wieder 2001).<br />

Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathways: When deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong> it is important to underst<strong>and</strong><br />

the processes that susta<str<strong>on</strong>g>in</str<strong>on</strong>g> combusti<strong>on</strong>. The heat produced<br />

by the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground fuels can be<br />

transferred to the duff (path A, fig. 2.1). Duff (or thick<br />

organic layers) can act as an <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer when it<br />

does not ignite (path C), or a heat source when it<br />

ignites, combusts, <strong>and</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g (path D).<br />

Therefore, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil depends <strong>on</strong> whether the duff<br />

burns <strong>and</strong> whether the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff acts as a l<strong>on</strong>gterm<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> heat. The igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the duff is complex, <strong>and</strong> attempts to correlate it with<br />

heat produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g have been largely<br />

unsuccessful (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1975). Although the duff complicates<br />

the heat transfer from the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g aboveground<br />

fuels <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, some features<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong> are known.<br />

Important variables needed to describe heat producti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> duff <str<strong>on</strong>g>in</str<strong>on</strong>g>clude depth, total amount, density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic c<strong>on</strong>stituents<br />

present, <strong>and</strong> the moisture c<strong>on</strong>tent.<br />

If duff does not burn, it provides a barrier to heat<br />

flow because the thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

is low (path C, fig. 2.1). The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> organic <strong>soils</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff) depends <strong>on</strong> both <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

c<strong>on</strong>stituents <strong>and</strong> moisture c<strong>on</strong>tent (Hungerford<br />

<strong>and</strong> others 1995b). Organic <strong>soils</strong> are not necessarily<br />

completely organic matter, but <str<strong>on</strong>g>in</str<strong>on</strong>g>stead they may c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

variable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g by surface disturbance. The chances <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> organic <strong>soils</strong> decrease as m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

at any given moisture c<strong>on</strong>tent. Likewise, the chances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil decrease as moisture c<strong>on</strong>tent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases at any given m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent. In general,<br />

duff burns more efficiently when the moisture c<strong>on</strong>tent<br />

is below 30 percent. Vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g amounts will burn at<br />

moisture c<strong>on</strong>tents from 30 to 150 percent, <strong>and</strong> it is too<br />

wet to burn when moisture c<strong>on</strong>tents exceed 150 percent<br />

(Brown <strong>and</strong> others 1985). Moisture affects both<br />

the thermal c<strong>on</strong>ductivity <strong>and</strong> the heat capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

duff, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn affect its ignitability (Hungerford<br />

1990).<br />

Combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the duff <strong>and</strong> thick organic deposits<br />

such as peat <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volves a smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong> that<br />

is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by the igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spot or several spots by<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> br<strong>and</strong>s, hot ash material, or radiated <strong>and</strong> c<strong>on</strong>ducted<br />

heat from the <str<strong>on</strong>g>fire</str<strong>on</strong>g> fr<strong>on</strong>t (Pyne <strong>and</strong> others 1996).<br />

After duff ignites, it can transfer large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil by c<strong>on</strong>vecti<strong>on</strong>, c<strong>on</strong>ducti<strong>on</strong>, <strong>and</strong><br />

radiati<strong>on</strong>, <strong>and</strong> can raise the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil above 350 °C<br />

for several hours. Therefore, it becomes difficult to<br />

quantify this comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed heat flow <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. When thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> organic materials<br />

ignite, glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> can also create an ash<br />

layer <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff. This ash layer<br />

retards heat dissipati<strong>on</strong> upward, thereby caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g more<br />

heat to penetrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil (Sackett <strong>and</strong> Haase<br />

1992). As a result, organic layers can transfer 40 to 73<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat generated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

process <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (Hungerford<br />

<strong>and</strong> Ryan 1996). The igniti<strong>on</strong>, smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thick duff layers can c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue for hours,<br />

thereby allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g substantial time for heat to be transferred<br />

deeply <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 33


A duff burnout model: Combusti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> duff (duff<br />

burnout) <strong>and</strong> organic <strong>soils</strong> was summarized by<br />

Hungerford <strong>and</strong> others (1995a,b). Igniti<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated<br />

at a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle po<str<strong>on</strong>g>in</str<strong>on</strong>g>t or several locati<strong>on</strong>s <strong>on</strong> the surface duff<br />

(fig. 2.3). Igniti<strong>on</strong> can also occur <str<strong>on</strong>g>in</str<strong>on</strong>g> cracks or depressi<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> duff, or be caused by woody material that<br />

burns downward through the duff (fig. 2.3A). Fire<br />

burns both laterally <strong>and</strong> vertically after igniti<strong>on</strong> (fig.<br />

2.3B). Fire will burn laterally until it encounters<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>combustible c<strong>on</strong>diti<strong>on</strong>s (moist organic matter, rocks,<br />

or the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> duff). It burns vertically until it<br />

reaches m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil or moisture c<strong>on</strong>diti<strong>on</strong>s that will<br />

Figure 2.3—A schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

process. The <str<strong>on</strong>g>in</str<strong>on</strong>g>itial igniti<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is created by the<br />

pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> fr<strong>on</strong>t. The <str<strong>on</strong>g>fire</str<strong>on</strong>g> spreads c<strong>on</strong>centrically from<br />

the igniti<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t (A), develops c<strong>on</strong>centric burned areas<br />

(B), <strong>and</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally develops <str<strong>on</strong>g>in</str<strong>on</strong>g>to a large burned out area<br />

(C). (Adapted from Hungerford <strong>and</strong> others 1995b).<br />

not support combusti<strong>on</strong>. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, a hole develops <str<strong>on</strong>g>in</str<strong>on</strong>g> the burned-out organic layer.<br />

Horiz<strong>on</strong>tal spread <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> can leave a th<str<strong>on</strong>g>in</str<strong>on</strong>g> unburned<br />

top crust (Pyne <strong>and</strong> others 1996). As the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

z<strong>on</strong>e moves laterally <strong>and</strong> vertically, it creates a dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

z<strong>on</strong>e caused by the heat from the glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g z<strong>on</strong>e, which<br />

allows the glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t to advance until it reaches<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>combustible c<strong>on</strong>diti<strong>on</strong>s (fig. 2.3C).<br />

Soil Temperature Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles—Heat absorpti<strong>on</strong> <strong>and</strong><br />

transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> produce elevated temperatures<br />

throughout the soil. Temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases near the<br />

surface are greatest, <strong>and</strong> they are the least downward<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. These temperature regimes are called<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>and</strong> can be highly variable depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>water</strong> present.<br />

Dry <strong>soils</strong> are poor c<strong>on</strong>ductors <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <strong>and</strong> thereby do<br />

not heat substantially below about 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5 cm)<br />

unless heavy l<strong>on</strong>g-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuels are combusted. In<br />

c<strong>on</strong>trast, wet <strong>soils</strong> c<strong>on</strong>duct heat rapidly via the soil<br />

<strong>water</strong> although temperatures rema<str<strong>on</strong>g>in</str<strong>on</strong>g> at the boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> until most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> has been lost.<br />

The f<str<strong>on</strong>g>in</str<strong>on</strong>g>al soil temperatures reached vary c<strong>on</strong>siderably<br />

between <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (different <str<strong>on</strong>g>fire</str<strong>on</strong>g>s may produce similar soil<br />

temperatures, <strong>and</strong> c<strong>on</strong>versely, similar <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can produce<br />

widely different soil temperatures) <strong>and</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneous surface temperatures.<br />

Numerous reports describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil temperatures dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> under a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> types <strong>and</strong> fuel<br />

arrangements are present <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature. As a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reference, some typical soil temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are<br />

presented for different severities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> grass, chaparral,<br />

<strong>and</strong> forests.<br />

Soil temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases generated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a coolburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> mixed c<strong>on</strong>ifer forests are low<br />

<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong> (fig. 2.4). This type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> would<br />

Figure 2.4—Surface <strong>and</strong> soil temperatures recorded<br />

under a cool-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> mixed c<strong>on</strong>ifer<br />

forest. (Adapted from Agee 1973, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California,<br />

Water Resources Center, C<strong>on</strong>tributi<strong>on</strong> 143).<br />

34 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


e carried by the surface litter <strong>and</strong> would probably not<br />

c<strong>on</strong>sume much st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g vegetati<strong>on</strong>, although it might<br />

affect some smaller seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Fire behavior dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g brush <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, however, differs<br />

widely from that occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> forests. Both wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> brush<br />

fields need to be carried through the plant canopy. The<br />

(A)<br />

(B) (C)<br />

difference between wild <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

the amount <strong>and</strong> rate at which the plant canopy is<br />

c<strong>on</strong>sumed. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, the entire plant canopy<br />

can be c<strong>on</strong>sumed with<str<strong>on</strong>g>in</str<strong>on</strong>g> a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>ds, <strong>and</strong> large<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> heat that are generated by the combusti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the aboveground fuels are transmitted to the soil<br />

surface <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. In c<strong>on</strong>trast, brush<br />

can be prescribe-burned under cooler burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<br />

(for example, higher fuel moisture c<strong>on</strong>tents,<br />

lower w<str<strong>on</strong>g>in</str<strong>on</strong>g>d speeds, higher humidity, lower ambient<br />

temperatures, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g northerly aspects) such that <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

behavior is less explosive. Under these cooler burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

c<strong>on</strong>diti<strong>on</strong>s the shrub canopy may be not be entirely<br />

c<strong>on</strong>sumed, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases a mosaic burn pattern<br />

may be created (particularly <strong>on</strong> north-fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g slopes).<br />

The soil temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles that were measured<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g low, medium, <strong>and</strong> high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral<br />

vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California are presented <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

figure 2.5A, B, <strong>and</strong> C.<br />

The highest soil temperatures are reached when<br />

c<strong>on</strong>centrated fuels such as slash piles <strong>and</strong> thick layers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> duff burn for l<strong>on</strong>g periods (fig. 2.6A <strong>and</strong> B). The soil<br />

temperatures under a pile <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g eucalyptus logs<br />

(fig. 2.6A) reached lethal temperatures for most liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

biota at a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> almost 22 cm <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

(after Roberts 1965). It must be kept <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d, however,<br />

that this extreme soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g occurred <strong>on</strong> <strong>on</strong>ly a<br />

small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area, although the visual <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> plant growth were observed for several years. An<br />

Figure 2.5—Soil temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a low severity chaparral <str<strong>on</strong>g>fire</str<strong>on</strong>g> (A), a medium severity chaparral <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(B), <strong>and</strong> high severity chaparral <str<strong>on</strong>g>fire</str<strong>on</strong>g> (C). (After DeBano <strong>and</strong> others 1979)<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 35


(A)<br />

(B)<br />

Figure 2.6—Soil temperatures pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles under (A) w<str<strong>on</strong>g>in</str<strong>on</strong>g>drowed logs (After W.B. Roberts. 1965. Soil<br />

temperatures under a pile <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g eucalyptus logs. Australian Forest Research 1(3):21-25),<br />

<strong>and</strong> (B) under a 7-cm (18 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch) duff layer <str<strong>on</strong>g>in</str<strong>on</strong>g> a larch forest. (After Hungerford 1990).<br />

36 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


example <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that can occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> areas hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g large accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

duff <strong>and</strong> humus (fig. 2.6B) was reported dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

complete combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (7 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> a duff layer<br />

found under larch (Hungerford 1990).<br />

Based <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available <strong>on</strong> the relati<strong>on</strong>ship<br />

between soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

generalities can be made:<br />

• Crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are fast-mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-driven,<br />

large, impressive, <strong>and</strong> usually unc<strong>on</strong>trollable,<br />

<strong>and</strong> they have a deep flame fr<strong>on</strong>t (fig. 1.3).<br />

Usually little soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g results when a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

fr<strong>on</strong>t passes ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly through the tree crowns.<br />

• Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, compared to crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, are<br />

slower mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, smaller, patchy, <strong>and</strong> are more<br />

c<strong>on</strong>trollable, <strong>and</strong> they may also have a deep<br />

flame fr<strong>on</strong>t (fig. 2.7A). These <str<strong>on</strong>g>fire</str<strong>on</strong>g>s usually<br />

ignite <strong>and</strong> combust a large porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

surface fuels <str<strong>on</strong>g>in</str<strong>on</strong>g> forests <strong>and</strong> brushl<strong>and</strong>s that<br />

can produce substantial soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

• Grass <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are fast-mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-driven,<br />

may be large, <strong>and</strong> have a narrow flame fr<strong>on</strong>t<br />

(fig. 2.7B). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel available for<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong>s is usually much less<br />

than that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> brushl<strong>and</strong>s <strong>and</strong> forests,<br />

<strong>and</strong> as a result, soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g is substantially less<br />

than occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface or smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

• Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s do not have flames, are slowmov<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> unimpressive, but frequently have<br />

l<strong>on</strong>g burnout times. They generally are c<strong>on</strong>trollable<br />

although they may have a deep burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

fr<strong>on</strong>t. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this l<strong>on</strong>g durati<strong>on</strong><br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g process may be substantial.<br />

Temperatures with<str<strong>on</strong>g>in</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

are between 932 <strong>and</strong> 1,112 °F (500 <strong>and</strong> 600 °C).<br />

The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g may last from 18 to 36<br />

hours, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g high temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil.<br />

Water Repellency<br />

The creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volves both<br />

physical <strong>and</strong> chemical processes. It is discussed with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> physical properties because <str<strong>on</strong>g>of</str<strong>on</strong>g> its importance<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> modify<str<strong>on</strong>g>in</str<strong>on</strong>g>g physical processes such as <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

<strong>and</strong> <strong>water</strong> movement <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. Although hydrophobic<br />

<strong>soils</strong> had been observed s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the early 1900s (DeBano<br />

2000a,b), <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency was first identified<br />

<strong>on</strong> burned chaparral <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> southern<br />

California <str<strong>on</strong>g>in</str<strong>on</strong>g> the early1960s. Watershed scientists were<br />

aware <str<strong>on</strong>g>of</str<strong>on</strong>g> it earlier, but it had been referred to simply as<br />

the “t<str<strong>on</strong>g>in</str<strong>on</strong>g> ro<str<strong>on</strong>g>of</str<strong>on</strong>g>” effect because <str<strong>on</strong>g>of</str<strong>on</strong>g> its effect <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

(fig. 2.8A, B, <strong>and</strong> C). In southern California both the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency <strong>and</strong> the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> protective vegetative cover play a major role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>, <strong>and</strong> the area is particularly<br />

important because <str<strong>on</strong>g>of</str<strong>on</strong>g> the large centers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Figure 2.7—Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> (A) an uneven aged p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest, Mogoll<strong>on</strong> Rim, Ariz<strong>on</strong>a, <strong>and</strong> (B) Alaskan<br />

grassl<strong>and</strong>s. (Photos by USDA Forest Service).<br />

Figure 2.8—The “t<str<strong>on</strong>g>in</str<strong>on</strong>g> ro<str<strong>on</strong>g>of</str<strong>on</strong>g>” effect <strong>on</strong> burned chaparral<br />

<strong>water</strong>sheds as described by earlier <strong>water</strong>shed researchers<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude (A) the wettable ash <strong>and</strong> carb<strong>on</strong><br />

surface layer, (B) the disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous <strong>water</strong> repellent<br />

layer, <strong>and</strong> (C) the wettable subsoil. (After DeBano<br />

1969).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 37<br />

(A)<br />

(B)


populati<strong>on</strong>s located immediately below steep, unstable<br />

chaparral <strong>water</strong>sheds.<br />

Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils—Normally,<br />

dry <strong>soils</strong> have an aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity for adsorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g liquid <strong>and</strong><br />

vapor <strong>water</strong> because there is str<strong>on</strong>g attracti<strong>on</strong> between<br />

the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles <strong>and</strong> <strong>water</strong>. In <strong>water</strong>repellent<br />

<strong>soils</strong>, however, the <strong>water</strong> droplet “beads up”<br />

<strong>on</strong> the soil surface where it can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> for l<strong>on</strong>g periods<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases will evaporate before be<str<strong>on</strong>g>in</str<strong>on</strong>g>g absorbed<br />

by the soil. Water, however, will not penetrate<br />

some <strong>soils</strong> because the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles are coated<br />

with hydrophobic substances that repel <strong>water</strong>. Water<br />

repellency has been characterized by measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

c<strong>on</strong>tact angle between the <strong>water</strong> droplet <strong>and</strong> the <strong>water</strong>-repellent<br />

soil surface. Wettable dry <strong>soils</strong> have a<br />

liquid-solid c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly zero degrees. In<br />

c<strong>on</strong>trast, <strong>water</strong>-repellent <strong>soils</strong> have liquid-solid c<strong>on</strong>tact<br />

angles around 90 degrees (fig. 2.9).<br />

Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Repellency—Water repellency<br />

is produced by soil organic matter <strong>and</strong> can be found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

both <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ments (DeBano 2000a,b).<br />

Water repellency can result from the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter:<br />

• An irreversible dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter<br />

(for example, rewett<str<strong>on</strong>g>in</str<strong>on</strong>g>g dried peat).<br />

• The coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles with<br />

leachates from organic materials (for example,<br />

coarse-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed materials treated with plant<br />

extracts).<br />

• The coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> soil particles with hydrophobic<br />

microbial byproducts (for example, fungal<br />

mycelium).<br />

• The <str<strong>on</strong>g>in</str<strong>on</strong>g>termix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> dry m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles<br />

<strong>and</strong> dry organic matter.<br />

Figure 2.9—Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> droplets that are<br />

“balled up” <strong>on</strong> a <strong>water</strong>-repellent soil. (After DeBano<br />

1981).<br />

• The vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>and</strong> c<strong>on</strong>densati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic substances <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil particles dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (for example,<br />

heat-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency).<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire-Induced Water-Repellent<br />

Soils— A hypothesis by DeBano (1981) describes how<br />

a <strong>water</strong>-repellent layer is formed beneath the soil<br />

surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that organic matter accumulates<br />

<strong>on</strong> the soil surface under vegetati<strong>on</strong> canopies<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals between <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>-free<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tervals, <strong>water</strong> repellency occurs ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the organic-rich<br />

surface layers, particularly when they are<br />

proliferated with fungal mycelium (fig. 2.10A). Heat<br />

produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong><br />

aboveground fuels vaporizes organic substances, which<br />

are then moved downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil where they c<strong>on</strong>dense <str<strong>on</strong>g>in</str<strong>on</strong>g> the cooler underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil layers (fig. 2.10B) The layer where these vaporized<br />

hydrophobic substances c<strong>on</strong>dense forms a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

<strong>water</strong>-repellent layer below <strong>and</strong> parallel to the soil<br />

surface (fig. 2.10C).<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency depends<br />

up<strong>on</strong> several parameters, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

• The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The more severe the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, the deeper the layer, unless the <str<strong>on</strong>g>fire</str<strong>on</strong>g> is so<br />

hot it destroys the surface organic matter.<br />

• Type <strong>and</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter present.<br />

Most vegetati<strong>on</strong> <strong>and</strong> fungal mycelium c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

hydrophobic compounds that <str<strong>on</strong>g>in</str<strong>on</strong>g>duce <strong>water</strong><br />

repellency.<br />

• Temperature gradients <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil. Steep temperature gradients <str<strong>on</strong>g>in</str<strong>on</strong>g> dry soil<br />

enhance the downward movement <str<strong>on</strong>g>of</str<strong>on</strong>g> volatilized<br />

hydrophobic substances.<br />

• Texture <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. Early studies <str<strong>on</strong>g>in</str<strong>on</strong>g> California<br />

chaparral showed that s<strong>and</strong>y <strong>and</strong> coarse-textured<br />

<strong>soils</strong> were the most susceptible to <str<strong>on</strong>g>fire</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

<strong>water</strong> repellency (DeBano 1981). However,<br />

more recent studies <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <strong>water</strong><br />

repellency frequently occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> other than<br />

coarse-textured <strong>on</strong>es (Doerr <strong>and</strong> others 2000).<br />

• Water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. Soil <strong>water</strong> affects<br />

the translocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic substances<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> because it affects heat transfer<br />

<strong>and</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> steep temperature<br />

gradients.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Repellency <strong>on</strong> Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Erosi<strong>on</strong>—Fire<br />

affects <strong>water</strong> enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil <str<strong>on</strong>g>in</str<strong>on</strong>g> two ways.<br />

First, the burned soil surface is unprotected from<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop impact that loosens <strong>and</strong> disperses f<str<strong>on</strong>g>in</str<strong>on</strong>g>e soil<br />

<strong>and</strong> ash particles that can seal the soil surface. Sec<strong>on</strong>d,<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> produces a <strong>water</strong>-repellent<br />

layer at or near the soil surface that further impedes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong><br />

repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface soil layer, however, decreases<br />

38 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 2.10—Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency. Water repellency before (A), dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g (B), <strong>and</strong><br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g (C) <str<strong>on</strong>g>fire</str<strong>on</strong>g>. (After DeBano 1981).<br />

over time as it is exposed to moisture; <str<strong>on</strong>g>in</str<strong>on</strong>g> many cases,<br />

it does not substantially affect <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> bey<strong>on</strong>d the<br />

first year. More detailed <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellency <strong>on</strong><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> process are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 6.<br />

Water repellency has a particularly important effect<br />

<strong>on</strong> two post<str<strong>on</strong>g>fire</str<strong>on</strong>g> erosi<strong>on</strong> processes, that <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop<br />

splash <strong>and</strong> rill formati<strong>on</strong>.<br />

Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash: When a <strong>water</strong>-repellent layer is<br />

formed at the soil surface, the hydrophobic particles<br />

are more sensitive to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash than those<br />

present <strong>on</strong> a wettable soil surface (Terry <strong>and</strong> Shakesby<br />

1993). C<strong>on</strong>sequently, ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops fall<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a hydrophobic<br />

surface produce fewer, slower mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g ejecti<strong>on</strong><br />

droplets that carry more sediment a shorter distance<br />

than <str<strong>on</strong>g>in</str<strong>on</strong>g> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a wettable soil. Further, the wettable<br />

surfaces have an aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity for <strong>water</strong> <strong>and</strong> thereby<br />

become sealed <strong>and</strong> compacted dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall, which<br />

makes them <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly resistant to splash detachment.<br />

C<strong>on</strong>versely, the hydrophobic soil rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s dry<br />

<strong>and</strong> n<strong>on</strong>cohesive; particles are easily displaced by<br />

splash when the ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop breaks the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>water</strong> film.<br />

Rill formati<strong>on</strong>: A reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> caused by<br />

a <strong>water</strong>-repellent layer quickly causes highly visible<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f-erosi<strong>on</strong> patterns to develop <strong>on</strong> the steep<br />

slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> burned <strong>water</strong>sheds. The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a <strong>water</strong>-repellent layer quickly<br />

entra<str<strong>on</strong>g>in</str<strong>on</strong>g>s loose particles <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> organic debris, <strong>and</strong><br />

produces surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f that rapidly becomes c<strong>on</strong>centrated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed rills. As a result, extensive rill<br />

networks develop when ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall exceeds the slow <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

rates that are characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>-repellent<br />

<strong>soils</strong>.<br />

The sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> rill formati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

<strong>water</strong> repellency has been documented to follow<br />

several well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed stages (Wells 1987). First, the<br />

wettable soil surface layer, if present, is saturated<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>itial <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> (fig. 2.11A). Water <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 39


apidly <str<strong>on</strong>g>in</str<strong>on</strong>g>to the wettable surface ash layer until it is<br />

impeded by a <strong>water</strong>-repellent layer. This process occurs<br />

uniformly over the l<strong>and</strong>scape so that when the wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

fr<strong>on</strong>t reaches the <strong>water</strong>-repellent layer, it can neither<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g> downward or laterally (fig. 2.11A). If the <strong>water</strong>repellent<br />

soil layer is <strong>on</strong> the soil surface, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

immediately after ra<str<strong>on</strong>g>in</str<strong>on</strong>g> droplets reach the soil surface.<br />

As ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues, <strong>water</strong> fills all available pores<br />

until the wettable soil layer becomes saturated. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>-repellent layer, the saturated<br />

pores cannot dra<str<strong>on</strong>g>in</str<strong>on</strong>g>, which creates a positive pore<br />

pressure above the <strong>water</strong>-repellent layer. This <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

pore pressure decreases the shear strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

mass <strong>and</strong> produces a failure z<strong>on</strong>e located at the boundary<br />

between the wettable <strong>and</strong> <strong>water</strong>-repellent layers<br />

where pore pressures are greatest (fig. 2.11B). As the<br />

<strong>water</strong> flows down this <str<strong>on</strong>g>in</str<strong>on</strong>g>itial failure z<strong>on</strong>e, turbulent<br />

flow develops, which accelerates erosi<strong>on</strong> <strong>and</strong> entra<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

particles from both the wettable ash layer if present <strong>and</strong><br />

the <strong>water</strong>-repellent layer (fig. 2.11C <strong>and</strong> 2.11D). The<br />

downward erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>-repellent rill c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues<br />

until the <strong>water</strong>-repellent layer is eroded away <strong>and</strong><br />

<strong>water</strong> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g wettable<br />

soil. Flow then dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes, turbulence is reduced, <strong>and</strong><br />

down-cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g ceases. The f<str<strong>on</strong>g>in</str<strong>on</strong>g>al result is a rill that has<br />

stabilized immediately below the <strong>water</strong>-repellent layer<br />

(fig.2.11E). On a <strong>water</strong>shed basis these <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual rills<br />

develop <str<strong>on</strong>g>in</str<strong>on</strong>g>to a well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed network that can extend<br />

throughout a small <strong>water</strong>shed (fig. 2.11F).<br />

Figure 2.11—Sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> rill formati<strong>on</strong> <strong>on</strong> a burned slope with a <strong>water</strong>-repellent layer <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes (A) saturati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wettable surface area, (B) development <str<strong>on</strong>g>of</str<strong>on</strong>g> a failure z<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> wettable surface layer, (C) free flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> over<br />

the <strong>water</strong>-repellent layer, (D) erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>-repellent layer, (E) removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> repellent layer <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g wettable soil, <strong>and</strong> (F) resultant rill. (From Wells 1987. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> debris flows <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California. Reviews <str<strong>on</strong>g>in</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g Geology. 7:105-114. Modified with<br />

permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the publisher, the Geological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, Boulder, Colorado U.S.A. Copyright © 1987<br />

Geological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America.)<br />

40 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Soil Erosi<strong>on</strong> ____________________<br />

Processes <strong>and</strong> Mechanics<br />

The erosi<strong>on</strong> process <str<strong>on</strong>g>in</str<strong>on</strong>g>volves three separate comp<strong>on</strong>ents<br />

that are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment size <strong>and</strong> transport<br />

medium (<strong>water</strong> or air) velocity. These are: (1) detachment,<br />

(2) transport, <strong>and</strong> (3) depositi<strong>on</strong>. Erosi<strong>on</strong> occurs<br />

when sediments are exposed to <strong>water</strong> or air <strong>and</strong><br />

velocities are sufficient to detach <strong>and</strong> transport the<br />

sediments. Table 2.2 gives a generalized breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment classes <strong>and</strong> detachment/transport/depositi<strong>on</strong><br />

velocities <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>.<br />

Erosi<strong>on</strong> is a natural process occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> l<strong>and</strong>scapes<br />

at different rates <strong>and</strong> scales depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> geology,<br />

topography, vegetati<strong>on</strong>, <strong>and</strong> climate. Natural rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

erosi<strong>on</strong> are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> table 2.3. Geologic erosi<strong>on</strong> rates<br />

were calculated <strong>on</strong> large bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s so they are higher than<br />

those listed for forests. The data from forests come<br />

from much smaller <strong>water</strong>shed experiments. Natural<br />

erosi<strong>on</strong> rates <str<strong>on</strong>g>in</str<strong>on</strong>g>crease as annual precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases,<br />

peak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> semiarid ecoregi<strong>on</strong>s when mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

from desert to wet forest (Huds<strong>on</strong> 1981). This occurs<br />

because there is sufficient ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall to cause natural<br />

erosi<strong>on</strong> from the sparser desert <strong>and</strong> semiarid grassl<strong>and</strong><br />

covers. As precipitati<strong>on</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease,<br />

the l<strong>and</strong>scapes start support<str<strong>on</strong>g>in</str<strong>on</strong>g>g dry <strong>and</strong> eventually<br />

wet forests, which produce <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly dense plant<br />

<strong>and</strong> litter covers that decrease natural erosi<strong>on</strong>. However,<br />

if the l<strong>and</strong>scapes are denuded by disturbance<br />

(for example, <str<strong>on</strong>g>fire</str<strong>on</strong>g>, graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g, timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong><br />

so forth), then the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g precipitati<strong>on</strong> (fig. 2.12). Surface<br />

c<strong>on</strong>diti<strong>on</strong>s after <str<strong>on</strong>g>fire</str<strong>on</strong>g> are important for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

where <strong>water</strong> moves <strong>and</strong> how much erosi<strong>on</strong> is<br />

produced (table 2.4).<br />

Table 2.2—Sediment size classes <strong>and</strong> some typical detachment/depositi<strong>on</strong> velocities (varies with<br />

sediment characteristics <strong>and</strong> flow depth).<br />

Sediment type Size class Detachment velocity Depositi<strong>on</strong> velocity<br />

Boulders 39.37 100.00<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> cm <str<strong>on</strong>g>in</str<strong>on</strong>g>/sec cm/sec <str<strong>on</strong>g>in</str<strong>on</strong>g>/sec cm/sec<br />

Cobble 10.08 25.60 7.480 19.00 4.724 12.00<br />

Gravel 2.520 6.40 5.906 15.00 3.150 8.00<br />

S<strong>and</strong> 0.078 0.19 1.378 3.50 0.591 1.48<br />

Silt 0.007 0.02 0.669 1.70 0.059 0.15<br />

Clay


Figure 2.12—Erosi<strong>on</strong> from a clearcut <strong>and</strong> burned P<str<strong>on</strong>g>in</str<strong>on</strong>g>us rigida st<strong>and</strong> planted <strong>on</strong><br />

degraded farml<strong>and</strong>, Southern Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Georgia. (Photo by Daniel Neary).<br />

Table 2.4—Soil surface c<strong>on</strong>diti<strong>on</strong>s affect <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

<strong>and</strong> erosi<strong>on</strong>.<br />

Soil surface<br />

c<strong>on</strong>diti<strong>on</strong> Infiltrati<strong>on</strong> Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Erosi<strong>on</strong><br />

Litter charred High Low Low<br />

Litter c<strong>on</strong>sumed Medium Medium Medium<br />

Bare soil Low High High<br />

Water repellent layers Very low Very high Severe<br />

Erosi<strong>on</strong> is certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly the most visible <strong>and</strong> dramatic<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> apart from the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>.<br />

Fire management activities (wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong>,<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>water</strong>shed rehabilitati<strong>on</strong>)<br />

can affect erosi<strong>on</strong> processes <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong>, temporary<br />

roads, <strong>and</strong> permanent, unpaved roads receiv<str<strong>on</strong>g>in</str<strong>on</strong>g>g heavy<br />

vehicle traffic will <str<strong>on</strong>g>in</str<strong>on</strong>g>crease erosi<strong>on</strong>. Increased<br />

stormflows after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s will also <str<strong>on</strong>g>in</str<strong>on</strong>g>crease erosi<strong>on</strong><br />

rates. Burned Area Emergency Rehabilitati<strong>on</strong> (BAER)<br />

work <strong>on</strong> <strong>water</strong>sheds will decrease potential post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

erosi<strong>on</strong> to vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g degrees depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall (see chapter 10; Robichaud<br />

<strong>and</strong> others 2000).<br />

Sheet, Rill, <strong>and</strong> Gully Erosi<strong>on</strong>: Progressive<br />

Erosi<strong>on</strong>—In sheet erosi<strong>on</strong>, slope surfaces erode uniformly.<br />

This type proceeds to rill erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which<br />

small, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, rectangular channels cut <str<strong>on</strong>g>in</str<strong>on</strong>g>to the surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a slope. Further redevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> rills leads to<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deep, large, rectangular to v-shaped<br />

channels (gullys) cut <str<strong>on</strong>g>in</str<strong>on</strong>g>to a slope (fig. 2.13).<br />

Some special erosi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s can be encountered.<br />

For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, <str<strong>on</strong>g>in</str<strong>on</strong>g> ecoregi<strong>on</strong>s with permafrost, the progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> from sheet to rill to gully <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts<br />

with the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost thaw. Until thaw occurs,<br />

erosi<strong>on</strong> is essentially frozen. Fire <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>trol<br />

activities such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> will affect thaw<br />

depth after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <strong>and</strong> subsequent erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es can be substantial (fig. 2.14).<br />

Dry Ravel—Dry ravel is the gravity-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

downslope surface movement <str<strong>on</strong>g>of</str<strong>on</strong>g> soil gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, aggregates,<br />

<strong>and</strong> rock material, <strong>and</strong> is a ubiquitous process <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

semiarid steepl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Anders<strong>on</strong> <strong>and</strong> others<br />

1959). Triggered by animal activity, earthquakes, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d,<br />

freeze-thaw cycles, <strong>and</strong> thermal gra<str<strong>on</strong>g>in</str<strong>on</strong>g> expansi<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g, dry ravel may best be<br />

42 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 2.13—Incised gully after post-wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>on</strong> the H<strong>on</strong>do Fire, 1996, Cars<strong>on</strong> Nati<strong>on</strong>al Forest.<br />

(Photo by Russell Lafayette).<br />

described as a type <str<strong>on</strong>g>of</str<strong>on</strong>g> dry gra<str<strong>on</strong>g>in</str<strong>on</strong>g> flow (Wells 1981). Fires<br />

greatly alter the physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> hillside<br />

slopes, stripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g them <str<strong>on</strong>g>of</str<strong>on</strong>g> their protective cover <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetati<strong>on</strong> <strong>and</strong> organic litter <strong>and</strong> remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g barriers<br />

that were trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment. C<strong>on</strong>sequently, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface material are liberated <strong>and</strong> move downslope as<br />

Figure 2.14—Postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g permafrost thaw <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska.<br />

(After Viereck 1982, Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the USDA Forest Service,<br />

Nati<strong>on</strong>al Advanced Fire <strong>and</strong> Resource Institute, Tucs<strong>on</strong>, AZ).<br />

dry ravel (Krammes 1960, Rice 1974). Dry ravel can<br />

equal or exceed ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced hillslope erosi<strong>on</strong> after<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Krammes 1960,<br />

Wohlgemuth <strong>and</strong> others 1998).<br />

In the Oreg<strong>on</strong> Coast Range, Bennett (1982) found<br />

that prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> heavy slash after clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

produced n<strong>on</strong>cohesive <strong>soils</strong> that were less resistant to<br />

the force <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity. Dry ravel <strong>on</strong> steep slopes (greater<br />

than 60 percent) that were prescribe-burned produced<br />

118 yard 3 /acre (224 m 3 /ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> surface erosi<strong>on</strong> compared<br />

to 15 yard 3 /acre (29 m 3 /ha) <strong>on</strong> moderate slopes<br />

with burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> 9 yard 3 /acre (17 m 3 /ha) where burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

was not d<strong>on</strong>e after clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Sixty-four percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the erosi<strong>on</strong>, as dry ravel, occurred with<str<strong>on</strong>g>in</str<strong>on</strong>g> the first 24<br />

hours after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Mass Failures—This term <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes slope creep,<br />

falls, topples, rotati<strong>on</strong>al <strong>and</strong> translati<strong>on</strong>al slides, lateral<br />

spreads, debris flows, <strong>and</strong> complex movements<br />

(Varnes 1978). Slope creep is a slow process that does<br />

not deliver large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment to stream channels<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the periods normally c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> natural<br />

resources management. The most important for forest<br />

management c<strong>on</strong>siderati<strong>on</strong>s are rotati<strong>on</strong>al <strong>and</strong> translati<strong>on</strong>al<br />

slides, flows, <strong>and</strong> complex movement (Ice<br />

1985). Slump-earthflows <strong>and</strong> debris avalanches are<br />

more likely with <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the decreased tensi<strong>on</strong> between soil particles, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 43


load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> slopes produced by excess soil <strong>water</strong>, <strong>and</strong> a<br />

buoyant effect created by soil <strong>water</strong> al<strong>on</strong>g a failure<br />

plane. These types <str<strong>on</strong>g>of</str<strong>on</strong>g> failures are most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten associated<br />

with clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g, tree death due to disease or<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sects, <strong>and</strong> road network c<strong>on</strong>structi<strong>on</strong>. Slope failures<br />

associated with <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

forest floor, surface seal<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> repellency. These processes produce a diversi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall from <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> to surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The<br />

result is a dramatic <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> debris torrents <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

channels that greatly <str<strong>on</strong>g>in</str<strong>on</strong>g>crease sediment delivery to<br />

channels <strong>and</strong> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see chapter 5).<br />

Debris avalanches are the largest, most dramatic,<br />

<strong>and</strong> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> mass wast<str<strong>on</strong>g>in</str<strong>on</strong>g>g that delivers sediment<br />

to streams (Benda <strong>and</strong> Cundy 1990). They can range<br />

from slow mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g earth flows to rapid avalanches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil, rock, <strong>and</strong> woody debris. Debris avalanches occur<br />

when the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> soil material <strong>and</strong> soil <strong>water</strong> exceed<br />

the sheer strength needed to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the mass <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

place. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> root strength (for example, soil<br />

strength, anchor<str<strong>on</strong>g>in</str<strong>on</strong>g>g, soil mass cohesi<strong>on</strong>, <strong>and</strong> so forth)<br />

due to removal <str<strong>on</strong>g>of</str<strong>on</strong>g> trees or tree death caused by <str<strong>on</strong>g>in</str<strong>on</strong>g>sects<br />

or disease aggravates the situati<strong>on</strong>. Steep slopes,<br />

logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g, road c<strong>on</strong>structi<strong>on</strong>, <strong>and</strong> heavy ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall aggravate<br />

debris avalanch<str<strong>on</strong>g>in</str<strong>on</strong>g>g potential (table 2.5).<br />

Most <str<strong>on</strong>g>fire</str<strong>on</strong>g>-associated mass failures are debris flows<br />

associated with development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellency <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>soils</strong> (DeBano <strong>and</strong> others 1998). Chaparral occupy<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

steep slopes <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California has a high potential<br />

for mass failures, particularly when deep-rooted<br />

chaparral species are replaced with shallower-rooted<br />

grass species (Rice 1974). These mass failures are a<br />

large source <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment delivered to stream channels<br />

(can be 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total post<str<strong>on</strong>g>fire</str<strong>on</strong>g> sediment yield<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> some ecoregi<strong>on</strong>s; fig. 2.15). Wells (1981) reported<br />

that wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> coastal southern<br />

California can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease average debris avalanche<br />

sediment delivery <str<strong>on</strong>g>in</str<strong>on</strong>g> large <strong>water</strong>sheds from 18 to<br />

4,845 yard 3 /mile 2 /year (7 to 1,910 m 3 /km 2 /year). However,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual storm events <str<strong>on</strong>g>in</str<strong>on</strong>g> smaller bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s can<br />

trigger much greater sediment yields (Gartner <strong>and</strong><br />

others 2004; table 2.6). Rates as high as 221,026 yard 3 /<br />

mile 2 (65,238 m 3 /km 2 ) have been measured after s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle<br />

storms <str<strong>on</strong>g>in</str<strong>on</strong>g> California chaparral. Other ecoregi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Western United States have post<str<strong>on</strong>g>fire</str<strong>on</strong>g> debris flows<br />

that have been larger (for example, 304,761 yard 3 /<br />

mile 2 or 89,953 m 3 /km 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> ecoregi<strong>on</strong> M331, Colorado)<br />

but not with the same frequency (table 2.6). The<br />

situati<strong>on</strong> could change with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g severity,<br />

frequency, <strong>and</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that<br />

have characterized the past decade.<br />

Table 2.5—Annual sediment yields from debris avalanches <str<strong>on</strong>g>in</str<strong>on</strong>g> undisturbed forests <strong>and</strong> those<br />

affected by clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g, roads, <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. (From Ice 1985, Neary <strong>and</strong> Hornbeck<br />

1994).<br />

Ecoregi<strong>on</strong>-locati<strong>on</strong> Treatment/c<strong>on</strong>diti<strong>on</strong> Sediment yield<br />

yd 3 /mi 2 /yr m 3 /km 2 /yr<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE 1<br />

Siuslaw Nati<strong>on</strong>al Forest, Uncut 95 28<br />

Oreg<strong>on</strong> Clearcut 376 111<br />

Roads 11,858 3,500<br />

H.J. Andrews, Oreg<strong>on</strong> Uncut 122 36<br />

Clearcut 447 132<br />

Roads 3,964 1,170<br />

Northwest Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Uncut 244 72<br />

Roads 39,978 11,800<br />

British Columbia Uncut 37 11<br />

Clearcut 81 24<br />

Roads 955 282<br />

Entiat Experimental Forest, Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> – Fox Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> 10,164 3,600<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> – Burns 420 124<br />

Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> – McCree Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> 12,197 3,000<br />

M262 CALIFORNIA COASTAL RANGE WOODLAND-SHRUB-CONIFER PROVINCE<br />

Southern California Uncut 24 7<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 6,461 1,907<br />

1 Bailey’s (1995) descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecoregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

44 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Cann<strong>on</strong> (2001) describes several types <str<strong>on</strong>g>of</str<strong>on</strong>g> debris flow<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> mechanisms after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern<br />

United States. Of these, surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, which<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases sediment entra<str<strong>on</strong>g>in</str<strong>on</strong>g>ment, was the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant<br />

trigger<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanism. Campbell <strong>and</strong> others (1977)<br />

reported a 416-fold <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment yield after<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> southwestern p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e.<br />

Channel Stability—Fire-related sediment yields<br />

vary, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, climate, vegetati<strong>on</strong>,<br />

<strong>and</strong> geomorphic factors such as topography, geology,<br />

<strong>and</strong> <strong>soils</strong> (Swans<strong>on</strong> 1981). In some regi<strong>on</strong>s, more than<br />

60 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total l<strong>and</strong>scape sediment producti<strong>on</strong><br />

over the l<strong>on</strong>g term is <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> that sediment<br />

loss can occur the first year after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rice<br />

1974, Agee 1993, DeBano <strong>and</strong> others 1996, DeBano<br />

Figure 2.15—Deeply <str<strong>on</strong>g>in</str<strong>on</strong>g>cised gully <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Chiricahua Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s after the Rattlesnake<br />

Fire, 1996, Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest,<br />

Ariz<strong>on</strong>a. (Photo courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tree<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>g Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a).<br />

<strong>and</strong> others 1998, Wohlgemuth <strong>and</strong> others 1998,<br />

Robichaud <strong>and</strong> Brown 1999).<br />

A stable stream channel reflects a dynamic equilibrium<br />

between <str<strong>on</strong>g>in</str<strong>on</strong>g>com<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> outgo<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment <strong>and</strong><br />

streamflow (Rosgen 1996). Increased sideslope erosi<strong>on</strong><br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can alter this equilibrium by transport<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

additi<strong>on</strong>al sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>to channels (aggradati<strong>on</strong>).<br />

Here it is stored until <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflows (see chapter<br />

5) produced after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s erode the channel (degradati<strong>on</strong>)<br />

<strong>and</strong> move the stored material downstream (Heede<br />

<strong>and</strong> others 1988). Sediment transported from burned<br />

areas as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflows can adversely<br />

affect aquatic habitat, recreati<strong>on</strong> areas, roads, build<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

bridges, <strong>and</strong> culverts. Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments<br />

alters habitat <strong>and</strong> can fill <str<strong>on</strong>g>in</str<strong>on</strong>g> lakes <strong>and</strong> reservoirs (Reid<br />

1993, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 1996).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 45


Table 2.6—Event-based sediment yields from debris flows due to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. (From Gartner <strong>and</strong> others<br />

2004).<br />

Treatment/c<strong>on</strong>diti<strong>on</strong><br />

Ecoregi<strong>on</strong>-locati<strong>on</strong> Burn area Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall Sediment yield per event<br />

% mm yd 3 /mi 2<br />

m 3 /km 2<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE 1<br />

Entiat Valley, WA, 1972 100 335 1,355 400<br />

M262 CALIFORNIA COASTAL RANGE WOODLAND-SHRUB-CONIFER PROVINCE<br />

Los Angeles County, CA, 1914 80 Unknown 60,069 17,730<br />

Los Angeles County, CA, 1928 100 36 45,680 13,483<br />

Los Angeles County, CA, 1933 100 356 67,943 20,054<br />

San Dimas, W. Fork, CA, 1961 100 40 54,906 16,206<br />

Glendora, Glencoe, CA, 1969 80 1,143 203,280 60,000<br />

Glendora, Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow, CA, 1969 80 1,143 221,026 65,238<br />

Big Sur, Pfiefer, CA, 1972 100 21 22,588 6,667<br />

Sierra Madre, CA, 1978 100 38 7,650 2,258<br />

San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o, CA, 1980 NA Unknown 160,432 47,353<br />

Laguna Cany<strong>on</strong>, CA, 1993 85 51 73,303 21,636<br />

Hidden Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, CA, 1978 100 250 84,700 25,000<br />

Sierra Madre, CA, 1978 100 38 7,650 2,258<br />

Topanga, CA, 1994 100 66 783 231<br />

Ventura, Slide Creek, CA, 1986 100 122 871 257<br />

M331 ROCKY MOUNTAIN STEPPE-OPEN WOODLAND-CONIFEROUS FOREST<br />

Glenwood Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, CO, 1994 97 17 41,537 12,260<br />

Glenwood Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, CO, 1994 58 17 7,247 2,139<br />

M341 NV-UT SEMI-DESERT-CONIFEROUS FOREST-ALPINE MEADOW<br />

Santaqu<str<strong>on</strong>g>in</str<strong>on</strong>g>, UT, 2001 29 12 304,761 89,953<br />

Santaqu<str<strong>on</strong>g>in</str<strong>on</strong>g>, UT, 2001 28 12 31,657 9,344<br />

M313 AZ-NM MOUNTAINS SEMIDESERT-WOODLAND-CONIFER PROVINCE<br />

Huachuca Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, AZ, 1988 80 8 56,468 16,667<br />

1 Bailey’s (1995) descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecoregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Sediment Yields<br />

Basel<str<strong>on</strong>g>in</str<strong>on</strong>g>e Yields—Some reference sediment yield<br />

basel<str<strong>on</strong>g>in</str<strong>on</strong>g>es are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> tables 2.3, 2.5, <strong>and</strong> 2.6.<br />

Natural erosi<strong>on</strong> rates for undisturbed forests <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Western United States <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 0.01 to 2.47 t<strong>on</strong>s/<br />

acre/year (less than 0.01 to 5.53 Mg/ha/year) are higher<br />

than Eastern United States yields <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.05 to 0.10 t<strong>on</strong>s/<br />

acre/year (0.1 to 0.2 Mg/ha/year) but d<strong>on</strong>’t approach<br />

the upper limit <str<strong>on</strong>g>of</str<strong>on</strong>g> geologic erosi<strong>on</strong> (Maxwell <strong>and</strong> Neary<br />

1991). These differences are due to natural site factors<br />

such as soil <strong>and</strong> geologic erosivity, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> geologic<br />

uplift, tect<strong>on</strong>ic activity, slope, ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall amount <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, vegetati<strong>on</strong> density <strong>and</strong> percent cover, <strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency. L<strong>and</strong>scape-disturb<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities such<br />

as mechanical site preparati<strong>on</strong> (6.7 t<strong>on</strong>s/acre; 15 Mg/<br />

ha/year; Neary <strong>and</strong> Hornbeck 1994), agriculture (249.8<br />

t<strong>on</strong>s/acre; 560 Mg/ha/year; Lars<strong>on</strong> <strong>and</strong> others 1983),<br />

<strong>and</strong> road c<strong>on</strong>structi<strong>on</strong> (62.4 t<strong>on</strong>s/acre; 140 Mg/ha/year;<br />

Swift 1984) produce the most sediment loss <strong>and</strong> can<br />

match or exceed the upper limit <str<strong>on</strong>g>of</str<strong>on</strong>g> natural geologic<br />

erosi<strong>on</strong>.<br />

Yields from Fires—Fire-related sediment yields<br />

vary c<strong>on</strong>siderably, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, climate,<br />

vegetati<strong>on</strong>, <strong>and</strong> geomorphic factors such as<br />

topography, geology, <strong>and</strong> <strong>soils</strong> (Anders<strong>on</strong> <strong>and</strong> others<br />

1976, Swans<strong>on</strong> 1981). In some regi<strong>on</strong>s, over 60 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the total l<strong>and</strong>scape sediment producti<strong>on</strong> over the<br />

l<strong>on</strong>g term is <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> that sediment loss<br />

can occur the first year after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rice 1974,<br />

Agee 1993, DeBano <strong>and</strong> others 1996, DeBano <strong>and</strong><br />

others 1998, Wohlgemuth <strong>and</strong> others 1998, Robichaud<br />

<strong>and</strong> Brown 1999). An example is the large amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment that filled <str<strong>on</strong>g>in</str<strong>on</strong>g> a 10 acre (4 ha) lake <strong>on</strong> the<br />

Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest after the Rattlesnake<br />

Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 1996 (fig. 2.16). Tables 2.8, 2.9, <strong>and</strong> 2.10 show<br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment yield <str<strong>on</strong>g>in</str<strong>on</strong>g>creases from the first<br />

46 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 2.16—Rucker Lake, Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest, filled <str<strong>on</strong>g>in</str<strong>on</strong>g> by<br />

erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rattlesnake Fire, Chiricahua Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Ariz<strong>on</strong>a.<br />

(Photo by Daniel Neary).<br />

Table 2.7—Sediment losses produced by different l<strong>and</strong> management activities.<br />

Locati<strong>on</strong> Management activity 1 st year sediment loss Reference<br />

t<strong>on</strong>s/ac Mg/ha 1<br />

CONTINENTAL UNITED STATES<br />

USA Cropl<strong>and</strong> Lars<strong>on</strong> <strong>and</strong> others 1983<br />

Maximum tolerance 5.00 11.20<br />

Maximum loss 249.98 560.50<br />

Eastern U.S.A. Forest roadbuild<str<strong>on</strong>g>in</str<strong>on</strong>g>g 62.44 140.00 Swift 1984<br />

M212 ADIRONDACK-NEW ENGLAND MIXED FOREST PROVINCE 2<br />

New Hampshire Clearcut 0.16 0.37<br />

231 SOUTHEASTERN MIXED FOREST PROVINCE<br />

North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Cut, shear, disk 4.18 9.37 Douglass <strong>and</strong> Godw<str<strong>on</strong>g>in</str<strong>on</strong>g> 1980<br />

Virg<str<strong>on</strong>g>in</str<strong>on</strong>g>ia Cut, shear, disk 7.14 15.00 Fox <strong>and</strong> others 1983<br />

Mississippi Cut, disk, bed 6.36 14.25 Beasley 1979<br />

232 COASTAL PLAIN MIXED FOREST PROVINCE<br />

Florida Clearcut, w<str<strong>on</strong>g>in</str<strong>on</strong>g>drow 0.02 0.04 Riekerk 1983<br />

M231 OUCACHITA MIXED FOREST-MEADOW PROVINCE<br />

Arkansas Clearcut, shear 0.11 0.54 Beasley <strong>and</strong> others 1986<br />

M313 AZ-NM MOUNTAINS SEMIDESERT-WOODLAND-CONIFER PROVINCE<br />

Ariz<strong>on</strong>a Clearcut, road<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.06 0.14 Neary <strong>and</strong> Hornbeck 1994<br />

M332 MIDDLE ROCKY MOUNTAIN STEPPE-CONIFER-MEADOW PROVINCE<br />

M<strong>on</strong>tana Clearcut 0.08 0.18 DeByle <strong>and</strong> Packer 1972<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE<br />

Oreg<strong>on</strong> Clearcut, road<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.65 0 .46 Neary <strong>and</strong> Hornbeck 1994<br />

1 Mg/ha is metric t<strong>on</strong>s per hectare.<br />

2 Bailey’s (1995) descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecoregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 47


Table 2.8—Sediment losses the first year after prescribed (Rx) <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, part 1.<br />

Locati<strong>on</strong> Management activity 1 st year sediment loss Reference<br />

t<strong>on</strong>s/ac Mg/ha 1<br />

231 SOUTHEASTERN MIXED FOREST PROVINCE 2<br />

South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Van Lear <strong>and</strong> others 1985<br />

C<strong>on</strong>trol 0.012 0.027<br />

Understory burn (R=2) 0.019 0.042<br />

Burn, cut (R=2) 0.067 0.151<br />

North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Southern hardwoods Copley <strong>and</strong> others 1944<br />

C<strong>on</strong>trol 0.002 0.004<br />

Semi-annual Rx burn 3.077 6.899<br />

Mississippi Scrub oak Ursic 1970<br />

C<strong>on</strong>trol 0.210 0.470<br />

Rx burn (R=3 yr) 0.509 1.142<br />

Mississippi Scrub oak Meg<str<strong>on</strong>g>in</str<strong>on</strong>g>nis 1935<br />

C<strong>on</strong>trol 0.025 0.056<br />

Rx burn 0.330 0.739<br />

Texas Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Pope <strong>and</strong> others 1946<br />

C<strong>on</strong>trol 0.050 0.112<br />

Annual Rx burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.359 0.806<br />

Texas Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Fergus<strong>on</strong> 1957<br />

C<strong>on</strong>trol 0.100 0.224<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>gle Rx burn 0.210 0.470<br />

M231 OUACHITA MIXED FOREST-MEADOW PROVINCE<br />

Arkansas Shortleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Miller <strong>and</strong> others 1988<br />

C<strong>on</strong>trol 0.016 0.036<br />

Cut, slash Rx burn 0.106 0.237<br />

M222 OZARK BROADLEAF FOREST PROVINCE<br />

Oklahoma Mixed hardwoods Daniel <strong>and</strong> others 1943<br />

C<strong>on</strong>trol 0.010 0.022<br />

Annual Rx burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.110 0.246<br />

1 Mg/ha is metric t<strong>on</strong>s per hectare.<br />

2 Bailey’s (1995) descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecoregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

year after prescribed burns <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Sediment<br />

yields 1 year after prescribed burns <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

range from very low, <str<strong>on</strong>g>in</str<strong>on</strong>g> flat terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> major ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events, to extreme, <str<strong>on</strong>g>in</str<strong>on</strong>g> steep terra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

affected by high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity thunderstorms. Erosi<strong>on</strong> <strong>on</strong><br />

burned areas typically decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent years as<br />

the site stabilizes, but the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery varies<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> burn or <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> vegetati<strong>on</strong><br />

recovery.<br />

Soil erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can vary from under 0.1<br />

t<strong>on</strong>s/acre/year (0.1 Mg/ha/year) to 6.7 t<strong>on</strong>s/acre/year<br />

(15 Mg/ha/year) <str<strong>on</strong>g>in</str<strong>on</strong>g> prescribed burns, <strong>and</strong> from less<br />

than 0.1 t<strong>on</strong>s/acre (less than 0.1 Mg/ha/year) <str<strong>on</strong>g>in</str<strong>on</strong>g> lowseverity<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, to more than 164.6 t<strong>on</strong>s/acre/year<br />

(369 Mg/ha/year) <str<strong>on</strong>g>in</str<strong>on</strong>g> high-severity wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> steep<br />

slopes (Hendricks <strong>and</strong> Johns<strong>on</strong> 1944, Megahan <strong>and</strong><br />

Molitor 1975, Neary <strong>and</strong> Hornbeck 1994, Robichaud<br />

<strong>and</strong> Brown 1999). For example, Radek (1996) observed<br />

erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.13 t<strong>on</strong>s/acre/year (0.3 Mg/ha/year) to 0.76<br />

t<strong>on</strong>s/acre/year (1.7 Mg/ha/year) from several large<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that covered areas rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 494 to 4,370<br />

acres (200 to 1,770 ha) <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern Cascades<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Three years after these <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, large erosi<strong>on</strong>al<br />

events occurred from spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>storms, not<br />

from snowmelt. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment produced did not<br />

leave the burned area. Sartz (1953) reported an average<br />

soil loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (37 mm) after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> a<br />

north-fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g slope <str<strong>on</strong>g>in</str<strong>on</strong>g> the Oreg<strong>on</strong> Cascades. Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop<br />

splash <strong>and</strong> sheet erosi<strong>on</strong> accounted for the measured<br />

soil loss. Annual precipitati<strong>on</strong> was 42.1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (1,070<br />

mm), with a maximum <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.54 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch/hour (90<br />

mm/hour). Vegetati<strong>on</strong> covered the site with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1 year<br />

after the burn. Robichaud <strong>and</strong> Brown (1999) reported<br />

first-year erosi<strong>on</strong> rates after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> from 0.5 to 1.1<br />

t<strong>on</strong>s/acre (1.1 to 2.5 Mg/ha/year), decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g by an<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude by the sec<strong>on</strong>d year, <strong>and</strong> to no<br />

48 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 2.9—Sediment losses the first year after prescribed (Rx) <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, part 2.<br />

Locati<strong>on</strong> Management activity 1 st year sediment loss Reference<br />

t<strong>on</strong>s/ac Mg/ha 1<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE 2<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Mixed c<strong>on</strong>ifer Helvey 1980<br />

C<strong>on</strong>trol 0.012 0.028<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 1.049 2.353<br />

M261 SIERRAN STEPPE-MIXED FOREST-CONIFER FOREST PROVINCE<br />

California P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Biswell <strong>and</strong> Schultz 1965<br />

C<strong>on</strong>trol


Table 2.10—Sediment losses the first year after prescribed (Rx) <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, part 3<br />

Locati<strong>on</strong> Management activity 1 st year sediment loss Reference<br />

t<strong>on</strong>s/ac Mg/ha 1<br />

M313 AZ-NM MOUNTAINS SEMIDESERT-WOODLAND-CONIFER PROVINCE 2<br />

Ariz<strong>on</strong>a P<strong>on</strong>derosa P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Campbell <strong>and</strong> others 1977<br />

C<strong>on</strong>trol 0.001 0.003 DeBano <strong>and</strong> others 1996<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> low severity 0.036 0.080<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> moderate severity 0.134 0.300<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> high severity 0.559 1.254<br />

Ariz<strong>on</strong>a Mixed c<strong>on</strong>ifer Hendricks <strong>and</strong> Johns<strong>on</strong> 1944<br />

C<strong>on</strong>trol


Management Implicati<strong>on</strong>s ________<br />

Resource managers need to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the physical properties that occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The most important physical process functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

soil. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g not <strong>on</strong>ly affects soil physical properties<br />

but also changes many <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical <strong>and</strong><br />

biological properties <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 3<br />

<strong>and</strong> 4, respectively.<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s present their own unique c<strong>on</strong>cerns. Although<br />

little can be d<strong>on</strong>e to modify soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, managers need to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the susceptibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> severely burned areas to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong><br />

erosi<strong>on</strong>. Excessive heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>soils</strong><br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these unc<strong>on</strong>trollable <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can change soil structure<br />

to such an extent that <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> is impeded,<br />

creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g excessive run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellent <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s may present special c<strong>on</strong>cerns with erosi<strong>on</strong><br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> needs to be addressed when<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g post<str<strong>on</strong>g>fire</str<strong>on</strong>g> treatments. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

is an important activity <strong>on</strong> areas burned by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

where it is necessary to reestablish plant cover as so<strong>on</strong><br />

as possible to protect the bare soil surface from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop<br />

impact. However, discreti<strong>on</strong> is needed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to<br />

apply the most effective <strong>and</strong> practical post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatments. Numerous revegetati<strong>on</strong> techniques<br />

that are available for use <strong>on</strong> burned <strong>water</strong>sheds<br />

are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong><br />

<strong>and</strong> elsewhere (Robichaud <strong>and</strong> others 2000).<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, however, presents the<br />

manager with alternatives for m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the damage<br />

d<strong>on</strong>e to the soil. The least amount <str<strong>on</strong>g>of</str<strong>on</strong>g> damage occurs<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g cool-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. These <str<strong>on</strong>g>fire</str<strong>on</strong>g>s do<br />

not heat the soil substantially, <strong>and</strong> the changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

most soil properties are <strong>on</strong>ly m<str<strong>on</strong>g>in</str<strong>on</strong>g>or <strong>and</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g> short<br />

durati<strong>on</strong>. However, the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuels<br />

(for example, slash, large woody debris) can cause<br />

substantial damage to the soil resource, although<br />

these l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> are limited to <strong>on</strong>ly a small<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>and</strong>scape where the fuels are piled.<br />

These types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> use should be avoided whenever<br />

possible. The burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong> is also a special<br />

case where extensive damage can occur unless burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescripti<strong>on</strong>s are carefully planned.<br />

Summary ______________________<br />

The physical processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are<br />

complex <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude both heat transfer <strong>and</strong> the associated<br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical characteristics. The most<br />

important soil physical characteristic affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> is<br />

soil structure because the organic matter comp<strong>on</strong>ent<br />

can be lost at relatively low temperatures. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil structure <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the bulk density <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <strong>and</strong><br />

reduces its porosity, thereby reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil productivity<br />

<strong>and</strong> mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil more vulnerable to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>and</strong> erosi<strong>on</strong>. Although heat is transferred <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil by<br />

several mechanisms, its movement by vaporizati<strong>on</strong> <strong>and</strong><br />

c<strong>on</strong>densati<strong>on</strong> is the most important. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil is an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperature<br />

that affects the physical, chemical, <strong>and</strong> biological properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. When organic substances are moved<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil by vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong><br />

they can cause a <strong>water</strong>-repellent soil c<strong>on</strong>diti<strong>on</strong> that<br />

further accentuates post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>. Water<br />

repellency accelerates post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn<br />

creates extensive networks <str<strong>on</strong>g>of</str<strong>on</strong>g> surface rill erosi<strong>on</strong>. Water<br />

repellency also <str<strong>on</strong>g>in</str<strong>on</strong>g>creases erosi<strong>on</strong> by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical properties<br />

depends <strong>on</strong> the temperature threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil properties<br />

<strong>and</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The greatest change<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical properties occurs when smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

burn for l<strong>on</strong>g periods.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 51


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

52 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Jennifer D. Knoepp<br />

Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Chapter 3:<br />

Soil Chemistry<br />

Introducti<strong>on</strong> ____________________<br />

The chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil that are affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual chemical characteristics,<br />

chemical reacti<strong>on</strong>s, <strong>and</strong> chemical processes (DeBano<br />

<strong>and</strong> others 1998). The soil chemical characteristics<br />

most comm<strong>on</strong>ly affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> are organic matter,<br />

carb<strong>on</strong> (C), nitrogen (N), phosphorus (P), sulfur (S),<br />

cati<strong>on</strong>s, cati<strong>on</strong> exchange capacity, pH, <strong>and</strong> buffer power.<br />

Some purely chemical reacti<strong>on</strong>s occur <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. These<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s adsorbed <strong>on</strong> the surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles <strong>and</strong> humus with their<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s. Another predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ately chemical<br />

reacti<strong>on</strong> is the chemical weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks <strong>and</strong><br />

their eventual transformati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to sec<strong>on</strong>dary clay<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil formati<strong>on</strong>. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chemical<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rock material, the soil <strong>and</strong> its surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soluti<strong>on</strong> become enriched with several cati<strong>on</strong>s.<br />

Associated with the chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> soil formati<strong>on</strong> are physical forces<br />

(freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> thaw<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <strong>and</strong> biological<br />

activities (producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic acids dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> humus) that also accelerate soil<br />

development. The most comm<strong>on</strong> chemical processes<br />

occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> that are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, however, are<br />

those mechanisms that are <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient availability<br />

<strong>and</strong> the losses <strong>and</strong> additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients to the<br />

soil.<br />

Soil Chemical<br />

Characteristics _________________<br />

The chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> range from the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic cati<strong>on</strong>s—for example, calcium (Ca), sodium<br />

(Na), magnesium (Mg), potassium (K), <strong>and</strong> so forth—<br />

that are adsorbed <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> clay materials to<br />

those c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly with<str<strong>on</strong>g>in</str<strong>on</strong>g> the organic matrix <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil—for example, organic matter, C, N, P, S. All<br />

chemical characteristics are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, although<br />

the temperatures at which changes occur can vary<br />

widely. The best estimates available <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature<br />

for the threshold temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual soil chemical<br />

characteristics are given <str<strong>on</strong>g>in</str<strong>on</strong>g> table 3.1.<br />

The published <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual chemical c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>soils</strong> <strong>and</strong> organic matter are c<strong>on</strong>tradictory <strong>and</strong> have<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten led to differ<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>clusi<strong>on</strong>s about the magnitude<br />

<strong>and</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical changes that<br />

actually occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Different studies have<br />

c<strong>on</strong>cluded that soil chemical c<strong>on</strong>stituents <str<strong>on</strong>g>in</str<strong>on</strong>g>crease,<br />

decrease, or rema<str<strong>on</strong>g>in</str<strong>on</strong>g> the same (DeBano <strong>and</strong> others<br />

1998). This has been particularly true for studies<br />

report<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> N <strong>and</strong> other nutrients that can<br />

volatilize readily dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (for example, organic<br />

matter, sulfur, <strong>and</strong> phosphorus). Differ<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>clusi<strong>on</strong>s<br />

arise primarily because <str<strong>on</strong>g>of</str<strong>on</strong>g> the method used for<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 53


Table 3.1—Temperature thresholds for several soil chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> soil.<br />

Soil characteristic Threshold temperature Source<br />

°F °C<br />

Organic matter 212 100 Hosk<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1938<br />

Nitrogen 414 200 White <strong>and</strong> others 1973<br />

Sulfur 707 375 Tiedemann 1987<br />

Phosphorus <strong>and</strong> potassium 1,425 774 Rais<strong>on</strong> <strong>and</strong> others 1985a,b<br />

Magnesium 2,025 1,107 DeBano 1991<br />

Calcium 2,703 1,484 Rais<strong>on</strong> <strong>and</strong> others 1985a,b<br />

Manganese 3,564 1,962 Rais<strong>on</strong> <strong>and</strong> others 1985a,b<br />

calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chemical c<strong>on</strong>stituents. Chemical<br />

changes can be expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> either percentages (or<br />

some other expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s, for example,<br />

ppm or mg/kg) or be based <strong>on</strong> the actual changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

total amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stituent (for example, pounds/<br />

acre or kg/ha). Before <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the percent <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

chemical c<strong>on</strong>stituent is usually based <strong>on</strong> the amount<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> a pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> sample that can c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> variable<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. In c<strong>on</strong>trast, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g> the percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the same chemical c<strong>on</strong>stituent<br />

is based <strong>on</strong> the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> a burned sample that<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> ash al<strong>on</strong>g with charred<br />

<strong>and</strong> unburned organic matter. Thus, the c<strong>on</strong>fusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nutrient changes arises because different bases are<br />

used for calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the change <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular chemical<br />

c<strong>on</strong>stituent (that is, based <strong>on</strong> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly organic<br />

matter before combusti<strong>on</strong> as compared to ashy <strong>and</strong><br />

unburned materials follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>). This c<strong>on</strong>fusi<strong>on</strong><br />

between percentages <strong>and</strong> total amounts was first<br />

reported <str<strong>on</strong>g>in</str<strong>on</strong>g> a study <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> N loss<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Knight 1966). This study <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated<br />

that the differences between percent N <strong>and</strong> total<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N started at 212 °F (100 °C) <strong>and</strong> became<br />

greater until about 932 °F (500 °C). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

difficulties <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong> percentage<br />

data, the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussi<strong>on</strong> <strong>on</strong> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> chemical c<strong>on</strong>stituents will first focus <strong>on</strong><br />

the more fundamental changes <str<strong>on</strong>g>in</str<strong>on</strong>g> chemical c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

As a general rule, the total amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

elements are never <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The total amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different chemical elements <strong>on</strong> a particular burned<br />

site most likely decrease, although <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases may<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g> the same (for example, elements with high<br />

temperature thresholds such as Mg, Ca, <strong>and</strong> others<br />

listed <str<strong>on</strong>g>in</str<strong>on</strong>g> table 3.1). The <str<strong>on</strong>g>fire</str<strong>on</strong>g>, however, does change the<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> different elements <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> many cases makes<br />

them more available for plants <strong>and</strong> other biological<br />

organisms. A classic example <str<strong>on</strong>g>of</str<strong>on</strong>g> this is total N c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the ecosystem organic matter (table 3.2).<br />

When organic matter is combusted, total N <strong>on</strong> the site<br />

is always decreased, although <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> the available<br />

forms <str<strong>on</strong>g>of</str<strong>on</strong>g> N are likely to occur as is discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

later secti<strong>on</strong>, “Nitrogen.” Therefore, managers must<br />

be alert when <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g the significance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sometimes c<strong>on</strong>tradictory changes <str<strong>on</strong>g>in</str<strong>on</strong>g> different nutrients<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> that are reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature.<br />

The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g secti<strong>on</strong>s focus <strong>on</strong> describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g these changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g chemical processes <strong>and</strong> to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate the management implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> ecosystem productivity <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

management.<br />

Table 3.2—Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g at low, medium, <strong>and</strong> high severities <strong>on</strong> organic matter <strong>and</strong><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizable N <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Idaho. (Adapted from Nieh<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1985, <strong>and</strong><br />

Harvey <strong>and</strong> others 1981).<br />

Organic matter M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizable N<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral Organic<br />

Treatment 2.5-7.5 cm 2.5-7.5 cm 0-2.5 cm Total N<br />

Percent Change (%) ppm (mg/kg) ppm (mg/kg) Change (%)<br />

Undisturbed<br />

Clearcut<br />

3.6 0 9.4 68 0<br />

No burn 3.9 +8 9.7 97 +22<br />

Low 4.1 +12 9.5 75 +8<br />

Medium 2.8 –22 9.3 5 –82<br />

High 0.6 –83 0.7 0 –99<br />

54 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Organic Matter <strong>and</strong> Carb<strong>on</strong><br />

Many chemical properties <strong>and</strong> processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> depend up<strong>on</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter.<br />

Not <strong>on</strong>ly does it play a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil, but it also affects the physical properties (see<br />

chapter 2) <strong>and</strong> the biological properties (see chapter 4)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> as well. Soil organic matter is particularly<br />

important for nutrient supply, cati<strong>on</strong> exchange capacity,<br />

<strong>and</strong> <strong>water</strong> retenti<strong>on</strong>. However, burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>sumes<br />

aboveground organic material (future soil organic<br />

matter, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g large logs), <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can<br />

c<strong>on</strong>sume soil organic matter (fig. 3.1). The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussi<strong>on</strong> is to focus as much as possible<br />

<strong>on</strong> the purely chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

<strong>and</strong> <strong>on</strong> changes that occur as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Because organic C is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the major c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter, the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter <strong>and</strong><br />

organic C dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g are c<strong>on</strong>sidered to be<br />

similar for all practical purposes.<br />

Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Matter <str<strong>on</strong>g>in</str<strong>on</strong>g> Different Ecosystems—Organic<br />

compounds are found <str<strong>on</strong>g>in</str<strong>on</strong>g> both<br />

aboveground <strong>and</strong> belowground biomass where they<br />

make up the st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g dead <strong>and</strong> live plants <strong>and</strong> dead<br />

organic debris (that is, leaves, stems, twigs, <strong>and</strong> logs)<br />

that accumulate <strong>on</strong> the soil surface <strong>and</strong> throughout<br />

the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (DeBano <strong>and</strong> others 1998). Organic<br />

matter found <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> at least seven<br />

comp<strong>on</strong>ents, namely:<br />

• The L-layer, (O i) which is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> readily<br />

identifiable plant materials.<br />

• The F-layer, (O e) which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s partially decomposed<br />

organic matter but can still be identified<br />

as different plant parts (needles, leaves,<br />

stems, twigs, bark, <strong>and</strong> so forth).<br />

• The H-layer, (O a) which is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> completely<br />

decayed <strong>and</strong> dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated organic<br />

Figure 3.1—Large logs combust<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>. (Photo by Daniel Neary).<br />

materials, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which is usually mixed<br />

with the upper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers.<br />

• Coarse woody debris that is eventually decayed<br />

but can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the soil surface or<br />

buried <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil for l<strong>on</strong>g periods.<br />

• Charcoal or other charred materials that become<br />

mixed with the forest floor <strong>and</strong> uppermost<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil.<br />

• The uppermost part <str<strong>on</strong>g>of</str<strong>on</strong>g> the A-horiz<strong>on</strong>, which is<br />

composed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> humus <strong>and</strong><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles.<br />

• A mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, plant roots, <strong>and</strong><br />

biomass (live <strong>and</strong> dead) that is c<strong>on</strong>centrated<br />

primarily <str<strong>on</strong>g>in</str<strong>on</strong>g> the A-horiz<strong>on</strong> but may extend<br />

downward <str<strong>on</strong>g>in</str<strong>on</strong>g>to the B-horiz<strong>on</strong> or deeper depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

up<strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the site.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground <strong>and</strong> belowground organic<br />

matter varies widely between different vegetati<strong>on</strong><br />

types depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> <strong>on</strong> the temperature <strong>and</strong><br />

moisture c<strong>on</strong>diti<strong>on</strong>s prevail<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular area<br />

(DeBano <strong>and</strong> others 1998). In almost all <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

throughout the world, greater quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> C (a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter) are found belowground than<br />

aboveground (fig. 3.2). In grassl<strong>and</strong>s, savannas, <strong>and</strong><br />

tundra-covered areas, much greater quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

C are found <str<strong>on</strong>g>in</str<strong>on</strong>g> the underground plant parts than<br />

aboveground (less than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total C <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

these herbaceous vegetati<strong>on</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is found<br />

Figure 3.2—Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C <strong>and</strong> soil organic matter<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g litter) <str<strong>on</strong>g>in</str<strong>on</strong>g> major ecosystem types <str<strong>on</strong>g>of</str<strong>on</strong>g> the world.<br />

(Adapted from J. M. Anders<strong>on</strong>, 1991. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change <strong>on</strong> decompositi<strong>on</strong> processes <str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong><br />

<strong>and</strong> c<strong>on</strong>iferous forest. Ecological Applicati<strong>on</strong>s. 1:<br />

326-347. Copyright © 1991 Ecological Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

America.)<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 55


aboveground). Tundra <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are unique <str<strong>on</strong>g>in</str<strong>on</strong>g> that<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter accumulate <strong>on</strong> the<br />

soil surface because the low year-l<strong>on</strong>g temperatures<br />

severely limit decompositi<strong>on</strong>. In forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, C<br />

is more evenly distributed aboveground <strong>and</strong><br />

belowground (for example, temperate deciduous <strong>and</strong><br />

boreal forests). In general, <strong>soils</strong> with larger proporti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> the aboveground biomass<br />

<strong>and</strong> <strong>on</strong> their forest floors are more pr<strong>on</strong>e to disturbances<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> their nutrient <strong>and</strong> C regimes<br />

than those <str<strong>on</strong>g>in</str<strong>on</strong>g> which most <str<strong>on</strong>g>of</str<strong>on</strong>g> the C <str<strong>on</strong>g>in</str<strong>on</strong>g> the ecosystem is<br />

located belowground.<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Matter Accumulati<strong>on</strong>—<br />

In forests, the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor are resp<strong>on</strong>sible<br />

for the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter, <strong>and</strong> the<br />

forest floor provides a major storage reservoir for<br />

nutrients that are cycled with<str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

(fig. 3.3). An aggrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest ecosystem sequesters<br />

nutrients <strong>and</strong> C aboveground <str<strong>on</strong>g>in</str<strong>on</strong>g> both the biomass <strong>and</strong><br />

the forest floor (Knoepp <strong>and</strong> Swank 1994). Over many<br />

years this material forms the forest floor or the organic<br />

soil horiz<strong>on</strong>s (designated as Oi, Oe, <strong>and</strong> Oa horiz<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

part A, fig A.1). Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil type, organic<br />

matter may be c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor or<br />

spread <str<strong>on</strong>g>in</str<strong>on</strong>g> decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g amounts downward through the<br />

soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (fig. 3.4 <strong>and</strong> A.2).<br />

The forest floor <str<strong>on</strong>g>in</str<strong>on</strong>g>creases dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest development<br />

<strong>and</strong> aggradati<strong>on</strong> when the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> is greater<br />

than the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>. For example, Knoepp<br />

<strong>and</strong> Swank (1994) found that forest floor mass<br />

Figure 3.3—Nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> natural envir<strong>on</strong>ments.<br />

(Adapted from Brown 1980.)<br />

Figure 3.4—Burn out <str<strong>on</strong>g>of</str<strong>on</strong>g> high organic matter soil <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Barca Slough, V<strong>and</strong>enburg Air Force Base,<br />

California. (Photo by U.S. Air Force).<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased by 28 <strong>and</strong> 45 percent over a 10-year period<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> an aggrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g mixed oak (Quercus spp.) forest <strong>and</strong><br />

white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us strobus) plantati<strong>on</strong>, respectively.<br />

In Ariz<strong>on</strong>a, Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett (1992) exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

forest floor accumulati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P.<br />

p<strong>on</strong>derosa) st<strong>and</strong> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g several different age “subst<strong>and</strong>s”<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> it <strong>and</strong> found several significant differences<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> forest floor mass am<strong>on</strong>g the subst<strong>and</strong>s. In<br />

general, the younger sapl<str<strong>on</strong>g>in</str<strong>on</strong>g>g areas had the smallest<br />

accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor materials compared to<br />

old growth p<str<strong>on</strong>g>in</str<strong>on</strong>g>e subst<strong>and</strong>s that had the greatest. Over<br />

l<strong>on</strong>g periods the <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <strong>and</strong> outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor<br />

materials, coarse woody debris, f<str<strong>on</strong>g>in</str<strong>on</strong>g>e woody debris, <strong>and</strong><br />

leaf litter eventually reach a dynamic equilibrium<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> the st<strong>and</strong> type (for example, c<strong>on</strong>iferous<br />

versus hardwood) <strong>and</strong> forest management practices<br />

used (for example, uncut versus cut, log <strong>on</strong>ly<br />

versus whole-tree harvest).<br />

Coarse Woody Debris—Coarse woody debris (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

slash piles) is an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

organic matter pools found <str<strong>on</strong>g>in</str<strong>on</strong>g> forested <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

(fig. 3.5). In many cases it is partially or totally<br />

covered by soil <strong>and</strong> humus layers, <strong>and</strong> it has been<br />

found to comprise more than 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

surface organic matter (this can amount to 16.5 to<br />

22.3 t<strong>on</strong>s/acre or 37 to 50 Mg/ha) <str<strong>on</strong>g>in</str<strong>on</strong>g> old growth forests<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Inl<strong>and</strong> Northwest (Page-Dumroese <strong>and</strong> others<br />

1991, Jurgensen <strong>and</strong> others 1997). Coarse woody<br />

debris, al<strong>on</strong>g with smaller organic matter, enhances<br />

the physical, chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil <strong>and</strong> thereby c<strong>on</strong>tributes directly to site productivity<br />

(Brooks <strong>and</strong> others 2003). It also provides a<br />

favorable microenvir<strong>on</strong>ment for the establishment<br />

56 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


A<br />

B<br />

Figure 3.5—Coarse woody debris: (A) slash pile<br />

from p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper th<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g operati<strong>on</strong>, Apache-<br />

Sitgreaves Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a; (B) logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

slash <str<strong>on</strong>g>in</str<strong>on</strong>g> a Douglas-fir <strong>and</strong> mixed c<strong>on</strong>ifer, Mt. Baker-<br />

Snoqualmie Nati<strong>on</strong>al Forest, Cascade Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. (Photos by Malchus Baker <strong>and</strong> Kev<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Ryan, respectively).<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>and</strong> plant growth. The microbiological<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse woody debris is discussed further <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chapter 4.<br />

Fire Effects—Fire not <strong>on</strong>ly affects the organic<br />

matter by directly affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g its chemical compositi<strong>on</strong><br />

but it also <str<strong>on</strong>g>in</str<strong>on</strong>g>directly affects the subsequent decompositi<strong>on</strong><br />

rates. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> changes is related to the<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the burn (for example, low, moderate, or<br />

high).<br />

Chemical Changes: The low temperature threshold<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter makes it especially sensitive to soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (table 3.1). Also, a major porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the organic matter is located <str<strong>on</strong>g>in</str<strong>on</strong>g> the uppermost part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (surface litter <strong>and</strong> humus layers) where<br />

it is exposed directly to the heat radiated downward<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (see part A). The changes <str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

matter dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g have been <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest to scientists for more than 60 years (Hosk<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

1938), <strong>and</strong> the changes reported by these earlier studies<br />

showed that:<br />

• Losses <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter can occur at temperatures<br />

below 212 °F (100 °C).<br />

• Volatile c<strong>on</strong>stituents <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter are<br />

lost at temperatures up to 392 °F (200 °C).<br />

• Destructive distillati<strong>on</strong> destroys about 85 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil organic matter at temperatures<br />

between 392 <strong>and</strong> 572 °F (200 <strong>and</strong> 300 °C).<br />

• Above 572 °F (300 °C), the greater part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

residual organic matter c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>aceous<br />

material, which is f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally lost up<strong>on</strong><br />

igniti<strong>on</strong>.<br />

• Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil to 842 °F (450 °C) for 2 hours,<br />

or to 932 °F (500 °C) for 1/2 hour, destroys<br />

about 99 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter.<br />

Recent studies <strong>on</strong> the detailed heat-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter have improved our underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the specific chemical changes that occur <str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

matter dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (DeBano <strong>and</strong><br />

others 1998). At low temperatures, the changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

organic matter affect the more sensitive functi<strong>on</strong>al<br />

groups; at higher temperatures the thermal decompositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei occurs (Schnitzer <strong>and</strong> H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman 1964).<br />

At lower temperatures between 482 <strong>and</strong> 752 °F (250<br />

<strong>and</strong> 400 °C) both phenolic OH <strong>and</strong> carboxyl (COOH)<br />

groups are lost, although phenolic groups are the more<br />

stable <str<strong>on</strong>g>of</str<strong>on</strong>g> the two. Another study <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal changes<br />

occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the H-layer under an evergreen oak forest<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Spa<str<strong>on</strong>g>in</str<strong>on</strong>g> showed that oxygen-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g functi<strong>on</strong>al<br />

groups found <str<strong>on</strong>g>in</str<strong>on</strong>g> humic <strong>and</strong> fulvic acids were altered<br />

(Almendros <strong>and</strong> others 1990). Humic acids were<br />

c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to alkali-<str<strong>on</strong>g>in</str<strong>on</strong>g>soluble substances that c<strong>on</strong>tributed<br />

to soil humus, while fulvic acids were transformed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to acid-<str<strong>on</strong>g>in</str<strong>on</strong>g>soluble polymers. Biomass that<br />

was not completely burned c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed both alkalisoluble<br />

lign<str<strong>on</strong>g>in</str<strong>on</strong>g> materials <strong>and</strong> brown products formed<br />

by dehydrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates. The lign<str<strong>on</strong>g>in</str<strong>on</strong>g> compounds<br />

formed were more resistant to further chemical<br />

<strong>and</strong> biological change.<br />

In a separate study, Ross <strong>and</strong> others (1997) found a<br />

decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> total soil C <strong>and</strong> potassium sulfate extractable<br />

C at 1.5 <strong>and</strong> 2.5 years after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. S<strong>and</strong>s (1983)<br />

found that 24 years after an <str<strong>on</strong>g>in</str<strong>on</strong>g>tense site preparati<strong>on</strong><br />

burn <strong>on</strong> s<strong>and</strong>y <strong>soils</strong>, soil C was still lower than <strong>on</strong><br />

adjacent unburned sites. This was generally the case<br />

for all soil C comp<strong>on</strong>ents he exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g total<br />

organic C, extractable C, <strong>water</strong>-soluble C, humic acids,<br />

<strong>and</strong> carbohydrates.<br />

Decompositi<strong>on</strong> rates: In unburned <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, natural<br />

decompositi<strong>on</strong> processes (most biologically mediated)<br />

slowly release nutrients to tree <strong>and</strong> plant roots<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 57


grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor <strong>and</strong> to the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

below. These biological processes add organic matter<br />

<strong>and</strong> nutrients to <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forest envir<strong>on</strong>ments under<br />

moderate temperatures through the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sects<br />

<strong>and</strong> microbes (DeBano 1991). Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, however, acts<br />

as an <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous physical decompositi<strong>on</strong> process<br />

that not <strong>on</strong>ly volatilizes nutrients, such as N, from the<br />

site but also alters the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g organic materials<br />

(St. John <strong>and</strong> Rundel 1976).<br />

Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g not <strong>on</strong>ly rapidly accelerates the rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter decompositi<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself<br />

but can also <str<strong>on</strong>g>in</str<strong>on</strong>g>directly affect post<str<strong>on</strong>g>fire</str<strong>on</strong>g> decompositi<strong>on</strong><br />

rates. For example, Schoch <strong>and</strong> B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley (1986) <strong>and</strong><br />

Rais<strong>on</strong> <strong>and</strong> others (1990) studied loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. taeda)<br />

<strong>and</strong> radiata p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. radiata) plantati<strong>on</strong>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. They found that decompositi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

forest floor <str<strong>on</strong>g>in</str<strong>on</strong>g>creased after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, releas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

amm<strong>on</strong>ium (NH 4) <strong>and</strong> other nutrients. Observed<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient release <strong>and</strong> availability may be<br />

due to the alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter solubility as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The change <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nutrient release <strong>and</strong> availability al<strong>on</strong>g with <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

soil temperature <strong>and</strong> moisture c<strong>on</strong>tent may also <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

biological activity. This resp<strong>on</strong>se may be short<br />

lived, however, because this readily available organic<br />

matter <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes rapidly <strong>and</strong> decompositi<strong>on</strong><br />

rates decrease (Rais<strong>on</strong> <strong>and</strong> others 1990). C<strong>on</strong>versely,<br />

some studies have noted decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> the rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter decompositi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

M<strong>on</strong>le<strong>on</strong> <strong>and</strong> Cromack (1996) measured decreased<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests immediately<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> for up to 12 years.<br />

They c<strong>on</strong>cluded that the lower decompositi<strong>on</strong> rates<br />

may be due to the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased temperature<br />

<strong>and</strong> decreased moisture <str<strong>on</strong>g>in</str<strong>on</strong>g> the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> forest<br />

floor. Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gett (1976) also measured slower decompositi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Australian plantati<strong>on</strong>s <strong>and</strong> native forests<br />

caused by the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperature <strong>and</strong> moisture<br />

as well as a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the diversity <strong>and</strong> density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil fauna follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This suggested that<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a frequent rotati<strong>on</strong> could simplify the litter<br />

fauna <strong>and</strong> flora, but these changes may permanently<br />

alter patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter decompositi<strong>on</strong> <strong>and</strong><br />

nutrient release.<br />

Both <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g affect<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter that is lost as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. These are two characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

that <str<strong>on</strong>g>fire</str<strong>on</strong>g> management specialists can alter with<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g program.<br />

Fire severity: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter burned was reported for a<br />

350 acre (142 ha) wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> that burned a table mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Shen<strong>and</strong>oah Valley (Groeschl<br />

<strong>and</strong> others 1990, 1992, 1993). This wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> left a<br />

mosaic pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> areas that were burned at different<br />

severities. They reported that <strong>on</strong> areas burned by a<br />

low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the forest floor Oi <strong>and</strong> Oe layers were<br />

completely combusted, but the Oa layer rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

High-severity burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g also c<strong>on</strong>sumed the Oa layer. Of<br />

the 10.1 t<strong>on</strong>s/acre (22.6 Mg/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> C present <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

forest floor <str<strong>on</strong>g>in</str<strong>on</strong>g> the unburned areas, no C rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the high-severity burned areas compared to 9.3 t<strong>on</strong>s/<br />

acre (20.8 Mg/ha) C that was left <strong>on</strong> the burned areas<br />

at low severities.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the C <strong>and</strong> N<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor <strong>on</strong> an area support<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

mixed p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-oak overstory with a ericaceous shrub<br />

layer was studied <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southern Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

(Vose <strong>and</strong> Swank 1993, Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong> <strong>and</strong> others 1996).<br />

The study areas were treated with fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g-<strong>and</strong>-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g trees to stimulate p<str<strong>on</strong>g>in</str<strong>on</strong>g>e regenerati<strong>on</strong>.<br />

Carb<strong>on</strong> <strong>and</strong> N c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor <str<strong>on</strong>g>in</str<strong>on</strong>g> these<br />

systems was exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, prior to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> it was found that the forest floor c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed between<br />

15 <strong>and</strong> 22 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total aboveground C <strong>on</strong><br />

the site <strong>and</strong> 44 to 55 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total aboveground<br />

N. Prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> these sites c<strong>on</strong>sumed the<br />

entire Oi layer, but 75 to 116 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total forest<br />

floor C <strong>and</strong> 65 to 97 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the N rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed Oe <strong>and</strong> Oa layers. On these sites, about half<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the total aboveground N pool was c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

forest floor. Total aboveground N losses ranged from<br />

0.086 t<strong>on</strong>s/acre (0.193 Mg/ha) for the lowest severity<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> to 0.214 t<strong>on</strong>s/acre (0.480 Mg/ha) <strong>on</strong> the most<br />

severe burn. Under prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s it is<br />

frequently possible to select appropriate weather c<strong>on</strong>diti<strong>on</strong>s<br />

prior to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (for example, time s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce last<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>, humidity, temperature) to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. Therefore,<br />

it has been recommended that weather c<strong>on</strong>diti<strong>on</strong>s<br />

prior to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (for example, time s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall)<br />

could be used as a predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor c<strong>on</strong>sumpti<strong>on</strong><br />

(Fyles <strong>and</strong> others 1991).<br />

Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> total C <strong>and</strong> N are variable <strong>and</strong> depend<br />

<strong>on</strong> site c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> characteristics. For example,<br />

Grove <strong>and</strong> others (1986) found no change <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

organic C <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface 0 to 1.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (0-3 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g; percent total N, however,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased. Knoepp <strong>and</strong> Swank (1993a,b) found<br />

no c<strong>on</strong>sistent resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> total N <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper soil<br />

layer, but did f<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> NH 4 c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>and</strong> N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>on</strong> areas where a burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment<br />

followed fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Fire frequency: As would be expected, frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g can affect C accumulati<strong>on</strong>s. A study was<br />

carried out <strong>on</strong> tropical savanna sites <str<strong>on</strong>g>in</str<strong>on</strong>g> Africa hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

both clay <strong>and</strong> s<strong>and</strong>y <strong>soils</strong> that were burned repeatedly<br />

every 1, 3, or 5 years (Bird <strong>and</strong> others 2000). While<br />

sites with clay <strong>soils</strong> had greater total C than did the<br />

s<strong>and</strong>y <strong>soils</strong>, they resp<strong>on</strong>ded similarly to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. All<br />

unburned sites had 40 to 50 percent greater C than<br />

burned sites. Low frequency burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (every 5 years)<br />

58 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


esulted <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil C <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 percent<br />

compared to the mean <str<strong>on</strong>g>of</str<strong>on</strong>g> all burned areas. High frequency<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (every year) decreased C about 10<br />

percent. In another study, Wells <strong>and</strong> others (1979)<br />

reported the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a 20-year burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g study <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e plantati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. They found that<br />

periodic burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g over 20-year period removed 27 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor. Annual burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the summer removed 29 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor as<br />

compared to a 54 percent loss result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The total organic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface<br />

soil (0 to 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches or 0 to 5 cm) <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> all<br />

cases, but there was no effect <strong>on</strong> the 2 to 3.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5-<br />

10 cm) soil layer. Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, when they summed<br />

the organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface<br />

0 to 3.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (0-10 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil they found that these<br />

low-severity periodic burns sites had not reduced but<br />

<strong>on</strong>ly redistributed the organic matter.<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> has been found to also affect the<br />

organic matter compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> savannahlike vegetati<strong>on</strong><br />

(referred to as “cerrado”) <str<strong>on</strong>g>in</str<strong>on</strong>g> central Brazil (Roscoe <strong>and</strong><br />

others 2000). On plots exposed to more frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

(burned 10 times <str<strong>on</strong>g>in</str<strong>on</strong>g> 21 years) C <strong>and</strong> N were decreased<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the litter by 1.652 <strong>and</strong> 0.046 t<strong>on</strong>s/acre (3.703 <strong>and</strong><br />

0.104 Mg/ha), respectively, although no significant differences<br />

were noted <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper 3 feet (1 meter) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence<br />

replaced the C 3-C with C 4-C by about 35 percent<br />

throughout the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. This suggested that a more<br />

rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> soil organic matter turnover occurred <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

areas burned by frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <strong>and</strong> as a result the soil<br />

would not be able to replace sufficient C to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

l<strong>on</strong>g-term productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the site.<br />

Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> was returned <str<strong>on</strong>g>in</str<strong>on</strong>g>to overstocked p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s <strong>on</strong> the Mogoll<strong>on</strong> Rim <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a<br />

for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the ecosystem<br />

<strong>and</strong> remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuel buildups (Neary <strong>and</strong> others 2003).<br />

Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s were ignited at <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2, 4, 6,<br />

8, <strong>and</strong> 10 years to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the best <str<strong>on</strong>g>fire</str<strong>on</strong>g> return<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terval for Southwest p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

(Sackett 1980, Sackett <strong>and</strong> others 1996). Two sites<br />

were treated—<strong>on</strong>e <strong>on</strong> volcanic-derived <strong>soils</strong> <strong>and</strong> the<br />

other <strong>on</strong> sedimentary-derived <strong>soils</strong> near Flagstaff,<br />

AZ. Soil total C <strong>and</strong> total N levels were highly variable<br />

<strong>and</strong> exhibited an <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g, but <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent,<br />

c<strong>on</strong>centrati<strong>on</strong> trend related to burn <str<strong>on</strong>g>in</str<strong>on</strong>g>terval. They<br />

ranged from 2.9 to more than 6.0 percent total C <strong>and</strong><br />

0.19 to 0.40 percent total N (fig. 3.6). High spatial<br />

variability was measured with<str<strong>on</strong>g>in</str<strong>on</strong>g> treatments, probably<br />

due to microsite differences (locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the open, under large old-growth trees, <str<strong>on</strong>g>in</str<strong>on</strong>g> smalldiameter<br />

thickets, <str<strong>on</strong>g>in</str<strong>on</strong>g> pole-sized st<strong>and</strong>s, next to downed<br />

logs, <strong>and</strong> so forth). Stratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples by<br />

microsite differences could possibly reduce the with<str<strong>on</strong>g>in</str<strong>on</strong>g>plot<br />

variability but add complexity to any sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

design. Although there were statistically significant<br />

differences between the total C levels <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

unburned plots <strong>and</strong> the 8-year burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terval,<br />

there were no differences between burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals.<br />

There also was a statistically significant difference<br />

between unburned <strong>and</strong> 2-year burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terval <strong>and</strong><br />

the 8-year burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terval <str<strong>on</strong>g>in</str<strong>on</strong>g> total soil N. This study<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed that burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil C<br />

<strong>and</strong> N, which c<strong>on</strong>flicted with Wright <strong>and</strong> Hart’s<br />

(1997) c<strong>on</strong>tenti<strong>on</strong> that the 2-year burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terval<br />

could deplete soil N <strong>and</strong> C pools. This study did not<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil N pool,<br />

NH 4-N, <strong>and</strong> NO 3-N. Although the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N are small (less than 2 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total soil N<br />

pool), they are important for plant nutriti<strong>on</strong> <strong>and</strong><br />

microorganism populati<strong>on</strong> functi<strong>on</strong>s<br />

Soil organic matter: Summary reports have described<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different management activities<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>) <strong>on</strong> the organic matter <strong>and</strong><br />

N found <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong> (D.W.<br />

Johns<strong>on</strong> 1992, Johns<strong>on</strong> <strong>and</strong> Curtis 2001). A metaanalysis<br />

<strong>on</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 studies completed between<br />

1975 <strong>and</strong> 1997 (table 3.3) show that the C <strong>and</strong><br />

N c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> both the A-horiz<strong>on</strong> <strong>and</strong> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers change <strong>on</strong>ly a small amount (less<br />

than 10 percent) <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<strong>on</strong>g term (fig. 3.7 <strong>and</strong> 3.8).<br />

These results agreed with the c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> another<br />

review (E. A. Johns<strong>on</strong> 1992) that <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated the overall<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> was not significant, although there was a<br />

significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It must be remembered,<br />

however, that although small changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

organic matter <strong>and</strong> C occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these<br />

studies, that substantial amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> both organic<br />

litter <strong>and</strong> duff were most likely c<strong>on</strong>sumed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Organic matter <strong>and</strong> N losses from the forest floor<br />

could have a last<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect <strong>on</strong> the l<strong>on</strong>g-term productivity<br />

<strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> forest sites, particularly when<br />

they occur <strong>on</strong> nutrient-deficient sites (see the later<br />

discussi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter <strong>on</strong> N loss <strong>and</strong> ecosystem<br />

productivity).<br />

Cati<strong>on</strong> Exchange Capacity<br />

Cati<strong>on</strong> exchange is the <str<strong>on</strong>g>in</str<strong>on</strong>g>terchange between cati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> <strong>and</strong> different cati<strong>on</strong>s adsorbed <strong>on</strong> the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> any negatively charged materials such as a<br />

clay or organic colloids (humus). Cati<strong>on</strong> exchange<br />

capacity is the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the exchangeable cati<strong>on</strong>s found<br />

<strong>on</strong> organic <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic soil colloids (fig. 3.9). It arises<br />

from the negatively charged particles found <strong>on</strong> clay<br />

particles <strong>and</strong> colloidal organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil.<br />

Cati<strong>on</strong> exchange capacity sites are important storage<br />

places for soluble cati<strong>on</strong>s found <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. The adsorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s prevents the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these cati<strong>on</strong>s from<br />

the <strong>soils</strong> by leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Although most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the exchange sites <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> are negative <strong>and</strong> attract<br />

cati<strong>on</strong>s, there are some positively charged sites that<br />

can attract ani<strong>on</strong>s (ani<strong>on</strong> exchange has been reported<br />

to occur <strong>on</strong> clay particles).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 59


The relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clay particles <strong>and</strong> organic<br />

matter to the cati<strong>on</strong> exchange capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

depends largely up<strong>on</strong> the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two comp<strong>on</strong>ents<br />

<strong>and</strong> the total quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> each present (Tate<br />

1987). Cati<strong>on</strong> exchange capacity also depends up<strong>on</strong><br />

the type <str<strong>on</strong>g>of</str<strong>on</strong>g> clay <strong>and</strong> organic matter present. Clay<br />

materials such as m<strong>on</strong>tmorill<strong>on</strong>ites have large exchange<br />

capacities, <strong>and</strong> other clays such as kaol<str<strong>on</strong>g>in</str<strong>on</strong>g>ite<br />

are much lower. Other m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles such as silt<br />

<strong>and</strong> s<strong>and</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> few adsorpti<strong>on</strong> sites for cati<strong>on</strong>s. In<br />

organic matter, the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> humificati<strong>on</strong> affects the<br />

cati<strong>on</strong> exchange capacity, <strong>and</strong> the more extensive the<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material, the greater the<br />

exchange capacity.<br />

Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can affect cati<strong>on</strong> exchange<br />

capacity <str<strong>on</strong>g>in</str<strong>on</strong>g> at least two ways. The most comm<strong>on</strong><br />

change is the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> humus compounds. The<br />

locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the humus layer at, or near, the soil surface<br />

Figure 3.6—Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval <strong>on</strong> (A) 0 to 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (0-5 cm) soil total carb<strong>on</strong>, <strong>and</strong> (B) 0 to 2<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ch (0-5 cm) soil nitrogen, Limest<strong>on</strong>e Flats <strong>and</strong> Chimney Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terval study,<br />

Ariz<strong>on</strong>a. (From Neary <strong>and</strong> others 2003).<br />

60 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


makes it especially vulnerable to partial or total destructi<strong>on</strong><br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> because organic <strong>and</strong> humic<br />

materials start decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g at about 212 °F (100 °C)<br />

<strong>and</strong> are almost completely destroyed at 932 °F (500<br />

°C). These temperatures are easily reached dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

brushl<strong>and</strong> <strong>and</strong> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (see chapter 2 discussi<strong>on</strong> <strong>on</strong><br />

soil temperatures). In c<strong>on</strong>trast, the cati<strong>on</strong> exchange<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the clay materials is more resistant to<br />

Table 3.3—References for the Johns<strong>on</strong> <strong>and</strong> Curtis (2001) meta-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong><br />

soil C <strong>and</strong> N c<strong>on</strong>tents.<br />

Locati<strong>on</strong> Species Fire type Reference<br />

Southern U.S.A.<br />

SC L<strong>on</strong>gleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e PF 1<br />

B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley <strong>and</strong> others 1992<br />

SC, AL, FL, LA<br />

Southwest U.S.A.<br />

Loblolly <strong>and</strong> other p<str<strong>on</strong>g>in</str<strong>on</strong>g>es PF McKee 1982<br />

AZ P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e PF Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett 1986<br />

AZ<br />

Northwest U.S.A.<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper PF Klopatek <strong>and</strong> others 1991<br />

WA Mixed c<strong>on</strong>ifer WF Grier 1975<br />

WA, OR Douglas-fir, c<strong>on</strong>ifer mix BB Kraemer <strong>and</strong> Hermann 1979<br />

OR P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e PF M<strong>on</strong>le<strong>on</strong> <strong>and</strong> others 1997<br />

MT<br />

Alaska <strong>and</strong> Canada<br />

Mixed c<strong>on</strong>ifer PF Jurgens<strong>on</strong> <strong>and</strong> others 1981<br />

AL Mixed spruce <strong>and</strong> birch WF Dyrness <strong>and</strong> others 1989<br />

BC<br />

World<br />

Sub-boreal spruce BB Macadam 1987<br />

Australia Eucalyptus BB Rab 1996<br />

Algeria Oak WF Rashid 1987<br />

Sard<str<strong>on</strong>g>in</str<strong>on</strong>g>ia Chaparral PF Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others 1987<br />

1 PF: prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>; WF: wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>; BB: cut <strong>and</strong> broadcast burn.<br />

Figure 3.7—Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil C, A-horiz<strong>on</strong> n<strong>on</strong>parametric<br />

metaanalysis results; 99 percent c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals<br />

(bars) <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies (<str<strong>on</strong>g>in</str<strong>on</strong>g> parentheses);<br />

PF = prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, WF = wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> BB = broadcast<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> slash after harvest) (After Johns<strong>on</strong> <strong>and</strong> Curtis<br />

2001, Forest Ecology <strong>and</strong> Management, Copyright ©<br />

2001, Elsevier B.V. All rights reserved).<br />

change because heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 752 °F<br />

(400 °C) must be reached before dehydrati<strong>on</strong> occurs.<br />

The complete destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clay materials does not<br />

occur until temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,292 to 1,472 °F (700 to<br />

800 °C) are reached. In additi<strong>on</strong>, clay material is<br />

seldom located <strong>on</strong> the soil surface but <str<strong>on</strong>g>in</str<strong>on</strong>g>stead is located<br />

at least several centimeters below the soil surface<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the B-horiz<strong>on</strong> where it is well protected from<br />

Figure 3.8—Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil N, A-horiz<strong>on</strong> n<strong>on</strong>parametric<br />

metaanalysis results; 99 percent c<strong>on</strong>fidence<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tervals (bars) <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies (<str<strong>on</strong>g>in</str<strong>on</strong>g> parentheses).<br />

(After Johns<strong>on</strong> <strong>and</strong> Curtis 2001).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 61


Figure 3.9—Cati<strong>on</strong> exchange capacity <str<strong>on</strong>g>in</str<strong>on</strong>g> soil is provided<br />

by both organic matter (humus) found <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

forest floor <strong>and</strong> upper soil horiz<strong>on</strong>s as well as <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles such as silts <strong>and</strong> clays found lower <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. (Soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile from Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

Nantahala Nati<strong>on</strong>al Forest; photo by Daniel Neary).<br />

surface heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In general, the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> exchange<br />

capacity as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is proporti<strong>on</strong>al to the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the total cati<strong>on</strong> capacity that is provided by<br />

the organic comp<strong>on</strong>ent (DeBano <strong>and</strong> others 1998). The<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong> exchange capacity rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g after a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> affects the leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g losses <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble nutrients<br />

released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. For example, the pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

cati<strong>on</strong> exchange capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>and</strong>y <strong>soils</strong> may c<strong>on</strong>sist<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> exchange sites found <strong>on</strong> the humus porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. If large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> humus are destroyed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

these s<strong>and</strong>y <strong>soils</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, then no mechanisms<br />

are available to prevent large losses <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble nutrients<br />

by leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong> exchange capacity, as the result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter destroyed by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, has been reported <strong>on</strong><br />

by several authors. Soto <strong>and</strong> Diaz-Fierros (1993) <str<strong>on</strong>g>in</str<strong>on</strong>g>tensively<br />

m<strong>on</strong>itored changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil cati<strong>on</strong> exchange<br />

capacity for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the six <strong>soils</strong> they exposed to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

temperatures. They found that cati<strong>on</strong> exchange<br />

capacity decreased from 28.4 meq/100 g (28.4 cmol/kg)<br />

at 77 °F (25 °C) down to 1 meq/100 g (1 cmol/kg) when<br />

exposed to 1,292 °F (700 °C). The largest decrease<br />

occurred between 338 <strong>and</strong> 716 °F (170 <strong>and</strong> 380 °C),<br />

dropp<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 28.1 to 6.9 meq/100 g (28.1 to 6.9 cmol/<br />

kg). S<strong>and</strong>s (1983) exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed two adjacent radiata p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

sites <strong>on</strong> s<strong>and</strong>y <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Southeastern Australia 24 years<br />

after cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. He found that the sites that received an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tense site preparati<strong>on</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g before plant<str<strong>on</strong>g>in</str<strong>on</strong>g>g had<br />

decreased cati<strong>on</strong> exchange capacity downward <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong><br />

to 20 cm compared to no changes <strong>on</strong> unburned naturally<br />

regenerated sites.<br />

A st<strong>and</strong> replacement <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southern Appalachians<br />

that resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a mosaic burn pattern similar<br />

to a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> produced a slight but significant decrease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> cati<strong>on</strong> exchange capacity 3 m<strong>on</strong>ths after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Vose <strong>and</strong> others 1999). Also associated with the change<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> cati<strong>on</strong> exchange capacity <strong>on</strong> midslope areas (medium-severity<br />

burn) was a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> exchangeable K<br />

<strong>and</strong> Mg, al<strong>on</strong>g with an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil pH.<br />

Cati<strong>on</strong>s<br />

Cati<strong>on</strong>s found <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil that are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude Ca, Mg, Na, K, <strong>and</strong> amm<strong>on</strong>ia (NH4 ), although<br />

these cati<strong>on</strong>s are not usually deficient <str<strong>on</strong>g>in</str<strong>on</strong>g> most wildl<strong>and</strong><br />

<strong>soils</strong> (DeBano 1991). In many studies, a significant<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil cati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

either prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g or a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> has been reported<br />

(Grove <strong>and</strong> others 1986, Rais<strong>on</strong> <strong>and</strong> others<br />

1990, Soto <strong>and</strong> Diaz-Fierros 1993). The NH4 cati<strong>on</strong>,<br />

which is an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> N cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> soil<br />

productivity, resp<strong>on</strong>ds differently from the other cati<strong>on</strong>s.<br />

With the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NH4, cati<strong>on</strong>s have high<br />

temperature thresholds <strong>and</strong>, as a result, are not easily<br />

volatilized <strong>and</strong> lost from burned areas. The ash deposited<br />

<strong>on</strong> the soil surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s high<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s, <strong>and</strong> their availability is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g NH4 (Mari<strong>on</strong> <strong>and</strong> others 1991,<br />

DeBano <strong>and</strong> others 1998; fig. 1.4). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> NH4 released by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g depends up<strong>on</strong> fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel combusted (Tomk<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong> others 1991).<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the cati<strong>on</strong>s can be lost through particulate<br />

transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> the smoke (Clayt<strong>on</strong> 1976).<br />

M<strong>on</strong>ovalent cati<strong>on</strong>s, such as Na <strong>and</strong> K, are present<br />

largely as chlorides <strong>and</strong> carb<strong>on</strong>ates that are readily<br />

mobilized (Soto <strong>and</strong> Diaz-Fierros 1993). Divalent i<strong>on</strong>s,<br />

such as Ca <strong>and</strong> Mg, are less mobile <strong>and</strong> are comm<strong>on</strong>ly<br />

present as oxides <strong>and</strong> carb<strong>on</strong>ates. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>soluble calcium carb<strong>on</strong>ate can occur, which limits<br />

the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> P follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Although these<br />

readily available m<strong>on</strong>ovalent <strong>and</strong> divalent cati<strong>on</strong>s<br />

probably do not materially affect plant growth directly,<br />

their amount <strong>and</strong> compositi<strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es base<br />

saturati<strong>on</strong>, which plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the pH regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> (DeBano <strong>and</strong> others 1998).<br />

Soil pH <strong>and</strong> Buffer Capacity<br />

Soil pH is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrogen i<strong>on</strong> activity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil <strong>and</strong> is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at specified moisture c<strong>on</strong>tents.<br />

Neutral <strong>soils</strong> have a pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 7, acidic <strong>soils</strong> have a<br />

pH less than 7, <strong>and</strong> basic <strong>soils</strong> are those with a pH<br />

greater than 7. Buffer capacity is the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s<br />

associated with the solid phase to buffer changes <str<strong>on</strong>g>in</str<strong>on</strong>g> i<strong>on</strong><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil soluti<strong>on</strong>.<br />

The combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

the subsequent release <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble cati<strong>on</strong>s tend to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

pH slightly because basic cati<strong>on</strong>s are released<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <strong>and</strong> deposited <strong>on</strong> the soil surface.<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil pH, however, is usually temporary<br />

62 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al soil pH, amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ash<br />

released, chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ash, <strong>and</strong> wetness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the climate (Wells <strong>and</strong> others 1979). The ash-bed<br />

effect discussed later <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter is an example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these factors <str<strong>on</strong>g>in</str<strong>on</strong>g> which large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients are<br />

deposited, with pH values be<str<strong>on</strong>g>in</str<strong>on</strong>g>g measurably changed<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil is an important factor affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutrients (fig. 3.10). The nutrients<br />

released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> that are most likely to be<br />

affected are P, ir<strong>on</strong>, <strong>and</strong> copper. P is particularly<br />

important because it is a macr<strong>on</strong>utrient that is frequently<br />

limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <strong>and</strong> it can<br />

also become <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble at both high or low pHs (see part<br />

A). At low pH, P forms <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble compounds with ir<strong>on</strong><br />

<strong>and</strong> at high pH, Ca compounds tend to immobilize it.<br />

Nitrogen<br />

Nitrogen is c<strong>on</strong>sidered the most limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrient <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> as such it requires special<br />

c<strong>on</strong>siderati<strong>on</strong> when manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>, particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> Ndeficient<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Maars <strong>and</strong> others 1983). Nitrogen<br />

is unique because it is the <strong>on</strong>ly soil nutrient that<br />

is not supplied to the soil by chemical weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parent rock material. Almost all N found <str<strong>on</strong>g>in</str<strong>on</strong>g> the vegetati<strong>on</strong>,<br />

<strong>water</strong>, <strong>and</strong> soil <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> systems has to be<br />

added to the system from the atmosphere. A rare<br />

excepti<strong>on</strong> is the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some synthetic N-fertilizers<br />

that have been produced <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrially <strong>and</strong> used for<br />

fertiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g forested areas. The cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>in</str<strong>on</strong>g>volves a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelated complex chemical <strong>and</strong> biological<br />

Figure 3.10—The availability <str<strong>on</strong>g>of</str<strong>on</strong>g> some comm<strong>on</strong><br />

soil nutrients at different soil pH. (Figure courtesy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the USDA Forest Service, Nati<strong>on</strong>al Advanced<br />

Fire <strong>and</strong> Resource Institute, Tucs<strong>on</strong>, AZ).<br />

processes (also see chapter 4). Only those cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

processes affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g chemical changes <str<strong>on</strong>g>in</str<strong>on</strong>g> N are discussed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter (that is, N volatilizati<strong>on</strong>). Biologically<br />

mediated processes affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g N are discussed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> more detail as part <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 4. The changes <str<strong>on</strong>g>in</str<strong>on</strong>g> N<br />

availability produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> are discussed later <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

this chapter <str<strong>on</strong>g>in</str<strong>on</strong>g> a secti<strong>on</strong> describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

nutrient availability<br />

Resp<strong>on</strong>ses to Soil Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Volatilizati<strong>on</strong> is the<br />

chemically driven process most resp<strong>on</strong>sible for N losses<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. There is a gradual <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> N loss by<br />

volatilizati<strong>on</strong> as temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases (Knight 1966,<br />

White <strong>and</strong> others 1973). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> loss at different<br />

temperatures has established the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N losses up<strong>on</strong> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

• Complete loss (100 percent) <str<strong>on</strong>g>of</str<strong>on</strong>g> N occurs at<br />

temperatures above 932 °F (500 °C).<br />

• Between 75 <strong>and</strong> 100 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the N is lost at<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 752 to 932 °F (400 to 500 °C).<br />

• Between 50 <strong>and</strong> 75 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the N is lost at<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 572 to 752 °F (300 to 400 °C).<br />

• Between 25 <strong>and</strong> 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the N is lost at<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 392 to 572 °F (200 to 300 °C).<br />

• No N losses occur at temperatures below<br />

392 °F (200 °C).<br />

As a general rule the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> total N that is<br />

volatilized dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> is directly proporti<strong>on</strong>al<br />

to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter destroyed (Rais<strong>on</strong> <strong>and</strong><br />

others 1985a). It has been estimated that almost 99<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the volatilized N is c<strong>on</strong>verted to N 2 gas<br />

(DeBell <strong>and</strong> Ralst<strong>on</strong> 1970). At lower temperatures, N 2<br />

can be produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter decompositi<strong>on</strong><br />

without the volatilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N compounds (Grier<br />

1975). The N that is not completely volatilized either<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s as part <str<strong>on</strong>g>of</str<strong>on</strong>g> the unburned fuels or it is c<strong>on</strong>verted<br />

to highly available NH 4-N that rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil<br />

(DeBano <strong>and</strong> others 1979, Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett<br />

1986, Kutiel <strong>and</strong> Naveh 1987, DeBano 1991).<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the total N losses dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

must be based <strong>on</strong> both <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong> total fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> because irregular burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns are<br />

comm<strong>on</strong>. As a result, combusti<strong>on</strong> is not complete at all<br />

locati<strong>on</strong>s <strong>on</strong> the l<strong>and</strong>scape (DeBano <strong>and</strong> others 1998).<br />

For example, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a prescribed burn <str<strong>on</strong>g>in</str<strong>on</strong>g> southern<br />

California, total N loss <strong>on</strong>ly amounted to 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total N c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the plant, litter, <strong>and</strong> upper soil<br />

layers before burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (DeBano <strong>and</strong> C<strong>on</strong>rad 1978). The<br />

greatest loss <str<strong>on</strong>g>of</str<strong>on</strong>g> N occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> aboveground fuels <strong>and</strong><br />

litter <strong>on</strong> the soil surface. In another study <str<strong>on</strong>g>of</str<strong>on</strong>g> N loss<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> over dry <strong>and</strong> moist <strong>soils</strong>,<br />

about two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> the total N was lost dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g burns<br />

over dry <strong>soils</strong> compared to <strong>on</strong>ly 25 percent when the<br />

litter <strong>and</strong> soil were moist (DeBano <strong>and</strong> others 1979).<br />

Although these losses were relatively small, it should<br />

be remembered that even small losses can adversely<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 63


affect the l<strong>on</strong>g-term productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> N- deficient <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> N losses from <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

different pools <str<strong>on</strong>g>of</str<strong>on</strong>g> N is c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail below.<br />

M<strong>on</strong>le<strong>on</strong> <strong>and</strong> others (1997) c<strong>on</strong>ducted understory<br />

burns <strong>on</strong> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e sites burned 4 m<strong>on</strong>ths, 5 years,<br />

<strong>and</strong> 12 years previously. The surface <strong>soils</strong>, 0 to 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(0 to 5 cm), showed the <strong>on</strong>ly significant resp<strong>on</strong>se. The<br />

4-m<strong>on</strong>th sites had <str<strong>on</strong>g>in</str<strong>on</strong>g>creased total C <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>creased C/N ratio. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the 5-year-old sites resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> total<br />

soil C <strong>and</strong> N <strong>and</strong> a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the C/N ratio. Total soil<br />

C <strong>and</strong> N <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface <strong>soils</strong> did not resp<strong>on</strong>d to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the 12-year-old site.<br />

Nitrogen Losses—An Enigma— It has been c<strong>on</strong>clusively<br />

established by numerous studies that total N<br />

is decreased as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> (DeBano <strong>and</strong><br />

others 1998). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N lost is generally proporti<strong>on</strong>al<br />

to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter combusted<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The temperatures at which N is lost<br />

are discussed above. In c<strong>on</strong>trast, available N is usually<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, particularly NH 4-N<br />

(Christensen 1973, DeBano <strong>and</strong> others 1979, Carballas<br />

<strong>and</strong> others 1993). This <str<strong>on</strong>g>in</str<strong>on</strong>g>creased N availability enhances<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> plant growth, <strong>and</strong> gives the impressi<strong>on</strong><br />

that more total N is present after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> fertility, however, is mislead<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> can be<br />

short-lived. Any temporary <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> available N<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> is usually quickly utilized by plants<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> the first few years after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Nitrogen Losses <strong>and</strong> Ecosystem Productivity—<br />

The c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> N losses dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> ecosystem<br />

productivity depend <strong>on</strong> the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total N lost<br />

for a given ecosystem (Barnett 1989, DeBano <strong>and</strong><br />

others 1998). In N-limited <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> even small<br />

losses <str<strong>on</strong>g>of</str<strong>on</strong>g> N by volatilizati<strong>on</strong> can impact l<strong>on</strong>g-term<br />

productivity (fig. 3.11).<br />

The changes <str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity are related to the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total N <str<strong>on</strong>g>in</str<strong>on</strong>g> the system that is lost. For<br />

Figure 3.11—Relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen low at<br />

different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> site productivity. (After Barnett 1989).<br />

example, the left porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 3.11 represents a<br />

situati<strong>on</strong> where large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> N are presented <strong>on</strong><br />

a site hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g high productivity. Mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the right<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> the graph, both total N capital <strong>and</strong> productivity<br />

decrease. This decrease is not l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear because there are<br />

likely to be greater losses <str<strong>on</strong>g>in</str<strong>on</strong>g> productivity per unit loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N capital <strong>on</strong> sites hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g lower productivity (right<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> fig. 3.11) than <strong>on</strong> sites hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g higher site<br />

productivity (left side <str<strong>on</strong>g>of</str<strong>on</strong>g> fig. 3.11). As a result, the<br />

losses <str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity per unit N loss (a h to b h) from<br />

sites <str<strong>on</strong>g>of</str<strong>on</strong>g> high productivity (l h) are less than losses <str<strong>on</strong>g>in</str<strong>on</strong>g> site<br />

productivity per unit N loss (a i to b i) from sites hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

low productivity (l i). This relati<strong>on</strong>ship po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts to the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> somehow replenish<str<strong>on</strong>g>in</str<strong>on</strong>g>g N lost dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> low productivity sites or when us<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> these situati<strong>on</strong>s, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g special care not to<br />

c<strong>on</strong>sume large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter present.<br />

Phosphorus<br />

Phosphorus is probably the sec<strong>on</strong>d most limited<br />

nutrient found <str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Deficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P have been reported <str<strong>on</strong>g>in</str<strong>on</strong>g> P-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>soils</strong> (Vlamis <strong>and</strong><br />

others 1955) <strong>and</strong> as a result from N fertilizati<strong>on</strong><br />

applicati<strong>on</strong>s (Heilman <strong>and</strong> Gessel 1963). Phosphorus<br />

uptake <strong>and</strong> availability to plants is complicated by the<br />

relati<strong>on</strong>ship between mycorrhizae <strong>and</strong> organic matter<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> most cases does not <str<strong>on</strong>g>in</str<strong>on</strong>g>volve a simple absorpti<strong>on</strong><br />

from the soil soluti<strong>on</strong> (Trappe <strong>and</strong> Bollen 1979). Phosphorus<br />

is lost at a higher temperature dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g than N, <strong>and</strong> <strong>on</strong>ly about 60 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

P is lost by n<strong>on</strong>particulate transfer when organic<br />

matter is totally combusted (Rais<strong>on</strong> <strong>and</strong> others 1985a).<br />

The combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter leaves a relatively<br />

large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> highly available P <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface ash<br />

found <strong>on</strong> the soil surface immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(see discussi<strong>on</strong> <strong>on</strong> nutrient availability later <str<strong>on</strong>g>in</str<strong>on</strong>g> this<br />

chapter; also fig. 1.4). This highly available P, however,<br />

can be quickly immobilized if calcareous substances<br />

are present <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash <strong>and</strong> thus can become<br />

unavailable for plant growth.<br />

Sulfur<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> S <str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem productivity is not well<br />

understood although its fluctuati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil is generally<br />

parallel to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N (DeBano <strong>and</strong><br />

others 1998). Sulfur has been reported as limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

some coastal forest <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pacific Northwest,<br />

particularly after forest st<strong>and</strong>s have been fertilized<br />

with N (Barnett 1989). The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> S by volatilizati<strong>on</strong><br />

occurs at temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate to that <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>and</strong><br />

P (Tiedemann 1987), <strong>and</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 to 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the S <str<strong>on</strong>g>in</str<strong>on</strong>g> aboveground biomass have been reported<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Barnett 1989). Sulfur is similar to P (<strong>and</strong><br />

unlike N) <str<strong>on</strong>g>in</str<strong>on</strong>g> that it cannot be fixed by biological<br />

processes, but <str<strong>on</strong>g>in</str<strong>on</strong>g>stead is added primarily by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

64 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


fossil fuels (a source <str<strong>on</strong>g>of</str<strong>on</strong>g> acid ra<str<strong>on</strong>g>in</str<strong>on</strong>g>), as fallout from<br />

volcanic erupti<strong>on</strong>s, or by the weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil development (DeBano <strong>and</strong> others 1998).<br />

Soil Chemical Processes _________<br />

Nutrient Cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Nutrients undergo a series <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>and</strong> transformati<strong>on</strong>s<br />

as they are cycled through wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

The susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

depends <strong>on</strong> a regular <strong>and</strong> c<strong>on</strong>sistent cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients that are essential for plant growth (DeBano<br />

<strong>and</strong> others 1998). Nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ments<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volves a number <str<strong>on</strong>g>of</str<strong>on</strong>g> complex pathways <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes both chemical <strong>and</strong> biological processes (fig.<br />

3.3). Nutrients are added to the soil by precipitati<strong>on</strong>,<br />

dry fall, N- fixati<strong>on</strong>, <strong>and</strong> the geochemical weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rocks. Nutrients found <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil organic matter are<br />

transformed by decompositi<strong>on</strong> <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

forms that are available to plants (see chapter 4). In<br />

n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ments, nutrient availability is regulated<br />

biologically by decompositi<strong>on</strong> processes. As a<br />

result, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> varies widely depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> moisture, temperature, <strong>and</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter. The decompositi<strong>on</strong> process is susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by<br />

litter fall (that is, leaf, wood, <strong>and</strong> other debris that falls<br />

to the forest floor). Through the process <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>,<br />

this material breaks down, releases nutrients,<br />

<strong>and</strong> moves <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil as soil organic matter. Forest<br />

<strong>and</strong> other wildl<strong>and</strong> <strong>soils</strong>, unlike agricultural <strong>soils</strong><br />

where nutrients from external sources are applied as<br />

needed, rely <strong>on</strong> this <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients to<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> plant growth (Perala <strong>and</strong> Alban 1982). As a<br />

result, nutrient losses from unburned <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are<br />

usually low, although some losses can occur by volatilizati<strong>on</strong>,<br />

erosi<strong>on</strong>, leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> denitrificati<strong>on</strong>. This<br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> tightly c<strong>on</strong>trolled nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>imizes<br />

the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients from these wildl<strong>and</strong> systems<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> any major disturbance such as<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Fire, however, alters the nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> systems <strong>and</strong> dramatically replaces l<strong>on</strong>gterm<br />

biological decompositi<strong>on</strong> rates with that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous<br />

thermal decompositi<strong>on</strong> that occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic fuels (St John <strong>and</strong><br />

Rundel 1976). The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>fire</str<strong>on</strong>g>-related<br />

changes depends largely <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity (DeBano <strong>and</strong><br />

others 1998). For example, high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g not <strong>on</strong>ly volatilize nutrients<br />

both <str<strong>on</strong>g>in</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>and</strong> from surface organic soil horiz<strong>on</strong>s,<br />

but heat is transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil, which<br />

further affects natural biological processes such as<br />

decompositi<strong>on</strong> <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> (fig. 3.12; see also<br />

chapter 4). The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil have both short<strong>and</strong><br />

l<strong>on</strong>g-term c<strong>on</strong>sequences (that is, direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>) <strong>on</strong> soil <strong>and</strong> site productivity because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

changes that occur <str<strong>on</strong>g>in</str<strong>on</strong>g> both the quantity <strong>and</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter.<br />

In summary, many nutrients essential for plant<br />

growth <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g N, P, S, <strong>and</strong> some cati<strong>on</strong>s described<br />

earlier are all affected to some extent by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Nitrogen<br />

is likely the most limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrient <str<strong>on</strong>g>in</str<strong>on</strong>g> natural systems<br />

(Maars <strong>and</strong> others 1983), followed by P <strong>and</strong> S. Cati<strong>on</strong>s<br />

released by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g may affect soil pH <strong>and</strong> result <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<strong>on</strong>utrients <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ecosystem productivity <strong>and</strong> their relati<strong>on</strong>ship to soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> is for the most part unclear. One<br />

study, however, did show that over half <str<strong>on</strong>g>of</str<strong>on</strong>g> the selenium<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> burned laboratory samples was recovered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the ash residue (K<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> others 1977).<br />

Nutrient Loss Mechanisms<br />

Nutrient losses dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volve chemical processes. The dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> plant biomass <strong>and</strong> soil organic matter<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> generally occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g ways:<br />

• Direct gaseous volatilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere<br />

takes place dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Nitrogen can be<br />

transformed <str<strong>on</strong>g>in</str<strong>on</strong>g>to N 2 al<strong>on</strong>g with other nitrogenous<br />

gases (DeBell <strong>and</strong> Ralst<strong>on</strong> 1970).<br />

• Particulates are lost <str<strong>on</strong>g>in</str<strong>on</strong>g> smoke. Phosphorus<br />

<strong>and</strong> cati<strong>on</strong>s are frequently lost <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere<br />

as particulate matter dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

(Clayt<strong>on</strong> 1976, Rais<strong>on</strong> <strong>and</strong> others 1985a,b).<br />

• Nutrients rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash deposited <strong>on</strong> the<br />

soil surface. These highly available nutrients<br />

are vulnerable to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong><br />

through the soil, or they can also be lost dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>d erosi<strong>on</strong> (Christensen 1973, Grier 1975,<br />

Kauffman <strong>and</strong> others 1993).<br />

Figure 3.12—P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper slash <str<strong>on</strong>g>fire</str<strong>on</strong>g>, Apache-<br />

Sitgreaves Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a. (Photo by<br />

Malchus Baker).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 65


• Substantial losses <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

surface ash layer can occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>. These losses are amplified<br />

by the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>-repellent layer dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (see chapter 2; DeBano <strong>and</strong> C<strong>on</strong>rad<br />

1976, <strong>and</strong> Rais<strong>on</strong> <strong>and</strong> others 1993).<br />

• Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the nutrients rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a stable c<strong>on</strong>diti<strong>on</strong>.<br />

Nutrients can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>site as part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>completely combusted post<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetati<strong>on</strong><br />

<strong>and</strong> detritus (Boerner 1982).<br />

Although the direct soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect is probably<br />

limited to the surface (1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch or 2.5 cm), the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

effect can be measured to a greater depth due to the<br />

leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g or movement <str<strong>on</strong>g>of</str<strong>on</strong>g> the highly mobile nutrients<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface layers. For example, leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g losses<br />

from the forest floor <str<strong>on</strong>g>of</str<strong>on</strong>g> a Southern p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest understory<br />

burn <str<strong>on</strong>g>in</str<strong>on</strong>g>creased from 2.3 times that <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned<br />

litter for m<strong>on</strong>ovalent cati<strong>on</strong>s Na <strong>and</strong> K to 10 to 20 times<br />

for divalent cati<strong>on</strong>s Mg <strong>and</strong> Ca (Lewis 1974). Rais<strong>on</strong><br />

<strong>and</strong> others (1990) noted that while K, Na, <strong>and</strong> Mg are<br />

relatively soluble <strong>and</strong> can leach <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong> possibly<br />

through the soil, Ca is most likely reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> the<br />

cati<strong>on</strong> exchange sites. Soil Ca levels may show a<br />

resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface <strong>soils</strong> for many years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. However, some cati<strong>on</strong>s more readily leached<br />

<strong>and</strong> as a result are easily lost from the site. For<br />

example, Prevost (1994) found that burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g Kalmia<br />

spp. litter <str<strong>on</strong>g>in</str<strong>on</strong>g> the greenhouse <str<strong>on</strong>g>in</str<strong>on</strong>g>creased the leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg but n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the other cati<strong>on</strong>s. Although ash <strong>and</strong><br />

forest floor cati<strong>on</strong>s were released due to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, there<br />

was no change <str<strong>on</strong>g>in</str<strong>on</strong>g> surface soil cati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s<br />

(0-2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches or 0-5 cm). Soto <strong>and</strong> Diaz-Fierros (1993)<br />

measured changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong> leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g at<br />

differ<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperatures for the six <strong>soils</strong> that represented<br />

six different parent materials. Leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns<br />

were similar for all soil types. Leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> divalent<br />

cati<strong>on</strong>s, Ca, <strong>and</strong> Mg, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased as the temperatures<br />

reached dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased, with a peak at<br />

860 °F (460 °C). M<strong>on</strong>ovalent cati<strong>on</strong>s, K, <strong>and</strong> Na,<br />

differed <str<strong>on</strong>g>in</str<strong>on</strong>g> that <str<strong>on</strong>g>in</str<strong>on</strong>g>itially leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g decreased as temperature<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased, reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum at 716 °F<br />

(380 °C). Then, leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased up to 1,292 °F<br />

(700 °C). The nutrients leached from the forest floor<br />

<strong>and</strong> the ash were adsorbed <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. Surface<br />

<strong>soils</strong> were found to reta<str<strong>on</strong>g>in</str<strong>on</strong>g> 89 to 98 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

nutrients leached from the plant ash (Soto <strong>and</strong> Diaz-<br />

Fierros 1993). As the leachates moved through the<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> decreased.<br />

Nutrient Availability<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased nutrient availability follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

results from the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ash, forest floor leachates,<br />

<strong>and</strong> soil organic matter oxidati<strong>on</strong> products as the result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

described earlier directly changes the availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all nutrients from that <str<strong>on</strong>g>of</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g stored <strong>and</strong> slowly<br />

becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g available dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

forest floor organic matter to that <str<strong>on</strong>g>of</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g highly<br />

available as an <str<strong>on</strong>g>in</str<strong>on</strong>g>organic form present <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash layer<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Both short- <strong>and</strong> l<strong>on</strong>g-term availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Extractable I<strong>on</strong>s—Chemical i<strong>on</strong>s generally become<br />

more available <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface soil as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Grove <strong>and</strong> others (1986) found that immediately<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>, extractable nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> the 0 to<br />

1.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (0-3 cm) depth. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S, NH 4, P, K,<br />

Na, z<str<strong>on</strong>g>in</str<strong>on</strong>g>c (Zn), Ca, <strong>and</strong> Mg <str<strong>on</strong>g>in</str<strong>on</strong>g>creased. Everyth<str<strong>on</strong>g>in</str<strong>on</strong>g>g except<br />

Zn <strong>and</strong> organic C <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

nutrients. At the lower depths sampled, 1.2 to 3.9<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ches <strong>and</strong> 3.9 to 7.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (3-10 <strong>and</strong> 10-20 cm), <strong>on</strong>ly<br />

extractable P <strong>and</strong> K were <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. One<br />

year later nutrient levels were still greater than<br />

preburn c<strong>on</strong>centrati<strong>on</strong>s, but had decreased. A study<br />

<strong>on</strong> an area <str<strong>on</strong>g>of</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest burned by a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> reported<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil, c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P, Ca, <strong>and</strong> Mg,<br />

alum<str<strong>on</strong>g>in</str<strong>on</strong>g>um (Al), ir<strong>on</strong> (Fe) had <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to<br />

different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity (Groeschl <strong>and</strong> others<br />

1993). In the areas exposed to a high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>, C<br />

<strong>and</strong> N were significantly lower <strong>and</strong> soil pH was greater.<br />

In another study the soil <strong>and</strong> plant compositi<strong>on</strong> changes<br />

were studied <str<strong>on</strong>g>in</str<strong>on</strong>g> a jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. banksiana) st<strong>and</strong><br />

whose understory had been burned 10 years earlier<br />

(Lynham <strong>and</strong> others 1998). In this study the soil pH<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> all soil layers follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn—O horiz<strong>on</strong>,<br />

0-2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (0-5 cm), <strong>and</strong> 2-3.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5-10 cm)—<strong>and</strong><br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed 0.5 units greater than preburn 10 years<br />

later <str<strong>on</strong>g>in</str<strong>on</strong>g> the O horiz<strong>on</strong>. Phosphorus, K, Ca, <strong>and</strong> Mg all<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil; P <strong>and</strong> K were still greater<br />

than preburn levels 10 years later. A st<strong>and</strong> replacement<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southern Appalachians that resulted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a mosaic burn pattern affected exchangeable i<strong>on</strong>s<br />

(Vose <strong>and</strong> others 1999). The midslope areas <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

burned at a moderate severity, <strong>and</strong> a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

exchangeable K <strong>and</strong> Mg al<strong>on</strong>g with an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

pH was measured. Soil Ca, total C <strong>and</strong> N did not<br />

resp<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g> any <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned areas. There are other<br />

studies that have also shown no effect or decreases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil nutrients follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (S<strong>and</strong>s 1983, Carreira<br />

<strong>and</strong> Niell 1992, Vose <strong>and</strong> others 1999).<br />

Nitrogen—The two most abundant forms <str<strong>on</strong>g>of</str<strong>on</strong>g> available<br />

N <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil are available NH 4- <strong>and</strong> N0 3-N. Both<br />

forms are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapidly oxidizes the<br />

soil organic matter <strong>and</strong> volatilizes the organic N c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor <strong>and</strong> soil organic matter,<br />

thereby releas<str<strong>on</strong>g>in</str<strong>on</strong>g>g NH 4-N (Christensen 1973, Jurgensen<br />

<strong>and</strong> others 1981, Kovacic <strong>and</strong> others 1986, Kutiel <strong>and</strong><br />

Naveh 1987, Mari<strong>on</strong> <strong>and</strong> others 1991, Knoepp <strong>and</strong><br />

Swank 1993a,b). The release <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N has been found<br />

by more detailed chemical analysis to <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the<br />

thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong> other nitrogenrich<br />

organic matter. Specifically, the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

66 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


NH 4-N is related to the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

amide groups <strong>and</strong> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids. These sec<strong>on</strong>dary amide<br />

groups are particularly sensitive to decompositi<strong>on</strong><br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> decompose when heated above 212<br />

°F (100 °C) to yield NH 4-N (Russell <strong>and</strong> others 1974).<br />

The volatilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more heat-resistant N compounds<br />

can occur up to 752 °F (400 °C). The temperatures<br />

required to volatilize nitrogen compounds are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> clay particles <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil<br />

(Juste <strong>and</strong> Dureau 1967).<br />

Most NH 4-N that is volatilized is lost <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere,<br />

but significant amounts can move downward<br />

<strong>and</strong> c<strong>on</strong>dense <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil as exchange N. The<br />

ash produced by the <str<strong>on</strong>g>fire</str<strong>on</strong>g> can also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> substantial<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> these two processes,<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <str<strong>on</strong>g>in</str<strong>on</strong>g>creases dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Kovacic<br />

<strong>and</strong> others 1986, Rais<strong>on</strong> <strong>and</strong> others 1990, Knoepp <strong>and</strong><br />

Swank 1993a,b). In c<strong>on</strong>trast, N0 3-N is usually low<br />

immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases rapidly dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the nitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4 (see chapter 4). These<br />

N0 3-N c<strong>on</strong>centrati<strong>on</strong>s may rema<str<strong>on</strong>g>in</str<strong>on</strong>g> elevated for several<br />

years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 3.13).<br />

The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N0 3-<strong>and</strong> NH 4-N by <str<strong>on</strong>g>fire</str<strong>on</strong>g> depends <strong>on</strong><br />

several factors. These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, forest type,<br />

<strong>and</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with other<br />

postharvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities.<br />

Figure 3.13—Soil NO 3-N <strong>and</strong> NH 4-N c<strong>on</strong>centrati<strong>on</strong>s<br />

before, immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> for several m<strong>on</strong>ths<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a chaparral. (Adapted from<br />

DeBano <strong>and</strong> others 1998. Fire’s Effects <strong>on</strong> Ecosystems.<br />

Copyright © 1998 John Wiley & S<strong>on</strong>s, Inc.<br />

Repr<str<strong>on</strong>g>in</str<strong>on</strong>g>ted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> John Wiley & S<strong>on</strong>s, Inc.).<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: The amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N that<br />

are produced as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> generally <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

with the severity <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> the<br />

associated soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (fig. 3.13, 3.14, 3.15). Although<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> the total N <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

aboveground fuels, litter, duff, <strong>and</strong> upper soil layers<br />

are lost <str<strong>on</strong>g>in</str<strong>on</strong>g>to the atmosphere by volatilizati<strong>on</strong>, highly<br />

available NH 4-N still rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash or <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

upper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 3.13).<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g both high <strong>and</strong> low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N that can be found<br />

both <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil surface follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers (Groeschl<br />

<strong>and</strong> others 1990, Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett 1992). The<br />

Figure 3.14—Extractable soil N <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to burn<br />

severity measured <strong>on</strong> eight studies.<br />

Increase<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 67<br />

Pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

Decrease<br />

Low<br />

Moderate<br />

Burn Severity<br />

High<br />

Figure 3.15—Generalized patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> decreases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the forest floor (duff), total N, <strong>and</strong> organic matter, <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> soil pH, cati<strong>on</strong>s, <strong>and</strong> NH 4 associated with<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. (Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the USDA Forest Service, Nati<strong>on</strong>al Advanced Fire<br />

<strong>and</strong> Resource Institute, Tucs<strong>on</strong>, AZ).<br />

Cati<strong>on</strong>s<br />

amm<strong>on</strong>ia-N<br />

pH<br />

Soil organic<br />

matter<br />

Total N<br />

Duff


c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N found <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash depend <strong>on</strong><br />

the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor<br />

c<strong>on</strong>sumed, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn reflects st<strong>and</strong> age. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, less <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor is c<strong>on</strong>sumed<br />

<strong>and</strong> corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gly less amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N are produced<br />

(fig. 3.15). The amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N produced<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> may vary from <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 10<br />

ppm (10mg/kg) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s to 16 <strong>and</strong> 43<br />

ppm (16 mg/kg <strong>and</strong> 43 mg/kg) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g medium <strong>and</strong><br />

high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, respectively. The variability <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N produced also <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. The NH 4-N c<strong>on</strong>centrati<strong>on</strong>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g are short lived (fig. 3.13), although Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong><br />

<strong>and</strong> Sackett (1992) reported that NH 4-N levels rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

elevated for at least 1 year follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a prescribed<br />

burn <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> northern<br />

Ariz<strong>on</strong>a.<br />

The direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> N0 3-N c<strong>on</strong>centrati<strong>on</strong>s are<br />

less predictable. For example, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a study <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Shen<strong>and</strong>oah Nati<strong>on</strong>al Park showed that although<br />

total extractable <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N was elevated for 1 year<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the N0 3-N <strong>on</strong> areas burned by either<br />

high or low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>on</strong>ly slightly<br />

(Groeschl <strong>and</strong> others 1990). A more comm<strong>on</strong> scenario<br />

for N0 3-N changes follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> results from the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased nitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the highly available N produced<br />

directly dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (for example, NH 4-N).<br />

The end result be<str<strong>on</strong>g>in</str<strong>on</strong>g>g that NH 4-N produced directly<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> is rapidly nitrified, <strong>and</strong> N0 3-N beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> temperature <strong>and</strong><br />

moisture c<strong>on</strong>diti<strong>on</strong>s (fig. 3.13).<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>in</str<strong>on</strong>g>creased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> highly available<br />

N dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten beneficial to<br />

the recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants by provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a temporary <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> site fertility. However, these short-term<br />

benefits must be carefully weighed aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the overall<br />

<strong>and</strong> l<strong>on</strong>g-term effect that the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> total N dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> has <strong>on</strong> the susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the site (see<br />

the previous discussi<strong>on</strong> <strong>on</strong> Nitrogen Losses –An<br />

Enigma).<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> forest type: Forest type can also affect the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N produced by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This occurs ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong> the<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> litter that accumulate under different<br />

forest types. Such was the case <str<strong>on</strong>g>in</str<strong>on</strong>g> a study c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Idaho <strong>on</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e/hemlock sites compared to sites occupied<br />

by a Douglas-fir/western larch forest (Mroz <strong>and</strong><br />

others 1980). In this study the NH 4-N did not <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the p<str<strong>on</strong>g>in</str<strong>on</strong>g>e/hemlock forest <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast<br />

to the Douglas-fir/western larch forest site where<br />

it did <str<strong>on</strong>g>in</str<strong>on</strong>g>crease. With<str<strong>on</strong>g>in</str<strong>on</strong>g> 3 to 7 days, however, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<strong>and</strong>/or nitrificati<strong>on</strong> had begun <strong>on</strong> most sites.<br />

Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Repeated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> its<br />

frequency are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten-asked questi<strong>on</strong>s by <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers<br />

when c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed burns. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

availability, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g frequency depends<br />

largely up<strong>on</strong> the ecosystem, its <str<strong>on</strong>g>in</str<strong>on</strong>g>herent fertility (<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total <strong>and</strong> available N), total amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter destroyed, <strong>and</strong> its ability to replenish<br />

the N lost by volatilizati<strong>on</strong> (DeBano <strong>and</strong> others 1998).<br />

Several studies have focused <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

total <strong>and</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> total <strong>and</strong> available nitrogen.<br />

For example, a study <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated<br />

burn low-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Australian eucalypt<br />

forests (Eucalyptus spp.)showed that <str<strong>on</strong>g>fire</str<strong>on</strong>g>-free periods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 or more years were required to allow<br />

natural processes time to replace the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N lost<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g that about 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total N <str<strong>on</strong>g>in</str<strong>on</strong>g> the fuel was volatilized (Rais<strong>on</strong> <strong>and</strong><br />

others 1993). In c<strong>on</strong>trast, a study <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

at 1-, 2-, <strong>and</strong> 5-year <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> northern Ariz<strong>on</strong>a showed no significant differences<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> total N am<strong>on</strong>g the different burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g frequencies,<br />

but available N (NH 4- <strong>and</strong> N0 3-N) was higher <strong>on</strong> the<br />

sites that repeatedly burned <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to the<br />

unburned c<strong>on</strong>trols (Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett 1986). Researchers<br />

c<strong>on</strong>cluded from this Ariz<strong>on</strong>a study that<br />

frequent periodic burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be used to enhance N<br />

availability <str<strong>on</strong>g>in</str<strong>on</strong>g> Southwestern p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests.<br />

Studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g frequency <strong>on</strong> grassl<strong>and</strong>s<br />

<strong>and</strong> shrubs have been reported to have less<br />

desirable outcomes. For example, the annual burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tall grass prairies <str<strong>on</strong>g>in</str<strong>on</strong>g> the Great Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Central<br />

United States resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> greater <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>of</str<strong>on</strong>g> lower<br />

quality plant residues, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a significant reducti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil organic N, lower microbial biomass, lower N<br />

availability, <strong>and</strong> higher C:N ratios <str<strong>on</strong>g>in</str<strong>on</strong>g> soil organic<br />

matter (Ojima <strong>and</strong> others 1994). Likewise, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> available N may have adverse <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> some<br />

nutrient-deficient shrub <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> as has been reported<br />

by a study <str<strong>on</strong>g>in</str<strong>on</strong>g> a shrubl<strong>and</strong> (fynbos) <str<strong>on</strong>g>in</str<strong>on</strong>g> South<br />

Africa. In a study <str<strong>on</strong>g>of</str<strong>on</strong>g> lowl<strong>and</strong> fynbos, a tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil nutrient c<strong>on</strong>centrati<strong>on</strong>s produced by <str<strong>on</strong>g>fire</str<strong>on</strong>g> were<br />

detrimental to the survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous species that<br />

had evolved <strong>on</strong> these nutrient-impoverished l<strong>and</strong>scapes<br />

(Musil <strong>and</strong> Midgley 1990).<br />

Phosphorus—Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> available soil P to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

are variable <strong>and</strong> more difficult to predict than<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> other nutrients (Rais<strong>on</strong> <strong>and</strong> others 1990).<br />

Phosphorus volatilizes at temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

1,418 °F (770 °C). The fate <str<strong>on</strong>g>of</str<strong>on</strong>g> this volatilized P is not<br />

well understood. One study <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that the <strong>on</strong>ly<br />

resp<strong>on</strong>se was <strong>on</strong> the surface soil, <strong>and</strong> P did not appear<br />

to move downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil via volatilizati<strong>on</strong> <strong>and</strong><br />

c<strong>on</strong>densati<strong>on</strong>, as N does (DeBano 1991). Grove <strong>and</strong><br />

others (1986) found the opposite. They measured resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> all major cati<strong>on</strong>s, S, NH 4, <strong>and</strong> Zn follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface 0 to 1.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (0-3 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil.<br />

In their study, <strong>on</strong>ly P <strong>and</strong> K c<strong>on</strong>centrati<strong>on</strong>s also<br />

68 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


esp<strong>on</strong>ded <str<strong>on</strong>g>in</str<strong>on</strong>g> the lower soil depths (1.2-3.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches <strong>and</strong><br />

3.9-7.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches; 3-10 cm <strong>and</strong> 10-20 cm).<br />

As <str<strong>on</strong>g>in</str<strong>on</strong>g> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> N, <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity affects changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

extractable P. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, 50 to 60<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total fuel P might be lost to volatilizati<strong>on</strong><br />

(Rais<strong>on</strong> <strong>and</strong> others 1990, DeBano 1991). Part <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

volatilized P ends up as <str<strong>on</strong>g>in</str<strong>on</strong>g>creased available P <str<strong>on</strong>g>in</str<strong>on</strong>g> both<br />

the soil <strong>and</strong> ash follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. An extensive study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P resp<strong>on</strong>ses to different burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g severities was<br />

reported for eucalypt forests (Romanya <strong>and</strong> others<br />

1994). The study sites <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded unburned, burned,<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> an ash bed found under a burned slash pile. The<br />

greatest <str<strong>on</strong>g>effects</str<strong>on</strong>g> occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface soil (0-1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch;<br />

0-2.5 cm), <strong>and</strong> the resp<strong>on</strong>se was dependent <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity. Extractable P c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>creased with<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, but the resp<strong>on</strong>se decreased<br />

with depth. Organic P <strong>on</strong> the other h<strong>and</strong> reacted<br />

oppositely; c<strong>on</strong>centrati<strong>on</strong>s were lower <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensively<br />

burned areas <strong>and</strong> greater <str<strong>on</strong>g>in</str<strong>on</strong>g> the unburned <strong>and</strong><br />

low-severity burned sites.<br />

Fire affects the enzymatic activity <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P. One study compared these P resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

c<strong>on</strong>trolled burn versus a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Saa <strong>and</strong> others<br />

1993). When temperatures reached <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trolled burn were less than 329 °F (50 °C),<br />

extractable P c<strong>on</strong>centrati<strong>on</strong>s (ortho-phosphate) showed<br />

no significant resp<strong>on</strong>se. In c<strong>on</strong>trast, a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> that<br />

produced higher soil temperatures reduced phosphatase<br />

activity <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic P, which <str<strong>on</strong>g>in</str<strong>on</strong>g>creased ortho-phosphate P <strong>and</strong><br />

decreased organic P. Laboratory experiments showed<br />

that phosphatase activity can be significantly reduced<br />

when heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dry <strong>soils</strong> but was absent <str<strong>on</strong>g>in</str<strong>on</strong>g> wet <strong>soils</strong><br />

(DeBano <strong>and</strong> Klopatek 1988). In the p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper<br />

<strong>soils</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g studied, bicarb<strong>on</strong>ate extractable P was<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased although the <str<strong>on</strong>g>in</str<strong>on</strong>g>creases were short lived.<br />

Ash-Bed Effect _________________<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>, variable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> ash are left<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil surface until the ash is either<br />

blown away or is leached <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil by precipitati<strong>on</strong><br />

(fig. 1.4). On severely burned sites, large layers <str<strong>on</strong>g>of</str<strong>on</strong>g> ash<br />

can be present (up to several centimeters thick). These<br />

thick accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ash are c<strong>on</strong>spicuously present<br />

after pil<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (for example, burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash<br />

piles). Ash deposits are usually greatest after the<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuels (piled slash <strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>drows)<br />

<strong>and</strong> least follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

The accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> ashy residue<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil surface after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is referred to<br />

as the “ash bed effect” (Hatch 1960, Pryor 1963,<br />

Humphreys <strong>and</strong> Lambert 1965, Renbuss <strong>and</strong> others<br />

1972). The severe burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s necessary to<br />

create these thick beds <str<strong>on</strong>g>of</str<strong>on</strong>g> ash affect most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

physical, chemical, <strong>and</strong> biological soil properties. Soil<br />

changes associated with ash beds can occur as a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself (soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g), the residual effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ash deposited <strong>on</strong> the soil surface (that is, the ash bed),<br />

or a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both (Rais<strong>on</strong> 1979).<br />

The amount <strong>and</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> ash rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g after <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

depend up<strong>on</strong> the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuels that are<br />

combusted, such as fuel densities (pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratios), fuel<br />

moisture c<strong>on</strong>tent, total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel load c<strong>on</strong>sumed,<br />

<strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Gill<strong>on</strong> <strong>and</strong> others<br />

1995). As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the ash rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g after<br />

a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can range from small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> charred darkcolored<br />

fuel residues to thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> white ash that<br />

are several centimeters thick (DeBano <strong>and</strong> others<br />

1998). When densely packed fuels are completely<br />

combusted, large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> residual white ash are<br />

usually <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e place <strong>on</strong> the soil surface follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (such as after pil<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash, see<br />

Figure 1.4). The severe heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> will<br />

change the color <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral particles to a<br />

reddish color, <strong>and</strong> where extreme soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g has<br />

occurred, the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil particles may be physically<br />

fused together. Silic<strong>on</strong> melts at temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2,577 °F (1,414 °C; see chapter 2).<br />

Chemically, <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground material<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ash produced. Ash<br />

c<strong>on</strong>sists mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ates <strong>and</strong> oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> metals <strong>and</strong><br />

silica al<strong>on</strong>g with small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> P, S, <strong>and</strong> N (Rais<strong>on</strong><br />

<strong>and</strong> others 1990). Calcium is usually the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant<br />

cati<strong>on</strong> found <str<strong>on</strong>g>in</str<strong>on</strong>g> these ash accumulati<strong>on</strong>s. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cati<strong>on</strong>s are leached <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil where they are reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<strong>on</strong> the cati<strong>on</strong> exchange sites located <strong>on</strong> clay or<br />

humus particles <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil cati<strong>on</strong><br />

c<strong>on</strong>tent (fig. 3.15). The pH may exceed 12. However,<br />

the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the preburn material <strong>and</strong> the temperature<br />

or severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the chemical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> ash. Johnst<strong>on</strong> <strong>and</strong> Elliott (1998)<br />

found that ash <strong>on</strong> uncut forest plots generally had the<br />

highest pH <strong>and</strong> the lowest P c<strong>on</strong>centrati<strong>on</strong>s.<br />

Physical changes associated with the ash bed effect<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>clude changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil structure <strong>and</strong> permeability<br />

to <strong>water</strong>. The combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile can totally destroy soil<br />

structure, <strong>and</strong> the ashy material produced <str<strong>on</strong>g>of</str<strong>on</strong>g>ten seals<br />

the soil to <strong>water</strong> entry.<br />

The biological impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the ash bed effect is tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old.<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> the severe soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can directly<br />

affect the l<strong>on</strong>g-term functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial populati<strong>on</strong>s<br />

because the high temperature essentially sterilizes<br />

the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. Plant roots <strong>and</strong> seeds are<br />

also destroyed so that the revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these sites<br />

depends <strong>on</strong> l<strong>on</strong>g-term ecological successi<strong>on</strong> to return<br />

to its former vegetative cover. Indirectly, the large<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> ash can affect soil microbial populati<strong>on</strong>s. A<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ash, soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> the ashheat<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <strong>on</strong> soil respirati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> two Australian<br />

<strong>soils</strong> showed that large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> ash slightly<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 69


decreased respirati<strong>on</strong>, but small amounts had no effect<br />

(Rais<strong>on</strong> <strong>and</strong> McGarity 1980). Additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ash to<br />

sterilized soil produced no effect, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that ash<br />

acted via its <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> active soil biological populati<strong>on</strong>s.<br />

The chemical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> ash was hypothesized to<br />

affect soil respirati<strong>on</strong> by its effect <strong>on</strong>:<br />

• Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g pH.<br />

• Chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g the solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>and</strong><br />

associated m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>.<br />

• Add<str<strong>on</strong>g>in</str<strong>on</strong>g>g available nutrients for microbial<br />

populati<strong>on</strong>s.<br />

Management Implicati<strong>on</strong>s ________<br />

Underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil chemical<br />

properties is important when manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> all<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <strong>and</strong> particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-dependent systems.<br />

Fire <strong>and</strong> associated soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusts organic<br />

matter <strong>and</strong> releases an abundant supply <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

highly soluble <strong>and</strong> available nutrients. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil chemical properties is proporti<strong>on</strong>al<br />

to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter combusted <strong>on</strong> the<br />

soil surface <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil. Not<br />

<strong>on</strong>ly are nutrients released from organic matter dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

combusti<strong>on</strong>, but there can also be a corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the cati<strong>on</strong> exchange capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic<br />

humus materials. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong> exchange capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the humus may be an important factor when burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

over coarse-textured s<strong>and</strong>y <strong>soils</strong> because <strong>on</strong>ly a<br />

small exchange capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

particles is available to capture the highly mobile<br />

cati<strong>on</strong>s released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Excessive leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> loss can thus result, which may be detrimental to<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g site fertility <strong>on</strong> nutrient-limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g s<strong>and</strong>y<br />

soil.<br />

An important chemical functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter is<br />

its role <str<strong>on</strong>g>in</str<strong>on</strong>g> the cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients, especially N. Nitrogen<br />

is most limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <strong>and</strong> its<br />

losses by volatilizati<strong>on</strong> need to be evaluated before<br />

c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g programs. Nitrogen<br />

deficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g>ten limit growth <str<strong>on</strong>g>in</str<strong>on</strong>g> some forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Xeric <strong>and</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated sites, which are typically<br />

pr<strong>on</strong>e to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibit low N availability,<br />

with low <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> low rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> measured <strong>on</strong> these sites<br />

(White 1996, Knoepp <strong>and</strong> Swank 1998). Forest disturbance,<br />

through natural or human-caused means, frequently<br />

results <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> both soil <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> potential N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<strong>and</strong> nitrificati<strong>on</strong>. The N <str<strong>on</strong>g>in</str<strong>on</strong>g>creases result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil moisture <strong>and</strong> temperature<br />

<strong>and</strong> the decreased plant uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> N make more<br />

N available for susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil.<br />

Historically, some wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> have been<br />

exposed to frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are low <str<strong>on</strong>g>in</str<strong>on</strong>g> available N <strong>and</strong> other nutrients<br />

such as P <strong>and</strong> cati<strong>on</strong>s. The cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients, especially<br />

N, may be slow, <strong>and</strong> the exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> from<br />

these systems <str<strong>on</strong>g>of</str<strong>on</strong>g>ten results <str<strong>on</strong>g>in</str<strong>on</strong>g> low N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<strong>and</strong> nitrificati<strong>on</strong> rates. Frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>, however, can<br />

accelerate these biological rates <str<strong>on</strong>g>of</str<strong>on</strong>g> N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

because it destroys the <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g substances that<br />

h<str<strong>on</strong>g>in</str<strong>on</strong>g>der these processes. For example, <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest, m<strong>on</strong>oterpenes have<br />

been found to <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit nitrificati<strong>on</strong> (White 1991). These<br />

m<strong>on</strong>oterpenes are highly flammable <strong>and</strong> as a result<br />

are combusted dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. As a result, the removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> by <str<strong>on</strong>g>fire</str<strong>on</strong>g> allows N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong><br />

nitrificati<strong>on</strong> to proceed. It is hypothesized that these<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>hibitory compounds build up over time after a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> decrease N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>. Significant differences<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> m<strong>on</strong>oterpenes c<strong>on</strong>centrati<strong>on</strong>s have been established<br />

between early <strong>and</strong> late successi<strong>on</strong>al stages, although<br />

specific changes over time have not been detectable<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the large variability between sites (White<br />

1996).<br />

Another study has shown that the xeric p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-hardwood<br />

sites <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southern Appalachians are disappear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> past l<strong>and</strong> use, drought, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, <strong>and</strong><br />

the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> by the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-dependent p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

species (Vose 2000). This <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> was used to<br />

develop an ecological model that could be used as a<br />

forest management tool to rejuvenate these P<str<strong>on</strong>g>in</str<strong>on</strong>g>us<br />

rigida st<strong>and</strong>s (fig. 3.16). This model specifies that<br />

a cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance due to drought <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>sect<br />

Figure 3.16—Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> P<str<strong>on</strong>g>in</str<strong>on</strong>g>us ridgida st<strong>and</strong>s. (Adapted from Vose 2000).<br />

70 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


outbreaks followed by <str<strong>on</strong>g>fire</str<strong>on</strong>g> is necessary to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Without <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

mixed hardwood vegetati<strong>on</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates the st<strong>and</strong>.<br />

Therefore, prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is prov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to be an<br />

effective tool for enhanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g ecosystem health <strong>and</strong> for<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g, preserv<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g these unique<br />

habitats.<br />

Fire severity is probably the <strong>on</strong>e most important<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> that affects the chemical soil properties.<br />

Generalized relati<strong>on</strong>ships for several soil properties<br />

at different severities are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.15.<br />

Nitrogen, organic matter, <strong>and</strong> duff decrease as <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity <str<strong>on</strong>g>in</str<strong>on</strong>g>creases. Available NH 4-N <strong>and</strong> cati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>crease.<br />

The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil generally <str<strong>on</strong>g>in</str<strong>on</strong>g>creases because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>and</strong> its associated organic<br />

acids, which are replaced with an abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> basic<br />

cati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash.<br />

Summary ______________________<br />

The most basic soil chemical property affected by<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is organic matter. Organic<br />

matter not <strong>on</strong>ly plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil, but it also affects the physical properties (see<br />

chapter 2) <strong>and</strong> the biological properties (see chapter 4)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> as well. Soil organic matter plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, cati<strong>on</strong> exchange, <strong>and</strong> <strong>water</strong> retenti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. When organic matter is combusted, the stored<br />

nutrients are either volatilized or are changed <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

highly available forms that can be taken up readily by<br />

microbial organisms <strong>and</strong> vegetati<strong>on</strong>. Those available<br />

nutrients not immobilized are easily lost by leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

or surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>. Nitrogen is the most<br />

important nutrient affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> it is easily<br />

volatilized <strong>and</strong> lost from the site at relatively low<br />

temperatures. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter<br />

<strong>and</strong> N is directly related to the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. High- <strong>and</strong> moderate-severity<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s cause the greatest losses. Nitrogen<br />

loss by volatilizati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern<br />

<strong>on</strong> low-fertility sites because N can <strong>on</strong>ly be replaced<br />

by N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. Cati<strong>on</strong>s are not easily<br />

volatilized <strong>and</strong> usually rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the site <str<strong>on</strong>g>in</str<strong>on</strong>g> a highly<br />

available form. An abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s can be found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the thick ash layers (or ash-bed) rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the<br />

soil surface follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 71


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

72 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Matt D. Busse<br />

Le<strong>on</strong>ard F. DeBano<br />

Chapter 4:<br />

Soil Biology<br />

Introducti<strong>on</strong> ____________________<br />

Soil biological properties <str<strong>on</strong>g>in</str<strong>on</strong>g>volve a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms that <str<strong>on</strong>g>in</str<strong>on</strong>g>habit the soil, al<strong>on</strong>g with the<br />

biologically mediated processes that they regulate.<br />

The welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> these soil organisms directly affects the<br />

short- <strong>and</strong> l<strong>on</strong>g-term productivity <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Borchers <strong>and</strong> Perry 1990).<br />

Soils are alive with large populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms,<br />

roots <strong>and</strong> mycorrhizae, <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, <strong>and</strong> burrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

animals that <str<strong>on</strong>g>in</str<strong>on</strong>g>habit the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munns 1996). The biological comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil also <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes plant roots <strong>and</strong> their<br />

associated rhizosphere, vegetative reproductive structures,<br />

<strong>and</strong> seeds. These organisms proliferate <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil matrix, particularly the upper layers that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

substantial amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. Collectively,<br />

these organisms c<strong>on</strong>tribute to soil productivity by<br />

enhanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g decompositi<strong>on</strong>, nitrogen (N) cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, humus<br />

formati<strong>on</strong>, soil physical <strong>and</strong> chemical properties,<br />

plant reproducti<strong>on</strong>, disease <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence, <strong>and</strong> plant nutriti<strong>on</strong><br />

<strong>and</strong> stability.<br />

Biological Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Soils __________________________<br />

The biological comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dead biomass. Dead biomass c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter that is <str<strong>on</strong>g>in</str<strong>on</strong>g> various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>,<br />

extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g from undecomposed plant parts <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

litter layer to highly decomposed humus materials<br />

that can be thoroughly mixed with the upper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Both liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dead comp<strong>on</strong>ents<br />

are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> organic<br />

matter is discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3. This current<br />

chapter is devoted to the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the important<br />

organisms that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence soil-litter systems <strong>and</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> that <str<strong>on</strong>g>fire</str<strong>on</strong>g> has up<strong>on</strong> them.<br />

Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms can be classified several ways.<br />

One method <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong> is whether they are flora<br />

or fauna. Soil flora <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes algae, cyanobacteria,<br />

mycorrhiza, <strong>and</strong> plant roots. Soil fauna <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes protozoa,<br />

earthworms, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>sects. The category “soil<br />

fauna” has been further divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to micro-, meso-,<br />

<strong>and</strong> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna based <strong>on</strong> body lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> less than<br />

0.2 mm, .20 to 10.4 mm, <strong>and</strong> greater than 10.4 mm,<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 73


espectively (Wallwork 1970) (fig. 4.1). The term “microorganisms”<br />

encompasses a diverse group <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bacteria, fungi, archaebacteria, protozoa, algae, <strong>and</strong><br />

viruses. Some comm<strong>on</strong> representatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate-sized<br />

soil organisms (that is, mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna) comm<strong>on</strong>ly<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> are round worms, spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gtails, <strong>and</strong><br />

mites, whereas the macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna are represented by a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> larger <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates such as many <str<strong>on</strong>g>in</str<strong>on</strong>g>sects,<br />

scorpi<strong>on</strong>s, <strong>and</strong> earthworms.<br />

Soil organisms rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> size from microbes to<br />

megafauna are comm<strong>on</strong>ly c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface<br />

horiz<strong>on</strong>s, because these soil layers c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> large<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter (see fig. A.1, part A), <strong>and</strong><br />

are active sites for microbial processes, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g decompositi<strong>on</strong><br />

<strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>. Plant roots <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

can occupy the forest floor (that is, L-, F-,<br />

<strong>and</strong> H- layer) or can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> the uppermost layers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic-rich m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil (that is, the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the A-horiz<strong>on</strong>). The H-layer represents the end product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial decompositi<strong>on</strong> activity that occurs<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> many <strong>soils</strong>.<br />

Plant roots, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

Mycorrhizae<br />

Nitrogen-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bacteria<br />

Other symbiotic<br />

organisms<br />

Protozoa<br />

Nematodes<br />

Rotifers<br />

Mites<br />

Soil Microorganisms<br />

Soil is teem<str<strong>on</strong>g>in</str<strong>on</strong>g>g with life. Hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms are found <str<strong>on</strong>g>in</str<strong>on</strong>g> each h<strong>and</strong>ful <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

soil. No other liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> a forest (vegetati<strong>on</strong>,<br />

wildlife, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, <strong>and</strong> so forth) comes close to match<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the sheer numbers <strong>and</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil microorganisms.<br />

More important, microorganisms play a major<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes, decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic material, improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> soil physical characteristics,<br />

<strong>and</strong> disease. They also play an important role<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a labile pool <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients (Stevens<strong>on</strong> <strong>and</strong><br />

Cole 1999). Hence, their <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> life <str<strong>on</strong>g>in</str<strong>on</strong>g> naturally<br />

occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is substantial. Also, some microorganisms<br />

form symbiotic relati<strong>on</strong>ships with plants,<br />

thereby creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a unique biological entity that can be<br />

easily affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Free-Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g Fungi <strong>and</strong> Bacteria—Fungi <strong>and</strong><br />

bacteria are the workhorses <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest soil organisms<br />

(fig. 4.2). Their functi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> part <str<strong>on</strong>g>in</str<strong>on</strong>g>clude decompositi<strong>on</strong>,<br />

nutrient turnover <strong>and</strong> acquisiti<strong>on</strong> (for<br />

>2 mm 0.1–2 mm<br />

MACROBIOTA<br />

Subsist<str<strong>on</strong>g>in</str<strong>on</strong>g>g largely <strong>on</strong><br />

plant materials:<br />

Insect—ants, beetles<br />

grubs,etc.<br />

Millipedes<br />

Sowbugs (woodlice)<br />

Slugs <strong>and</strong> snails<br />

Earthworms<br />

MICROFAUNA<br />

Largely predatory:<br />

Insects—many ants,<br />

beetles, etc.<br />

Mites, <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases<br />

Centipedes<br />

Spiders<br />


A<br />

B<br />

Figure 4.2—Fungi (A) <strong>and</strong> bacteria (B) are important<br />

forest soil organisms due to their roles <str<strong>on</strong>g>in</str<strong>on</strong>g> decompositi<strong>on</strong>,<br />

nutrient turnover <strong>and</strong> acquisiti<strong>on</strong>, disease<br />

occurrence, <strong>and</strong> suppressi<strong>on</strong> <strong>and</strong> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toxic materials. (Photos by Daniel Neary <strong>and</strong> Shirley<br />

Owens, Michigan State University).<br />

example, mycorrhizal fungi <strong>and</strong> N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria),<br />

disease occurrence <strong>and</strong> suppressi<strong>on</strong>, <strong>and</strong> degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> toxic materials. Bacteria (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes<br />

<strong>and</strong> cyanobacteria) are the most numerous, comm<strong>on</strong>ly<br />

number<str<strong>on</strong>g>in</str<strong>on</strong>g>g about 100 milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals <str<strong>on</strong>g>in</str<strong>on</strong>g> a gram <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertile agricultural topsoil (Paul <strong>and</strong> Clark 1989, S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger<br />

<strong>and</strong> Munns 1996). In forest <strong>soils</strong>, the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacteria are less, but fungal numbers can range from<br />

5,000 to 900,000 <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> soil (Stevens<strong>on</strong><br />

<strong>and</strong> Cole 1999). Bacteria <strong>and</strong> fungi have been estimated<br />

to c<strong>on</strong>tribute 2.2 t<strong>on</strong>s/acre (5.0 Mg/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass<br />

to some forest <strong>soils</strong> (Bollen 1974). Fungi, although<br />

less numerous than bacteria, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten account for greater<br />

biomass due to their larger size <strong>and</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

woody, organic material. The diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> these two<br />

groups is almost unimag<str<strong>on</strong>g>in</str<strong>on</strong>g>able; thous<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> 0.002 pound (1 g) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil (Torsvik<br />

<strong>and</strong> others 1990, Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>a <strong>and</strong> others 1999). And this<br />

diversity creates the collective ability <str<strong>on</strong>g>of</str<strong>on</strong>g> these microorganisms<br />

to adapt to <str<strong>on</strong>g>fire</str<strong>on</strong>g> or other envir<strong>on</strong>mental disturbances<br />

(Atlas <strong>and</strong> others 1991).<br />

Other microbial groups also serve key roles <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

biologically <str<strong>on</strong>g>in</str<strong>on</strong>g>duced changes <str<strong>on</strong>g>in</str<strong>on</strong>g> forest floor litter <strong>and</strong><br />

soil. Protozoa, by feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> bacteria, release plantavailable<br />

nutrients that were previously tied up <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

bacterial cells. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> viruses <strong>and</strong> archaebacteria<br />

(formerly classified as bacteria) <str<strong>on</strong>g>in</str<strong>on</strong>g> forests, however, is<br />

not well understood. These viruses are prote<str<strong>on</strong>g>in</str<strong>on</strong>g>-coated,<br />

acellular str<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA or RNA that can be predatory<br />

to many microorganisms, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>tributi<strong>on</strong> to<br />

nutrient turnover. Archaebacteria are comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> extreme<br />

envir<strong>on</strong>ments where drastic temperature, moisture,<br />

acidity, or nutrient c<strong>on</strong>diti<strong>on</strong>s preclude other<br />

organisms. Their numbers <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong> are assumed<br />

to be low.<br />

A particularly important group <str<strong>on</strong>g>of</str<strong>on</strong>g> free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes those c<strong>on</strong>cerned with the nutrient<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes described later <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter. Some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these biologically mediated processes <str<strong>on</strong>g>in</str<strong>on</strong>g>clude N<br />

fixati<strong>on</strong>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>, amm<strong>on</strong>ificati<strong>on</strong>, nitrificati<strong>on</strong>,<br />

<strong>and</strong> the overall decompositi<strong>on</strong> process.<br />

Specialized Root-Microbial Associati<strong>on</strong>s—<br />

Some bacteria <strong>and</strong> fungi are <str<strong>on</strong>g>in</str<strong>on</strong>g> close associati<strong>on</strong> with<br />

plant roots <strong>and</strong> develop a symbiotic relati<strong>on</strong>ship with<br />

them. This suite <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms is different than the<br />

free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria <strong>and</strong> fungi described above because<br />

they depend <strong>on</strong> a mutual relati<strong>on</strong>ship with plant roots.<br />

They are also dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>in</str<strong>on</strong>g> their relati<strong>on</strong>ship to <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

because both they <strong>and</strong> their host plants can be affected.<br />

The most comm<strong>on</strong> symbiotic relati<strong>on</strong>ships <str<strong>on</strong>g>in</str<strong>on</strong>g>volve<br />

the root <strong>and</strong>:<br />

• Mycorrhizal fungi, which enhance the plant’s<br />

ability to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> nutrients such as phosphorus<br />

(P) <strong>and</strong> z<str<strong>on</strong>g>in</str<strong>on</strong>g>c from the soil.<br />

• Nitrogen-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria, which c<strong>on</strong>vert N gas<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the air to a form usable by plants. The<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> N-fixati<strong>on</strong> <strong>and</strong> other biological<br />

processes are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail later<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter.<br />

A useful c<strong>on</strong>cept used for describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the close relati<strong>on</strong>ship<br />

between roots <strong>and</strong> microorganisms is the<br />

rhizosphere. The rhizosphere is a cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil space that extends about 0.04 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1 mm)<br />

from the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> roots (S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munns 1996).<br />

The outer boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the rhizophere is diffuse <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>exactly def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed because the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the root can<br />

extend variable distances <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil. Simply, the<br />

rhizosphere may be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the root<br />

<strong>and</strong> its surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil envir<strong>on</strong>ment (fig. 4.3). Functi<strong>on</strong>ally,<br />

the rhizosphere is important because it c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the roots <strong>and</strong> associated microorganisms.<br />

The roots secrete products that stimulate<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 75


A<br />

B<br />

Figure 4.3—The rhizosphere <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the root system<br />

(A), associated mycorrhizae, <strong>and</strong> vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g roots (B). (Photos courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Nicholas<br />

Comerford, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida).<br />

the bacterial <strong>and</strong> fungal activity so that the fastgrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

heterotrophic microbes are at least 10 times<br />

denser near the root than <str<strong>on</strong>g>in</str<strong>on</strong>g> the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil (S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger<br />

<strong>and</strong> Munns 1996). The heterotrophic microbial populati<strong>on</strong><br />

plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter <strong>and</strong> c<strong>on</strong>tributes to a desirable soil<br />

structure (granular) <str<strong>on</strong>g>in</str<strong>on</strong>g> the root z<strong>on</strong>e.<br />

Mycorrhizal fungi found <str<strong>on</strong>g>in</str<strong>on</strong>g> the rhizosphere depend<br />

<strong>on</strong> host plants for their well be<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Borchers <strong>and</strong> Perry<br />

1990). The development <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae provides a<br />

way for the plant roots to extend farther <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil.<br />

The th<str<strong>on</strong>g>in</str<strong>on</strong>g> fungal hyphae <str<strong>on</strong>g>of</str<strong>on</strong>g> the mycorrhizal fungi form<br />

a mutual relati<strong>on</strong>ship with the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> some plants,<br />

thereby allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the plant roots to proliferate a greater<br />

soil mass than by the roots al<strong>on</strong>e. Root-fungal associati<strong>on</strong>s<br />

use about 5 to 30 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total photosynthate<br />

that is translocated below ground by plants. Two<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae are found <str<strong>on</strong>g>in</str<strong>on</strong>g> soil, endo-<br />

(arbuscular) <strong>and</strong> ectomycorrhizae.<br />

The endomycorrhizae produce structures with<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

plant roots (<str<strong>on</strong>g>in</str<strong>on</strong>g> deciduous trees, most annual crops, <strong>and</strong><br />

other herbaceous species) that are called arbuscules<br />

(Coleman <strong>and</strong> Crossley 1996, S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munz 1996).<br />

Arbuscular mycorrhiza fungi also send out hyphae,<br />

but <strong>on</strong>ly a few centimeters <str<strong>on</strong>g>in</str<strong>on</strong>g>to the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

(Coleman <strong>and</strong> Crossley 1996).<br />

In c<strong>on</strong>trast to endomycorrhize fungi, the<br />

ectomycorrhizae, which are primarily basidiomycetes,<br />

grow between plant root cells (<str<strong>on</strong>g>in</str<strong>on</strong>g> many evergreen trees<br />

<strong>and</strong> shrubs), but not <str<strong>on</strong>g>in</str<strong>on</strong>g>side them as do endomycorrhizae<br />

(Coleman <strong>and</strong> Crossley 1996, Munns 1996).<br />

Ectomycorrhizae can send out hyphae for several<br />

meters <str<strong>on</strong>g>in</str<strong>on</strong>g>to the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil to forage for nutrients<br />

<strong>and</strong> <strong>water</strong> that are essential for the host plant. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their ability to proliferate the soil, hyphae <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ectomycorrhizae c<strong>on</strong>stitute a significant proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the C allocated to belowground net primary productivity<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>iferous forests (Read 1991). The hyphae<br />

facilitate nutrient uptake, particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> P, <strong>and</strong> are<br />

avid col<strong>on</strong>izers <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter where they enhance<br />

soil structure. Ectomycorrhizae are located at shallow<br />

depths <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>and</strong> tend to be c<strong>on</strong>centrated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the woody material dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g dry seas<strong>on</strong>s <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Hlayer<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g moist c<strong>on</strong>diti<strong>on</strong>s. Ectomycorrhizae are<br />

important decomposers <strong>and</strong>, as a result, obta<str<strong>on</strong>g>in</str<strong>on</strong>g> reduced<br />

C from the decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g litter layer. Because<br />

the ectomycorrhizae are so near the soil surface, both<br />

the rest<str<strong>on</strong>g>in</str<strong>on</strong>g>g stages <strong>and</strong> the hyphae are easily damaged<br />

by soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Several groups <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms form N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

symbiotic relati<strong>on</strong>ships with plants (S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger <strong>and</strong> Munns<br />

1996). This type <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis, comm<strong>on</strong>ly found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

rhizosphere, <str<strong>on</strong>g>in</str<strong>on</strong>g>volves a group <str<strong>on</strong>g>of</str<strong>on</strong>g> act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes <strong>and</strong><br />

rhizobia bacteria. The act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes (Frankia spp.)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fect the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> many genera <str<strong>on</strong>g>of</str<strong>on</strong>g> shrubs <strong>and</strong> trees<br />

where they form N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g nodules. Rhizobial bacteria<br />

(Rhizobium <strong>and</strong> Bradyrhizobium spp.) also form nitrogen-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

nodules with a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> plants<br />

bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the legume family, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g alfalfa,<br />

clover, bean, pea, soybean, vetch, lup<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <strong>and</strong> lotus,<br />

am<strong>on</strong>g many others. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these are agricultural<br />

plants, although lup<str<strong>on</strong>g>in</str<strong>on</strong>g>es, lotus, <strong>and</strong> clover are frequently<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> abundance <strong>on</strong> freshly burned wildl<strong>and</strong><br />

areas.<br />

Biological Crusts—Biological crusts (fig. 4.4) are<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> hot, cool, <strong>and</strong> cold arid <strong>and</strong> semiarid regi<strong>on</strong>s<br />

throughout the world <strong>and</strong> frequently occupy the bare<br />

areas where vegetati<strong>on</strong> cover is spare or totally absent<br />

(Belnap 1994, Belnap <strong>and</strong> others 2001). These surface<br />

communities are generically referred to as biological<br />

soil crusts, although they may specifically be called<br />

cryptogamic, cryptobiotic, microbiotic, or microphytic<br />

soil crusts. The biological soil crusts are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

complex community <str<strong>on</strong>g>of</str<strong>on</strong>g> cyanobacteria (blue-green algae),<br />

lichens, mosses, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ungi, <strong>and</strong> other bacteria<br />

76 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 4.4—Biological crusts are found <str<strong>on</strong>g>in</str<strong>on</strong>g> hot, cool,<br />

<strong>and</strong> cold arid <strong>and</strong> semiarid regi<strong>on</strong>s through the world.<br />

(Photo courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Geological Survey).<br />

(Isichei 1990, Johansen 1993, L<str<strong>on</strong>g>of</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> White 1996,<br />

Belnap <strong>and</strong> others 2001). The algal comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

community has the ability to fix atmospheric C <strong>and</strong> is<br />

best recognized <str<strong>on</strong>g>in</str<strong>on</strong>g> forests as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens<br />

that col<strong>on</strong>ize rocks, tree trunks <strong>and</strong> exposed soil surfaces.<br />

Lichens represent a symbiosis am<strong>on</strong>g fungi <strong>and</strong><br />

blue-green algae or cyanobacteria. The blue-green<br />

algae photosynthesize <strong>and</strong> fix N, while the fungi provide<br />

<strong>water</strong> <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral nutrients. They are typically<br />

found <strong>on</strong> erodible <strong>soils</strong> with some topographic relief, or<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> shallow soil pockets <str<strong>on</strong>g>in</str<strong>on</strong>g> slickrock habitats (Johansen<br />

1993). In this envir<strong>on</strong>ment, the filamentous growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cyanobacteria <strong>and</strong> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ungi proliferates <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper<br />

few millimeters <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, glu<str<strong>on</strong>g>in</str<strong>on</strong>g>g loose particles<br />

together <strong>and</strong> form<str<strong>on</strong>g>in</str<strong>on</strong>g>g a matrix that stabilizes <strong>and</strong><br />

protects the soil surface from erosi<strong>on</strong> (Belnap <strong>and</strong><br />

others 2001). Cryptogamic crusts are also found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

semiarid forest <strong>and</strong> shrubl<strong>and</strong>s, such as p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper<br />

woodl<strong>and</strong>s <strong>and</strong> sagebrush communities (Johansen<br />

1993). These biological crusts can account for as much<br />

as 70 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g ground cover <str<strong>on</strong>g>in</str<strong>on</strong>g> arid Western<br />

Hemisphere <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Belnap 1994).<br />

The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological crusts is <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by<br />

several envir<strong>on</strong>mental factors (Belnap <strong>and</strong> others<br />

2001). The total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> crust that develops is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>versely related to vascular plant cover (<str<strong>on</strong>g>in</str<strong>on</strong>g> other<br />

words, the less plant cover, the more surface available<br />

for col<strong>on</strong>izati<strong>on</strong> <strong>and</strong> growth). Elevati<strong>on</strong> also affects<br />

crust distributi<strong>on</strong> <strong>and</strong> cover, <strong>and</strong> both are greatest at low<br />

elevati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> areas (less than 3,300 feet or 1,000 m)<br />

compared to mid-elevati<strong>on</strong>s 3,300 to 8,200 feet<br />

(1,000 to 2,500 m). Stable <strong>soils</strong> <strong>and</strong> rocks near, or at,<br />

the soil surface enhance crust cover by collect<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

<strong>and</strong> armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g the surface aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st physical disturbance<br />

(Belnap <strong>and</strong> others 2001). Stable, f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-textured<br />

<strong>soils</strong> support a greater percentage cover <strong>and</strong> a more<br />

diverse populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g up these<br />

surface crusts. The seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> also has a<br />

major <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> biological crusts,<br />

<strong>and</strong> as a result, the regi<strong>on</strong>s that receive m<strong>on</strong>so<strong>on</strong>s<br />

have the greatest diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> cyanobacteria <strong>and</strong> the<br />

lowest abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens. Areas that are frequented<br />

by fog (such as porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the California chaparral)<br />

frequently support lichens that <str<strong>on</strong>g>in</str<strong>on</strong>g>tercept moisture<br />

from the air. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, but not least, surface disturbance<br />

has a str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

crusts. The two most important historical impacts<br />

<strong>on</strong> crusts have been graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Belnap <strong>and</strong><br />

others 2001).<br />

Cryptogamic crusts benefit <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ways. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> these crusts to fix N, accumulate<br />

C, <strong>and</strong> capture P enhances nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>,<br />

especially dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the early successi<strong>on</strong>al stages (DeBano<br />

<strong>and</strong> others 1998, Evans <strong>and</strong> Johansen 1999). Some<br />

specific benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> cryptogamic crusts <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> arise<br />

from their ability to:<br />

• Retard erosi<strong>on</strong> <strong>on</strong> desert <strong>and</strong> steppe rangel<strong>and</strong>s<br />

by b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual soil particles (particularly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> s<strong>and</strong>y <strong>soils</strong>). Soil particles are<br />

believed to be bound as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular polysaccharides (Lynch<br />

<strong>and</strong> Bragg 1985).The crusts can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease or<br />

decrease <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates, although their effect<br />

<strong>on</strong> c<strong>on</strong>serv<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil moisture is not welldef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

(Johansen 1993).<br />

• Fix gaseous N. The cyanobacteria comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this symbiosis has been estimated to fix as<br />

much as 22 pounds/acre (25 kg/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> N annually<br />

(West <strong>and</strong> Skuj<str<strong>on</strong>g>in</str<strong>on</strong>g>s 1977). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

fixed, however, is largely dependent up<strong>on</strong> the<br />

abundance <strong>and</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the crusts <strong>and</strong> favorable<br />

climatic c<strong>on</strong>diti<strong>on</strong>s (L<str<strong>on</strong>g>of</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> White<br />

1996).<br />

• Enhance organic matter buildup. Biological<br />

crusts <str<strong>on</strong>g>in</str<strong>on</strong>g> semiarid areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the Southwestern<br />

United States have been estimated to accumulate<br />

5.3 to 20.5 pounds/acre (6 to 23 kg/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

C annually (Jeffries <strong>and</strong> others 1993).<br />

• Increase P levels by reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g f<str<strong>on</strong>g>in</str<strong>on</strong>g>e soil particles<br />

from loss by erosi<strong>on</strong> (Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>er <strong>and</strong> Harper<br />

1977).<br />

• Facilitate seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>g establishment. Although<br />

germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> can be <str<strong>on</strong>g>in</str<strong>on</strong>g>hibited by allelopathic<br />

substances produced by the crust, seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

establishment generally seems to benefit by<br />

their presence (St. Clair <strong>and</strong> others 1984).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 77


Soil Meso- <strong>and</strong> Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

The most comm<strong>on</strong> members <str<strong>on</strong>g>of</str<strong>on</strong>g> the mes<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal group<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil organisms are the mites (members <str<strong>on</strong>g>of</str<strong>on</strong>g> the order<br />

Acari). The mites can be abundant <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>, particularly<br />

forest <strong>soils</strong>, where a 0.2 pound (100 g) sample <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil may c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> as many as 500 mite species represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

almost 100 genera (Coleman <strong>and</strong> Crossley<br />

1996). Other mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna found <str<strong>on</strong>g>in</str<strong>on</strong>g> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>clude Rotifera,<br />

Nematoda (round worms), <strong>and</strong> Collembola (spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gtails).<br />

Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna occupy<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil <strong>and</strong> litter <str<strong>on</strong>g>in</str<strong>on</strong>g> forest,<br />

shrubl<strong>and</strong>, <strong>and</strong> grassl<strong>and</strong> can be placed <str<strong>on</strong>g>in</str<strong>on</strong>g> two broad<br />

classes—those that spend all or most <str<strong>on</strong>g>of</str<strong>on</strong>g> their time <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the litter <strong>and</strong> uppermost m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers, <strong>and</strong> those<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>habit these habitats <strong>on</strong>ly temporarily or not at<br />

all. Several <str<strong>on</strong>g>of</str<strong>on</strong>g> the more permanent faunal groups<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude those that reside <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <strong>and</strong> litter but also<br />

a group that dwells beneath st<strong>on</strong>es, logs, under bark,<br />

or <str<strong>on</strong>g>in</str<strong>on</strong>g> similar protected habitats. These organisms are<br />

collectively called the cryptozoa. Three orders <str<strong>on</strong>g>of</str<strong>on</strong>g> higher<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sects—Isoptera (termites), Hymenoptera (ants, bees,<br />

wasps, <strong>and</strong> sawflies), <strong>and</strong> Coleoptera (beetles)—all<br />

play a major role <str<strong>on</strong>g>in</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil structure <strong>and</strong><br />

enrich<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil chemistry <strong>and</strong> associated food webs<br />

(Coleman <strong>and</strong> Crossley1996). The cryptozoa group<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes millipedes, centipedes, <strong>and</strong> scorpi<strong>on</strong>s. These<br />

macrobiota enhance decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter,<br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, soil structure, <strong>and</strong> the l<strong>on</strong>g-term<br />

primary productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Earthworms (Oligochaeta) are a special class <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna that has l<strong>on</strong>g been recognized as an important<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy soil systems (Coleman<br />

<strong>and</strong> Crossley 1996, Lavelle 1988).Their large abundance<br />

<strong>and</strong> biomass <str<strong>on</strong>g>in</str<strong>on</strong>g> some <strong>soils</strong> make them a major<br />

factor <str<strong>on</strong>g>in</str<strong>on</strong>g> soil biology (fig. 4.5). Earthworms fall <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

three general groups: those that dwell <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface<br />

litter, those that are active <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil layers,<br />

<strong>and</strong> those that move vertically between deeper soil<br />

layers <strong>and</strong> the soil surface. These organisms act as<br />

biological agents that decompose litter <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralize<br />

C <str<strong>on</strong>g>in</str<strong>on</strong>g> both the litter <strong>and</strong> underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil (Zhang <strong>and</strong><br />

Hendrix 1995). Earthworm digesti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases both<br />

the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong> humificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

(Lavelle 1988). Earthworms are best known for their<br />

beneficial <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> build<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> c<strong>on</strong>serv<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil structure,<br />

which results from burrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>gesti<strong>on</strong><br />

activities (Lavelle 1988). Earthworm activities enhance<br />

soil structure by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong>-stable aggregates, <strong>and</strong> the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burrows<br />

<strong>and</strong> casts <str<strong>on</strong>g>in</str<strong>on</strong>g>creases soil porosity, which improves both<br />

aerati<strong>on</strong> <strong>and</strong> <strong>water</strong> movement through the soil.<br />

Roots <strong>and</strong> Reproductive Structures<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant roots, vegetative reproductive<br />

structures, <strong>and</strong> seeds are found immediately <strong>on</strong> the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil or are distributed downward<br />

throughout the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. These plant parts <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

tap roots, fibrous surface roots, rhizomes, stol<strong>on</strong>s,<br />

root crowns, <strong>and</strong> bulbs. The welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant roots<br />

<strong>and</strong> reproductive structures is important to the<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant biomass <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all terrestrial <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> found throughout the world,<br />

particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> those <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> that experience repeated<br />

<strong>and</strong> regular <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Closely associated with the<br />

roots are a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiotic microorganisms found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil (see the previous secti<strong>on</strong> Specialized Root-<br />

Microbial Associati<strong>on</strong>s).<br />

Amphibians, Reptiles, <strong>and</strong> Small<br />

Mammals<br />

Amphibians, reptiles, <strong>and</strong> small mammals <str<strong>on</strong>g>in</str<strong>on</strong>g>habit<br />

holes <strong>and</strong> cavities <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil where<br />

they feed <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, plant parts (seeds), <strong>and</strong><br />

other organic debris found <strong>on</strong> or near the soil surface.<br />

Burrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities <strong>and</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fecal material<br />

by these larger animals c<strong>on</strong>tribute to the aerati<strong>on</strong> <strong>and</strong><br />

fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <strong>soils</strong>.<br />

Biologically Mediated Processes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Soils __________________________<br />

The liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms described above are <str<strong>on</strong>g>in</str<strong>on</strong>g>volved<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> numerous biological processes that regulate nutrient<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> c<strong>on</strong>tribute to soil productivity <strong>and</strong><br />

ecosystem health. The nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes for<br />

n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ments were presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.3.<br />

Figure 4.5—Earthworms have l<strong>on</strong>g been recognized<br />

as an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy soil systems<br />

that functi<strong>on</strong> as key biological agents <str<strong>on</strong>g>in</str<strong>on</strong>g> decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

litter <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eraliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> both the litter <strong>and</strong><br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. (Photo courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Earl St<strong>on</strong>e, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Florida).<br />

78 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Nutrients enter the soil by precipitati<strong>on</strong>, dry fall,<br />

N-fixati<strong>on</strong>, <strong>and</strong> geochemical weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks. Nutrients<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil organic matter that accumulates <strong>on</strong> the<br />

soil surface are slowly changed to forms that are<br />

available to plants by the biological processes <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong><br />

<strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>. The leakage <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients<br />

from these n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is usually low, <strong>and</strong><br />

<strong>on</strong>ly small losses occur via volatilizati<strong>on</strong>, erosi<strong>on</strong>,<br />

leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> denitrificati<strong>on</strong>. Nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> represents a dynamic balance<br />

am<strong>on</strong>g the processes regulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g decompositi<strong>on</strong>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

(amm<strong>on</strong>ificati<strong>on</strong> <strong>and</strong> nitrificati<strong>on</strong>), N-fixati<strong>on</strong><br />

<strong>and</strong> denitrificati<strong>on</strong>, <strong>and</strong> nutrient immobilizati<strong>on</strong><br />

<strong>and</strong> uptake by plants. The l<strong>on</strong>g-term susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> depends <strong>on</strong> this regular <strong>and</strong><br />

c<strong>on</strong>sistent cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> order to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> plant<br />

growth (DeBano <strong>and</strong> others 1998).<br />

Decompositi<strong>on</strong> <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

Organic matter that is deposited <strong>on</strong> a soil surface is<br />

decomposed by soil organisms <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly as humus). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g decompositi<strong>on</strong>,<br />

C stored <str<strong>on</strong>g>in</str<strong>on</strong>g> the organic matter is recycled <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the atmosphere as CO 2, while N is stored <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial<br />

biomass until it is released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the C <strong>and</strong> N immobilized as microbial tissue<br />

can be microbially c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to resistant humic<br />

substances (via a process called humificati<strong>on</strong>). The<br />

humus fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> undergoes<br />

both c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous decompositi<strong>on</strong> <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>,<br />

so that the total soil organic matter <strong>and</strong> N c<strong>on</strong>tent<br />

may rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a steady state c<strong>on</strong>diti<strong>on</strong> until disturbance,<br />

such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>, occurs. Several factors that affect<br />

the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter are the compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g litter (substrate quality),<br />

envir<strong>on</strong>mental factors (moisture <strong>and</strong> temperature),<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g>volved, <strong>and</strong> other soil factors<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil pH <strong>and</strong> deficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

nutrients (P, K, <strong>and</strong> micr<strong>on</strong>utrients).<br />

An important end product <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> is the<br />

release <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients that can be used by plants. These<br />

highly available nutrients are formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>,<br />

which is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an element<br />

from an organic form to an <str<strong>on</strong>g>in</str<strong>on</strong>g>organic state as the<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial activity (Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

America 2001). The m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volves the transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic N compounds<br />

(such as prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids) <str<strong>on</strong>g>in</str<strong>on</strong>g>to NH 4 (amm<strong>on</strong>ificati<strong>on</strong>)<br />

<strong>and</strong>, subsequently, <str<strong>on</strong>g>in</str<strong>on</strong>g>to nitrite (NO 2) <strong>and</strong><br />

NO 3 (nitrificati<strong>on</strong>); <strong>and</strong> the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic C<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to CO 2 (DeBano <strong>and</strong> others 1998). Both amm<strong>on</strong>ificati<strong>on</strong><br />

<strong>and</strong> nitrificati<strong>on</strong> are affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Nitrificati<strong>on</strong><br />

is carried out ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by autotrophic microorganisms,<br />

which derive their energy solely from the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NH 4 <strong>and</strong> NO 3 (Haynes 1986). Several genera <str<strong>on</strong>g>of</str<strong>on</strong>g> autotrophic<br />

bacteria that can oxidize NH 4-N to NO 2 are<br />

Nitrosom<strong>on</strong>as, Nitrosolobus, <strong>and</strong> Nitrospira. The oxidati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NO 2 to NO 3, however, is almost exclusively<br />

d<strong>on</strong>e by Nitrobacter <str<strong>on</strong>g>in</str<strong>on</strong>g> natural systems (Haynes 1986).<br />

Approximately 30 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all the N that is nitrified<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is d<strong>on</strong>e by faunal populati<strong>on</strong>s<br />

(Verhoef <strong>and</strong> Brussaard 1990).<br />

Nitrogen Cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g Processes<br />

Nitrogen is unique am<strong>on</strong>g the soil nutrients because<br />

it is present <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil almost entirely as part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic compounds. No <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N reserve is normally<br />

available to replace the soil N lost by volatilizati<strong>on</strong><br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Harvey <strong>and</strong> others 1976). Therefore,<br />

N is recovered from the atmosphere by N-fixati<strong>on</strong> <strong>and</strong><br />

atmospheric depositi<strong>on</strong> (DeBano <strong>and</strong> others 1998).<br />

Nitrogen-Fixati<strong>on</strong>—Nitrogen-fixati<strong>on</strong> is the c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular N (N 2) to amm<strong>on</strong>ia <strong>and</strong>, subsequently,<br />

to organic comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s or forms utilizable <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

biological processes (Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America<br />

2001). The atmosphere supplies N to soil <str<strong>on</strong>g>in</str<strong>on</strong>g> natural<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly through organisms that fix <str<strong>on</strong>g>in</str<strong>on</strong>g>ert<br />

N 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>to forms that can be used by plants. Nitrogen<br />

additi<strong>on</strong>s to the soil by N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms (free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> symbiotic) counterbalance the volatilized N that<br />

is lost dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <strong>and</strong> subsequent leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soluble N compounds <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong> through the soil follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> (DeBano <strong>and</strong> others 1998). Nitrogen-fixati<strong>on</strong> is<br />

primarily by two groups <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil, namely those that fix N symbiotically <strong>and</strong><br />

those that are free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Symbiotic N-fixati<strong>on</strong>: This form <str<strong>on</strong>g>of</str<strong>on</strong>g> N-fixati<strong>on</strong> is<br />

carried out by symbiotic microorganisms that are<br />

associated with the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> higher plants (symbiotic)<br />

<strong>and</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the energy required for N-fixati<strong>on</strong> from<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the host plant. The most comm<strong>on</strong> symbiotic<br />

relati<strong>on</strong>ships found <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are those<br />

formed by rhizobia or act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes associated with<br />

plant roots. Rhizobium bacteria are found associated<br />

with the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> legum<str<strong>on</strong>g>in</str<strong>on</strong>g>ous plants that make up<br />

about 700 genera <str<strong>on</strong>g>in</str<strong>on</strong>g> the Legum<str<strong>on</strong>g>in</str<strong>on</strong>g>osae family (Haynes<br />

1986). Locust trees are an example <str<strong>on</strong>g>of</str<strong>on</strong>g> legumes that<br />

enhance the N-status <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong> (Klemmeds<strong>on</strong><br />

1994). Nitrogen-fixati<strong>on</strong> by act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes is also widespread<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <strong>and</strong> an example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest trees hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g this type <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis is the genus<br />

Alnus, which has been reported to have enriched the<br />

soil with 18 to 129 pounds/acre (20 to156 kg/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

per year depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the local site c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong><br />

st<strong>and</strong> density (Van Cleve <strong>and</strong> others 1971, Jurgensen<br />

<strong>and</strong> others 1979). Brush species hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetedriven<br />

N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g capabilities are bitterbrush (Purshia<br />

tridentata) <strong>and</strong> mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> mahogany (Cercocarpus spp.).<br />

N<strong>on</strong>symbiotic N-fixati<strong>on</strong>: Over the past 3 to 4 decades,<br />

studies <strong>on</strong> N-fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> have determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

that free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbes are also able to fix N <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 79


substantial amounts, particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong><br />

(Jurgensen <strong>and</strong> others 1997). These free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbes<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the energy necessary for N-fixati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large woody debris (Harvey<br />

<strong>and</strong> others 1989). Coarse woody debris c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> tree<br />

limbs, boles, <strong>and</strong> roots that are greater than 3.0 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(7.5 cm) <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter <strong>and</strong> are <str<strong>on</strong>g>in</str<strong>on</strong>g> various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decay<br />

(Graham <strong>and</strong> others 1994). It is produced when trees<br />

die <strong>and</strong> their boles fall to the soil surface. The death <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trees occurs because <str<strong>on</strong>g>of</str<strong>on</strong>g> old age, <str<strong>on</strong>g>in</str<strong>on</strong>g>sect <strong>and</strong> disease<br />

attacks, devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g natural events, <strong>and</strong> human activities<br />

(timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g debris, as <strong>on</strong>e example).<br />

Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the coarse woody debris found <str<strong>on</strong>g>in</str<strong>on</strong>g> forests is <strong>on</strong><br />

the soil surface <strong>and</strong> is partially or totally covered by<br />

soil <strong>and</strong> humus layers. This coarse woody debris, <strong>and</strong><br />

associated smaller organic matter, enhances the physical,<br />

chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <strong>and</strong><br />

thereby c<strong>on</strong>tributes directly to site productivity. In<br />

additi<strong>on</strong>, it provides a favorable microenvir<strong>on</strong>ment for<br />

seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>g establishment <strong>and</strong> growth.<br />

A particularly important role <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse woody debris<br />

is that it serves as a potentially valuable source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>symbiotic N-fixati<strong>on</strong>. Extensive studies <str<strong>on</strong>g>in</str<strong>on</strong>g> the Inl<strong>and</strong><br />

Pacific Northwest show that up to 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total N fixed <strong>on</strong> a site is c<strong>on</strong>tributed from the large<br />

woody debris comp<strong>on</strong>ent (Jurgensen <strong>and</strong> others 1997).<br />

Soil wood found <str<strong>on</strong>g>in</str<strong>on</strong>g> these forests is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> brownrot<br />

decay <strong>and</strong> is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> heartwood from p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>and</strong><br />

Douglas-fir trees. It is relatively resistant to decay<br />

<strong>and</strong>, as a result, can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil for hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

years. The accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse woody debris <strong>and</strong><br />

the fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>on</strong> warm, dry sites are lower than <strong>on</strong><br />

the wetter, more productive sites.<br />

Denitrificati<strong>on</strong>—Denitrificati<strong>on</strong> is the reverse process<br />

whereby NO 3 is reduced to N 2 <strong>and</strong> N 2O biologically.<br />

It is the major mechanism that returns N, which<br />

was orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally fixed from the atmosphere, back <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the atmosphere (Richards<strong>on</strong> <strong>and</strong> Vepraskas 2001).<br />

Denitrificati<strong>on</strong> typically occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> saturated <strong>and</strong> <strong>water</strong>-logged<br />

<strong>soils</strong> found <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s (see chapter 8).<br />

Nitrogen losses are generally related to its availability,<br />

<strong>and</strong> significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> N up to 54 pounds/acre/<br />

year (60 kg/ha/year) have been reported where NO 3<br />

load<str<strong>on</strong>g>in</str<strong>on</strong>g>gs occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t run<str<strong>on</strong>g>of</str<strong>on</strong>g>f or from<br />

other sources.<br />

Fire Effects <strong>on</strong> Organisms <strong>and</strong><br />

Biological Processes ____________<br />

Fire affects biological organisms either directly or<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>directly. Direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> are those short-term changes<br />

that result when any particular organism is exposed<br />

directly to the flames, glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong>, hot gases,<br />

or is trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <strong>and</strong> other envir<strong>on</strong>ments<br />

where enough heat is transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to the organism’s<br />

immediate surround<str<strong>on</strong>g>in</str<strong>on</strong>g>gs to raise the temperature<br />

sufficiently to either kill or severely <str<strong>on</strong>g>in</str<strong>on</strong>g>jure the organism.<br />

Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> usually <str<strong>on</strong>g>in</str<strong>on</strong>g>volve l<strong>on</strong>ger durati<strong>on</strong><br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment that impact the welfare <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the biological organisms after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> has occurred.<br />

These <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> can <str<strong>on</strong>g>in</str<strong>on</strong>g>volve habitat, food supply,<br />

competiti<strong>on</strong>, <strong>and</strong> other more subtle changes that affect<br />

the reestablishment <strong>and</strong> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants <strong>and</strong><br />

animals follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Soil Microorganisms<br />

Envir<strong>on</strong>mental C<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>and</strong> Microbial<br />

Growth—In this secti<strong>on</strong> we provide a brief <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong><br />

<strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> different envir<strong>on</strong>mental factors—<br />

temperature, moisture, <strong>and</strong> substrate availability—<br />

<strong>on</strong> microbial life so the reader will underst<strong>and</strong> microbial<br />

reacti<strong>on</strong>s to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. A subsequent secti<strong>on</strong> then describes<br />

the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> different microorganisms to <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Temperature: Microbial communities are well<br />

adapted to a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> prevail<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperature<br />

regimes. Drastic changes <str<strong>on</strong>g>in</str<strong>on</strong>g> temperature dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can result <str<strong>on</strong>g>in</str<strong>on</strong>g> mortality <strong>and</strong> shifts <str<strong>on</strong>g>in</str<strong>on</strong>g> species<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> survivors (Baath <strong>and</strong> others 1995,<br />

Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en <strong>and</strong> others 2000). Lethal temperatures<br />

are as low as 122 °F (50 °C) for some bacteria, particularly<br />

for important gram-negative organisms, such as<br />

nitrifiers, that have th<str<strong>on</strong>g>in</str<strong>on</strong>g> cell walls (Wells <strong>and</strong> others<br />

1979). Above 392 °F (200 °C), virtually all bacteria are<br />

killed. Fungi are generally killed at lower temperatures<br />

than bacteria, <strong>and</strong> lethal temperatures range<br />

between 122 <strong>and</strong> 311 °F (50–155 °C) (Wells <strong>and</strong> others<br />

1979). From a practical st<strong>and</strong>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, the threshold<br />

temperatures for bacteria <strong>and</strong> fungi are usually reached<br />

to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5 cm) or more <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g medium- or high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Theodorou <strong>and</strong><br />

Bowen 1982, Shea 1993, Giard<str<strong>on</strong>g>in</str<strong>on</strong>g>a <strong>and</strong> others 2000).<br />

As a result, decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial populati<strong>on</strong>s due to<br />

the direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g are comm<strong>on</strong> immediately<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g either wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Acea <strong>and</strong> Carballas<br />

1996, Hern<strong>and</strong>ez <strong>and</strong> others 1997, Prietro-Fern<strong>and</strong>ez<br />

<strong>and</strong> others 1998) or some higher severity prescribed<br />

burns (Ahlgren <strong>and</strong> Ahlgren 1965, Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en <strong>and</strong><br />

Fritze 1993). Indirect l<strong>on</strong>g-term change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperature<br />

can also result from modificati<strong>on</strong>s to vegetati<strong>on</strong><br />

cover <strong>and</strong> microclimate follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. However,<br />

compared to the immediate <strong>and</strong> detrimental <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, these l<strong>on</strong>ger term temperature changes<br />

are subtle <strong>and</strong> can even produce a slight stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microbial populati<strong>on</strong> size <strong>and</strong> activity (Bissett <strong>and</strong><br />

Park<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> 1980).<br />

Moisture <strong>and</strong> oxygen: Microorganisms thrive <str<strong>on</strong>g>in</str<strong>on</strong>g> moist<br />

soil. In fact, most can be c<strong>on</strong>sidered aquatic organisms<br />

by nature <str<strong>on</strong>g>of</str<strong>on</strong>g> their requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous soluti<strong>on</strong> for<br />

cell movement. Filamentous fungi <strong>and</strong> act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes<br />

are an excepti<strong>on</strong>. Optimum moisture c<strong>on</strong>tent for<br />

80 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


microbial activity is typically near 55 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

<strong>water</strong>-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity (Horwath <strong>and</strong> Paul 1994). A<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> oxygen (O 2) c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil affects the level <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial activity. As <strong>soils</strong> dry,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased cellular energy is required to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> turgor,<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> reduced growth <strong>and</strong> activity. Microbial<br />

processes essentially cease when soil becomes airdry,<br />

at which time cells become dormant. C<strong>on</strong>versely,<br />

excessive moisture displaces O 2 <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>hibits the<br />

metabolic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant aerobic microbial<br />

populati<strong>on</strong>.<br />

Soil moisture is a crucial factor <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

microbial survival dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Water is capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> heat energy, thereby result<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> less temperature rise <strong>and</strong> reduced <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

for a given heat <str<strong>on</strong>g>in</str<strong>on</strong>g>put. Fr<strong>and</strong>sen <strong>and</strong> Ryan (1986)<br />

found a temperature reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 932 °F<br />

(500 °C) when soil was wetted prior to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, thus<br />

provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a presumed advantage to microorganisms.<br />

C<strong>on</strong>versely, more biological damage can result <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

moist soil compared to dry soil at a given temperature<br />

maximum because <strong>water</strong> is a better c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

than air, <strong>and</strong> microorganisms are more metabolically<br />

active <str<strong>on</strong>g>in</str<strong>on</strong>g> moist soil. For example, Dunn <strong>and</strong> others<br />

(1985) estimated that 95 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria are killed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> moist soil <strong>and</strong> <strong>on</strong>ly 25 percent are killed <str<strong>on</strong>g>in</str<strong>on</strong>g> dry soil<br />

at equivalent soil temperature (158 °F or 70 °C).<br />

Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g when <strong>soils</strong> are dry is recommended if severe<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g is anticipated. An additi<strong>on</strong>al c<strong>on</strong>cern is<br />

the potential decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil <strong>water</strong> availability follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Less soil <strong>water</strong> is available after forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s as<br />

a result <str<strong>on</strong>g>of</str<strong>on</strong>g> decreased <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <strong>and</strong> storage<br />

due to <strong>water</strong> repellency, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>water</strong> loss by<br />

soil surface evaporati<strong>on</strong>. Only <strong>on</strong>e report was found<br />

where moisture changes follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> were suspected<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial properties (Rais<strong>on</strong> <strong>and</strong> others<br />

1986). The reserchers found up to a 34 percent reducti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> eucalyptus litter decay after moderate-severity<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> hypothesized that the change <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

decompositi<strong>on</strong> resulted from moisture limitati<strong>on</strong>s created<br />

by <str<strong>on</strong>g>in</str<strong>on</strong>g>creased surface evaporati<strong>on</strong>. This resp<strong>on</strong>se<br />

was suspected to be short-lived, however, because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the rapid reaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor material <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

these systems <strong>and</strong> the anticipated reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

evaporati<strong>on</strong>.<br />

Substrate availability: Most soil microorganisms<br />

are heterotrophic, mean<str<strong>on</strong>g>in</str<strong>on</strong>g>g they require preformed,<br />

organic material <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor or m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil for<br />

their source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. Therefore, any <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the quality or quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

may have l<strong>on</strong>g-last<str<strong>on</strong>g>in</str<strong>on</strong>g>g implicati<strong>on</strong>s for the biological<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil (Lucarotti <strong>and</strong> others 1978, Palmborg<br />

<strong>and</strong> Nordgren 1993, Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en <strong>and</strong> others 2000).<br />

Surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, most forests have <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient reserves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> degradable organic material to provide for optimal<br />

microbial growth. Forest soil microorganisms, <str<strong>on</strong>g>in</str<strong>on</strong>g> effect,<br />

are more likely to be C-limited than by <strong>water</strong> or<br />

other essential nutrients (that is, N <strong>and</strong> P). As a<br />

corollary, the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> surface organic matter by<br />

high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can reduce microbial populati<strong>on</strong><br />

size <strong>and</strong> activity (Fern<strong>and</strong>ez <strong>and</strong> others 1997, Prietro-<br />

Fern<strong>and</strong>ez <strong>and</strong> others 1998). Even with <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> low to<br />

medium severity, the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> downed woody<br />

material can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence an important reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizal<br />

fungi (Harvey <strong>and</strong> others 1976, 1980a).<br />

In additi<strong>on</strong> to heterotrophs, the microbial community<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes a small yet biologically important group<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria that obta<str<strong>on</strong>g>in</str<strong>on</strong>g> their energy from the oxidati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic compounds (autotrophs). Nitrifiers have<br />

received the most attenti<strong>on</strong> am<strong>on</strong>g autotrophic organisms<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> their role <str<strong>on</strong>g>in</str<strong>on</strong>g> the N cycle <strong>and</strong> their<br />

sensitivity to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Dunn <strong>and</strong> others 1985).<br />

Nitrifiers obta<str<strong>on</strong>g>in</str<strong>on</strong>g> energy from the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 4<br />

<strong>and</strong> NO 2, <strong>and</strong> release NO 3 as an end product.<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Microorganisms to Fire—Fire<br />

affects most organisms that <str<strong>on</strong>g>in</str<strong>on</strong>g>habit the belowground<br />

envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> both direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct ways (Ahlgren<br />

<strong>and</strong> Ahlgren 1965, Borchers <strong>and</strong> Perry 1990). Fire<br />

impacts soil organisms directly by kill<str<strong>on</strong>g>in</str<strong>on</strong>g>g or <str<strong>on</strong>g>in</str<strong>on</strong>g>jur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the organisms, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>directly by its effect <strong>on</strong> plant<br />

successi<strong>on</strong>, soil organic matter transformati<strong>on</strong>s, <strong>and</strong><br />

microclimate. Heat penetrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> affects biological organisms located below the soil<br />

surface, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the heat transfer mechanism,<br />

soil moisture c<strong>on</strong>tent, <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong>.<br />

Because many liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms <strong>and</strong> the organic<br />

matter <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> are located <strong>on</strong>, or near, the soil surface,<br />

they are exposed to heat radiated by flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface<br />

fuels <strong>and</strong> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest floor fuels (fig. 4.6).<br />

Figure 4.6—High-severity wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s can remove<br />

nearly all the litter <strong>and</strong> duff <strong>and</strong> associated microbial<br />

populati<strong>on</strong>s present <strong>on</strong> the forest floor, leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong>ly gray ash. (Photo by Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> Ryan).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 81


Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, organisms <str<strong>on</strong>g>in</str<strong>on</strong>g> the organic<br />

forest floor can be killed outright, although those <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the deeper soil horiz<strong>on</strong>s, or <str<strong>on</strong>g>in</str<strong>on</strong>g> isolated unburned locati<strong>on</strong>s,<br />

survive. Even low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can damage<br />

organisms that are <strong>on</strong> or near the soil surface because<br />

most biota are damaged at lower temperatures than<br />

those that cause changes <str<strong>on</strong>g>in</str<strong>on</strong>g> physical <strong>and</strong> chemical soil<br />

properties dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (table 4.1).<br />

How do microorganisms resp<strong>on</strong>d to <str<strong>on</strong>g>fire</str<strong>on</strong>g>? Without<br />

questi<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> is lethal. It also modifies the habitat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms by destroy<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic matter, alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil temperature <strong>and</strong> moisture regimes, <strong>and</strong> chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetati<strong>on</strong> community <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter accumulati<strong>on</strong>. C<strong>on</strong>sequently, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial<br />

populati<strong>on</strong> size <strong>and</strong> activity are comm<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (see Ahlgren 1974, Rais<strong>on</strong><br />

1979, Borchers <strong>and</strong> Perry 1990, Neary <strong>and</strong> others 1999<br />

for reviews). Most reviews are quick to po<str<strong>on</strong>g>in</str<strong>on</strong>g>t out, however,<br />

that microbial resp<strong>on</strong>ses are variable, or even<br />

unpredictable, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> site c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<strong>and</strong> severity, <strong>and</strong> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g protocol. But if microbial<br />

resp<strong>on</strong>ses are unpredictable, then no assistance<br />

can be <str<strong>on</strong>g>of</str<strong>on</strong>g>fered to managers <str<strong>on</strong>g>in</str<strong>on</strong>g> develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> prescripti<strong>on</strong>s<br />

that meet operati<strong>on</strong>al objectives while m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

risks to soil biota. The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussi<strong>on</strong> will<br />

challenge this c<strong>on</strong>cept <str<strong>on</strong>g>in</str<strong>on</strong>g> attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer practical<br />

guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es for <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers.<br />

If microbial life was <strong>on</strong>ly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature,<br />

moisture, <strong>and</strong> substrate availability, then the ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> prescripti<strong>on</strong> guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es based <strong>on</strong> soil biotic<br />

resp<strong>on</strong>ses would be straightforward. Unfortunately, it<br />

is not that simple because the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> most microorganisms<br />

to recover from disturbance is complex. Microbial<br />

communities are unmatched <str<strong>on</strong>g>in</str<strong>on</strong>g> physiological<br />

diversity <strong>and</strong> genetic malleability—properties that<br />

permit growth <str<strong>on</strong>g>in</str<strong>on</strong>g> any envir<strong>on</strong>ment—<strong>and</strong> they have<br />

the ability to degrade nearly all known compounds.<br />

Resilience, therefore, is a trademark <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial<br />

community. As an example, rapid decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

microbial populati<strong>on</strong>s due to <str<strong>on</strong>g>fire</str<strong>on</strong>g> are usually transitory.<br />

Populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g>ten match or surpass preburn<br />

levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> (Ahlgren <strong>and</strong> Ahlgren<br />

1965, Renbuss <strong>and</strong> others 1973). Successful<br />

recol<strong>on</strong>izati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

factors, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>complete mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> native populati<strong>on</strong>s,<br />

spore germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>flux <str<strong>on</strong>g>of</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-blown organisms,<br />

<strong>and</strong> microbial growth stimulati<strong>on</strong>s from available<br />

nutrients. An important caveat is that not all<br />

microorganisms resp<strong>on</strong>d alike; differential resp<strong>on</strong>ses<br />

by community members have been observed follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. For example, Harvey <strong>and</strong> others (1980a) found<br />

poor recol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ectomycorrhizae, <strong>and</strong> Widden<br />

<strong>and</strong> Park<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> (1975) found a similar resp<strong>on</strong>se for<br />

genera Trichoderma, an important antag<strong>on</strong>ist to plant<br />

pathogens, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Some obvious observati<strong>on</strong>s can be made. Microbial<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> are easiest to predict at the oppos<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-severity c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum: (1) <str<strong>on</strong>g>in</str<strong>on</strong>g>tense wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

can have severe <strong>and</strong> sometimes l<strong>on</strong>g-last<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> microbial populati<strong>on</strong> size, diversity, <strong>and</strong> functi<strong>on</strong>;<br />

(2) low-severity underburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g generally has an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sequential effect <strong>on</strong> microorganisms. From there<br />

it becomes more difficult to predict microbial adaptati<strong>on</strong><br />

because results from medium- to high-severity<br />

slash <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> underburn studies vary widely am<strong>on</strong>g<br />

habitat types.<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>: High-severity wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s can remove nearly<br />

all the litter <strong>and</strong> duff <strong>and</strong> associated microbial populati<strong>on</strong>s<br />

present <strong>on</strong> the forest floor, leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly gray or<br />

orange ash (fig. 4.6). Even m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil C is c<strong>on</strong>sumed<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Recent studies show a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 to 60<br />

percent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil (Fern<strong>and</strong>ez <strong>and</strong> others 1997, Hern<strong>and</strong>ez <strong>and</strong> others<br />

1997, Prietro-Fern<strong>and</strong>ez <strong>and</strong> others 1998). Related<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial biomass immediately<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s have been as high as<br />

Table 4.1—Threshold temperatures for key biological organisms (Adapted from DeBano<br />

1991, Neary <strong>and</strong> others 1999).<br />

Biological comp<strong>on</strong>ent Temperature Reference<br />

°F °C<br />

Plant roots 118 48 Hare 1961<br />

Small mammals 120 49 Ly<strong>on</strong> <strong>and</strong> others 1978<br />

Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> coagulati<strong>on</strong> 140 60 Precht <strong>and</strong> others 1973<br />

Fungi—wet soil 140 60 Dunn <strong>and</strong> others 1975<br />

Seeds—wet soil 158 70 Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others 1975<br />

Fungi—dry soil 176 80 Dunn <strong>and</strong> others 1975<br />

Nitrosom<strong>on</strong>as spp. bacteria—wet soil 176 80 Dunn <strong>and</strong> DeBano 1977<br />

Nitrosom<strong>on</strong>as spp. bacteria—dry soil 194 90 Dunn <strong>and</strong> DeBano 1977<br />

Seeds—dry soil 194 90 Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others 1975<br />

VA mycorrhizae 201 94 Klopatek <strong>and</strong> others 1988<br />

82 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


96 percent (Hern<strong>and</strong>ez <strong>and</strong> others 1997). Microbial<br />

respirati<strong>on</strong> <strong>and</strong> extracellular enzyme producti<strong>on</strong> (Saa<br />

<strong>and</strong> others 1998)—str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial activity<br />

<strong>and</strong> viability—also decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e dramatically follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Fungi appear more sensitive to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

than bacteria. For example, fungal propagules were<br />

undetectable 1 week after a st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

central Oreg<strong>on</strong> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa) forest,<br />

while the viable bacteria populati<strong>on</strong> was <strong>on</strong>ly<br />

slightly reduced (D. Shields, pers<strong>on</strong>al communicati<strong>on</strong>).<br />

Similar resp<strong>on</strong>ses were reported follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <str<strong>on</strong>g>of</str<strong>on</strong>g> Spa<str<strong>on</strong>g>in</str<strong>on</strong>g> (Vazquez <strong>and</strong> others<br />

1993). Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se between bacteria <strong>and</strong><br />

fungi may be attributable to greater heat sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fungi, soil pH <str<strong>on</strong>g>in</str<strong>on</strong>g>creases after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g that favor bacteria,<br />

or the excessive loss <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material.<br />

No ecosystem rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s sterile, even after severe<br />

disturbance. Most studies show stable recovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1 to 4 years after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Vazquez <strong>and</strong><br />

others 1993, Acea <strong>and</strong> Carballas 1996, Prietro-<br />

Fern<strong>and</strong>ez <strong>and</strong> others 1998). However, reduced microbial<br />

biomass has been reported for as many as 11 years<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Dum<strong>on</strong>tet <strong>and</strong> others 1996). Whether the<br />

microbial community will fully recol<strong>on</strong>ize depends <strong>on</strong><br />

the time required for recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the forest floor layer.<br />

Not <strong>on</strong>ly are microbial populati<strong>on</strong>s <strong>and</strong> processes<br />

suppressed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this recovery period (Lucarotti <strong>and</strong><br />

others 1978), but the potential erosive loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil is<br />

high. Or, as suggested by Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others (1987),<br />

burnt <strong>soils</strong> will slowly regenerate as l<strong>on</strong>g as erosive<br />

processes can be avoided.<br />

Low-severity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Almost by def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>,<br />

low-severity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> has a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal effect <strong>on</strong><br />

soil biota (fig. 4.7). The maximum temperatures are<br />

Figure 4.7—Low-severity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> has a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal<br />

effect <strong>on</strong> soil biota because maximum temperatures<br />

are generally n<strong>on</strong>lethal, except for the upper<br />

litter layer, <strong>and</strong> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor habitat is<br />

limited. (Photo by Daniel Neary).<br />

generally n<strong>on</strong>lethal, except for the upper litter layer<br />

(Shea 1993), <strong>and</strong> therefore the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

floor habitat is limited. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial activity,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> fact, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten show a positive resp<strong>on</strong>se to this type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, particularly with respect to N-fixati<strong>on</strong><br />

(Jorgensen <strong>and</strong> Wells 1971) <strong>and</strong> N availability (Schoch<br />

<strong>and</strong> B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley 1986, White 1986, Knoepp <strong>and</strong> Swank<br />

1993a,b). Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> litter decay (White 1986, M<strong>on</strong>le<strong>on</strong><br />

<strong>and</strong> Cromack 1996) <strong>and</strong> enzyme activity (Boerner<br />

<strong>and</strong> others 2000) are generally unaffected by lowseverity<br />

underburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Such results are not universal,<br />

however. M<strong>on</strong>le<strong>on</strong> <strong>and</strong> others (1997) found that N<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> was reduced at sites burned either 5<br />

or 12 years earlier by low- to medium-severity prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. They suggested that <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> possibly c<strong>on</strong>tributed to a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the l<strong>on</strong>g-term site productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> central Oreg<strong>on</strong>.<br />

While s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-entry underburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is generally c<strong>on</strong>sidered<br />

harmless, repeated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been shown to<br />

substantially reduce microbial populati<strong>on</strong> size <strong>and</strong><br />

activity (Jorgensen <strong>and</strong> Hodges 1970, Bell <strong>and</strong> B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley<br />

1989, T<strong>on</strong>gway <strong>and</strong> Hodgk<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> 1992, Eivazi <strong>and</strong><br />

Bayan 1996). This observati<strong>on</strong> reflects a cumulative<br />

reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forest floor <strong>and</strong> total nutrients with frequent<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Most studies have compared either<br />

annual burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g or short-term repeated <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (2 to 4<br />

years). The l<strong>on</strong>g-term impact <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

every 7 to 20 or more years <strong>on</strong> soil organic matter,<br />

nutrient c<strong>on</strong>tent, <strong>and</strong> microbial processes is not understood.<br />

As a c<strong>on</strong>sequence, Tiedemann <strong>and</strong> others<br />

(2000) urge cauti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

suggest <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g partial harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g as a complementary<br />

practice to reduce wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> risk <strong>and</strong> extend the<br />

period between prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g will<br />

depend <strong>on</strong> both the pattern <strong>and</strong> amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels<br />

burned. When slash is piled <strong>and</strong> burned (for example,<br />

push<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g operati<strong>on</strong>s used <str<strong>on</strong>g>in</str<strong>on</strong>g> some p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>juniper<br />

eradicati<strong>on</strong> programs) the burned areas are<br />

highly visible after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 4.8). On these burned<br />

areas, deep layers <str<strong>on</strong>g>of</str<strong>on</strong>g> white ash may accumulate, <strong>and</strong><br />

the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil is usually exposed to extended soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, which can sterilize to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

centimeters. Although the severe heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g under the<br />

piles <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel are damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the soil, <strong>on</strong>ly a small<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area may be affected. To avoid<br />

this damage to the soil, the slash can be scattered <strong>and</strong><br />

burned, thereby m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the severe soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that occurs under piled fuels.<br />

The literature c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s numerous references to sitespecific<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms to medium <strong>and</strong><br />

high-severity slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. A comm<strong>on</strong> theme is that<br />

the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms is dictated by their<br />

habitat: organisms <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor struggle to survive<br />

<strong>and</strong> recol<strong>on</strong>ize, while those <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil do<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 83


Figure 4.8—Pil<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash after a fuel<br />

harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g operati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper woodl<strong>and</strong>s<br />

can create thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> white ash <strong>and</strong> extensive<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (Photo by Malchus Baker).<br />

not. This comes as little surprise because the temperature<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor can easily reach 1,110 °F (600 °C)<br />

or higher dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Renbuss <strong>and</strong> others 1973,<br />

Shea 1993), c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g both the microorganisms <strong>and</strong><br />

their habitat. In fact, substantial changes <str<strong>on</strong>g>in</str<strong>on</strong>g> forest<br />

floor microbial biomass <strong>and</strong> community structure have<br />

been reported to occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiment<br />

at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 445 °F (230 °C) (Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en<br />

<strong>and</strong> others 2000). Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g was less severe <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a much shorter fluctuati<strong>on</strong><br />

period before the microbial community stabilizes. The<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g examples illustrate this theme.<br />

Recent f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from slash burns <str<strong>on</strong>g>in</str<strong>on</strong>g> F<str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> show<br />

detrimental <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> microbial biomass<br />

(Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en <strong>and</strong> Fritze 1993), activity (Fritze<br />

<strong>and</strong> others 1994, 1998), <strong>and</strong> community structure<br />

(Baath <strong>and</strong> others 1995, Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en <strong>and</strong> others 2000)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor. Failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial community<br />

to resp<strong>on</strong>d rapidly has been attributed to a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

organic matter quantity (Baath <strong>and</strong> others 1995) <strong>and</strong><br />

quality (Fritze <strong>and</strong> others 1993), <strong>and</strong> the pyrolytic<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic compounds (Fritze <strong>and</strong> others 1998).<br />

Also, microbial populati<strong>on</strong>s were unable to resp<strong>on</strong>d to<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>put <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient-rich ash. These studies were<br />

relatively short term, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 1 m<strong>on</strong>th to 3 years<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g>. As a result, the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time required before<br />

the forest floor microbial community reaches preburn<br />

levels is unclear, yet it might take up to 12 years<br />

(Fritze <strong>and</strong> others 1993). Related decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial<br />

functi<strong>on</strong> have been reported <str<strong>on</strong>g>in</str<strong>on</strong>g> other forest types.<br />

Stadd<strong>on</strong> <strong>and</strong> others (1998) found microbial-mediated<br />

enzyme activity was suppressed 4 years after slash<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. banksiana). Meanwhile,<br />

Jurgensen <strong>and</strong> others (1992) found a 26 percent decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> N-fixati<strong>on</strong> by free-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

first 2 years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a relatively high-severity slash<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> that c<strong>on</strong>sumed 61 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

cedar-hemlock forest.<br />

In c<strong>on</strong>trast with the forest floor, microbial recovery<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tense slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is<br />

impressive. For example, Renbuss <strong>and</strong> others (1973)<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed viable bacterial <strong>and</strong> fungal populati<strong>on</strong>s after<br />

a high-severity log pile burn that produced temperatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 735 to 1,110 °F (400–600 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper<br />

2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil. Although the soil was <str<strong>on</strong>g>in</str<strong>on</strong>g>itially<br />

sterilized by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, bacteria had recol<strong>on</strong>ized to preburn<br />

levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1 week after igniti<strong>on</strong>. Their populati<strong>on</strong><br />

size rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at or above the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol soil for<br />

the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the study (1 year). Fungi <strong>and</strong> act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes<br />

were slower to recol<strong>on</strong>ize, yet their populati<strong>on</strong>s<br />

returned to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> level by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

Chambers <strong>and</strong> Attiwill (1994) c<strong>on</strong>firmed the “ash-bed”<br />

effect <str<strong>on</strong>g>in</str<strong>on</strong>g> a c<strong>on</strong>trolled soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiment. No<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial populati<strong>on</strong> sizes were found<br />

133 days after heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil to 1,110 °F (600 °C) when<br />

compared to unheated soil. Similar resp<strong>on</strong>ses are<br />

comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> field studies (Ahlgren <strong>and</strong> Ahlgren 1965,<br />

Theodorou <strong>and</strong> Bowen 1982, Deka <strong>and</strong> Mishra 1983,<br />

Van Reenen <strong>and</strong> others 1992, Stadd<strong>on</strong> <strong>and</strong> others<br />

1998), whereas some c<strong>on</strong>trolled soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments<br />

have found l<strong>on</strong>ger delays <str<strong>on</strong>g>in</str<strong>on</strong>g> recol<strong>on</strong>izati<strong>on</strong> (Dunn<br />

<strong>and</strong> others 1979, Diaz-Rav<str<strong>on</strong>g>in</str<strong>on</strong>g>a <strong>and</strong> others 1996, Acea<br />

<strong>and</strong> Carballas 1999). Differences between field <strong>and</strong><br />

c<strong>on</strong>trolled-envir<strong>on</strong>ment studies suggest the importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d- or animal-transported <str<strong>on</strong>g>in</str<strong>on</strong>g>oculum for<br />

recol<strong>on</strong>izati<strong>on</strong>.<br />

Specialized Root-Microbial Associati<strong>on</strong>s—Mycorrhizal<br />

fungi are easily affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> the<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> damage depends up<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, the reproductive<br />

structures exposed to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (such as<br />

spores or hyphae), <strong>and</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi (such as endoor<br />

ectomycorrhiaze). Mycorrhizae <strong>and</strong> roots frequently<br />

occupy the uppermost duff layers <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> as a result<br />

are subjected to lethal soil temperatures dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

because these layers are frequently combusted, particularly<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g medium- <strong>and</strong> high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In<br />

general, vesicular arbuscular mycorrhizae are less<br />

affected by disturbances that destroy aerial biomass<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>) than are ectomycorrhizal fungi because<br />

they form symbiotic relati<strong>on</strong>ships with a wider<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species (Puppi <strong>and</strong> Tartagl<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1991).<br />

Also, ectomycorrhizae are more abundant <str<strong>on</strong>g>in</str<strong>on</strong>g> the litter<br />

layer compared to vesicular arbuscular mycorrhizae,<br />

which tend to c<strong>on</strong>centrate <str<strong>on</strong>g>in</str<strong>on</strong>g> the lower m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

horiz<strong>on</strong>s (Reddell <strong>and</strong> Malajczuk 1984). As a result,<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> that destroys <strong>on</strong>ly the litter layer would favor<br />

vesicular arbuscular mycorrhizae.<br />

The general relati<strong>on</strong>ships discussed above have been<br />

documented by several studies that show a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

84 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both ectomycorrhizae (Harvey <strong>and</strong><br />

others 1980b, Schoenberger <strong>and</strong> Perry 1982, Parke<br />

<strong>and</strong> others 1984) <strong>and</strong> vesicular arbuscular mycorrhizae<br />

(Klopatek <strong>and</strong> others 1988, Vilariño <strong>and</strong> Ar<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

1991) with<str<strong>on</strong>g>in</str<strong>on</strong>g> the first grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Mycorrhizae were not per se elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> these<br />

studies. Instead, the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> roots <str<strong>on</strong>g>in</str<strong>on</strong>g>fected by<br />

mycorrhizal fungi was reduced. As an example,<br />

Klopatek <strong>and</strong> others (1988) found vesicular arbuscular<br />

mycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from 41 percent at<br />

preburn to 22 percent with<str<strong>on</strong>g>in</str<strong>on</strong>g> 24 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

organic layer <str<strong>on</strong>g>of</str<strong>on</strong>g> a p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P. edulis Engelm.) soil.<br />

Work by Harvey <strong>and</strong> others (1976, 1980a,b, 1981) has<br />

also clearly established a relati<strong>on</strong>ship between reduced<br />

ectomycorrhizal root tip formati<strong>on</strong> <strong>and</strong> slash<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> difficult-to-regenerate sites <str<strong>on</strong>g>in</str<strong>on</strong>g> western M<strong>on</strong>tana.<br />

They emphasize the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

adequate soil humus <strong>and</strong> wood (up to 45 percent by<br />

volume) as refugia for mycorrhizae <strong>on</strong> these sites.<br />

Not all studies, however, have reported a detrimental<br />

relati<strong>on</strong>ship between mycorrhizal formati<strong>on</strong> <strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Several studies have shown no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> mycorrhizae by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the first grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong><br />

(Pilz <strong>and</strong> Perry 1984, Deka <strong>and</strong> others 1990, Bellgard<br />

<strong>and</strong> others 1994, Miller <strong>and</strong> others 1998). In fact, Herr<br />

<strong>and</strong> others (1994) found a slight <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ectomycorrhizal <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> <strong>on</strong> eastern white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P.<br />

strobus) with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Visser (1995)<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed ectomycorrhizal development <str<strong>on</strong>g>in</str<strong>on</strong>g> an age sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s regenerat<str<strong>on</strong>g>in</str<strong>on</strong>g>g follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

More than 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the root tips were mycorrhizal<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> time s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (from 6 to 122 years).<br />

She suggested that successful recol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae<br />

<strong>on</strong> jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs was a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1)<br />

avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g> lethal temperatures by locati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, (2) resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> spores <strong>and</strong> rest<str<strong>on</strong>g>in</str<strong>on</strong>g>g structures<br />

to lethal temperatures, (3) w<str<strong>on</strong>g>in</str<strong>on</strong>g>d or animal dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spores, <strong>and</strong> (4) survival <strong>on</strong> alternative plant hosts such<br />

as manzanita (Arctostaphylos spp.).<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, there is no clear evidence that <str<strong>on</strong>g>fire</str<strong>on</strong>g> impairs<br />

the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g> plant nutriti<strong>on</strong> <strong>and</strong><br />

growth. Studies show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> mycorrhizal<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g> have seen m<str<strong>on</strong>g>in</str<strong>on</strong>g>or or no decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>g survival or short-term growth (Schoenberger<br />

<strong>and</strong> Perry 1982, Parke <strong>and</strong> others 1984). Two simplified<br />

explanati<strong>on</strong>s are plausible: (1) either the flush <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients after <str<strong>on</strong>g>fire</str<strong>on</strong>g> makes mycorrhizae temporarily<br />

superfluous, or (2) the decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> root <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> (such as<br />

a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e from 40 to 20 percent root tip col<strong>on</strong>izati<strong>on</strong><br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g) has no relati<strong>on</strong>ship to functi<strong>on</strong>. The<br />

argument <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d explanati<strong>on</strong> is that mycorrhizal<br />

functi<strong>on</strong> is still effective whether root systems<br />

are completely or partially <str<strong>on</strong>g>in</str<strong>on</strong>g>fected. Intermediate- or<br />

l<strong>on</strong>g-term studies are needed to resolve this issue.<br />

Biological Crusts—The patchy nature <str<strong>on</strong>g>of</str<strong>on</strong>g> native<br />

plant communities <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> semiarid l<strong>and</strong>s produces<br />

a disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous source <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels <strong>and</strong> results <str<strong>on</strong>g>in</str<strong>on</strong>g> a mosaic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities (Whisenant 1990). The biological<br />

crusts themselves provide little fuel to carry <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

thereby provide a “refugia” that slows down the spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imizes its severity (Rosentreter 1986).<br />

However, <strong>on</strong>ce <str<strong>on</strong>g>fire</str<strong>on</strong>g> destroys cryptogamic crusts, it<br />

can take several years for their populati<strong>on</strong>s to redevelop<br />

to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels (DeBano <strong>and</strong> others 1998). Highseverity<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dry summer m<strong>on</strong>ths cause<br />

the greatest damage to biological crusts. The recovery<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> can be fast or slow, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> the<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> crust (algal or lichenous), soil c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong><br />

climate. For example, crusts can take much l<strong>on</strong>ger to<br />

develop <str<strong>on</strong>g>in</str<strong>on</strong>g> hotter <strong>and</strong> more arid shrubl<strong>and</strong>s such as<br />

occurred <strong>on</strong> a site <str<strong>on</strong>g>in</str<strong>on</strong>g> a blackbrush (Coleogyne<br />

ramosissima) community <str<strong>on</strong>g>in</str<strong>on</strong>g> southern Utah (Callis<strong>on</strong><br />

<strong>and</strong> others 1985). This site did not show any cryptogamic<br />

development follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a severe range <str<strong>on</strong>g>fire</str<strong>on</strong>g> after<br />

37 years. Likewise, annual <str<strong>on</strong>g>fire</str<strong>on</strong>g>s for 7 years have been<br />

reported to destroy cryptogamic crusts <strong>on</strong> degraded<br />

semiarid woodl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Australia (Greene <strong>and</strong> others<br />

1990).<br />

Low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast, may leave the structural<br />

matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the crust <str<strong>on</strong>g>in</str<strong>on</strong>g>tact (Johansen <strong>and</strong> others<br />

1993). For example, after a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a semiarid<br />

shrub-steppe it <strong>on</strong>ly took 4 years for the crusts to reach<br />

pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels. This study showed that the comp<strong>on</strong>ents<br />

mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g up the cryptogamic crust (such as algae,<br />

cyanobacteria, or lichens) affect the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbance. Algae recovered from disturbance<br />

most rapidly <strong>and</strong> returned to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> densities<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1 to 5 years. Historically, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern<br />

deserts probably were exposed to small, low<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,<br />

<strong>and</strong> patchy <str<strong>on</strong>g>fire</str<strong>on</strong>g>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> the sparse <strong>and</strong><br />

disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous vegetati<strong>on</strong> (Allen 1998, Belnap <strong>and</strong><br />

others 2001). This type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior most likely had<br />

a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum effect <strong>on</strong> the biological crusts comm<strong>on</strong> to<br />

this area.<br />

In general, algal cells <str<strong>on</strong>g>of</str<strong>on</strong>g> many species are usually<br />

able to survive even the most severe disturbance, so<br />

the dispersal <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>and</strong> recol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burned areas<br />

is faster (Johansen 1993). For example, the first organisms<br />

to recol<strong>on</strong>ize the soil under burned English<br />

heaths were algae (Warcup 1981). Algae are also<br />

favored by the higher pH after <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> species with<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>dblown propagules are able to recol<strong>on</strong>ize disturbed<br />

areas rapidly (DeBano <strong>and</strong> others 1998). In c<strong>on</strong>trast,<br />

filamentous cyanophytes (blue-green bacteria) are less<br />

likely to recol<strong>on</strong>ize by w<str<strong>on</strong>g>in</str<strong>on</strong>g>d dispersal because <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

size. Compared to algae, mosses <strong>and</strong> lichens are slower<br />

to reestablish themselves. Acrocarpic mosses were<br />

found to reoccupy burned sites <str<strong>on</strong>g>in</str<strong>on</strong>g> the Mediterranean<br />

area with<str<strong>on</strong>g>in</str<strong>on</strong>g> 9 to 15 m<strong>on</strong>ths after <str<strong>on</strong>g>fire</str<strong>on</strong>g> (De Las Heras <strong>and</strong><br />

others 1993). Lichens that produce vegetative diaspores<br />

can move <str<strong>on</strong>g>in</str<strong>on</strong>g>to disturbed areas more quickly than<br />

lichens that do not produce these propagules (Johansen<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 85


<strong>and</strong> others 1984). Some lichens can take 10 to 20 years<br />

to develop diverse <strong>and</strong> abundant communities (Anders<strong>on</strong><br />

<strong>and</strong> others 1982).<br />

Soil Meso- <strong>and</strong> Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

Most research results <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> meso<strong>and</strong><br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna are reported <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>sects <strong>and</strong><br />

other arthropod assemblages, <strong>and</strong> earthworms. Insects,<br />

for example, may have representatives <str<strong>on</strong>g>in</str<strong>on</strong>g> both<br />

the meso- <strong>and</strong> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna groups (fig. 4.1; also see<br />

earlier discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter <strong>on</strong> soil meso- <strong>and</strong><br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna). Another important ramificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> these organisms is the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>festati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forests <strong>and</strong> other <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> by <str<strong>on</strong>g>in</str<strong>on</strong>g>sects as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the health <str<strong>on</strong>g>of</str<strong>on</strong>g> the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetati<strong>on</strong>.<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> all the above organisms depends<br />

to a large degree <strong>on</strong> the frequency <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term changes underg<strong>on</strong>e by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>fire</str<strong>on</strong>g> depends<br />

<strong>on</strong> both <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> frequency, the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these organisms at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> the species<br />

subjected to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> either an unc<strong>on</strong>trolled<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (high <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity), <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (low<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity), the effect <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates can be transitory<br />

or l<strong>on</strong>ger last<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Ly<strong>on</strong> <strong>and</strong> others 1978). Both<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> high <strong>and</strong> low <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity,<br />

but wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are more likely to burn larger, c<strong>on</strong>tiguous<br />

areas. The l<strong>on</strong>g-term abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> arthropod<br />

populati<strong>on</strong>s, however, can rema<str<strong>on</strong>g>in</str<strong>on</strong>g> high because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their resiliency to both <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Andersen <strong>and</strong> Müller 2000).<br />

Some studies show the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different severities<br />

<strong>and</strong> frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates. One study <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

P. sylvestris forests <str<strong>on</strong>g>in</str<strong>on</strong>g> Sweden showed that the overall<br />

mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates depended <strong>on</strong> the proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil c<strong>on</strong>sumed by the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> that the<br />

mortality ranged from 59 to 100 percent. Invertebrates<br />

that lived deeper <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil had less mortality<br />

than those that col<strong>on</strong>ized the vegetati<strong>on</strong> <strong>and</strong> litter<br />

layers (Wikars <strong>and</strong> Schimmel 2001). Other characteristics<br />

that favored survival <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded greater mobility<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <strong>and</strong> thick protective cuticles (as is found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the taxa Oribatediae <strong>and</strong> Elateridae).<br />

A study <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sects <strong>and</strong> other<br />

arthropods to prescribed burn frequency <str<strong>on</strong>g>in</str<strong>on</strong>g> prairie<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> showed that the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the physical<br />

envir<strong>on</strong>ment <strong>and</strong> plant communities follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s can result <str<strong>on</strong>g>in</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctly<br />

different arthropod communities <strong>on</strong> the frequently<br />

burned sites compared to sites that were protected<br />

from burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Reed 1997). Dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive arthropod species<br />

<strong>and</strong> groups were supported by the chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g successi<strong>on</strong><br />

stages follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In general, l<strong>and</strong>scapes<br />

that have a range <str<strong>on</strong>g>of</str<strong>on</strong>g> sites represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g different successi<strong>on</strong>al<br />

stages <strong>and</strong> sites that have different burn<br />

frequencies support the most species. However, <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual sites that are burned at <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals, a cycle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

arthropod species richness, species compositi<strong>on</strong>, <strong>and</strong><br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals occur. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency <strong>and</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> burn <strong>on</strong> arthropod taxa were<br />

reported for tropical savannas found <str<strong>on</strong>g>in</str<strong>on</strong>g> Australia<br />

(Andersen <strong>and</strong> Muller 2000). A substantial resilience<br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the arthropod assemblages was found. Only<br />

four <str<strong>on</strong>g>of</str<strong>on</strong>g> the 11 arthropod taxa were significantly affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Ants, crickets, <strong>and</strong> beetles decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Late seas<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s decreased spiders,<br />

homopterans, silverfish, <strong>and</strong> caterpillars.<br />

Some <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates have traits that allow them to<br />

survive <str<strong>on</strong>g>fire</str<strong>on</strong>g>. These traits may arise <str<strong>on</strong>g>in</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ways. Some may not have evolved specifically as an<br />

adaptati<strong>on</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g>, but rather more generally to hot<br />

<strong>and</strong> arid c<strong>on</strong>diti<strong>on</strong>s. For example, some <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

have adaptati<strong>on</strong>s that enable them to c<strong>on</strong>serve <strong>water</strong><br />

<strong>and</strong> resist high ambient temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g> seas<strong>on</strong>ally<br />

dry habitats. Other groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates possess<br />

traits, such as high mobility, that appear to be characteristic<br />

to particular tax<strong>on</strong>omic groups <strong>and</strong> not related<br />

to specific <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> or <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes. Still other adaptati<strong>on</strong>s<br />

appear to have evolved primarily <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se<br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> can <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the complex l<strong>on</strong>g-term evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some rather esoteric anatomical features. For<br />

example, a recent study <strong>on</strong> detailed morphological <strong>and</strong><br />

anatomical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a subfamily <str<strong>on</strong>g>of</str<strong>on</strong>g> beetles<br />

(Coleoptera: Cler<str<strong>on</strong>g>in</str<strong>on</strong>g>ae) suggests that these <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

evolved thermoreceptor antenna, which enable<br />

the beetles to avoid death by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> xeric envir<strong>on</strong>ments<br />

(Opitz 2003). The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this feature occurred<br />

over a span <str<strong>on</strong>g>of</str<strong>on</strong>g> tens <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> years.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates have been<br />

reviewed by several authors (DeBano <strong>and</strong> others 1998,<br />

Ly<strong>on</strong> <strong>and</strong> others 2000a 2000b, Andersen <strong>and</strong> Müller<br />

2000). Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the reports cited describe <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> savannas <strong>and</strong> other grassl<strong>and</strong>s. These reports<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

can occur via several mechanisms (Andersen<br />

<strong>and</strong> Müller 2000) that <str<strong>on</strong>g>in</str<strong>on</strong>g>clude direct mortality, through<br />

forced emigrati<strong>on</strong>, or through the immigrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pyrophilous species (such as wood-bor<str<strong>on</strong>g>in</str<strong>on</strong>g>g beetles that<br />

are attracted by heat <strong>and</strong> smoke to a burned area<br />

where they <str<strong>on</strong>g>in</str<strong>on</strong>g>fest <str<strong>on</strong>g>in</str<strong>on</strong>g>jured or dead trees). Short-term<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the habitat <strong>and</strong><br />

forag<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites, food supplies, microclimate, <strong>and</strong> rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong>. L<strong>on</strong>g-term <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> are manifest<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> primary productivity.<br />

Invertebrates resid<str<strong>on</strong>g>in</str<strong>on</strong>g>g more permanently <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

upper soil layers are most likely affected when these<br />

soil layers are heated to lethal temperatures.<br />

Macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates dwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g exclusively <str<strong>on</strong>g>in</str<strong>on</strong>g> litter were<br />

found to be particularly vulnerable to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> that<br />

destroys surface fuels <strong>and</strong> litter (Sgardelis <strong>and</strong> others<br />

1995). However, <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates that permanently occupy<br />

deeper soil horiz<strong>on</strong>s are usually protected from<br />

86 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


even high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Some macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vetebrates have<br />

been found to move deeper <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

summer <strong>and</strong>, as a result, they are <str<strong>on</strong>g>in</str<strong>on</strong>g>sulated from<br />

lethal soil temperatures dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the top 1.0 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (2.5 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil survive<br />

relatively cool burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s or prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

(Coults 1945). A reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> litter quantity after <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>directly decrease both the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

species <strong>and</strong> the species density <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> litter<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates as unprotected m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil warms<br />

(Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gett 1976).<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> earthworms is not well<br />

understood. One study <str<strong>on</strong>g>in</str<strong>on</strong>g> tallgrass prairie, however,<br />

showed that the <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> are probably<br />

more important than direct heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworm<br />

populati<strong>on</strong>s (James 1982). This study showed that <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased earthworm activity because <str<strong>on</strong>g>of</str<strong>on</strong>g> differences <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

plant productivity follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In general, the<br />

subsurface soil horiz<strong>on</strong>s are usually proliferated with<br />

roots <strong>and</strong> rhizomes, which <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with more<br />

favorable soil moisture c<strong>on</strong>diti<strong>on</strong>s create an ideal<br />

envir<strong>on</strong>ment for earthworms at about 4 to 8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (10<br />

to 20 cm) below the soil surface. A locati<strong>on</strong> this deep <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the soil most likely protects earthworms from the<br />

direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuel combusti<strong>on</strong>,<br />

except <str<strong>on</strong>g>in</str<strong>on</strong>g> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> severe l<strong>on</strong>g-durati<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that<br />

might occur under piles <str<strong>on</strong>g>of</str<strong>on</strong>g> slash <strong>and</strong> logs or <str<strong>on</strong>g>in</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

duff <strong>and</strong> roots. Other studies have shown that <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g> prairie grassl<strong>and</strong>s <strong>and</strong> mixed forest types) frequently<br />

leads to an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> exotic earthworm<br />

species at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> endemic species (Bhadauria<br />

<strong>and</strong> others 2000, Callaham <strong>and</strong> others 2003).<br />

Roots <strong>and</strong> Reproductive Structures<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant roots, vegetative reproductive<br />

structures, <strong>and</strong> seeds are found immediately <strong>on</strong> the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil or distributed downward throughout<br />

the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. These plant parts <str<strong>on</strong>g>in</str<strong>on</strong>g>clude tap roots,<br />

fibrous surface roots, rhizomes, stol<strong>on</strong>s, root crowns,<br />

<strong>and</strong> bulbs. Many plant roots are found <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface<br />

organic layers (L-, F-, <strong>and</strong> H-layers) <strong>and</strong> can be directly<br />

affected whenever these layers are heated or<br />

destroyed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Plant roots are sensitive to<br />

both durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

temperature reached. Temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 140 °F (60 °C)<br />

for 1 m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute are sufficient to coagulate prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (Precht<br />

<strong>and</strong> others 1973). Plant roots are sensitive to soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> lethal temperatures can occur before<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s began to coagulate. The lethal temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant tissue is highly dependent <strong>on</strong> the moisture<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the tissue. Those tissues c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g higher<br />

moisture c<strong>on</strong>tents tend to be killed at lower temperatures<br />

<strong>and</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a shorter <str<strong>on</strong>g>in</str<strong>on</strong>g>terval <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski 1990). Miller (2000) gives additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

<strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> root<br />

mortality <strong>and</strong> the welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative reproducti<strong>on</strong>.<br />

Plant roots that are <str<strong>on</strong>g>in</str<strong>on</strong>g>sulated by the soil have a<br />

lower risk <str<strong>on</strong>g>of</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g subjected to lethal temperatures<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (DeBano <strong>and</strong> others 1998). The two most<br />

important factors that <str<strong>on</strong>g>in</str<strong>on</strong>g>sulate roots aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

are their depth <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <strong>and</strong> the soil <strong>water</strong><br />

c<strong>on</strong>tent. Generally, the deeper the plant roots are<br />

located <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil, the greater will be the survival rate<br />

(Fl<str<strong>on</strong>g>in</str<strong>on</strong>g>n <strong>and</strong> We<str<strong>on</strong>g>in</str<strong>on</strong>g> 1977). Low-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> that destroys<br />

<strong>on</strong>ly the plant litter may kill <strong>on</strong>ly aboveground plant<br />

parts. In c<strong>on</strong>trast, high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can c<strong>on</strong>sume all<br />

the surface organic matter <strong>and</strong> easily heat the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

soil above the lethal temperature for roots.<br />

Seed banks that are stored <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil can be affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. A majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the seeds are stored <str<strong>on</strong>g>in</str<strong>on</strong>g> the litter<br />

<strong>and</strong> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil beneath the vegetative<br />

canopy. Medium to high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s heat the surface<br />

layers sufficiently to destroy any seeds that have been<br />

deposited. The lethal temperature for seeds is about<br />

160 °F (70 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> wet <strong>soils</strong> <strong>and</strong> 190 °F (90 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> dry <strong>soils</strong><br />

(Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others 1975). Although <str<strong>on</strong>g>fire</str<strong>on</strong>g> can destroy<br />

seeds, it also can enhance reproducti<strong>on</strong> by seeds (Miller<br />

2000). For example, <str<strong>on</strong>g>fire</str<strong>on</strong>g> can destroy allelopathic substances<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit seed producti<strong>on</strong>. Or, <str<strong>on</strong>g>in</str<strong>on</strong>g> the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e regenerati<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> can provide a m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

seedbed required for germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>and</strong> growth.<br />

The heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g associated with <str<strong>on</strong>g>fire</str<strong>on</strong>g>s may also stimulate<br />

the germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds that lie dormant <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil for<br />

years because <str<strong>on</strong>g>of</str<strong>on</strong>g> impermeable seed coats (such as<br />

seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> chamise <strong>and</strong> hoaryleaf ceanothus).<br />

Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, heat transfer, <strong>and</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lethal temperatures <strong>on</strong> the welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds <strong>and</strong> roots<br />

are more complicated <str<strong>on</strong>g>in</str<strong>on</strong>g> moist <strong>soils</strong> than when the soil<br />

is dry. Dry soil is a poor c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <strong>and</strong>, as a<br />

result, heat does not penetrate deeply <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil,<br />

particularly if the residence time <str<strong>on</strong>g>of</str<strong>on</strong>g> the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t<br />

is short. The surface <str<strong>on</strong>g>of</str<strong>on</strong>g> dry soil can easily exceed the<br />

lethal temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> roots, while<br />

ambient daily soil temperatures can prevail 0.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch<br />

(2 cm) downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil, with little damage occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to the roots. Therefore, when the roots are <str<strong>on</strong>g>in</str<strong>on</strong>g> dry<br />

soil below 0.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (2 cm), they are not likely to be<br />

damaged by soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g unless the residence time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t is l<strong>on</strong>g. C<strong>on</strong>versely, those plant<br />

structures <strong>on</strong> or near the soil surface can easily be<br />

damaged. Also, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil<br />

affects plant root <strong>and</strong> seed mortality (<str<strong>on</strong>g>in</str<strong>on</strong>g> other words,<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomass is killed at lower temperatures when<br />

the soil is wet compared to a dry soil).<br />

Amphibians, Reptiles, <strong>and</strong> Small<br />

Mammals<br />

The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> amphibians, reptiles, <strong>and</strong> small<br />

mammals to survive wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s depends <strong>on</strong> their<br />

mobility <strong>and</strong> the uniformity, severity, size, <strong>and</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Wright <strong>and</strong> Bailey 1982). Fire can<br />

cause direct <str<strong>on</strong>g>in</str<strong>on</strong>g>jury <strong>and</strong> kill the animals themselves<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 87


depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> how capable they are <str<strong>on</strong>g>of</str<strong>on</strong>g> avoid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

escap<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself (Ly<strong>on</strong> <strong>and</strong> others 2000a). The<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> these animal populati<strong>on</strong>s<br />

can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> a separate volume <str<strong>on</strong>g>of</str<strong>on</strong>g> this series (Smith<br />

2000). Fire also affects the l<strong>on</strong>g-term welfare <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

larger animals by chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g their habitat (Ly<strong>on</strong> <strong>and</strong><br />

others 2000b).<br />

Biologically Mediated Processes<br />

A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms participate <str<strong>on</strong>g>in</str<strong>on</strong>g> cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

carb<strong>on</strong> <strong>and</strong> plant nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> a systematic <strong>and</strong><br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able rate that is necessary for ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

healthy <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Important biologically regulated<br />

processes carried out by these microbes that can be<br />

affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude decompositi<strong>on</strong>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>,<br />

amm<strong>on</strong>ificati<strong>on</strong>, nitrificati<strong>on</strong>, nitrogen-fixati<strong>on</strong>,<br />

<strong>and</strong> denitrificati<strong>on</strong>.<br />

Decompositi<strong>on</strong>—Fire affects decompositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> two<br />

general ways (DeBano <strong>and</strong> others 1998). First, moderate-<br />

<strong>and</strong> high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s kill the biological organisms<br />

that decompose organic matter (see the earlier<br />

discussi<strong>on</strong>s <strong>on</strong> microorganisms). The microorganisms<br />

most affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude bacteria <strong>and</strong> fungi,<br />

which are numerically the most abundant organisms<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> are the primary decomposers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> soil (Van Veen <strong>and</strong><br />

Kuikman 1990). Sec<strong>on</strong>d, a rapid, strictly chemical<br />

combusti<strong>on</strong> process replaces the slower, biologically<br />

mediated decompositi<strong>on</strong> processes that occur under<br />

n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

Nitrogen M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>—Two important m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

process affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> are amm<strong>on</strong>ificati<strong>on</strong><br />

<strong>and</strong> nitrificati<strong>on</strong>. The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> both amm<strong>on</strong>ify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> nitrify<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g most likely plays<br />

an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants because N<br />

is frequently limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <strong>soils</strong> (DeBano <strong>and</strong><br />

others 1998). This relati<strong>on</strong>ship has been dem<strong>on</strong>strated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> unburned chaparral st<strong>and</strong>s where high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total N can occur as organic N, but <strong>on</strong>ly relatively low<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral N (NH 4- <strong>and</strong> NO 3-N) have<br />

been measured. It has been hypothesized that the low<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral <strong>soils</strong> occurred because<br />

heterotrophic microorganisms resp<strong>on</strong>sible for<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> were <str<strong>on</strong>g>in</str<strong>on</strong>g>hibited by allelopathic substances<br />

present, or because high lign<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chaparral plant leaves resist decompositi<strong>on</strong> <strong>and</strong> subsequent<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N (Christensen 1973). The<br />

hypothesis that higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4- <strong>and</strong><br />

NO 3-N are generally present after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is based <strong>on</strong> the<br />

idea that NH 4- <strong>and</strong> NO 3-N are formed by different<br />

processes as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Christensen <strong>and</strong><br />

Mueller 1975, DeBano <strong>and</strong> others 1979). Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

this hypothesis, relatively large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N are<br />

produced chemically by soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> (see<br />

chapter 3) as well as be<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbially produced<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3, however,<br />

is not produced directly by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, but<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stead is formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsequent nitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

excess NH 4-N produced as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This<br />

process is further complicated by the observati<strong>on</strong> that<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> nitrificati<strong>on</strong> does not appear to be carried out<br />

by the classical nitrify<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria (for example,<br />

Nitrosom<strong>on</strong>as <strong>and</strong> Nitrobacter) because these bacteria<br />

are particularly sensitive to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> other<br />

disturbances <strong>and</strong>, as a result, are absent (or at extremely<br />

low levels) for several m<strong>on</strong>ths follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Dunn <strong>and</strong> others 1979). The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bacteria after <str<strong>on</strong>g>fire</str<strong>on</strong>g> suggests that nitrificati<strong>on</strong> may be<br />

carried out by heterotrophic fungi. Dormant forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heterotrophic fungi have been reported to be stimulated<br />

by mild heat treatments (Dunn <strong>and</strong> others 1985)<br />

<strong>and</strong> are thought to have c<strong>on</strong>tributed to the fungal<br />

growth that paralleled NO 3 producti<strong>on</strong> (Dunn <strong>and</strong><br />

others 1979). Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> rates by<br />

allelopathic substances has been further substantiated<br />

by other studies <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests <str<strong>on</strong>g>in</str<strong>on</strong>g> New<br />

Mexico (White 1991, 1986) <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper woodl<strong>and</strong>s<br />

(Everett <strong>and</strong> others. 1995).<br />

Studies have shown that both Nitrosom<strong>on</strong>as <strong>and</strong><br />

Nitrobacter are sensitive to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

such as occurs with microorganisms described earlier<br />

(table 4.1). Studies <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral <strong>soils</strong> have shown that<br />

Nitrosom<strong>on</strong>as bacteria are killed <str<strong>on</strong>g>in</str<strong>on</strong>g> dry soil at temperatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 250 to 280 °F (120 to 140 °C) as c<strong>on</strong>trasted<br />

to a moist soil where the lethal temperature is between<br />

165 <strong>and</strong> 175 °F (75 <strong>and</strong> 80 °C) (Dunn <strong>and</strong> DeBano 1977,<br />

Dunn <strong>and</strong> others 1985). Nitrobacter bacteria are even<br />

more sensitive <strong>and</strong> are killed at 212 °F (100 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> dry<br />

soil <strong>and</strong> at 120 °F (50 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> a moist soil. Unlike<br />

heterotrophs, which must adapt to decreased organic<br />

matter availability, nitrifiers are provided with a<br />

sharp <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> available substrate (NH 4) after <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(Rais<strong>on</strong> 1979). C<strong>on</strong>sequently, the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial nitrify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bacterial populati<strong>on</strong> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e due to soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g typically<br />

is reversed with<str<strong>on</strong>g>in</str<strong>on</strong>g> the first year <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to the<br />

“flush” <str<strong>on</strong>g>of</str<strong>on</strong>g> available substrate (Jurgensen <strong>and</strong> others<br />

1981, Acea <strong>and</strong> Carballas 1996).<br />

Unfortunately, the <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> NH 4- <strong>and</strong> NO 3-N<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> are relatively short-lived <strong>and</strong> can<br />

return to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 years after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(DeBano <strong>and</strong> others 1998). Studies c<strong>on</strong>ducted after<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g tropical forests <str<strong>on</strong>g>in</str<strong>on</strong>g> Costa Rica showed that<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> available N returned to background<br />

levels <str<strong>on</strong>g>in</str<strong>on</strong>g> 6 m<strong>on</strong>ths (Mats<strong>on</strong> <strong>and</strong> others 1987). In an<br />

Ariz<strong>on</strong>a study the NH 4-N was immediately <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> then slowly decreased the<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g 10 m<strong>on</strong>ths, at which time NO 3-N began<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see fig. 3.13). With<str<strong>on</strong>g>in</str<strong>on</strong>g> a year, both NH 4<strong>and</strong><br />

NO 3-N levels returned to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels. In<br />

another study, N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>and</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

elevated for 1 year <str<strong>on</strong>g>in</str<strong>on</strong>g> Agropyr<strong>on</strong> spicatum<br />

88 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


<strong>and</strong> Stipa comata grassl<strong>and</strong>s for 2 years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> shrubl<strong>and</strong>s (Hobbs<br />

<strong>and</strong> Schimel 1984).<br />

Nitrogen-Fixati<strong>on</strong>—The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> N-fixati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volves the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g protoplasm<br />

present <str<strong>on</strong>g>in</str<strong>on</strong>g> symbiotic <strong>and</strong> n<strong>on</strong>symbiotic microorganisms<br />

that fix N. Symbiotic N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms<br />

can be affected <str<strong>on</strong>g>in</str<strong>on</strong>g> at least two ways. First, the destructi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the host plant dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> affects the<br />

symbiotic relati<strong>on</strong>ship by remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy.<br />

Sec<strong>on</strong>d, the symbiotic microorganisms present<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the roots may be killed if the upper organic layers<br />

are c<strong>on</strong>sumed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>. C<strong>on</strong>versely,<br />

little or no direct damage would be expected <str<strong>on</strong>g>in</str<strong>on</strong>g> the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> deeper roots, which are far removed from the soil<br />

surface, or dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a cooler burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(DeBano <strong>and</strong> others 1998). N<strong>on</strong>symbiotic bacteria<br />

resp<strong>on</strong>d similarly to other microbes discussed earlier.<br />

On the other h<strong>and</strong>, n<strong>on</strong>symbiotic processes, which<br />

receive energy from the biological oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter, also have been reported to fix substantial<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> N. For example, more than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong> has been reported to be<br />

provided by microorganisms resp<strong>on</strong>sible for decay<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wood <strong>on</strong> the surface <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (Harvey <strong>and</strong><br />

others 1989). The management <str<strong>on</strong>g>of</str<strong>on</strong>g> woody residues<br />

(coarse woody debris) with<str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> prescripti<strong>on</strong> thus<br />

becomes an important c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forest management.<br />

Therefore, it is important to reta<str<strong>on</strong>g>in</str<strong>on</strong>g> a substantial<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> large woody debris <strong>on</strong> forest sites after<br />

timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g or when us<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. For<br />

example, the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> residual woody debris recommended<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.9 are c<strong>on</strong>sidered necessary for<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> forests <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a,<br />

Idaho, <strong>and</strong> M<strong>on</strong>tana.<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> N-fixati<strong>on</strong> focuses <strong>on</strong> the<br />

role that both symbiotic <strong>and</strong> n<strong>on</strong>symbiotic organisms<br />

play <str<strong>on</strong>g>in</str<strong>on</strong>g> N-fixati<strong>on</strong> <strong>and</strong> replenishment <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong><br />

ecoystems (DeBano <strong>and</strong> others 1998). Currently this<br />

role is still under debate. For example, the results<br />

reported from a study <str<strong>on</strong>g>in</str<strong>on</strong>g> forests <str<strong>on</strong>g>of</str<strong>on</strong>g> the Northwestern<br />

United States showed that soil N-additi<strong>on</strong>s by symbiotic<br />

N-fixati<strong>on</strong> were not as large as previously assumed<br />

for these <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Harvey <strong>and</strong> others 1989).<br />

However, some vegetati<strong>on</strong> types, such as alder trees <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> dense st<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> snowbrush<br />

(Ceanothus velut<str<strong>on</strong>g>in</str<strong>on</strong>g>us), have been reported to fix substantial<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> N (Jurgensen <strong>and</strong> others 1979).<br />

The fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>in</str<strong>on</strong>g> these forest <strong>and</strong> brushl<strong>and</strong> areas<br />

is by symbiosis.<br />

Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g may create a favorable envir<strong>on</strong>ment for the<br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants <str<strong>on</strong>g>in</str<strong>on</strong>g> some plant communities<br />

that are subjected to frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>. For example,<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> exclusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-Douglas fir forests <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Northwest has been reported to lead to such widespread<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> forest structure, compositi<strong>on</strong>, <strong>and</strong><br />

functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g that N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants species have been<br />

reduced (Newl<strong>and</strong> <strong>and</strong> DeLuca 2000).<br />

Denitrificati<strong>on</strong>—Little research has been d<strong>on</strong>e <strong>on</strong><br />

the biological losses <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g>, partly<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the overwhelm<str<strong>on</strong>g>in</str<strong>on</strong>g>g losses that occur chemically<br />

by volatilizati<strong>on</strong> (DeBano <strong>and</strong> others 1998). Denitrificati<strong>on</strong>,<br />

however, can be an important factor when<br />

us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s (see chapter 8).<br />

Management Implicati<strong>on</strong>s<br />

Rarely are microorganisms <strong>and</strong> their processes more<br />

than a pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g thought <str<strong>on</strong>g>in</str<strong>on</strong>g> forest management plans.<br />

For example, fuel-reducti<strong>on</strong> programs rarely c<strong>on</strong>sider<br />

the potential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil organisms<br />

such as mycorrhizal fungi or autotrophic bacteria<br />

(W. Johns<strong>on</strong>, pers<strong>on</strong>al communicati<strong>on</strong>). A recent<br />

survey <strong>and</strong> management policy developed for protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a small percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungi <strong>and</strong> lichen with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the critical range <str<strong>on</strong>g>of</str<strong>on</strong>g> the northern spotted owl is the<br />

excepti<strong>on</strong> to the rule (Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>a <strong>and</strong> others 1999). This<br />

situati<strong>on</strong> is not surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g for at least two reas<strong>on</strong>s.<br />

First, most microorganisms are <str<strong>on</strong>g>in</str<strong>on</strong>g>visible to the naked<br />

eye <strong>and</strong> are thus “out <str<strong>on</strong>g>of</str<strong>on</strong>g> sight” <strong>and</strong>, as a result, “out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>d.” Sec<strong>on</strong>d, no simple, <str<strong>on</strong>g>in</str<strong>on</strong>g>expensive field test is<br />

available to measure microbial populati<strong>on</strong>s or their<br />

processes. Thus, managers have no practical means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial resp<strong>on</strong>ses to operati<strong>on</strong>al prescribed<br />

burns. In additi<strong>on</strong>, the results published from<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> studies have not always presented a clear<br />

picture <str<strong>on</strong>g>of</str<strong>on</strong>g> how microorganisms resp<strong>on</strong>d to <str<strong>on</strong>g>fire</str<strong>on</strong>g>, thus<br />

leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g managers guess<str<strong>on</strong>g>in</str<strong>on</strong>g>g at how resp<strong>on</strong>sive microorganisms<br />

are (or w<strong>on</strong>der<str<strong>on</strong>g>in</str<strong>on</strong>g>g whether they should<br />

care) for given forest types <strong>and</strong> anticipated <str<strong>on</strong>g>fire</str<strong>on</strong>g> severities.<br />

However, the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g general c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial<br />

resp<strong>on</strong>siveness to <str<strong>on</strong>g>fire</str<strong>on</strong>g> can be gleaned from past<br />

studies:<br />

• Microorganisms are skilled at recol<strong>on</strong>iz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

disturbed forests. Their resiliency is a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unsurpassed physiological <strong>and</strong> genetic<br />

diversity.<br />

• Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> are greatest <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor <strong>and</strong><br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e rapidly with m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil depth. Recovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest floor<br />

is not guaranteed, particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> dry systems<br />

with slow reaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material.<br />

• Severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> reduce organic<br />

matter c<strong>on</strong>tent <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the potential<br />

for loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil by erosi<strong>on</strong>.<br />

• Prescripti<strong>on</strong>s that avoid drastic changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the envir<strong>on</strong>mental factors c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial<br />

life—soil temperature, moisture, <strong>and</strong> substrate<br />

availability—will be the most successful<br />

at meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g operati<strong>on</strong>al objectives while<br />

ensur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g soil biotic community.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 89


State Acr<strong>on</strong>ym Habitat type<br />

Idaho GF/SPBE-I Gr<strong>and</strong> fir / snowberry<br />

GF/ACGL-I Gr<strong>and</strong> fir / mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> maple<br />

AF/VAGL-I Subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e fir / huckleberry<br />

WH/CLUN-I Western hemlock / queencup beadlily<br />

DF/PHMA-I Douglas-fir / n<str<strong>on</strong>g>in</str<strong>on</strong>g>ebark<br />

DF/CARU-I Douglas-fir / p<str<strong>on</strong>g>in</str<strong>on</strong>g>egrass<br />

M<strong>on</strong>tana DF/PHMA-M Douglas-fir / n<str<strong>on</strong>g>in</str<strong>on</strong>g>ebark<br />

GF/XETE-M Gr<strong>and</strong> fir / bear grass<br />

AF/XETE-M Subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e fir / beargrass<br />

DF/CARU-M Douglas-fir / p<str<strong>on</strong>g>in</str<strong>on</strong>g>egrass<br />

AF/LIBO-M Subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e fir / tw<str<strong>on</strong>g>in</str<strong>on</strong>g>tower<br />

AF/VASC-M Subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e fir / whortleberry<br />

Ariz<strong>on</strong>a PP/FEAR-A P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e / Ariz<strong>on</strong>a fescue<br />

PP/QUGA-A P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e / Gambel oak<br />

Figure 4.9—Amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> residual coarse woody<br />

debris to leave after timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g necessary<br />

to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a, Idaho,<br />

<strong>and</strong> M<strong>on</strong>tana forests. Accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g chart lists<br />

habitat type acr<strong>on</strong>yms. (Adapted from Graham<br />

<strong>and</strong> others 1994).<br />

90 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


• Knowledge gaps persist, particularly regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

repeated <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> its effect <strong>on</strong> microorganisms.<br />

Based <strong>on</strong> the above c<strong>on</strong>cepts, the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g recommendati<strong>on</strong>s<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered:<br />

• M<str<strong>on</strong>g>in</str<strong>on</strong>g>imize loss <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor (litter <strong>and</strong> duff).<br />

Microorganisms are most vulnerable to heat<br />

damage <strong>and</strong> habitat changes <str<strong>on</strong>g>in</str<strong>on</strong>g> this layer.<br />

This presents a qu<strong>and</strong>ary for prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

practi<strong>on</strong>ers: How much organic material (fuel)<br />

should be removed to reduce wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> danger<br />

while still ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g an adequate supply<br />

for forest functi<strong>on</strong>? Tiedemann <strong>and</strong> others<br />

(2000) recommend burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g when the upper<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor is dry enough to carry<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> the lower layers are wet enough to<br />

avoid c<strong>on</strong>sumpti<strong>on</strong>. Further, they recommend<br />

extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g the recovery time between repeated<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s if these c<strong>on</strong>diti<strong>on</strong>s are not achieved or if<br />

exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is desired for tree<br />

regenerati<strong>on</strong>.<br />

• Avoid burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g when soil is moist if the anticipated<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity is high. Mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms<br />

is greater <str<strong>on</strong>g>in</str<strong>on</strong>g> moist soil than <str<strong>on</strong>g>in</str<strong>on</strong>g> dry<br />

soil at high temperatures.<br />

• Provide adequate <str<strong>on</strong>g>in</str<strong>on</strong>g>oculum for microbial<br />

recol<strong>on</strong>izati<strong>on</strong> by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g with mosaic patterns<br />

(there is no assurance that <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous populati<strong>on</strong>s<br />

will survive soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g).<br />

• Supplement burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g with other silvicultural<br />

practices (partial harvest, crush<str<strong>on</strong>g>in</str<strong>on</strong>g>g, mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g)<br />

to reduce fuel buildup. Repeated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the forest floor can result <str<strong>on</strong>g>in</str<strong>on</strong>g> detrimental<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> to microbial biomass <strong>and</strong> activity.<br />

Summary ______________________<br />

Soil microorganisms are complex. Community members<br />

range <str<strong>on</strong>g>in</str<strong>on</strong>g> activity from those merely try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

survive to others resp<strong>on</strong>sible for biochemical reacti<strong>on</strong>s<br />

that are am<strong>on</strong>g the most elegant <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tricate known.<br />

How microorganisms resp<strong>on</strong>d to <str<strong>on</strong>g>fire</str<strong>on</strong>g> will depend <strong>on</strong><br />

numerous factors, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> severity,<br />

site characteristics, <strong>and</strong> preburn community compositi<strong>on</strong>.<br />

Some generalities can be made, however.<br />

First, most studies have shown str<strong>on</strong>g resilience by<br />

microbial communities to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Recol<strong>on</strong>izati<strong>on</strong> to<br />

preburn levels is comm<strong>on</strong>, with the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time<br />

required for recovery generally vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> proporti<strong>on</strong><br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Sec<strong>on</strong>d, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> is greatest <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the forest floor (litter <strong>and</strong> duff). We recommend prescripti<strong>on</strong>s<br />

that c<strong>on</strong>sume major fuels but protect forest<br />

floor, humus layers, <strong>and</strong> soil humus.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 91


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

92 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Part B<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fire <strong>on</strong> Water<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 93


94 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Daniel G. Neary<br />

Peter F. Ffolliott<br />

Part B—The Water<br />

Resource: Its Importance,<br />

Characteristics, <strong>and</strong> General<br />

Resp<strong>on</strong>ses to Fire<br />

Introducti<strong>on</strong> ____________________<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the hydrologic cycle are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

largely by the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, decisi<strong>on</strong>s made<br />

relative to any suppressi<strong>on</strong> activities, <strong>and</strong> the immediate<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> precipitati<strong>on</strong> regime. Because <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

is typically scarce for porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> might occur, it is not possible<br />

to adequately describe the possible impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

all c<strong>on</strong>ceivable situati<strong>on</strong>s. But by underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic processes impacted, we can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpret the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> these processes at least<br />

to the degree needed to make adequate management<br />

decisi<strong>on</strong>s.<br />

This chapter covers the hydrologic processes represented<br />

by the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic cycle<br />

(Brooks <strong>and</strong> others 2003). We review how changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

hydrologic processes that are brought about by, or<br />

attributed to, the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, can translate <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow regimes.<br />

Hydrologic Cycle ________________<br />

The hydrologic cycle represents the processes <strong>and</strong><br />

pathways by which <strong>water</strong> is circulated from l<strong>and</strong> <strong>and</strong><br />

<strong>water</strong> bodies to the atmosphere <strong>and</strong> back aga<str<strong>on</strong>g>in</str<strong>on</strong>g>. While<br />

the hydrologic cycle is complex <str<strong>on</strong>g>in</str<strong>on</strong>g> nature <strong>and</strong> dynamic<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> its functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g, it can be simplified as a system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong>-storage comp<strong>on</strong>ents <strong>and</strong> the solid, liquid, or<br />

gaseous flows <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> between storage<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (fig. B.1). Precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts (ra<str<strong>on</strong>g>in</str<strong>on</strong>g>, snow, sleet,<br />

<strong>and</strong> so forth) to a <strong>water</strong>shed are affected little by<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. However, <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, evapotranspirati<strong>on</strong>,<br />

soil moisture storage, <strong>and</strong> the overl<strong>and</strong><br />

flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> can be significantly affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It<br />

must be kept <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d that these comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hydrologic cycle are closely <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelated, <strong>and</strong> therefore,<br />

it is difficult <str<strong>on</strong>g>in</str<strong>on</strong>g> practice to isolate the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>on</strong>e comp<strong>on</strong>ent al<strong>on</strong>e.<br />

A generalized percentage breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts,<br />

fluxes, <strong>and</strong> outputs <str<strong>on</strong>g>in</str<strong>on</strong>g> undisturbed forested <strong>water</strong>sheds<br />

is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure B.2 (Hewlett 1982). These<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 95


Figure B.1—Generalized diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic cycle. (Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

USDA Forest Service, Nati<strong>on</strong>al Advanced Fire <strong>and</strong> Resource Institute, Tucs<strong>on</strong>,<br />

AZ, Tucs<strong>on</strong>, AZ).<br />

Figure B.2—Inputs, outputs, <strong>and</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forested <strong>water</strong>sheds. (Adapted<br />

from Hewlett 1982, Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology, Copyright © University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia<br />

Press, Athens, GA; Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the USDA Forest Service, Nati<strong>on</strong>al<br />

Advanced Fire <strong>and</strong> Resource Institute, Tucs<strong>on</strong>, AZ).<br />

96 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> can change somewhat <str<strong>on</strong>g>in</str<strong>on</strong>g> shrub<br />

<strong>and</strong> grassl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> are altered <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>sheds<br />

disturbed by harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g (fig. B.3), burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sect defoliati<strong>on</strong>, w<str<strong>on</strong>g>in</str<strong>on</strong>g>dthrow, l<strong>and</strong>-use c<strong>on</strong>versi<strong>on</strong>s,<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g, agriculture, <strong>and</strong> so forth. Precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>, snow, sleet, <strong>and</strong> so forth. Fluxes, or<br />

movement pathways with<str<strong>on</strong>g>in</str<strong>on</strong>g> a <strong>water</strong>shed, c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, stemflow, throughfall, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <str<strong>on</strong>g>in</str<strong>on</strong>g>terflow, baseflow, <strong>and</strong> stormflow.<br />

Intercepti<strong>on</strong><br />

Intercepti<strong>on</strong> is the hydrologic process by which vegetative<br />

canopies <strong>and</strong> accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> other<br />

decomposed organic matter <strong>on</strong> the soil surface <str<strong>on</strong>g>in</str<strong>on</strong>g>terrupt<br />

the fall <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> from the atmosphere to<br />

the soil surface. Intercepti<strong>on</strong> plays a hydrologic role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil surface from the energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fall<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops. Without this dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy,<br />

the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface can become compacted<br />

or dislodged by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash, which then impacts<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil surface<br />

<strong>and</strong> the pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> to stream systems with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a <strong>water</strong>shed.<br />

Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong> that is <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted returns<br />

to the atmosphere by evaporati<strong>on</strong> <strong>and</strong>, therefore, becomes<br />

a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> from the soil surface. As a<br />

c<strong>on</strong>sequence, <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> is a storage term that is<br />

subtracted from the gross precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put to a<br />

<strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> budget studies. However, not all <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted by a vegetative canopy or<br />

litter layer is returned to the atmosphere. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted by a vegetative canopy drips <str<strong>on</strong>g>of</str<strong>on</strong>g>f the<br />

foliage (throughfall) or flows down the stems <str<strong>on</strong>g>of</str<strong>on</strong>g> trees<br />

to the soil surface (stemflow). This is especially the<br />

case with the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> large storms <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g<br />

Figure B.3—Annual streamflow resp<strong>on</strong>se to timber<br />

harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> precipitati<strong>on</strong>. (From Neary, D.G. 2002.<br />

Chapter 5.3: Hydrologic values Page 200, Figure<br />

5.3-6. In: Bioenergy from Susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able Forestry, All<br />

Rights Reserved Copyright © Kluwer Academic<br />

Publishers).<br />

durati<strong>on</strong> (Brooks <strong>and</strong> others 2003). A porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>water</strong> that is <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted by litter layers also dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s to<br />

the soil surface.<br />

There is c<strong>on</strong>siderable variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> by vegetative canopies. Intercepti<strong>on</strong><br />

losses <str<strong>on</strong>g>in</str<strong>on</strong>g> temperate forests <str<strong>on</strong>g>of</str<strong>on</strong>g> North America<br />

range from 0.05 to 0.26 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (13 to 66 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

storm events (Helvey 1971, Luce 1995). This<br />

amounts to less than 5 to more than 35 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

annual ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>put to a <strong>water</strong>shed (Ald<strong>on</strong> 1960,<br />

Rothacher 1963, Helvey <strong>and</strong> Patric 1965, Fuhrer 1981,<br />

Roth <strong>and</strong> Chang 1981, Plam<strong>on</strong>d<strong>on</strong> <strong>and</strong> others 1984).<br />

Intercepti<strong>on</strong> losses <str<strong>on</strong>g>in</str<strong>on</strong>g> the sparsely stocked woodl<strong>and</strong>s,<br />

shrubl<strong>and</strong>s, <strong>and</strong> grassl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> arid <strong>and</strong> semiarid regi<strong>on</strong>s<br />

are typically less than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the annual<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall (Skau 1964a, Tromble 1983, Haworth <strong>and</strong><br />

McPhers<strong>on</strong> 1991). Brooks <strong>and</strong> others (2003) discuss<br />

formulas used to calculate ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>. Regardless<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>, however, <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

represents a transient form <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> storage <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

vegetative cover <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed.<br />

Intercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> snowfall is more difficult to quantify<br />

than the <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall, largely because neither<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial amount <str<strong>on</strong>g>of</str<strong>on</strong>g> snowfall nor the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the snow that accumulates <strong>on</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetative canopies can be measured adequately. In<br />

many situati<strong>on</strong>s, much <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted snow is<br />

ultimately deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> the snowpack accumulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the ground through w<str<strong>on</strong>g>in</str<strong>on</strong>g>d erosi<strong>on</strong> <strong>and</strong> snowmelt,<br />

with subsequent dripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the snowpack<br />

<strong>on</strong> the ground (Miller 1966, Hoover <strong>and</strong> Leaf<br />

1967, Satterlund <strong>and</strong> Haupt 1970, Tennys<strong>on</strong> <strong>and</strong><br />

others 1974).<br />

Intercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> either ra<str<strong>on</strong>g>in</str<strong>on</strong>g> or snow by vegetative<br />

canopies is largely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• The form (ra<str<strong>on</strong>g>in</str<strong>on</strong>g> or snow), <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong> event.<br />

• The w<str<strong>on</strong>g>in</str<strong>on</strong>g>d velocity, <strong>water</strong> vapor gradient away<br />

from <str<strong>on</strong>g>in</str<strong>on</strong>g>tercept<str<strong>on</strong>g>in</str<strong>on</strong>g>g surfaces, <strong>and</strong> other storm<br />

characteristics.<br />

• The type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> (broad- or needleleaved),<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative layers <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

canopy, <strong>and</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> surface leaf area.<br />

Throughfall is precipitati<strong>on</strong> that falls through a<br />

plant canopy <strong>and</strong> l<strong>and</strong>s <strong>on</strong> bare soil or litter. Intercepti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> throughfall precipitati<strong>on</strong> by litter <strong>and</strong> other<br />

decomposed organic matter <strong>on</strong> the soil surface ranges<br />

from 5 to 35 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the gross precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put to<br />

a <strong>water</strong>shed (Brooks <strong>and</strong> others 2003). Storage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> litter layers can represent a<br />

relatively large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small 1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (25 mm) <strong>and</strong><br />

less ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events. It can amount to 0.08 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (2 mm)<br />

<strong>on</strong> trees, 0.04 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (1 mm) <strong>on</strong> shrubs, <strong>and</strong> 0.12 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (3<br />

mm) <strong>on</strong> litter. Intercepti<strong>on</strong> <strong>and</strong> the storage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

litter <strong>on</strong> the soil surface are related to the depth,<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 97


density, <strong>and</strong> relative stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

layers.<br />

One obvious hydrologic c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> destroy<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

vegetative canopies, reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g litter accumulati<strong>on</strong>s,<br />

or both is its c<strong>on</strong>sequent <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong><br />

losses. It is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic<br />

resp<strong>on</strong>se to short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity summer<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g> storms brought about by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetative<br />

canopy <strong>and</strong> litter is completely lost <str<strong>on</strong>g>in</str<strong>on</strong>g> severe<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <strong>and</strong> as a result, comparatively little post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> occurs (B<strong>on</strong>d <strong>and</strong> van<br />

Wilgen 1996, Pyne <strong>and</strong> others 1996, DeBano <strong>and</strong><br />

others 1998). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this<br />

case is a likely <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> net precipitati<strong>on</strong><br />

reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil surface—that is, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

throughfall. When <strong>on</strong>ly small quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> a vegetative<br />

cover or litter are c<strong>on</strong>sumed <str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> low<br />

severity, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> process is<br />

less pr<strong>on</strong>ounced. Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

<strong>and</strong> other decomposed organic matter is important <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil surface <str<strong>on</strong>g>in</str<strong>on</strong>g> those situati<strong>on</strong>s where<br />

vegetati<strong>on</strong> is destroyed by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Increased soil loss<br />

through erosive processes is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a c<strong>on</strong>sequence when<br />

large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> both protective layers (vegetati<strong>on</strong><br />

<strong>and</strong> litter) are lost to <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Infiltrati<strong>on</strong><br />

Precipitati<strong>on</strong> that reaches the soil surface moves<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil mantle, forms puddles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>on</strong> the soil<br />

surface, or flows over the soil surface. The process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil is <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>. The maximum<br />

rate at which <strong>water</strong> can enter the soil is the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

capacity. Water that <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil either<br />

moves slowly downward <strong>and</strong> laterally to a stream<br />

channel by <str<strong>on</strong>g>in</str<strong>on</strong>g>terflow or downward still farther to a<br />

ground<strong>water</strong> aquifer. When more <strong>water</strong> is supplied to<br />

a site than can <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrate, the excess <strong>water</strong>flows <str<strong>on</strong>g>of</str<strong>on</strong>g>f the<br />

surface, by the process <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> flow or surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, to a stream channel.<br />

The relative proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the net precipitati<strong>on</strong> that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> moves to a stream channel<br />

or percolates through the soil to the ground<strong>water</strong><br />

aquifer largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the amount <strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streamflow that ultimately occurs <strong>on</strong> a <strong>water</strong>shed.<br />

Infiltrometer measurements <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that undisturbed<br />

forest <strong>soils</strong> have high <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacities compared<br />

to other types <str<strong>on</strong>g>of</str<strong>on</strong>g> soil (Meeuwig 1971, Johns<strong>on</strong> 1978,<br />

Johns<strong>on</strong> <strong>and</strong> Beschta 1980, Sidle <strong>and</strong> Drlica 1981).<br />

This high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> is a major factor c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to the popularly held idea that forests have a<br />

moderat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect <strong>on</strong> streamflow regimes.<br />

Forest <strong>soils</strong> are generally porous <strong>and</strong> open <strong>on</strong> the<br />

surface because <str<strong>on</strong>g>of</str<strong>on</strong>g> the accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

<strong>on</strong> the soil surface, the relatively high organic<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong>, <strong>and</strong> the large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macropores that typically occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworm,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sect, <strong>and</strong> other burrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g animal activities.<br />

Infiltrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to forest <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> more humid temperate<br />

regi<strong>on</strong>s is generally higher than that observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

<strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arid <strong>and</strong> semiarid regi<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> their more<br />

permeable structure <strong>and</strong> the greater stability <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates<br />

(Hewlett <strong>and</strong> Troendle 1975). Infiltrati<strong>on</strong> capacities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> semiarid regi<strong>on</strong>s are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten higher <strong>on</strong> sites dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by tree species than <strong>on</strong><br />

shrub or grass-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated sites (table B.1). Regardless<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>, however, variables affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• The soil texture, structure, porosity, <strong>and</strong> so<br />

forth.<br />

• The accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> other decomposed<br />

organic matter <strong>on</strong> the soil surface.<br />

• The compositi<strong>on</strong> <strong>and</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetative<br />

cover.<br />

• The l<strong>and</strong> use <strong>and</strong> resultant vegetative changes,<br />

which <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacities primarily<br />

by alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil <strong>water</strong> storage.<br />

• Precipitati<strong>on</strong> rate versus <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rate.<br />

The latter factor is an important <strong>on</strong>e to c<strong>on</strong>sider <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Western United States <strong>and</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

South. Typical summer severe thunderstorms <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

have high, short-durati<strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall bursts (for example,<br />

10 to 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute downpours at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/hour<br />

Table B.1—Infiltrati<strong>on</strong> rates under various surface c<strong>on</strong>diti<strong>on</strong>s. (Adapted from Hewlett<br />

1982, copyright University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia Press, Athens, GA).<br />

Infiltrati<strong>on</strong><br />

Surface c<strong>on</strong>diti<strong>on</strong>s Rate Descripti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>/hr mm/hr<br />

1. Intact forest floor >6.3 >160 Very rapid<br />

2. Vegetati<strong>on</strong> 0.2 – 2.0 5 – 50 Slow to moderate<br />

3. Bare soil 0.0 – 1.0 0 – 25 Very to moderately slow<br />

4. Water repellent soil 0.0 – 0.04 0 – 10 Very slow to n<strong>on</strong>e<br />

98 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


(50 mm/hr). These ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to 250<br />

to 500 acres (1 to 2 km 2 ) (Neary 2002).<br />

Infiltrati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten altered when<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> destroys vegetati<strong>on</strong> <strong>and</strong> litter covers <strong>on</strong> a <strong>water</strong>shed<br />

(Pyne <strong>and</strong> others 1996, DeBano <strong>and</strong> others 1998,<br />

Brooks <strong>and</strong> others 2003). When the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been<br />

severe enough to exposes bare soil, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> can be<br />

reduced due to:<br />

• A collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil structure <strong>and</strong> a subsequent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk density <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter,<br />

which serves as a b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g material.<br />

• The c<strong>on</strong>sequent reducti<strong>on</strong> is soil porosity.<br />

• Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops <strong>on</strong> the soil surface caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

compacti<strong>on</strong> <strong>and</strong> a further loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil porosity.<br />

• The k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic forces <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop impact displac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

surface soil particles <strong>and</strong> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a seal<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> surface pores.<br />

• Ash <strong>and</strong> charcoal residues clogg<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil pores.<br />

Variables that affect both the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity<br />

<strong>and</strong> cumulative <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil can be affected<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> to vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g degrees, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

decreased <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> (Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski 1971, Biswell 1973,<br />

MaNabb <strong>and</strong> others 1989), <str<strong>on</strong>g>in</str<strong>on</strong>g>creased overl<strong>and</strong> flow<br />

(DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003),<br />

<strong>and</strong>, ultimately, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow discharge. Rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors such<br />

as soil texture, vegetati<strong>on</strong> <strong>and</strong> litter cover, <strong>and</strong> soil<br />

porosity. Infiltrati<strong>on</strong> rates with litter present can<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten exceed ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities greater than 6.3 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/<br />

hour (greater than 160 mm/hr). Infiltrati<strong>on</strong> decreases<br />

when soil particle sizes <strong>and</strong> cover are reduced. Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates less than1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch/hour (less than 25<br />

mm/hr) <str<strong>on</strong>g>in</str<strong>on</strong>g> bare s<strong>and</strong>s become less than 0.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch/hour<br />

(less than 5 mm/hr) <str<strong>on</strong>g>in</str<strong>on</strong>g> clay-textured <strong>soils</strong>. The variables<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• The vegetative cover type.<br />

• The porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil surface covered by litter<br />

accumulati<strong>on</strong>s <strong>and</strong> other decomposed organic<br />

matter.<br />

• The weight (depth) <str<strong>on</strong>g>of</str<strong>on</strong>g> the litter <strong>and</strong> other<br />

organic material.<br />

• The soil texture, structure, porosity, bulk density,<br />

<strong>and</strong> so forth.<br />

Another soil property that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

process is the wettability <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil (see chapter 2).<br />

Soils <str<strong>on</strong>g>in</str<strong>on</strong>g> some vegetative types <strong>and</strong> regi<strong>on</strong>s can develop<br />

a characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellency follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, which (<str<strong>on</strong>g>in</str<strong>on</strong>g> turn) can reduce <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

capacities. Although the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> these hydrophobic<br />

<strong>soils</strong> is frequent <str<strong>on</strong>g>in</str<strong>on</strong>g> these situati<strong>on</strong>s, the causes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>diti<strong>on</strong> are not always well known (DeBano<br />

1981 2000a,b, DeBano <strong>and</strong> others 1998). Most<br />

hydrophobic <strong>soils</strong> repel <strong>water</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> organic,<br />

l<strong>on</strong>g-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>ed hydrocarb<strong>on</strong> substances coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil<br />

particles. As a c<strong>on</strong>sequence, <strong>water</strong> “beads up” <strong>on</strong> the<br />

soil surface <strong>and</strong> will not readily penetrate the surface<br />

(see fig. 2.8 <strong>and</strong> 2.9), result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>.<br />

With this c<strong>on</strong>diti<strong>on</strong>, accelerated overl<strong>and</strong> flow<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased surface erosi<strong>on</strong> can occur, especially <strong>on</strong><br />

steeper slopes.<br />

Hydrophobic <strong>soils</strong> are typically found <str<strong>on</strong>g>in</str<strong>on</strong>g> the chaparral<br />

shrubl<strong>and</strong>s (compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g Quercus turb<str<strong>on</strong>g>in</str<strong>on</strong>g>ella <strong>and</strong><br />

other sclerophyllous species) <str<strong>on</strong>g>of</str<strong>on</strong>g> southern California.<br />

However, hydrophobic <strong>soils</strong> can be found after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

other vegetati<strong>on</strong> types. Fires that occur frequently <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the chaparral regi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensify the hydrophobic c<strong>on</strong>diti<strong>on</strong><br />

<strong>and</strong>, apparently, volatilize organic substances<br />

that accumulate <str<strong>on</strong>g>in</str<strong>on</strong>g> the litter layer <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval<br />

between <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (DeBano 1981, Dunn <strong>and</strong> others 1988,<br />

DeBano <strong>and</strong> others 1998). The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> repellent<br />

layer is then driven deeper <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

This layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g arrangement allows ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall to <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrate<br />

to <strong>on</strong>ly a limited depth before the wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t reaches<br />

the <strong>water</strong> repellent layer, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>current<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> <strong>water</strong>flow. The<br />

soil layer above this <strong>water</strong> repellent layer is also easily<br />

eroded <strong>and</strong>, therefore, affects sedimentati<strong>on</strong> <strong>and</strong> debris<br />

flow producti<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

A <str<strong>on</strong>g>fire</str<strong>on</strong>g> can also <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the microclimate <str<strong>on</strong>g>of</str<strong>on</strong>g> a site by<br />

caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g greater air <strong>and</strong> soil temperature extremes<br />

(Fowler <strong>and</strong> Helvey 1978, Pyne <strong>and</strong> others 1996,<br />

DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003). In<br />

cooler temperate regi<strong>on</strong>s, these temperature changes<br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease potentials for c<strong>on</strong>crete-type soil frost to<br />

form, which can then cause a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

capacity that, therefore, is <str<strong>on</strong>g>in</str<strong>on</strong>g>directly related to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Bullard 1954).<br />

Evapotranspirati<strong>on</strong><br />

Evaporati<strong>on</strong> from <strong>soils</strong>, plant surfaces, <strong>and</strong> <strong>water</strong><br />

bodies, <strong>and</strong> <strong>water</strong> losses from transpir<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants, are<br />

collectively the evapotranspirati<strong>on</strong> comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hydrologic cycle. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> the evapotranspirati<strong>on</strong> comp<strong>on</strong>ent<br />

is when vegetati<strong>on</strong> canopies <str<strong>on</strong>g>in</str<strong>on</strong>g>tercept precipitati<strong>on</strong><br />

that is evaporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from plant foliage. Evapotranspirati<strong>on</strong><br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a <strong>water</strong> budget, approach<str<strong>on</strong>g>in</str<strong>on</strong>g>g 100 percent<br />

<strong>on</strong> some forested <strong>water</strong>sheds.<br />

The evapotranspirati<strong>on</strong> comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic<br />

cycle <str<strong>on</strong>g>in</str<strong>on</strong>g>terests hydrologists <strong>and</strong> <strong>water</strong>shed managers<br />

because its magnitude largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put to a <strong>water</strong>shed<br />

that is likely to eventually become streamflow or<br />

result <str<strong>on</strong>g>in</str<strong>on</strong>g> ground<strong>water</strong> recharge. Evapotranspirati<strong>on</strong><br />

also represents the comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic cycle<br />

that is <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced the most by vegetative changes <strong>on</strong> a<br />

<strong>water</strong>shed that are brought about by planned <strong>and</strong><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 99


unplanned l<strong>and</strong> management activities. The evapotranspirati<strong>on</strong><br />

process largely c<strong>on</strong>trols the hydrologic<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <strong>and</strong> snowmelt<br />

events; nevertheless, hydrologists <strong>and</strong> <strong>water</strong>shed<br />

managers still underst<strong>and</strong> little about the process<br />

itself or the feedback mechanisms that c<strong>on</strong>trol the<br />

evapotranspirati<strong>on</strong> process <str<strong>on</strong>g>in</str<strong>on</strong>g> natural envir<strong>on</strong>ments<br />

(Mort<strong>on</strong> 1990, Ffolliott <strong>and</strong> Brooks 1996, Brooks <strong>and</strong><br />

others 2003). It is known, however, that the compositi<strong>on</strong>,<br />

density, <strong>and</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence<br />

transpirati<strong>on</strong> losses through time. Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

transpirati<strong>on</strong> rates am<strong>on</strong>g plant communities <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual plant species <strong>on</strong> a <strong>water</strong>shed are attributed<br />

largely to:<br />

• Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> root<str<strong>on</strong>g>in</str<strong>on</strong>g>g characteristics<br />

• Stomatal resp<strong>on</strong>se<br />

• Albedo <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf surfaces<br />

• The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong><br />

Estimated evapotranspirati<strong>on</strong> values <str<strong>on</strong>g>in</str<strong>on</strong>g> the temperate<br />

forests <str<strong>on</strong>g>of</str<strong>on</strong>g> North America range from 40 to over 85<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the annual precipitati<strong>on</strong>. However, these<br />

estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> evapotranspirati<strong>on</strong> vary greatly with<br />

different compositi<strong>on</strong>s <strong>and</strong> structures <str<strong>on</strong>g>of</str<strong>on</strong>g> forest overstories<br />

(Cr<str<strong>on</strong>g>of</str<strong>on</strong>g>t <strong>and</strong> M<strong>on</strong>n<str<strong>on</strong>g>in</str<strong>on</strong>g>ger 1953, Brown <strong>and</strong> Thomps<strong>on</strong><br />

1965, Johns<strong>on</strong> 1970). On a <strong>water</strong>shed-scale, it<br />

has been estimated that 80 to 95 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the annual<br />

precipitati<strong>on</strong> is evaporated from l<strong>and</strong> surfaces or transpired<br />

by plants <strong>on</strong> the forested <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Southwestern United States, leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly 5 to 20<br />

percent available for run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (Ffolliott <strong>and</strong> Thorud<br />

1977). By c<strong>on</strong>trast, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f approaches 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall, <strong>and</strong> there are larger snowmelt <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <strong>on</strong> the<br />

higher mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>sheds <str<strong>on</strong>g>of</str<strong>on</strong>g> the Western United<br />

States; nevertheless, the evapotranspirati<strong>on</strong> comp<strong>on</strong>ent<br />

is still large <strong>and</strong> potentially subject to modificati<strong>on</strong>.<br />

Evapotranspirati<strong>on</strong> represents the largest loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic<br />

cycle. This is a problem <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> semiarid regi<strong>on</strong>s<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> low precipitati<strong>on</strong> (Pillsbury <strong>and</strong> others<br />

1963, Skau 1964b, Brans<strong>on</strong> <strong>and</strong> others 1976). In tropical<br />

areas, evapotranspirati<strong>on</strong> is high but so is ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall.<br />

In some situati<strong>on</strong>s, soil <strong>water</strong> storage follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> these harsh envir<strong>on</strong>ments<br />

is nil, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative cover,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> are<br />

lost through the evapotranspirati<strong>on</strong> process.<br />

Watershed management studies throughout the<br />

world have dem<strong>on</strong>strated that streamflow can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g vegetative changes that reduce evapotranspirati<strong>on</strong><br />

losses (Bosch <strong>and</strong> Hewlett 1982, Troendle<br />

<strong>and</strong> K<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1985, Hornbeck <strong>and</strong> others 1993, Whitehead<br />

<strong>and</strong> Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> 1993). That is, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a vegetative<br />

change, less precipitati<strong>on</strong> is c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to vapor<br />

through the evapotranspirati<strong>on</strong> process, <strong>and</strong> as a<br />

c<strong>on</strong>sequence, more <strong>water</strong> is available for streamflow.<br />

Vegetati<strong>on</strong>-modify<str<strong>on</strong>g>in</str<strong>on</strong>g>g or vegetati<strong>on</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

therefore, can change evapotranspirati<strong>on</strong> (B<strong>on</strong>d <strong>and</strong><br />

van Wilgen 1996, Pyne <strong>and</strong> others 1996, DeBano <strong>and</strong><br />

others 1998). Fire that modifies the compositi<strong>on</strong> <strong>and</strong><br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> by remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g foliar volume<br />

will result <str<strong>on</strong>g>in</str<strong>on</strong>g> less evapotranspirati<strong>on</strong> losses from a<br />

<strong>water</strong>shed. Fire that causes a replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> deeprooted,<br />

high pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile trees or shrubs by shallow-rooted,<br />

low pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile grasses <strong>and</strong> forbs is also likely to reduce<br />

evapotranspirati<strong>on</strong> losses. In either <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, less<br />

evapotranspirati<strong>on</strong> loss follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten translates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow.<br />

Soil Water Storage<br />

The maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> that a soil body<br />

reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the force <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity is the field capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. When <strong>water</strong> is added to a soil that is already<br />

charged to field capacity, the excess <strong>water</strong> either flows<br />

overl<strong>and</strong> to a stream channel or dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from the soil.<br />

Soil is normally charged to, or near to, field capacity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> high precipitati<strong>on</strong> events <strong>and</strong> at the start <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the plant grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>. However, much <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong><br />

that is stored <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil is c<strong>on</strong>sumed by plants <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> sparse precipitati<strong>on</strong>, <strong>and</strong> by the evapotranspirati<strong>on</strong><br />

process as the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> progresses.<br />

The soil <strong>water</strong> deficit occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> is satisfied when high precipitati<strong>on</strong><br />

amounts occur <strong>on</strong>ce aga<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> stored soil <strong>water</strong> that is lost to<br />

evapotranspirati<strong>on</strong> is largely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetative<br />

type occupy<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>water</strong>shed site. Trees <strong>and</strong><br />

shrubs have roots that can penetrate deep <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil<br />

<strong>and</strong>, as a c<strong>on</strong>sequence, are able to extract <strong>water</strong><br />

throughout much <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil body. On the other h<strong>and</strong>,<br />

grasses, grasslike plants, <strong>and</strong> forbs have relatively<br />

shallow root systems <strong>and</strong> are <strong>on</strong>ly able to use <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the upper foot or so <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil mantle. Water that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil surface is stored <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, percolates through the soil<br />

body, or both. Vegetative change has a lesser effect <strong>on</strong><br />

subsoil properties that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence soil <strong>water</strong> storage<br />

than <strong>on</strong> those properties impact<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>. It<br />

follows, therefore, that <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative change <strong>on</strong><br />

the subsurface soil properties that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence soil <strong>water</strong><br />

storage are not likely to be c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g factors <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

hydrologic cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed (Brooks <strong>and</strong> others<br />

2003). However, a vegetative change that affects both<br />

the evapotranspirati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> processes can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence soil <strong>water</strong> storage.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <strong>water</strong> storage result mostly<br />

from the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> by the burn, which lowers<br />

the evapotranspirati<strong>on</strong> losses (DeBano <strong>and</strong> others<br />

1998, Brooks <strong>and</strong> others 2003). Lower evapotranspirati<strong>on</strong><br />

losses (<str<strong>on</strong>g>in</str<strong>on</strong>g> turn) leave more <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil at the<br />

100 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


end <str<strong>on</strong>g>of</str<strong>on</strong>g> the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> than would be present if the<br />

vegetati<strong>on</strong> had not been burned (Tiedemann <strong>and</strong> others<br />

1979, Wells <strong>and</strong> others 1979, DeBano <strong>and</strong> others<br />

1998). Overl<strong>and</strong> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong>, ultimately,<br />

streamflow regimes become more resp<strong>on</strong>sive to subsequent<br />

precipitati<strong>on</strong> events as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased soil <strong>water</strong> storage. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten likely that soil<br />

<strong>water</strong> deficits <strong>on</strong> the burned sites at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> will return to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels <str<strong>on</strong>g>in</str<strong>on</strong>g> time if<br />

the vegetative cover also recovers to c<strong>on</strong>diti<strong>on</strong>s that<br />

characterized the <strong>water</strong>shed before burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the <strong>water</strong> storage <str<strong>on</strong>g>of</str<strong>on</strong>g> rangel<strong>and</strong> <strong>soils</strong><br />

are more variable than those <str<strong>on</strong>g>in</str<strong>on</strong>g> forested <strong>soils</strong>. Some<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators have reported that the soil <strong>water</strong> storage<br />

is higher <strong>on</strong> burned sites, others have found lower soil<br />

<strong>water</strong> storage <strong>on</strong> these sites, <strong>and</strong> still others observed<br />

no change (Wells <strong>and</strong> others 1979). Vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g severities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten cited as the reas<strong>on</strong> for these differences.<br />

Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> soil <strong>water</strong> c<strong>on</strong>tent <strong>and</strong> pore pressures<br />

can be similar to those observed after forest<br />

harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Sidle 1985).<br />

Snow Accumulati<strong>on</strong> <strong>and</strong> Melt Patterns<br />

Much <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to the <strong>water</strong> resource<br />

secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong> has focused <strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall as<br />

the form <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>. However, snowfall is also an<br />

important form <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put to <strong>water</strong>shed<br />

l<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> many regi<strong>on</strong>s. The snowpack melts that<br />

accumulate at higher latitudes <strong>and</strong> higher elevati<strong>on</strong>s<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a primary source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> to downstream<br />

users. It is not surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g, therefore, that hydrologists<br />

<strong>and</strong> <strong>water</strong>shed managers can be <str<strong>on</strong>g>in</str<strong>on</strong>g>terested <str<strong>on</strong>g>in</str<strong>on</strong>g> snow<br />

accumulati<strong>on</strong> <strong>and</strong> melt patterns <strong>and</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetative change <strong>on</strong> these patterns.<br />

The total snow <strong>on</strong> a <strong>water</strong>shed at any po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> time<br />

throughout the w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter is largely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

snowfall (Baker 1990, Satterlund <strong>and</strong> Adams 1992,<br />

Brooks <strong>and</strong> others 2003). However, greater snow accumulati<strong>on</strong>s<br />

tend to be found at higher elevati<strong>on</strong>s <strong>on</strong> a<br />

<strong>water</strong>shed than at lower elevati<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

generally greater snowfall <strong>and</strong> lower temperatures at<br />

the higher elevati<strong>on</strong>s (Anders<strong>on</strong> <strong>and</strong> others 1976,<br />

Harr 1976; Ffolliott <strong>and</strong> others 1989, Ffolliott <strong>and</strong><br />

Baker 2000). More snow accumulates <strong>and</strong> is reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

l<strong>on</strong>ger <str<strong>on</strong>g>in</str<strong>on</strong>g>to the w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter seas<strong>on</strong> <strong>on</strong> “cooler” than <strong>on</strong><br />

“warmer” sites because <str<strong>on</strong>g>of</str<strong>on</strong>g> lower solar radiati<strong>on</strong> levels<br />

imp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the former sites. More snow also accumulates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> sparsely stocked forests than <str<strong>on</strong>g>in</str<strong>on</strong>g> more dense<br />

forests, <strong>and</strong> additi<strong>on</strong>al snowfall is deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> small<br />

open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> a forest canopy because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased turbulence<br />

(Troendle 1983, Ffolliott <strong>and</strong> others 1989,<br />

Brooks <strong>and</strong> others 2003) or through the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> snow <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted by the forest canopy<br />

(Troendle <strong>and</strong> Meiman 1984, Satterlund <strong>and</strong> Adams<br />

1992, Brooks <strong>and</strong> others 2003). Once snowmelt is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itiated <str<strong>on</strong>g>in</str<strong>on</strong>g> the spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> melt becomes more<br />

rapid <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs than under dense vegetative<br />

canopies because <str<strong>on</strong>g>of</str<strong>on</strong>g> greater levels <str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong><br />

imp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the open site. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> effect is due<br />

to the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> snow pack <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> crowns<br />

<strong>and</strong> subsequent sublimati<strong>on</strong> rather than any “redistributi<strong>on</strong>”<br />

effect (Troendle <strong>and</strong> K<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1985).<br />

Fire affects snow accumulati<strong>on</strong> <strong>and</strong> melt patterns<br />

when the burn creates open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> formerly dense<br />

vegetative canopies. Not <strong>on</strong>ly is the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> snowfall<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> decreased after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> has destroyed<br />

the canopies, but additi<strong>on</strong>al snowfall is frequently<br />

deposited <str<strong>on</strong>g>in</str<strong>on</strong>g>to the created open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs due to the disrupti<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d turbulence over the canopy surface<br />

(Satterlund <strong>and</strong> Haupt 1970). The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are dependent <strong>on</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. A wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> high severity can destroy much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

forest cover <strong>on</strong> a <strong>water</strong>shed, creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g many large<br />

open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> the process. However, <strong>on</strong>ly a few relatively<br />

small open<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are likely to be created by a low<br />

severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> that c<strong>on</strong>sumes <strong>on</strong>ly the surface fuels.<br />

Charred trees <strong>and</strong> other black bodies protrud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

from a snowpack after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can change the reflectivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ground surface, <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g more surface heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> earlier <strong>and</strong> more rapid rates <str<strong>on</strong>g>of</str<strong>on</strong>g> snowmelt. Earlier<br />

snowmelt <str<strong>on</strong>g>in</str<strong>on</strong>g> the spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g can also be attributed to a<br />

reduced soil <strong>water</strong> deficit <strong>on</strong> a burned site. In other<br />

words, not as much <strong>water</strong> is needed to satisfy a deficit,<br />

<strong>and</strong> as a c<strong>on</strong>sequence, overl<strong>and</strong> flow orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

snowmelt starts earlier <str<strong>on</strong>g>in</str<strong>on</strong>g> the seas<strong>on</strong>. Such changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> snowmelt can also alter the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

magnitude, <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the streamflow regimes.<br />

Overl<strong>and</strong> Flow<br />

That porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the net precipitati<strong>on</strong> that flows <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

the soil surface is overl<strong>and</strong> flow, also called surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, which is a major c<strong>on</strong>tributor to many streamflow<br />

systems <strong>and</strong> the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tributor to most <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent<br />

streams. This hydrologic process occurs when the<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity or the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> snowmelt exceeds the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a site. Overl<strong>and</strong> flow is the<br />

pathway that moves net precipitati<strong>on</strong> most directly to<br />

a stream channel <strong>and</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> do<str<strong>on</strong>g>in</str<strong>on</strong>g>g so, quickly produces<br />

streamflow (the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g secti<strong>on</strong> <strong>on</strong> Streamflow Regimes<br />

discusses the pathways <strong>and</strong> processes by which<br />

excess precipitati<strong>on</strong> becomes streamflow).<br />

The relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> flow to the<br />

streamflow from a <strong>water</strong>shed is variable, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

largely <strong>on</strong> how impervious the soil surface is. Overl<strong>and</strong><br />

flow generally occurs <strong>on</strong> sites that are impervious,<br />

locally saturated, or where the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity<br />

has been exceeded by the net precipitati<strong>on</strong> or rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

snowmelt (Satterlund <strong>and</strong> Adams 1992, Brooks <strong>and</strong><br />

others 2003). Some overl<strong>and</strong> flow can be deta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

enroute to a stream channel by the roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 101


soil surface <strong>and</strong>, therefore, slowed its movement to<br />

the channel. Influences that vegetati<strong>on</strong> <strong>and</strong> the soil<br />

exert <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, evapotranspirati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

rates, <strong>and</strong> the soil moisture c<strong>on</strong>tent ultimately affect<br />

the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> flow.<br />

Overl<strong>and</strong> flow is a comparatively large comp<strong>on</strong>ent to<br />

streamflow hydrographs for highly impervious areas<br />

such as urban l<strong>and</strong>scapes, is typically <str<strong>on</strong>g>in</str<strong>on</strong>g>significant for<br />

forested <strong>water</strong>sheds with well-dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>and</strong> deep <strong>soils</strong>,<br />

but is a problem where <strong>soils</strong> are shallow, rocky, or f<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

textured (such as high clay or silt c<strong>on</strong>tent).<br />

An <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> overl<strong>and</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>ten results when a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> decreases <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates. This<br />

is a major factor <str<strong>on</strong>g>in</str<strong>on</strong>g> the observed <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

<strong>and</strong> flood peakflows, particularly after high severity<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. A high severity wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> can c<strong>on</strong>sume all or<br />

nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the protective vegetative cover <strong>and</strong> litter<br />

layer over extensive <strong>water</strong>shed areas, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

significant effect <strong>on</strong> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> flow<br />

<strong>and</strong>, as discussed below, <strong>on</strong> streamflow from a <strong>water</strong>shed<br />

(Tiedemann <strong>and</strong> others 1979, Baker 1990, DeBano<br />

<strong>and</strong> others 1998). Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic <strong>soils</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> also reduces <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases overl<strong>and</strong><br />

flow, <strong>and</strong> speeds delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> the overl<strong>and</strong> flow to<br />

stream channels (Hibbert <strong>and</strong> others 1974, Rice 1974,<br />

Scott <strong>and</strong> Van Wyk 1990). Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

overl<strong>and</strong> flow follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> relates to the rate at which<br />

burned sites become revegetated. Prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten has its greatest hydrologic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> processes <strong>and</strong>, as a c<strong>on</strong>sequence, <strong>on</strong> the<br />

potential for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased overl<strong>and</strong> flow.<br />

Baseflows <strong>and</strong> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

Baseflow is the streamflow between storm events<br />

<strong>and</strong> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ates from <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrated ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall or ground<strong>water</strong><br />

flow. It can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease when the <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong><br />

is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>and</strong> deep-rooted vegetati<strong>on</strong> <strong>on</strong> the<br />

<strong>water</strong>shed is harvested or otherwise cut, removed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <strong>on</strong>e vegetati<strong>on</strong> type to another, or<br />

killed by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, or disease. However, baseflow is<br />

likely to decrease when the <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> deteriorates<br />

as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the disturbance, <strong>and</strong> more<br />

excess precipitati<strong>on</strong> leaves a <strong>water</strong>shed as overl<strong>and</strong><br />

flow. In extreme situati<strong>on</strong>s, perennial streams that<br />

are susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by baseflow become ephemeral.<br />

Baseflows are important <str<strong>on</strong>g>in</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g perennial<br />

flow through the year. They are critical for aquatic<br />

species habitat <strong>and</strong> survival. Baseflows can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease if<br />

<strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s good (<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

adequate) <strong>and</strong> deep-rooted vegetati<strong>on</strong> is cut<br />

(harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g), removed (species c<strong>on</strong>versi<strong>on</strong>), or killed<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, disease, herbicides, <strong>and</strong> so forth. If<br />

<strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> deteriorates <strong>and</strong> more precipitati<strong>on</strong><br />

leaves as surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, baseflows will decrease.<br />

In extreme c<strong>on</strong>diti<strong>on</strong>s, perennial streams become<br />

ephemeral. The effect <strong>on</strong> biota <str<strong>on</strong>g>in</str<strong>on</strong>g> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

then becomes devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Even <str<strong>on</strong>g>in</str<strong>on</strong>g> subtropical or<br />

tropical areas, deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong><br />

can result <str<strong>on</strong>g>in</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> perennial baseflow <strong>and</strong> ultimately<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> desertificati<strong>on</strong>.<br />

Crouse (1961) reported <str<strong>on</strong>g>in</str<strong>on</strong>g>creased baseflows from<br />

burned <strong>water</strong>sheds <strong>on</strong> the San Dimas Experimental<br />

Forest <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California. While these <strong>water</strong>sheds<br />

had been cleared <str<strong>on</strong>g>of</str<strong>on</strong>g> their chaparral shrubs <strong>and</strong> associated<br />

vegetati<strong>on</strong> by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, seeded to grass, <strong>and</strong> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a grass cover to <str<strong>on</strong>g>in</str<strong>on</strong>g>duce higher streamflow<br />

discharges, the author <strong>and</strong> others (Dunn <strong>and</strong> others<br />

1988, DeBano <strong>and</strong> others 1998) felt that the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

had made a significant c<strong>on</strong>tributi<strong>on</strong> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

baseflow.<br />

Berndt (1971) observed immediate <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

baseflow follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> a 1,410 acre (564 ha)<br />

<strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. While the causative<br />

hydrologic mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g>volved were unknown,<br />

the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian (streambank) vegetati<strong>on</strong> by<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g> also elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated diurnal fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> flow.<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased baseflow persisted above pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels<br />

for 3 years after the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Pathways <strong>and</strong> Processes _________<br />

Before c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g how <str<strong>on</strong>g>fire</str<strong>on</strong>g> affects streamflow regimes,<br />

however, it is useful to review the pathways<br />

<strong>and</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>flow from a <strong>water</strong>shed’s hillslope<br />

to a stream channel. Excess <strong>water</strong> represents that<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total precipitati<strong>on</strong> that flows <str<strong>on</strong>g>of</str<strong>on</strong>g>f the l<strong>and</strong><br />

surface plus that which dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from the soil <strong>and</strong>,<br />

therefore, is neither c<strong>on</strong>sumed by evapotranspirati<strong>on</strong><br />

nor leaked <str<strong>on</strong>g>in</str<strong>on</strong>g>to deep ground<strong>water</strong> aquifers (table B.2).<br />

Various pathways by which excess <strong>water</strong> eventually<br />

becomes streamflow (Brooks <strong>and</strong> others 2003) <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• Intercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> that falls directly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to a stream channel, a streamflow pathway<br />

referred to as channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>.<br />

• Overl<strong>and</strong> flow (see previous discussi<strong>on</strong>).<br />

• Subsurface flow that represents the part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

precipitati<strong>on</strong> that <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong><br />

arrives at a stream channel <str<strong>on</strong>g>in</str<strong>on</strong>g> a short enough<br />

period to be c<strong>on</strong>sidered part <str<strong>on</strong>g>of</str<strong>on</strong>g> the stormflow<br />

hydrograph. The stormflow comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

hygrograph are the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>,<br />

overl<strong>and</strong> flow, <strong>and</strong> subsurface flow.<br />

• A perennial stream that is fed by baseflow that<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>s streamflow between precipitati<strong>on</strong> or<br />

snowmelt events.<br />

It is almost impossible to separate pathways <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong>flow <str<strong>on</strong>g>in</str<strong>on</strong>g> most <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow resp<strong>on</strong>ses<br />

to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> or other <strong>water</strong>shed disturbances<br />

(Dunne <strong>and</strong> Leopold 1978, Satterlund <strong>and</strong><br />

Adams 1992, DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong><br />

102 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table B.2—Annual precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <strong>and</strong> resultant annual streamflow totals for different vegetative types. (Adapted<br />

from Dortignac 1956).<br />

Streamflow as a<br />

Vegetati<strong>on</strong> z<strong>on</strong>e Precipitati<strong>on</strong> Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f percent <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> Altitude<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> mm <str<strong>on</strong>g>in</str<strong>on</strong>g> mm Percent ft m<br />

Spruce fir-aspen 30.39 772 9.49 241 29.0 8,990 2,740<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong> 22.99 584 5.98 152 26.0 8,000 2,440<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 22.99 584 3.82 97 17.0 7,510 2,290<br />

Sagebrush 15.20 386 0.79 20 5.3 4,990 1,520<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper 14.29 363 0.39 10 2.8 4,990 1,520<br />

Semiarid grassl<strong>and</strong> 12.20 310 0.12 3 0.8 4,990 1,520<br />

Greasewood/saltbush 10.39 264 0.16 4 1.4 4,495 1,370<br />

Creosote bush 8.39 213 0.04 1 0.6 4,495 1,370<br />

others 2003). Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow to <str<strong>on</strong>g>fire</str<strong>on</strong>g> are more<br />

generally evaluated when possible <strong>and</strong> where appropriate<br />

by separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the stormflow comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hydrograph from the baseflow (when a baseflow is<br />

present) <strong>and</strong> then study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the two flow comp<strong>on</strong>ents<br />

separately (fig. B.4).<br />

The Variable Source Area C<strong>on</strong>cept (Hewlett <strong>and</strong><br />

Hibbert 1967) describes how the perennial channel<br />

system exp<strong>and</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g precipitati<strong>on</strong> as areas at the<br />

head <strong>and</strong> adjacent to perennial channels become saturated<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the event. Figure B.5 depicts the c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how a stream channel system exp<strong>and</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g precipitati<strong>on</strong>.<br />

It is important to underst<strong>and</strong> this c<strong>on</strong>cept<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> order to underst<strong>and</strong> the hydrologic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<strong>water</strong>shed <strong>and</strong> its comp<strong>on</strong>ent areas, particularly after<br />

disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Important hydrologic <strong>and</strong><br />

geomorphic processes (sediment transport, channel<br />

scour <strong>and</strong> fill, streambank erosi<strong>on</strong>, fish habitat damage,<br />

riparian vegetati<strong>on</strong> damage, nutrient transport,<br />

woody debris transport <strong>and</strong> depositi<strong>on</strong>, <strong>and</strong> so forth.)<br />

occur dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g stormflows when <strong>water</strong> volumes <strong>and</strong><br />

velocities are at their highest. Low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s usually<br />

do not affect the flow pathways shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure<br />

B.2, but severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>s shift more <str<strong>on</strong>g>of</str<strong>on</strong>g> the movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> to the “<strong>water</strong> not <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrated” side <str<strong>on</strong>g>of</str<strong>on</strong>g> flow diagram.<br />

The magnitude <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stormflow is a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

as well as a factor called <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>.<br />

Watershed C<strong>on</strong>diti<strong>on</strong><br />

The tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g, magnitude, <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a stormflow<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>fire</str<strong>on</strong>g> are largely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed. Watershed c<strong>on</strong>diti<strong>on</strong> is a<br />

term that describes the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed system<br />

to receive <strong>and</strong> process precipitati<strong>on</strong> without ecosystem<br />

or hydrologic degradati<strong>on</strong> (Brooks <strong>and</strong> others 2003).<br />

Figure B.4—Relati<strong>on</strong>ship between the pathways<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flow from a <strong>water</strong>shed <strong>and</strong> the resultant<br />

streamflow hydrograph. (Adapted from Anders<strong>on</strong><br />

<strong>and</strong> others 1976).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 103


Figure B.5—Variable area source c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow<br />

network expansi<strong>on</strong>, from time = 0 to time = 3, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

storm events. (Adapted from Hewlett 1982, Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology, Copyright © University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia Press,<br />

Athens, GA; Figure courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the USDA Forest Service,<br />

Nati<strong>on</strong>al Advanced Fire <strong>and</strong> Resource Institute,<br />

Tucs<strong>on</strong>, AZ).<br />

Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil, <strong>and</strong> the baseflow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

perennial streams is susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed between storms when<br />

a <strong>water</strong>shed is <str<strong>on</strong>g>in</str<strong>on</strong>g> good c<strong>on</strong>diti<strong>on</strong>. In this situati<strong>on</strong>,<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall does not c<strong>on</strong>tribute significantly to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

erosi<strong>on</strong> because most <str<strong>on</strong>g>of</str<strong>on</strong>g> the excess precipitati<strong>on</strong> does<br />

not flow over the soil surface where it can detach <strong>and</strong><br />

transport sediments.<br />

A severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> can alter the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed,<br />

however, reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to a generally poorer state.<br />

With poor <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrated<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall is reduced significantly, more excess<br />

precipitati<strong>on</strong> then flows over the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil,<br />

<strong>and</strong> there is little or no baseflow between storms.<br />

Erosi<strong>on</strong> rates are relatively higher because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

excessive overl<strong>and</strong> flow. Watersheds <str<strong>on</strong>g>in</str<strong>on</strong>g> arid or semiarid<br />

regi<strong>on</strong>s with rocky <strong>and</strong> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> almost always<br />

functi<strong>on</strong> hydrologically <str<strong>on</strong>g>in</str<strong>on</strong>g> this manner because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their <str<strong>on</strong>g>in</str<strong>on</strong>g>herent climate, <strong>soils</strong>, <strong>and</strong> vegetative features.<br />

These <strong>water</strong>sheds are pr<strong>on</strong>e to damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g flash floods.<br />

Watershed c<strong>on</strong>diti<strong>on</strong> at a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> time is c<strong>on</strong>trolled<br />

largely by the compositi<strong>on</strong> <strong>and</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetative<br />

cover, the accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> other organic<br />

material, <strong>and</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed rocks <strong>and</strong><br />

bare <strong>soils</strong> that characterizes the <strong>water</strong>shed. Because a<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> high severity can destroy the vegetati<strong>on</strong><br />

<strong>and</strong> litter layer <strong>on</strong> a <strong>water</strong>shed <strong>and</strong> alter the physical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <strong>and</strong> percolati<strong>on</strong><br />

capacities <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil are detrimentally impacted (see<br />

chapter 2). In turn, these cumulative <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> can<br />

change the <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> from good to poor,<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> ever-<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g overl<strong>and</strong> flow, erosi<strong>on</strong>,<br />

<strong>and</strong> soil loss. An analogy to this situati<strong>on</strong> is a loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the human sk<str<strong>on</strong>g>in</str<strong>on</strong>g> with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g severity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. As <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> deteriorates, the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>herent hydrologic processes become altered, <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse hydrologic resp<strong>on</strong>ses to<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. The change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates go<str<strong>on</strong>g>in</str<strong>on</strong>g>g from “good”<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>tact forest floor) to “poor” (bare soil plus <strong>water</strong><br />

repellency) is <strong>on</strong>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> this resp<strong>on</strong>se.<br />

Streamflow Discharge<br />

The streamflow discharge for a specified time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval<br />

(year, m<strong>on</strong>th, seas<strong>on</strong>, <strong>and</strong> so forth) is reflected by<br />

stormflow, baseflow, or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the two pathways.<br />

Stormflow results directly from a precipitati<strong>on</strong><br />

or snowmelt event. When vegetati<strong>on</strong> <strong>and</strong> organic matter<br />

<strong>on</strong> the soil surface are destroyed by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong><br />

<strong>and</strong> evapotranspirati<strong>on</strong> are reduced, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

is decreased, <strong>and</strong> overl<strong>and</strong> flow <strong>and</strong> subsurface flow<br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease. In turn, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> overl<strong>and</strong> flow <strong>and</strong><br />

subsurface flow <str<strong>on</strong>g>of</str<strong>on</strong>g>ten translate <str<strong>on</strong>g>in</str<strong>on</strong>g>to:<br />

• Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> stormflow from the burned <strong>water</strong>shed.<br />

• Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> baseflow if the stream is perennial<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> its flow.<br />

• Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow discharge as a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> stormflow, baseflow,<br />

or both.<br />

Onsite <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> must be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>itially, <strong>and</strong><br />

these <str<strong>on</strong>g>effects</str<strong>on</strong>g> can then be evaluated with<str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>text<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the entire <strong>water</strong>shed to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streamflow discharge <strong>and</strong>, more generally, the other<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a streamflow regime due to a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. While<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>on</strong>site <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can be relatively<br />

straightforward through appropriate measurements<br />

<strong>and</strong> evaluati<strong>on</strong>s, determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> a <strong>water</strong>shed-scale<br />

is more difficult (Pyne <strong>and</strong> others 1996,<br />

DeBano <strong>and</strong> others 1998). With the latter, comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

all processes <strong>and</strong> pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>flow to the outlet<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed, <strong>and</strong> rout<str<strong>on</strong>g>in</str<strong>on</strong>g>g this flow to downstream<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest or use, are necessary (Brooks <strong>and</strong><br />

others 2003). C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the streamflow discharge at<br />

the outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ished <strong>and</strong> the magnitude can be<br />

lengthened as the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow event moves<br />

downstream.<br />

Hydrologists <strong>and</strong> <strong>water</strong>shed managers, when study<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the streamflow regime <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<strong>water</strong>shed, are also c<strong>on</strong>cerned with the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> flow. Informati<strong>on</strong> <strong>on</strong> this topic is<br />

limited, but some researchers note that streamflow<br />

from burned <strong>water</strong>sheds <str<strong>on</strong>g>of</str<strong>on</strong>g>ten resp<strong>on</strong>ds to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>puts faster than <strong>water</strong>sheds support<str<strong>on</strong>g>in</str<strong>on</strong>g>g a protective<br />

vegetative cover, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g streamflow events where<br />

104 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


time-to-peak is earlier (Campbell <strong>and</strong> others 1977,<br />

DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003).<br />

Earlier time-to-peak, coupled with higher peakflow,<br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

snowmelt <str<strong>on</strong>g>in</str<strong>on</strong>g> the spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g can also be advanced by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances. Early snowmelt can be <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by<br />

lower snow reflectivity (albedo) caused by blackened<br />

trees <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased surface exposure where vegetative<br />

cover has been elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated (Helvey 1973).<br />

There is little doubt that wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten has an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> streamflow discharge, especially a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high severity. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetative cover, a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter <strong>and</strong> other decomposed organic matter <strong>on</strong> the soil<br />

surface, <strong>and</strong> the possible formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellent<br />

<strong>soils</strong> are am<strong>on</strong>g the causative mechanisms for the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow discharge (Tiedemann <strong>and</strong><br />

others 1979, Baker 1990, Pyne <strong>and</strong> others 1996, DeBano<br />

<strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003). While the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow discharge are highly variable,<br />

they are generally greater <str<strong>on</strong>g>in</str<strong>on</strong>g> regi<strong>on</strong>s with higher<br />

precipitati<strong>on</strong> as illustrated by studies <str<strong>on</strong>g>in</str<strong>on</strong>g> the United<br />

States <strong>and</strong> elsewhere (fig. B.3).<br />

Water Quality ___________________<br />

Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can result <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

little to substantial impacts <strong>on</strong> the physical, chemical,<br />

<strong>and</strong> biological quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> streams, rivers, <strong>and</strong><br />

lakes. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>effects</str<strong>on</strong>g> is largely dependent<br />

<strong>on</strong> the size, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed when ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall starts, <strong>and</strong><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, durati<strong>on</strong>, <strong>and</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall.<br />

Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow can transport solid <strong>and</strong> dissolved<br />

materials that adversely affect the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> for<br />

human, agricultural, or <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial purposes. The most<br />

obvious <str<strong>on</strong>g>effects</str<strong>on</strong>g> are produced by sediments. See chapter<br />

2 for more discussi<strong>on</strong> <strong>on</strong> these comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

quality, which <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g chapters <strong>on</strong> the <strong>water</strong><br />

resource are relative to <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> municipal<br />

<strong>water</strong> supply quality.<br />

Water quality refers to the physical, chemical, <strong>and</strong><br />

biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> relative to a particular<br />

use. Important characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to hydrologists<br />

<strong>and</strong> <strong>water</strong>shed managers <str<strong>on</strong>g>in</str<strong>on</strong>g>clude sediment,<br />

<strong>water</strong> temperature, <strong>and</strong> dissolved chemical c<strong>on</strong>stituents<br />

such as nitrogen, phosphorus, calcium, magnesium,<br />

<strong>and</strong> potassium. Bacteriological quality is also<br />

important if <strong>water</strong> is used for human c<strong>on</strong>sumpti<strong>on</strong> or<br />

recreati<strong>on</strong>; this is the case with many <strong>water</strong>s that are<br />

both with<str<strong>on</strong>g>in</str<strong>on</strong>g>, <strong>and</strong> that dra<str<strong>on</strong>g>in</str<strong>on</strong>g> from, forested l<strong>and</strong>s.<br />

A <strong>water</strong> quality st<strong>and</strong>ard refers to the physical,<br />

chemical, or biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relati<strong>on</strong> to a specified use. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> quality<br />

due to a <strong>water</strong>shed management practice or natural<br />

<strong>and</strong> human-caused disturbances can make the <strong>water</strong><br />

flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the <strong>water</strong>shed unsuitable for dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

However, it might still be acceptable for other uses. In<br />

some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, laws or regulati<strong>on</strong>s prevent <strong>water</strong><br />

quality characteristics from becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g degraded to the<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t where a <strong>water</strong> quality st<strong>and</strong>ard is jeopardized<br />

(DeBano <strong>and</strong> others 1998, L<strong>and</strong>sberg <strong>and</strong> Tiedemann<br />

2000, Brooks <strong>and</strong> others 2003). The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these laws <strong>and</strong> regulati<strong>on</strong>s is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> for a possible <strong>and</strong> maybe unforeseen future<br />

use.<br />

Hydrologists <strong>and</strong> <strong>water</strong>shed managers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>fr<strong>on</strong>t<br />

the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> whether forest or rangel<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s will<br />

create c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> natural or impounded <strong>water</strong>s that<br />

are outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the established <strong>water</strong> quality st<strong>and</strong>ards.<br />

Water quality st<strong>and</strong>ards <strong>and</strong> criteria established by<br />

the Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (EPA) (1999)<br />

are the “benchmarks” for <strong>water</strong> quality throughout<br />

the United States. Water quality criteria are the<br />

number or narrative benchmarks used to assess the<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>. St<strong>and</strong>ards <str<strong>on</strong>g>in</str<strong>on</strong>g>clude criteria, beneficial<br />

uses, <strong>and</strong> an antidegradati<strong>on</strong> policy. The most adverse<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> from wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> <strong>water</strong> quality st<strong>and</strong>ards come<br />

from physical <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>and</strong> ash that are<br />

deposited <str<strong>on</strong>g>in</str<strong>on</strong>g>to streams.<br />

Several chemical c<strong>on</strong>stituents that are regulated by<br />

<strong>water</strong> quality st<strong>and</strong>ards are likely to be impacted by<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Primary st<strong>and</strong>ards <str<strong>on</strong>g>in</str<strong>on</strong>g> the EPA regulati<strong>on</strong>s<br />

cover nitrate-nitrogen, nitrite-nitrogen, <strong>and</strong> other substances<br />

that are not immediately associated with <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Sec<strong>on</strong>dary st<strong>and</strong>ards apply to pH, sulfate, total dissolved<br />

solids, chloride, ir<strong>on</strong>, turbidity, <strong>and</strong> several<br />

other c<strong>on</strong>stituents. Sec<strong>on</strong>dary st<strong>and</strong>ards are also set<br />

for color <strong>and</strong> odor. Chapter 6 exam<str<strong>on</strong>g>in</str<strong>on</strong>g>es the <strong>water</strong><br />

quality st<strong>and</strong>ards that can be impacted, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> some<br />

cases exceeded, by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic cycle caused by <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can<br />

affect the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> soil erosi<strong>on</strong>, <strong>and</strong> the subsequent<br />

transport <strong>and</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eroded soil as sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

streams, lakes, <strong>and</strong> reservoirs (DeBano <strong>and</strong> others<br />

1998, Brooks <strong>and</strong> others 2003). Chapter 5 looks at <str<strong>on</strong>g>fire</str<strong>on</strong>g>produced<br />

alterati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic cycle that <str<strong>on</strong>g>in</str<strong>on</strong>g> turn<br />

affect soil erosi<strong>on</strong>, sedimentati<strong>on</strong>, <strong>and</strong> <strong>water</strong> quality.<br />

Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a vegetative cover or a cover <str<strong>on</strong>g>of</str<strong>on</strong>g> litter<br />

<strong>and</strong> other organic material <strong>on</strong> the soil surface is the<br />

best means <str<strong>on</strong>g>of</str<strong>on</strong>g> prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g excessive soil erosi<strong>on</strong> rates.<br />

However, <str<strong>on</strong>g>fire</str<strong>on</strong>g> can remove these protective covers <strong>and</strong><br />

accelerate soil erosi<strong>on</strong> (Dunne <strong>and</strong> Leopold 1978,<br />

Satterlund <strong>and</strong> Adams 1992, Brooks <strong>and</strong> others 2003).<br />

Increased soil erosi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the most visible effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <str<strong>on</strong>g>fire</str<strong>on</strong>g> other than the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Aquatic Biology _________________<br />

Prior to the 1990s, little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> existed <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes, other aquatic organisms<br />

such as macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, <strong>and</strong> their habitats.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 105


Severs<strong>on</strong> <strong>and</strong> R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne (1988) reported that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

focus <str<strong>on</strong>g>of</str<strong>on</strong>g> postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> riparian-stream <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

has traditi<strong>on</strong>ally been <strong>on</strong> hydrological <strong>and</strong> erosi<strong>on</strong>al<br />

resp<strong>on</strong>ses. The Yellowst<strong>on</strong>e Complex Fires <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

1988 ushered <str<strong>on</strong>g>in</str<strong>on</strong>g> an extensive effort to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e both<br />

the direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> others 1989a, M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong><br />

Brock 1991). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes <strong>and</strong> their habitats was generated <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the 1990s <strong>and</strong> <strong>on</strong> a regi<strong>on</strong>al basis. By the late 1990s,<br />

state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge papers <strong>on</strong> the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, aquatic<br />

ecosystem, <strong>and</strong> fishes were drafted by Rieman <strong>and</strong><br />

Clayt<strong>on</strong> (1997) <strong>and</strong> Gresswell (1999). These two papers<br />

suggest future research <strong>and</strong> management directi<strong>on</strong><br />

for both corroborat<str<strong>on</strong>g>in</str<strong>on</strong>g>g aquatics-fisheries <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

management <strong>and</strong> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native, sensitive<br />

species. These papers are have become the base for<br />

21st century fisheries <strong>and</strong> aquatic management relative<br />

to both wild <strong>and</strong> prescripti<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Chapter 7<br />

addresses both the direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> associated suppressi<strong>on</strong> activities <strong>on</strong><br />

aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

106 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Daniel G. Neary<br />

Peter F. Ffolliott<br />

Johanna D. L<strong>and</strong>sberg<br />

Chapter 5:<br />

Fire <strong>and</strong> Streamflow Regimes<br />

Introducti<strong>on</strong> ____________________<br />

Forested <strong>water</strong>sheds are some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> supply <str<strong>on</strong>g>in</str<strong>on</strong>g> the world. Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

good hydrologic c<strong>on</strong>diti<strong>on</strong> is crucial to protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

quantity <strong>and</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow <strong>on</strong> these important<br />

l<strong>and</strong>s (fig. 5.1). The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> all types <str<strong>on</strong>g>of</str<strong>on</strong>g> forest disturbance<br />

<strong>on</strong> storm peak flood flows are highly variable<br />

<strong>and</strong> complex, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound<br />

hydrologic impacts that forest managers have to c<strong>on</strong>sider<br />

(Anders<strong>on</strong> <strong>and</strong> others 1976). Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> is the<br />

forest disturbance that has the greatest potential to<br />

change <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> (DeBano <strong>and</strong> others 1998).<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s exert a tremendous <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the hydrologic<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> many forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the world depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>’s severity,<br />

durati<strong>on</strong>, <strong>and</strong> frequency. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> these forested areas<br />

is an important natural disturbance mechanism that<br />

plays a role <str<strong>on</strong>g>of</str<strong>on</strong>g> variable significance depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

climate, <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, <strong>and</strong> geomorphic c<strong>on</strong>diti<strong>on</strong>s.<br />

This is particularly true <str<strong>on</strong>g>in</str<strong>on</strong>g> regi<strong>on</strong>s where frequent<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, steep terra<str<strong>on</strong>g>in</str<strong>on</strong>g>, vegetati<strong>on</strong>, <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> seas<strong>on</strong>al<br />

Figure 5.1—P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>water</strong>shed, Coc<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

Nati<strong>on</strong>al Forest, with a good <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>.<br />

(Photo by Malchus Baker, Jr.).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 107


precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>teract to produce dramatic impacts<br />

(Swans<strong>on</strong> 1981, DeBano <strong>and</strong> others 1998, Neary <strong>and</strong><br />

others 1999).<br />

Watershed c<strong>on</strong>diti<strong>on</strong>, or the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a catchment<br />

system to receive <strong>and</strong> process precipitati<strong>on</strong> without<br />

ecosystem degradati<strong>on</strong>, is a good predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> <strong>and</strong> other resources<br />

(such as roads, recreati<strong>on</strong> facilities, riparian vegetati<strong>on</strong>,<br />

<strong>and</strong> so forth). The surface cover <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic forest floor, vegetati<strong>on</strong>, bare<br />

soil, <strong>and</strong> rock. Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic surface cover<br />

<strong>and</strong> alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> can<br />

produce changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed well<br />

bey<strong>on</strong>d the range <str<strong>on</strong>g>of</str<strong>on</strong>g> historic variability (DeBano <strong>and</strong><br />

others 1998). Low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s rarely produce adverse<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>. High severity<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s usually do (fig. 5.2). Most wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are a chaotic<br />

mix <str<strong>on</strong>g>of</str<strong>on</strong>g> severities, but <str<strong>on</strong>g>in</str<strong>on</strong>g> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world, high<br />

severity is becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g a dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce<br />

about 1990 (Neary <strong>and</strong> others 1999, Robichaud <strong>and</strong><br />

others 2000). Successful management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ment requires an underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong> <strong>and</strong> hydrologic<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Flood flows are the<br />

largest hydrologic resp<strong>on</strong>se <strong>and</strong> most damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

many resources (fig. 5.3, Neary 1995).<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong>shed hydrology.<br />

Soil Water Storage ______________<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <strong>water</strong> storage can be<br />

illustrated by a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> that occurred <strong>on</strong> a 1,410 acre<br />

(564 ha) <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> that effectively<br />

changed the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the autumnal soil<br />

Figure 5.2—Flare-up <strong>on</strong> the Rodeo-Chediski Fire,<br />

2002, Apache-Sitgreaves Nati<strong>on</strong>al Forest. (Photo by<br />

USDA Forest Service).<br />

Figure 5.3—Postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood flows are the largest<br />

hydrologic resp<strong>on</strong>se, <strong>and</strong> most damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g to many<br />

resources after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself. These floods can be<br />

100-fold greater than pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood flows. (Photo by<br />

John R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne).<br />

<strong>water</strong> deficit <strong>on</strong> the <strong>water</strong>shed (Klock <strong>and</strong> Helvey<br />

1976). The mixed c<strong>on</strong>ifer forest vegetati<strong>on</strong> <strong>on</strong> this<br />

<strong>water</strong>shed apparently depleted all <str<strong>on</strong>g>of</str<strong>on</strong>g> the available soil<br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper 48 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (120 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

immediately before the August 1970 <str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 5.4). The<br />

difference between the soil <strong>water</strong> deficits from 1970 to<br />

1971 was about 4.6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (116 mm), which (researchers<br />

c<strong>on</strong>cluded) c<strong>on</strong>tributed a significant part to the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow discharge reported by Helvey<br />

<strong>and</strong> others (1976). The transpirati<strong>on</strong> draft <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

c<strong>on</strong>ifer trees had been removed by 1971, <strong>and</strong> the<br />

Figure 5.4—Trends <str<strong>on</strong>g>in</str<strong>on</strong>g> the autumnal soil <strong>water</strong> deficit<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the upper 48 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (120 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for<br />

3 years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the August 1970 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Entiat<br />

Experimental Forest, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. (Adapted from<br />

Klock <strong>and</strong> Helvey 1976. Copyright © 1976 Tall Timbers<br />

Research Stati<strong>on</strong>).<br />

108 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


observed soil <strong>water</strong> deficit was an apparent result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface evaporati<strong>on</strong> <strong>and</strong> transpirati<strong>on</strong> by the newly<br />

established post<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetati<strong>on</strong>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased autumnal<br />

soil <strong>water</strong> deficit <str<strong>on</strong>g>in</str<strong>on</strong>g> 1972 <strong>and</strong> 1974 was caused by<br />

the greater evapotranspirati<strong>on</strong> dem<strong>and</strong> by <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

vegetative regrowth (Tiedemann <strong>and</strong> Klock 1976).<br />

The trends for post<str<strong>on</strong>g>fire</str<strong>on</strong>g> years 1971 to 1974 suggest that<br />

the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum soil c<strong>on</strong>tents might reach pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> about 5 years after the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

This trend does not necessarily hold true <str<strong>on</strong>g>in</str<strong>on</strong>g> all<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stances, however. For example, a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong><br />

storage was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper 12 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (30 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soil <strong>on</strong> a <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Ariz<strong>on</strong>a where the<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa) forest had been<br />

severely burned, <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to the soil storage <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

adjacent unburned <strong>water</strong>shed (Campbell <strong>and</strong> others<br />

1977). Greater overl<strong>and</strong> flow from the burned <strong>water</strong>shed<br />

was the factor underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g this difference. Water<br />

repellency <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <strong>and</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

more exposed soil surface c<strong>on</strong>tributed to this <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

flow.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the <strong>water</strong> storage <str<strong>on</strong>g>of</str<strong>on</strong>g> rangel<strong>and</strong><br />

<strong>soils</strong> are more variable than those <str<strong>on</strong>g>in</str<strong>on</strong>g> forested <strong>soils</strong>.<br />

Some <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators have reported that the soil <strong>water</strong><br />

storage is higher <strong>on</strong> burned sites, others have found<br />

lower soil <strong>water</strong> storage <strong>on</strong> these sites, <strong>and</strong> still<br />

others observed no change (Wells <strong>and</strong> others 1979).<br />

Vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g severities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten cited as the reas<strong>on</strong><br />

for these differences.<br />

Baseflows <strong>and</strong> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs___________<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> 1996 <strong>and</strong> 2000 resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anecdotal reports <str<strong>on</strong>g>of</str<strong>on</strong>g> spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g to flow after<br />

years <str<strong>on</strong>g>of</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g dry. This sort <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se is comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Southwest <strong>and</strong> regi<strong>on</strong>s such as central Texas when<br />

an area is cleared or burned (Thurow, pers<strong>on</strong>al communicati<strong>on</strong>).<br />

Often trees such as juniper or live oak<br />

have <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> density <strong>and</strong> size al<strong>on</strong>g with the <strong>on</strong>set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> effective <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>in</str<strong>on</strong>g> the early 1900s. As trees<br />

beg<str<strong>on</strong>g>in</str<strong>on</strong>g> to dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>-climax<br />

grassl<strong>and</strong> savannas, the trees alter the <strong>water</strong> balance<br />

because they have substantially greater <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong><br />

loss <strong>and</strong> transpirati<strong>on</strong> capacity. The local <strong>soils</strong> <strong>and</strong><br />

geology determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether <strong>water</strong> yield occurs as spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

flow or ground<strong>water</strong> recharge. The seas<strong>on</strong>al patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the amount <strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g precipitati<strong>on</strong> <strong>and</strong> potential<br />

evapotranspirati<strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether there is any<br />

excess <strong>water</strong> to c<strong>on</strong>tribute to <strong>water</strong> yield. For example,<br />

<strong>on</strong> arid sites all precipitati<strong>on</strong> would be lost to evapotranspirati<strong>on</strong><br />

<strong>and</strong> thus essentially noth<str<strong>on</strong>g>in</str<strong>on</strong>g>g would percolate<br />

fast enough bey<strong>on</strong>d the root system, or evaporate<br />

from the soil surface, to recharge spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs or<br />

aquifers. Some shrub sites may yield substantial<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, others may yield noth<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Wu <strong>and</strong><br />

others 2001).<br />

On the Three Bar chaparral <strong>water</strong>sheds <str<strong>on</strong>g>of</str<strong>on</strong>g> the T<strong>on</strong>to<br />

Nati<strong>on</strong>al Forest <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a, <strong>water</strong>sheds that had no<br />

flow or were <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent resp<strong>on</strong>ded to a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(Hibbert <strong>and</strong> others 1974). Watershed B yielded no<br />

flow prior to the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It flowed c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously for 18<br />

m<strong>on</strong>ths, then was <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent until treated with<br />

herbicides when it returned to perennial flow for 10<br />

plus years. Watershed D was dry 67 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the time<br />

prior to the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, it then resumed<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous flow until brush regrew, when it<br />

returned to <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent flow. On the Whitespar Watersheds,<br />

Watershed B resumed perennial flow after<br />

38 acres (15 ha) adjacent to the channel were treated<br />

with herbicide. Similar resp<strong>on</strong>ses have been found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

California chaparral (Crouse 1961). Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Natural Dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages, Sierra Ancha, with herbicides did<br />

not produce perennial flow but did <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent flows. The <strong>soils</strong> at this site are<br />

more shallow than those at Three Bar or Whitespar.<br />

The key here is c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> deep-soil, arid<br />

systems where transpirati<strong>on</strong> from deep-rooted plants<br />

can c<strong>on</strong>sume <strong>water</strong> that would otherwise become perennial<br />

streamflow. The resp<strong>on</strong>se is quickly term<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

as deep-rooted, brush-chaparral trees regrow.<br />

Perennial flow can <strong>on</strong>ly be ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by c<strong>on</strong>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to (or back to) shallow-rooted herbaceous species.<br />

Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> any s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle year are affected by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall.<br />

Often, 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>water</strong> yield over a<br />

10-year period occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> just a few wetter-than-average<br />

years, not every year.<br />

Streamflow Regimes _____________<br />

Annual streamflow totals (annual <strong>water</strong> yields)<br />

generally <str<strong>on</strong>g>in</str<strong>on</strong>g>crease as precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts to a <strong>water</strong>shed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease. Streamflows orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> forest <strong>water</strong>sheds,<br />

therefore, are generally greater than those<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> grassl<strong>and</strong> <strong>water</strong>sheds, <strong>and</strong> streamflows<br />

from grassl<strong>and</strong>s are greater than those orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> desert <strong>water</strong>sheds. Furthermore, annual<br />

streamflow totals frequently <str<strong>on</strong>g>in</str<strong>on</strong>g>crease when mature<br />

forests are harvested or otherwise cut, attacked by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sects, or burned (Bosch <strong>and</strong> Hewlett 1982, Troendle<br />

<strong>and</strong> K<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1985, Hornbeck <strong>and</strong> others 1993, Whitehead<br />

<strong>and</strong> Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> 1993). The observed <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g these disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ish<br />

with decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts to a<br />

<strong>water</strong>shed (see fig. B.3).<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

Annual streamflow discharge from a 1,410 acre<br />

(564 ha) <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> the Cascade Range <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, <strong>on</strong> which a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> killed nearly 100<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixed c<strong>on</strong>ifer forest vegetati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

dramatically relative to a pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 109


elati<strong>on</strong>ship between the <strong>water</strong>shed that was burned<br />

<strong>and</strong> an unburned c<strong>on</strong>trol (fig. 5.5). Differences between<br />

the measured <strong>and</strong> predicted streamflow discharge<br />

varied from nearly 4.3 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (107 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

dry year (1977) to about 19.1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (477 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> a wet<br />

year (1972). Soil <strong>water</strong> storage rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed high for the<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> record largely because <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormally high<br />

precipitati<strong>on</strong> (ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> snow) <str<strong>on</strong>g>in</str<strong>on</strong>g>puts (Helvey 1980).<br />

As a c<strong>on</strong>sequence, the burned <strong>and</strong> c<strong>on</strong>trol <strong>water</strong>sheds<br />

became more sensitive to precipitati<strong>on</strong>.<br />

Campbell <strong>and</strong> others (1977) observed a 3.5 times<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (20 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> average annual<br />

stormflow discharge from a small 20.2 acre (8.1 ha)<br />

severely burned <strong>water</strong>shed follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a Southwestern p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest.<br />

Average annual stormflow discharge from a smaller<br />

10 acre (4 ha) moderately burned <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

2.3 times to almost 0.6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (15 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to an<br />

unburned (c<strong>on</strong>trol) <strong>water</strong>shed. Average run<str<strong>on</strong>g>of</str<strong>on</strong>g>f efficiency<br />

(i.e., a term that refers to the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f to precipitati<strong>on</strong>) <str<strong>on</strong>g>in</str<strong>on</strong>g>creased from 0.8 percent <strong>on</strong><br />

the unburned <strong>water</strong>shed to 3.6 <strong>and</strong> 2.8 percent <strong>on</strong> the<br />

severely burned <strong>and</strong> moderately burned <strong>water</strong>sheds,<br />

respectively. In comparis<strong>on</strong> to the moderately burned<br />

<strong>water</strong>shed, the average run<str<strong>on</strong>g>of</str<strong>on</strong>g>f efficiency <strong>on</strong> the severely<br />

burned <strong>water</strong>shed was 357 percent greater<br />

when the precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put was ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> 51 percent<br />

less <str<strong>on</strong>g>in</str<strong>on</strong>g> snowmelt periods. The researchers speculated<br />

that the observed differences dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events<br />

Figure 5.5—Annual streamflow from a burned<br />

<strong>water</strong>shed before <strong>and</strong> after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to<br />

annual streamflow from a c<strong>on</strong>trol. (Adapted from<br />

Helvey 1980. Copyright © 1980 American Water<br />

Resources Associati<strong>on</strong>.)<br />

were largely due to the lower tree density, a greater<br />

reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> litter cover, <strong>and</strong> a more extensive formati<strong>on</strong>s<br />

hydrophobic soil, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> lower evapotranspirati<strong>on</strong><br />

losses <strong>and</strong> more stormflow <strong>on</strong> the severely burned<br />

<strong>water</strong>shed than <strong>on</strong> the moderately burned <strong>water</strong>shed.<br />

In the spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g snowmelt period, the lower tree density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the severely burned <strong>water</strong>shed allowed more <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

snowpack to be lost to evaporati<strong>on</strong>. As a result, less<br />

stormflow occurred than <strong>on</strong> the more shaded, moderately<br />

burned <strong>water</strong>shed.<br />

In the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-pr<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g>terior chaparral shrubl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Southwestern United States, annual streamflow<br />

discharge from their <strong>water</strong>sheds can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease by vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

magnitudes, at least temporarily, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high severity (Davis 1984, Hibbert 1984,<br />

Baker <strong>and</strong> others 1998). The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetative cover, decreased litter accumulati<strong>on</strong>s, <strong>and</strong><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellent <strong>soils</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

are the presumed reas<strong>on</strong>s for these streamflow<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases (Rundel 1977, Baker 1999).<br />

In the first year after a 365 acre (146 ha) <strong>water</strong>shed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> southern France, near the Mediterranean Sea, was<br />

burned over by a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, streamflow discharge <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

30 percent to nearly 2.4 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (60 mm)<br />

(Lavabre <strong>and</strong> others 1993). The pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>on</strong><br />

the <strong>water</strong>shed was primarily a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> maquis,<br />

cork oak, <strong>and</strong> chestnut trees. The researchers attributed<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> annual streamflow discharge to<br />

the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> evapotranspirati<strong>on</strong> due to the destructi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this vegetati<strong>on</strong> by the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Average annual streamflow discharge <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by<br />

about 10 percent to 4.8 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (120 mm) <strong>on</strong> a 612 acre<br />

(245 ha) <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> the Cape Regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> South Africa<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> that c<strong>on</strong>sumed most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous<br />

fynbos (sclerophyllous) shrubs (Scott 1993).<br />

This <str<strong>on</strong>g>in</str<strong>on</strong>g>crease was related mostly to the reducti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <strong>and</strong> evapotranspirati<strong>on</strong> losses.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Prescribed Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Streamflow resp<strong>on</strong>ses to prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 5.6) are<br />

smaller <str<strong>on</strong>g>in</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to the resp<strong>on</strong>ses to<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. It is generally not the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g to completely c<strong>on</strong>sume extensive areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter <strong>and</strong> other decomposed organic matter <strong>on</strong> the soil<br />

surface (Ffolliott <strong>and</strong> others 1996, DeBano <strong>and</strong> others<br />

1998) <strong>and</strong>, therefore, the drastic alterati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow discharges that are comm<strong>on</strong> after severe<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s do not normally occur. To illustrate this<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, the average annual streamflow discharge was<br />

not changed relative to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels <str<strong>on</strong>g>in</str<strong>on</strong>g> 6 years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> 43 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1,178 acre (471<br />

ha) <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Ariz<strong>on</strong>a support<str<strong>on</strong>g>in</str<strong>on</strong>g>g a p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest (Gottfried <strong>and</strong> DeBano 1990). The<br />

110 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 5.6—Grass prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska.<br />

(Photo by Karen Wattenmaker).<br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g plan specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 70 percent reducti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels <strong>and</strong> a 40 percent reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> heavy<br />

fuels <strong>on</strong> the burned area was satisfactorily met, with<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal damage to the residual st<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees.<br />

A burn that was prescribed to reduce the accumulated<br />

fuel loads <strong>on</strong> a 450 acre (180 ha) <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Cape Regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> South Africa resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a 15 percent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease to 3.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (80 mm) <str<strong>on</strong>g>in</str<strong>on</strong>g> average annual<br />

streamflow discharge (Scott 1993). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the fynbos<br />

shrubs that vegetated the <strong>water</strong>shed were not damaged<br />

by the prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> was less than anticipated because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the unseas<strong>on</strong>ably high ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall amounts at the time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

A prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a Texas grassl<strong>and</strong> community<br />

(table 5.4) resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a large <str<strong>on</strong>g>in</str<strong>on</strong>g>crease (1,150 percent) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow discharge <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to an unburned<br />

<strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> the first year after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Wright <strong>and</strong><br />

others 1982). The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow discharge<br />

was short lived, however, with streamflows<br />

return<str<strong>on</strong>g>in</str<strong>on</strong>g>g to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels shortly after the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g residues (slash) <str<strong>on</strong>g>in</str<strong>on</strong>g> timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

operati<strong>on</strong>s, burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> compet<str<strong>on</strong>g>in</str<strong>on</strong>g>g vegetati<strong>on</strong><br />

to prepare a site for plant<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> forests<br />

<strong>and</strong> woodl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the process <str<strong>on</strong>g>of</str<strong>on</strong>g> clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>and</strong> for<br />

agricultural producti<strong>on</strong> are comm<strong>on</strong> practices <str<strong>on</strong>g>in</str<strong>on</strong>g> many<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States <strong>and</strong> the world. Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> their <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> extent, the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>gs prescribed<br />

for these purposes might cause changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

discharge from the <strong>water</strong>sheds <strong>on</strong> which these treatments<br />

are c<strong>on</strong>ducted. But, <str<strong>on</strong>g>in</str<strong>on</strong>g> analyz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow discharge to prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, it is difficult<br />

to isolate <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> these burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatments from the<br />

accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

operati<strong>on</strong>s, site preparati<strong>on</strong>, <strong>and</strong> clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest vegetati<strong>on</strong>.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> other studies <strong>on</strong> the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

discharge follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g either a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> or prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> tables 5.1 through 5.5. These<br />

results are summarized <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> Bailey’s (1995)<br />

ecoregi<strong>on</strong> classificati<strong>on</strong>s for comparis<strong>on</strong>s purposes.<br />

Peakflows______________________<br />

Peakflows are a special subset <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow regimes<br />

that deserve c<strong>on</strong>siderable attenti<strong>on</strong>. The <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forest disturbance <strong>on</strong> storm peakflows are highly<br />

variable <strong>and</strong> complex. They can produce some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound impacts that forest managers have to<br />

Table 5.1—Increased <strong>water</strong> yield from prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rx) burned <strong>water</strong>sheds, Eastern United States ecoregi<strong>on</strong>s.<br />

State Treatment Area Precipitati<strong>on</strong> 1st year run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Increase Recovery<br />

acre ha <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm % years<br />

M221 CENTRAL APPALACHIAN BROADLEAF-CONIFER FOREST PROVINCE 1<br />

NC Hardwoods 67.91 1,725<br />

C<strong>on</strong>trol 40 16 29.09 739 — —<br />

Cut, Rx burn 40 16 35.00 889 20 5<br />

Swank <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>er 1968<br />

231 SOUTHEASTERN MIXED FOREST PROVINCE<br />

SC Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 54.72 1,390<br />

C<strong>on</strong>trol 5 2 4.88 124 — —<br />

Under burn 5 2 7.09 180 45 2<br />

Rx burn, cut 5 2 8.54 217 75 2<br />

Van Lear <strong>and</strong> others 1985<br />

1 Bailey’s Ecoregi<strong>on</strong>s (1995).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 111


Table 5.2—Increased <strong>water</strong> yield from prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rx) <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> burned <strong>water</strong>sheds, Cascade Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s ecoregi<strong>on</strong>s, U.S.A.<br />

State Treatment Area Precipitati<strong>on</strong> 1st year run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Increase Recovery<br />

acre ha <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm % years<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE 1<br />

WA P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 22.83 580<br />

Pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> basis 1,277 517 8.70 221 — —<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 1,277 517 12.36 314 42 Unknown<br />

Helvey 1980<br />

OR Douglas-fir 97.76 2,483<br />

C<strong>on</strong>trol 175 71 74.21 1,885 — —<br />

Cut, Rx burn 175 71 87.60 2,225 18 >5<br />

Bosch <strong>and</strong> Hewlett 1982<br />

OR Douglas-fir 94.02 2,388<br />

C<strong>on</strong>trol 237 96 54.17 1,376 —<br />

Cut, Rx <str<strong>on</strong>g>fire</str<strong>on</strong>g> 237 96 72.36 1,838 34 >5<br />

Bosch <strong>and</strong> Hewlett 1982<br />

1 Bailey’s Ecoregi<strong>on</strong>s (1995).<br />

Table 5.3—Increased <strong>water</strong> yield from prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rx) <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> burned <strong>water</strong>sheds, Colorado Plateau <strong>and</strong> Ariz<strong>on</strong>a-New<br />

Mexico mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s semidesert ecoregi<strong>on</strong>, U.S.A.<br />

Ecoregi<strong>on</strong>/State Treatment Area Precipitati<strong>on</strong> 1st year run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Increase Recovery<br />

acre ha <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm % years<br />

313 COLORADO PLATEAU SEMIDESERT PROVINCE 1<br />

AZ Chaparral 29.13 740<br />

C<strong>on</strong>trol 6 2 2.5 — —<br />

9 8 2 64<br />

Rx burn 8 3 6.1 15 144 >11<br />

2 3 4 6<br />

Davis 1984<br />

AZ Chaparral 23.03 585<br />

C<strong>on</strong>trol 9 3 3.2 — —<br />

6 9 3 82<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 9 3 5.1 30 59 Unknown<br />

6 9 2<br />

Hibbert <strong>and</strong> others 1982<br />

AZ Chaparral 25.79 655<br />

C<strong>on</strong>trol 4 1 0 —<br />

7 9 0<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 4 1 4.8 12 >9,999+ >9<br />

7 9 8 4<br />

C<strong>on</strong>trol 4 3 0.7 —<br />

7 9 5 19<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 4 3 11. 1,421 >9<br />

7 9 38 89<br />

Hibbert 1971<br />

1 Bailey’s Ecoregi<strong>on</strong>s (1995).<br />

112 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 5.4—Increased <strong>water</strong> yield from prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Rx) <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> burned <strong>water</strong>sheds, Ariz<strong>on</strong>a-New Mexico mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

semidesert, <strong>and</strong> Southwest plateau <strong>and</strong> Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s dry steppe ecoregi<strong>on</strong>s, U.S.A.<br />

State Treatment Area Precipitati<strong>on</strong> 1st year run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Increase Recovery<br />

acre ha <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ch mm % years<br />

M313 AZ-NM MOUNTAINS SEMIDESERT-WOODLAND-CONIFER PROVINCE 1<br />

AZ P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper 18.90 480<br />

C<strong>on</strong>trol 12 5 1.34 34 — —<br />

Rx burn 12 5 1.54 39 15 5<br />

C<strong>on</strong>trol 12 5 1.69 43 —<br />

Rx burn 12 5 2.20 56 30 >5<br />

Hibbert <strong>and</strong> others 1982<br />

AZ P<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper 18.98 482<br />

C<strong>on</strong>trol 331 134 0.79 20 — —<br />

Slash Rx burn 331 134 0.43 11 –45 4<br />

C<strong>on</strong>trol 363 147 0.71 18 —<br />

Herbicide 363 147 1.10 28 56 >4<br />

Clary <strong>and</strong> others 1974<br />

AZ P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 29.02 737<br />

C<strong>on</strong>trol 44 18 0.24 6 —<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, low 25 10 0.35 9 50 2<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, mod. 10 4 0.79 20 233 7<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, high 20 8 1.06 27 350 15<br />

DeBano <strong>and</strong> others 1996<br />

315 SOUTHWEST PLATEAU AND PLAINS DRY STEPPE AND SHRUB PROVINCE 1<br />

TX Juniper/grass 2


c<strong>on</strong>sider. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflow follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> (table 5.6) is more variable than streamflow<br />

discharges (tables 5.1 to 5.5) <strong>and</strong> is usually well out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ses produced by forest harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> peakflow as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a high severity<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> are generally related to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense <strong>and</strong> short durati<strong>on</strong><br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events, slope steepness <strong>on</strong> burned <strong>water</strong>sheds,<br />

<strong>and</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>water</strong> repellency after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong> others<br />

2003). Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow events with excessively<br />

high peakflows are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

regimes<br />

Peakflows are important events <str<strong>on</strong>g>in</str<strong>on</strong>g> channel formati<strong>on</strong>,<br />

sediment transport, <strong>and</strong> sediment redistributi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> river<str<strong>on</strong>g>in</str<strong>on</strong>g>e systems (Rosgen 1996, Brooks <strong>and</strong> others<br />

2003). These extreme events <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lead to significant<br />

Table 5.6—Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> peakflows <str<strong>on</strong>g>in</str<strong>on</strong>g> different habitat types.<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream<br />

system <strong>and</strong>, at times, a devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural<br />

resources. Peakflows are important c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the design <str<strong>on</strong>g>of</str<strong>on</strong>g> structures (such as bridges, roads, dams,<br />

levees, commercial <strong>and</strong> residential build<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> so<br />

forth). Fire has the potential to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease peakflows<br />

well bey<strong>on</strong>d the normal range <str<strong>on</strong>g>of</str<strong>on</strong>g> variability observed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>sheds under fully vegetated c<strong>on</strong>diti<strong>on</strong>s (table<br />

5.6). For this reas<strong>on</strong>, underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> peakflow resp<strong>on</strong>se<br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> resources.<br />

Peakflow Mechanisms<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanisms occur s<str<strong>on</strong>g>in</str<strong>on</strong>g>gly or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

to produce <str<strong>on</strong>g>in</str<strong>on</strong>g>creased post<str<strong>on</strong>g>fire</str<strong>on</strong>g> peakflows (fig. 5.7).<br />

These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude obvious mechanisms such as unusual<br />

Locati<strong>on</strong> Treatment Peakflow <str<strong>on</strong>g>in</str<strong>on</strong>g>crease factor Reference<br />

M212 ADIRONDACK-NEW ENGLAND MIXED FOREST PROVINCE<br />

Hardwoods, NH Clearcut +2.0 Hornbeck 1973<br />

M221 CENTRAL APPALACHIAN BROADLEAF-CONIFER FOREST PROVINCE<br />

Hardwoods, NC Clearcut +1.1 Hewlett <strong>and</strong> Helvey 1970<br />

Hardwoods, WV Clearcut +1.2 Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hart <strong>and</strong> others 1963<br />

232 COASTAL PLAIN MIXED FOREST PROVINCE<br />

Loblolly P<str<strong>on</strong>g>in</str<strong>on</strong>g>e, NC Rx Fire 0.0 Anders<strong>on</strong> <strong>and</strong> others 1976<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE<br />

Douglas-fir, OR Cut 50%, burn +1.1 Anders<strong>on</strong> 1974<br />

Clearcut, burn +1.3<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> +1.4<br />

M262 CALIFORNIA COASTAL RANGE WOODLAND-SHRUB-CONIFER PROVINCE<br />

Chaparral, CA Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> +20.0 S<str<strong>on</strong>g>in</str<strong>on</strong>g>clair <strong>and</strong> Hamilt<strong>on</strong> 1955<br />

+870.0 Krammes <strong>and</strong> Rice 1963<br />

+6.5 Hoyt <strong>and</strong> Troxell 1934<br />

313 COLORADO PLATEAU SEMI-DESERT PROVINCE<br />

Chaparral, AZ Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> +5.0 (Sum) Rich 1962<br />

+150.0 (Sum)<br />

+5.8 (Fall)<br />

+0.0 (W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter)<br />

M 313 AZ-NM MOUNTAINS SEMIDESERT-WOODLAND-CONIFER PROVINCE<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e, AZ Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> +96.1 Campbell & others 1977<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, Mod. +23.0<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, Severe +406.6<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, Severe +2,232.0 Ffolliott <strong>and</strong> Neary 2003<br />

M331 SOUTHERN ROCKY MOUNTAINS STEPPE-WOODLAND-CONIFER PROVINCE<br />

Aspen-c<strong>on</strong>ifer, CO Clearcut, Rx burn –1.50 Bailey 1948<br />

P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e, NM Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> +100.00 Bol<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Ward 1987<br />

114 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 5.7—Flood flow at Heber, AZ, after the<br />

Rodeo-Chediski Fire, 2002, Apache-Sitgreaves<br />

Nati<strong>on</strong>al Forest. (Photo by Dave Maurer).<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities, destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, reducti<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> litter accumulati<strong>on</strong>s <strong>and</strong> other decomposed<br />

organic matter, alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil physical properties,<br />

<strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> soil hydrophobicity.<br />

A special circumstance sometimes occurs with<br />

postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> peakflows that can c<strong>on</strong>tribute to the large<br />

resp<strong>on</strong>ses (up to three orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>in</str<strong>on</strong>g>crease).<br />

Cascad<str<strong>on</strong>g>in</str<strong>on</strong>g>g debris dam failures have the potential to<br />

produce much higher peakflow levels than would be<br />

expected from given ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events <strong>on</strong> bare or <strong>water</strong><br />

repellent <strong>soils</strong>. This process c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> the establishment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> debris dams from large woody debris<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> adjacent to stream channels, buildup <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the dams, <strong>and</strong> sequential failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the first<br />

<strong>and</strong> subsequent downstream debris dams (fig. 5.8).<br />

Figure 5.8—Remnant <str<strong>on</strong>g>of</str<strong>on</strong>g> a debris dam <str<strong>on</strong>g>in</str<strong>on</strong>g> the channel<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dude Creek after the Dude Fire, T<strong>on</strong>to Nati<strong>on</strong>al<br />

Forest, 1991. (Photo by John R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne).<br />

C<strong>on</strong>cern about this process has led to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER channel treatment, debris removal.<br />

Channels particularly pr<strong>on</strong>e to this process would<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude those with large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> woody debris <strong>and</strong><br />

a high density <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian trees or boulders, which<br />

could act as the dam formati<strong>on</strong> mechanism. After the<br />

1991 Dude Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne (1994) reported that<br />

little <str<strong>on</strong>g>of</str<strong>on</strong>g> the tagged pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> woody debris moved after a<br />

significant post<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood event. On the other h<strong>and</strong>,<br />

some unusually high flood flows after the 2000<br />

Cerro Gr<strong>and</strong>e Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> New Mexico left dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> woody debris dam formati<strong>on</strong> <strong>and</strong> failure<br />

(Kuyumjian, G.A., USDA Forest Service, pers<strong>on</strong>al<br />

communicati<strong>on</strong>).<br />

Fire Effects<br />

Anders<strong>on</strong> <strong>and</strong> others (1976) provided a good review<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> peakflow resp<strong>on</strong>se to disturbance. These resp<strong>on</strong>ses<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Low severity prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g has little or no effect <strong>on</strong> peakflow<br />

because it does not generally alter <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>.<br />

Intense short durati<strong>on</strong> storms that are characterized<br />

by high ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> low volume have<br />

been associated with high stream peakflows <strong>and</strong> significant<br />

erosi<strong>on</strong> events after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Neary <strong>and</strong> others<br />

1999). In the Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> West, high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,<br />

short durati<strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall is relatively comm<strong>on</strong> (Farmer<br />

<strong>and</strong> Fletcher 1972). Five-m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.38<br />

to 9.25 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/hour (213 <strong>and</strong> 235 mm/hour) have been<br />

associated with peakflows from recently burned areas<br />

that were <str<strong>on</strong>g>in</str<strong>on</strong>g>creased five times that for adjacent, unburned<br />

areas (Cr<str<strong>on</strong>g>of</str<strong>on</strong>g>t <strong>and</strong> Marst<strong>on</strong> 1950). A 15-m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall burst at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.64 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/hour (67 mm/<br />

hour) after the 2000 Co<strong>on</strong> Creek Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a<br />

produced a peakflow that was <str<strong>on</strong>g>in</str<strong>on</strong>g> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> sevenfold<br />

greater than the previous peakflow dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g 40 years <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streamflow gaug<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Moody <strong>and</strong> Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> (2001) reported<br />

<strong>on</strong> a threshold for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (0.39 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch/<br />

hour or 10 mm/hour <str<strong>on</strong>g>in</str<strong>on</strong>g> 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes) above which flood<br />

peakflows <str<strong>on</strong>g>in</str<strong>on</strong>g>crease rapidly <str<strong>on</strong>g>in</str<strong>on</strong>g> the Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Robichaud (2002) collected ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>on</strong> 12<br />

areas burned by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Bitterroot Valley <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M<strong>on</strong>tana. He measured precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities that<br />

ranged from 3 to 15 mm <str<strong>on</strong>g>in</str<strong>on</strong>g> 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes. The high end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the range was an equivalent to 75 mm/hour (greater<br />

than a 100-year return <str<strong>on</strong>g>in</str<strong>on</strong>g>terval). It is these types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extreme ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events, <str<strong>on</strong>g>in</str<strong>on</strong>g> associati<strong>on</strong> with altered<br />

<strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>, that produce large <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

stream peakflows <strong>and</strong> erosi<strong>on</strong>.<br />

Peakflows after forest cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease or decrease<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> locati<strong>on</strong>, the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>water</strong>shed cut, precipitati<strong>on</strong> regime, <strong>and</strong> seas<strong>on</strong> (table<br />

5.6, fig. B.3). Most studies show <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> peakflows<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 9 to 100 percent. The c<strong>on</strong>cern with <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

annual flood peakflows is that the <str<strong>on</strong>g>in</str<strong>on</strong>g>creases could lead<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 115


to channel <str<strong>on</strong>g>in</str<strong>on</strong>g>stability <strong>and</strong> degradati<strong>on</strong>, <strong>and</strong> to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

property damage <str<strong>on</strong>g>in</str<strong>on</strong>g> flood-pr<strong>on</strong>e urban areas.<br />

Fire has a range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> stream peakflows. Low<br />

severity, prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s have little or no effect because<br />

they do not substantially alter <strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong><br />

(table 5.6). Severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> has much larger <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> peakflows. The Tillamook Burn <str<strong>on</strong>g>in</str<strong>on</strong>g> 1933 <str<strong>on</strong>g>in</str<strong>on</strong>g> Oreg<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased the total annual flow <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>water</strong>sheds by<br />

1.09-fold <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased the annual peakflow by 1.45fold<br />

(Anders<strong>on</strong> <strong>and</strong> others 1976). A 127 ha wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Ariz<strong>on</strong>a <str<strong>on</strong>g>in</str<strong>on</strong>g>creased summer peakflows by 5- to 150-fold,<br />

but had no effect <strong>on</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter peakflows. Another wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a produced a peakflow 58-fold greater<br />

than an unburned <strong>water</strong>shed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g record autumn<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls. Campbell <strong>and</strong> others (1977) documented the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>on</strong> peakflows. A moderate severity<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflow by 23-fold, but high<br />

severity wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflow resp<strong>on</strong>se three<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude to 406.6-fold greater than undisturbed<br />

c<strong>on</strong>diti<strong>on</strong>s. Krammes <strong>and</strong> Rice (1963) measured<br />

an 870-fold <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> peakflow <str<strong>on</strong>g>in</str<strong>on</strong>g> California<br />

chaparral. In New Mexico, Bol<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Ward (1987)<br />

reported a 100-fold <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> peakflow after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>and</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper forest. Watersheds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest are much more pr<strong>on</strong>e to these<br />

enormous peakflow resp<strong>on</strong>ses due to <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes, <strong>soils</strong>, geology, slope, <strong>and</strong> climate (Swans<strong>on</strong><br />

1981).<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rodeo-Chediski Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002, peakflows<br />

were orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude larger than earlier recorded.<br />

The estimated peakflow <strong>on</strong> a gauged <strong>water</strong>shed that<br />

experienced high severity st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> was<br />

almost 8.9 ft 3 /sec (0.25 m 3 /sec) or nearly 900 times that<br />

measured pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Ffolliott <strong>and</strong> Neary 2003). The<br />

peakflow <strong>on</strong> a <strong>water</strong>shed subjected to low-to-medium<br />

Discharge - m 3 /sec/km 2<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Figure 5.9—Post-wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood specific discharge <strong>and</strong> <strong>water</strong>shed area.<br />

(Adapted from Biggio <strong>and</strong> Cann<strong>on</strong> 2001).<br />

severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> was estimated to be about <strong>on</strong>e-half less,<br />

but still far <str<strong>on</strong>g>in</str<strong>on</strong>g> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous observati<strong>on</strong>s. A<br />

subsequent <strong>and</strong> higher peakflow <strong>on</strong> the severely burned<br />

<strong>water</strong>shed was estimated to be 232 ft 3 /sec (6.57 m 3 /sec)<br />

or about 2,232 times that measured <str<strong>on</strong>g>in</str<strong>on</strong>g> snowmelt<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f prior to the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. This latter peakflow <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

represents the highest known relative post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

peak flow <str<strong>on</strong>g>in</str<strong>on</strong>g>crease that has been measured <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a or, more<br />

generally, the Southwestern United States. However,<br />

the specific discharge (94.2 ft 3 /sec/mile 2 or 1.02 m 3 /sec/<br />

km 2 ) was <strong>on</strong> the lower end <str<strong>on</strong>g>of</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> discharges<br />

measured by Biggio <strong>and</strong> Cann<strong>on</strong> (2001).<br />

Another c<strong>on</strong>cern is the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> stormflows or<br />

resp<strong>on</strong>se time. Burned <strong>water</strong>sheds resp<strong>on</strong>d to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

faster, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g more “flash floods.” They also may<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease the number <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f events. Campbell <strong>and</strong><br />

others (1977) measured six events <strong>on</strong> an unburned<br />

<strong>water</strong>shed after the Rattle Burn <strong>and</strong> 25 <strong>on</strong> a highseverity<br />

burned <strong>water</strong>shed. Hydrophobic c<strong>on</strong>diti<strong>on</strong>s,<br />

bare <strong>soils</strong>, <strong>and</strong> litter <strong>and</strong> plant cover loss will cause<br />

flood peaks to arrive faster <strong>and</strong> at higher levels. Flood<br />

warn<str<strong>on</strong>g>in</str<strong>on</strong>g>g times are reduced by “flashy” flow, <strong>and</strong> higher<br />

flood levels can be devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g to property <strong>and</strong> human<br />

life. Recovery times after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can range from years to<br />

many decades.<br />

Still another aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> peakflow issue is<br />

the fact that the largest discharges <str<strong>on</strong>g>of</str<strong>on</strong>g>ten occur <str<strong>on</strong>g>in</str<strong>on</strong>g> small<br />

areas. Biggio <strong>and</strong> Cann<strong>on</strong> (2001) exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f after<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United States. They found that<br />

specific discharges were greatest from relatively small<br />

areas (less than 0.4 mile 2 or 1 km 2 , fig. 5.9). The smaller<br />

<strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> their study had specific discharges<br />

averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g 17,664.3 ft 3 /sec/mile 2 (193.0 m 3 /sec/km 2 ),<br />

while those <str<strong>on</strong>g>in</str<strong>on</strong>g> the next higher sized <strong>water</strong>shed category<br />

USGS WESTERN USA WILDFIRE RUNOFF DATA<br />

Bigio <strong>and</strong> Cann<strong>on</strong> 2001<br />

1-10 >10-20 20-30 30-40 40-50 >50<br />

Watershed Area - km 2<br />

116 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


(up to 4 mile 2 or 10 km 2 ) averaged 2,077.6 ft 3 /sec/mile 2<br />

(22.7 m 3 /sec/km 2 ).<br />

So, the net effect <strong>on</strong> <strong>water</strong>shed systems <strong>and</strong> aquatic<br />

habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peakflows is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area<br />

burned, <strong>water</strong>shed characteristics, <strong>and</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Small areas <str<strong>on</strong>g>in</str<strong>on</strong>g> flat terra<str<strong>on</strong>g>in</str<strong>on</strong>g> subjected to prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s will have little if any effect <strong>on</strong> <strong>water</strong><br />

resources, especially if Best Management Practices<br />

are used. Peakflows after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that burn large<br />

areas <str<strong>on</strong>g>in</str<strong>on</strong>g> steep terra<str<strong>on</strong>g>in</str<strong>on</strong>g> can produce significant impacts,<br />

but peakflows are probably greatest out <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller<br />

sized <strong>water</strong>sheds less than 0.4 mile 2 (1 km 2 ). Burned<br />

area emergency rehabilitati<strong>on</strong> (BAER) techniques may<br />

be able to mitigate some <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (see<br />

chapter 10). However, the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> these techniques<br />

to moderate the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls that produce<br />

extreme peakflow events is not well documented<br />

(Robichaud <strong>and</strong> others 2000).<br />

Management Implicati<strong>on</strong>s ________<br />

Fires affect <strong>water</strong>sheds, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> changes that<br />

affect many resource values, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g municipal <strong>water</strong>,<br />

visual aspects, recreati<strong>on</strong>, floral <strong>and</strong> fauna existence<br />

<strong>and</strong> welfare, transportati<strong>on</strong>, <strong>and</strong> human activity<br />

<strong>and</strong> well be<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The vast extent <str<strong>on</strong>g>of</str<strong>on</strong>g> possible <strong>water</strong> <strong>and</strong><br />

<strong>water</strong>shed changes makes management <str<strong>on</strong>g>of</str<strong>on</strong>g> these l<strong>and</strong>s<br />

crucial.<br />

Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s with low to moderate burn severity<br />

rarely produce adverse hydrologic <str<strong>on</strong>g>effects</str<strong>on</strong>g> that l<strong>and</strong><br />

managers need to be c<strong>on</strong>cerned about. Postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

floods are the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>cern, particularly the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

storm flows (resp<strong>on</strong>se time) <strong>and</strong> magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<br />

peaks. Because burned <strong>water</strong>sheds resp<strong>on</strong>d to ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

faster, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g more “flash floods,” they also may<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease the number <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f events. Flood warn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

times are reduced by these “flashy” flows, <strong>and</strong> higher<br />

flood levels can be devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g to property <strong>and</strong> human<br />

life. Another aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> this is the fact that recovery<br />

times can range from years to many decades.<br />

So, the net effect <strong>on</strong> <strong>water</strong>shed systems <strong>and</strong> aquatic<br />

habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased peak flows is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area<br />

burned, <strong>water</strong>shed characteristics, <strong>and</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Small areas <str<strong>on</strong>g>in</str<strong>on</strong>g> flat terra<str<strong>on</strong>g>in</str<strong>on</strong>g> subjected to prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s will have little if any effect <strong>on</strong> <strong>water</strong> resources,<br />

especially if Best Management Practices are<br />

utilized. Peak flows after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that burn large areas<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> steep terra<str<strong>on</strong>g>in</str<strong>on</strong>g> can produce significant impacts. Burned<br />

area emergency rehabilitati<strong>on</strong> <strong>water</strong>shed techniques<br />

may be able to mitigate some <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

However, the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> these techniques to moderate<br />

the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls that produce extreme<br />

peakflows is poorly documented (Robichaud <strong>and</strong> others<br />

2000). In some circumstances, a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> will<str<strong>on</strong>g>in</str<strong>on</strong>g>gness<br />

has existed to implement effective run<str<strong>on</strong>g>of</str<strong>on</strong>g>f c<strong>on</strong>trol<br />

measures <str<strong>on</strong>g>in</str<strong>on</strong>g> a timely <strong>and</strong> thorough way because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

visual <strong>and</strong> envir<strong>on</strong>mental c<strong>on</strong>cerns as well as hasty,<br />

improper <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong> techniques. In some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances,<br />

BAER techniques such as c<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g have<br />

been able to reduce peakflow events where short<br />

durati<strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities are high but total storm<br />

volumes are low (Robichaud <strong>and</strong> others 2000).<br />

Increased flood flow peaks have the potential to<br />

damage both natural <strong>and</strong> cultural resources. Large<br />

floods <str<strong>on</strong>g>of</str<strong>on</strong>g>ten change stream geomorphology. Aquatic<br />

biota <strong>and</strong> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> can be severely impacted<br />

by unusual flood flows. Culverts, bridges, roads,<br />

dams, <strong>and</strong> irrigati<strong>on</strong> structures are at risk by flood<br />

flows outside <str<strong>on</strong>g>of</str<strong>on</strong>g> their design parameters. Recreati<strong>on</strong><br />

facilities, houses, bus<str<strong>on</strong>g>in</str<strong>on</strong>g>esses, <strong>and</strong> community structures<br />

can also be affected. Most important, human<br />

health <strong>and</strong> safety can be at serious risk.<br />

Forest managers need to underst<strong>and</strong> these risks <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to design adequate rehabilitati<strong>on</strong> projects, order<br />

<strong>and</strong> enforce recreati<strong>on</strong> area closures, establish floodwarn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

protocols, <strong>and</strong> c<strong>on</strong>duct appropriate l<strong>and</strong> management<br />

activities.<br />

Summary ______________________<br />

Fires affect <strong>water</strong> cycle processes to a greater or<br />

lesser extent depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> severity. Table 5.7 c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

a general summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Fires can produce some substantial <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the<br />

streamflow regime <str<strong>on</strong>g>of</str<strong>on</strong>g> both small streams <strong>and</strong> rivers.<br />

Tables 5.1 to 5.6 shows that <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can affect annual <strong>and</strong><br />

seas<strong>on</strong>al <strong>water</strong> yield, peakflows <strong>and</strong> floods, baseflows,<br />

<strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> flows. Adequate baseflows are necessary<br />

to support the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued existence <str<strong>on</strong>g>of</str<strong>on</strong>g> many wildlife<br />

populati<strong>on</strong>s. Water yields are important because many<br />

forest, scrubl<strong>and</strong>, <strong>and</strong> grassl<strong>and</strong> <strong>water</strong>sheds functi<strong>on</strong><br />

as municipal <strong>water</strong> supplies. Peakflows <strong>and</strong> floods are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern because <str<strong>on</strong>g>of</str<strong>on</strong>g> their potential impacts <strong>on</strong><br />

human safety <strong>and</strong> property. Next to the physical<br />

destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself, post<str<strong>on</strong>g>fire</str<strong>on</strong>g> floods are the most<br />

damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the wildl<strong>and</strong> envir<strong>on</strong>ment.<br />

It is important that resource specialists <strong>and</strong> managers<br />

become aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

peakflows.<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, flood peak flows can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

dramatically, severely affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g stream physical c<strong>on</strong>diti<strong>on</strong>s,<br />

aquatic habitat, aquatic biota, cultural resources,<br />

<strong>and</strong> human health <strong>and</strong> safety. Often, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

flood peak flows <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 100 times those<br />

previously recorded, well bey<strong>on</strong>d observed ranges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variability <str<strong>on</strong>g>in</str<strong>on</strong>g> managed <strong>water</strong>sheds, have been measured<br />

after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Potentials exist for peak flood<br />

flows to jump to 2,300 times prewild<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels. Managers<br />

must be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> these potential <strong>water</strong>shed resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> order to adequately <strong>and</strong> safely manage<br />

their l<strong>and</strong>s <strong>and</strong> other resources <str<strong>on</strong>g>in</str<strong>on</strong>g> the postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

envir<strong>on</strong>ment.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 117


Table 5.7—A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic processes produced by wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Hydrologic process Type <str<strong>on</strong>g>of</str<strong>on</strong>g> change Specific effect<br />

1. Intercepti<strong>on</strong> Reduced Moisture storage smaller<br />

Greater run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>in</str<strong>on</strong>g> small storms<br />

Increased <strong>water</strong> yield<br />

2. Litter storage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> Reduced Less <strong>water</strong> stored (0.05 <str<strong>on</strong>g>in</str<strong>on</strong>g>/<str<strong>on</strong>g>in</str<strong>on</strong>g> or 0.5 mm/cm litter)<br />

Overl<strong>and</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

3. Transpirati<strong>on</strong> Temporary elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Streamflow <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

Soil moisture <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

4. Infiltrati<strong>on</strong> Reduced Overl<strong>and</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

Stormflow <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

5. Streamflow Changed Increased <str<strong>on</strong>g>in</str<strong>on</strong>g> most <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

Decreased <str<strong>on</strong>g>in</str<strong>on</strong>g> snow systems<br />

Decreased <str<strong>on</strong>g>in</str<strong>on</strong>g> fog-drip systems<br />

6. Baseflow Changed Decreased (less <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>)<br />

Increased (less evapotranspirati<strong>on</strong>)<br />

Summer low flows (+ <strong>and</strong> -)<br />

7. Stormflow Increased Volume greater<br />

Peakflows larger<br />

Time to peakflow shorter<br />

Flash flood frequency greater<br />

Flood levels higher<br />

Stream erosive power <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

8. Snow accumulati<strong>on</strong> Changed Fires 4 ha), decreased snowpack<br />

Snowmelt rate <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

Evaporati<strong>on</strong> <strong>and</strong> sublimati<strong>on</strong> greater<br />

118 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Daniel G. Neary<br />

Johanna D. L<strong>and</strong>sberg<br />

Arthur R. Tiedemann<br />

Peter F. Ffolliott<br />

Chapter 6:<br />

Water Quality<br />

Introducti<strong>on</strong> ____________________<br />

Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow discharges follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

can result <str<strong>on</strong>g>in</str<strong>on</strong>g> little to substantial <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the physical,<br />

chemical, <strong>and</strong> biological quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streams, rivers, <strong>and</strong> lakes. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> is largely dependent <strong>on</strong> the size, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong><br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> <strong>on</strong> the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed<br />

at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (fig. 6.1). Higher post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

streamflow discharges can result <str<strong>on</strong>g>in</str<strong>on</strong>g> an additi<strong>on</strong>al<br />

transport to stream channels or other <strong>water</strong> bodies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solid <strong>and</strong> dissolved materials that adversely affect the<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> for human, agricultural, or <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial<br />

purposes. The most obvious <str<strong>on</strong>g>effects</str<strong>on</strong>g> are produced by<br />

suspended <strong>and</strong> bedload sediments. These comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality were <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <strong>and</strong> discussed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chapter 2, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter they are referred to <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the discussi<strong>on</strong> <strong>on</strong> <strong>water</strong> quality relative to municipal<br />

<strong>water</strong> supply quality.<br />

Fire affects <strong>water</strong> quality characteristics through<br />

the changes that the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g causes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic<br />

cycle <strong>and</strong> streamflow regimes (see chapter 5). The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality is the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

chapter.<br />

Water Quality Characteristics <strong>and</strong><br />

St<strong>and</strong>ards______________________<br />

Water quality refers to the physical, chemical, <strong>and</strong><br />

biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> reference to a<br />

particular use. Am<strong>on</strong>g the physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest to hydrologists <strong>and</strong> <strong>water</strong>shed managers are<br />

sediment c<strong>on</strong>centrati<strong>on</strong>s, turbidity, <strong>and</strong> <strong>water</strong> temperature.<br />

Dissolved chemical c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> importance<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude nitrogen (N), phosphorus (P), calcium<br />

(Ca), magnesium (Mg), <strong>and</strong> potassium (K). Some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these nutrients are adsorbed <strong>on</strong> organic <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

sediment particles. Bacteriological quality is also important<br />

if <strong>water</strong> is used for human c<strong>on</strong>sumpti<strong>on</strong> or<br />

recreati<strong>on</strong>. The processes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic cycle directly<br />

or <str<strong>on</strong>g>in</str<strong>on</strong>g>directly affect the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> soil erosi<strong>on</strong><br />

<strong>and</strong>, as a c<strong>on</strong>sequence, the transport <strong>and</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> other physical, chemical, <strong>and</strong><br />

biological quality characteristics that collectively determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>.<br />

A <strong>water</strong> quality st<strong>and</strong>ard refers to the physical, chemical,<br />

or biological criteria or characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relati<strong>on</strong> to a specified use. It also <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the beneficial<br />

uses <strong>and</strong> antidegradati<strong>on</strong> policy. For example, a <strong>water</strong><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 119


Figure 6.1—Scho<strong>on</strong>over Fire just prior to crown<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

2002, M<strong>on</strong>tana. (Photo by USDA Forest Service).<br />

quality st<strong>and</strong>ard for irrigati<strong>on</strong> is not necessarily acceptable<br />

for dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> quality due<br />

to a <strong>water</strong>shed management practice could make the<br />

<strong>water</strong> flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the area unsuitable for dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

but at the same time it could be acceptable for irrigati<strong>on</strong>,<br />

fisheries, <strong>and</strong> other uses. In some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances there<br />

are laws or regulati<strong>on</strong>s to prevent <strong>water</strong> quality characteristics<br />

from becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g degraded to the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t where a<br />

<strong>water</strong> quality st<strong>and</strong>ard is jeopardized (DeBano <strong>and</strong><br />

others 1998, L<strong>and</strong>sberg <strong>and</strong> Tiedemann 2000, Brooks<br />

<strong>and</strong> others 2003). The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> these laws <strong>and</strong><br />

regulati<strong>on</strong>s is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> for a<br />

possible, unforeseen, future use.<br />

A major issue that hydrologist <strong>and</strong> <strong>water</strong>shed managers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>fr<strong>on</strong>t is whether forest or rangel<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s will create c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> stream, river, or lake<br />

<strong>water</strong>s that are outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the established <strong>water</strong> quality<br />

st<strong>and</strong>ards <strong>and</strong>, as a c<strong>on</strong>sequence, will require<br />

remedial acti<strong>on</strong>s to br<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>water</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the st<strong>and</strong>ards.<br />

Water quality st<strong>and</strong>ards that have been established<br />

by the U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

(1999) are the “benchmarks” for <strong>water</strong> quality throughout<br />

the United States. The most adverse <str<strong>on</strong>g>effects</str<strong>on</strong>g> from<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> <strong>water</strong> quality st<strong>and</strong>ards come from physical<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>and</strong> ash that are deposited<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to streams. However, stream chemistry parameters<br />

can be exceeded.<br />

Several chemical c<strong>on</strong>stituents that are regulated by<br />

<strong>water</strong> quality st<strong>and</strong>ards are likely to be impacted by<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Primary st<strong>and</strong>ards <str<strong>on</strong>g>in</str<strong>on</strong>g> the regulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency cover nitratenitrogen<br />

(NO 3-N), nitrite-nitrogen (NO 2-N), <strong>and</strong> other<br />

substances that are not immediately associated with<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Sec<strong>on</strong>dary st<strong>and</strong>ards apply to pH, sulfate (SO 4-S),<br />

total dissolved solids (TDS), chloride (Cl), ir<strong>on</strong> (Fe),<br />

turbidity, <strong>and</strong> several other c<strong>on</strong>stituents. Sec<strong>on</strong>dary<br />

st<strong>and</strong>ards are also set for color <strong>and</strong> odor. Phosphate<br />

phosphorus (PO 4-P) can affect <strong>water</strong> quality because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its ability to affect the color <strong>and</strong> odor <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> by<br />

accelerat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the eutrophicati<strong>on</strong> process. That <strong>water</strong><br />

quality st<strong>and</strong>ards can be impacted <strong>and</strong> exceeded by<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases is also exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter.<br />

Soil Erosi<strong>on</strong> <strong>and</strong> Sedimentati<strong>on</strong><br />

Processes _____________________<br />

Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic cycle caused by <str<strong>on</strong>g>fire</str<strong>on</strong>g> can<br />

also affect the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> soil erosi<strong>on</strong>, the subsequent<br />

transport <strong>and</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the eroded soil as sediment,<br />

<strong>and</strong> the chemical characteristics that collectively<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> (DeBano <strong>and</strong><br />

others 1998, Brooks <strong>and</strong> others 2003). Alterati<strong>on</strong>s that<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g can cause <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrologic cycle, that <str<strong>on</strong>g>in</str<strong>on</strong>g> turn<br />

affect soil erosi<strong>on</strong>, sedimentati<strong>on</strong>, <strong>and</strong> <strong>water</strong> quality,<br />

are c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 5.<br />

Soil erosi<strong>on</strong> is the physical process <str<strong>on</strong>g>of</str<strong>on</strong>g> the force <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops or eddies <str<strong>on</strong>g>in</str<strong>on</strong>g> overl<strong>and</strong> flow (surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f)<br />

dislodg<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil particles, which are then transported<br />

by <strong>water</strong> or w<str<strong>on</strong>g>in</str<strong>on</strong>g>d or the force <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity (Dunne <strong>and</strong><br />

Leopold 1978, Satterlund <strong>and</strong> Adams 1992, Brooks<br />

<strong>and</strong> others 2003). Sedimentati<strong>on</strong> is the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels or downstream<br />

reservoirs or other po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> use.<br />

Increased soil erosi<strong>on</strong>, or sediment, is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the most<br />

visible effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> other than the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a vegetative cover or a cover<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> other organic material <strong>on</strong> the soil surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed is the best means <str<strong>on</strong>g>of</str<strong>on</strong>g> prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g excessive<br />

soil erosi<strong>on</strong> rates. However, <str<strong>on</strong>g>fire</str<strong>on</strong>g> can cause the loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these protective covers <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> turn cause excessive<br />

soil erosi<strong>on</strong> <strong>and</strong> soil lost from the burned site (Dunne<br />

<strong>and</strong> Leopold 1978, Satterlund <strong>and</strong> Adams 1992, Brooks<br />

<strong>and</strong> others 2003).<br />

Natural rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> are generally lower<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> high ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall regi<strong>on</strong>s than <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> semiarid<br />

regi<strong>on</strong>s (Brooks <strong>and</strong> others 2003). As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>frequent “big storms” that are characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> arid<br />

<strong>and</strong> semiarid envir<strong>on</strong>ments, sedimentati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

viewed as a disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous (unsteady) process where<br />

sediment runs from its source through a stream channel<br />

system with <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent periods <str<strong>on</strong>g>of</str<strong>on</strong>g> storage<br />

(Wolman 1977, Baker 1990, Baker <strong>and</strong> others 1998).<br />

The disproporti<strong>on</strong>ate amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment transported<br />

by these big storms makes it difficult to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e a<br />

“normal rate” <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> <strong>on</strong> either undisturbed<br />

or burned <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> semiarid regi<strong>on</strong>s<br />

(DeBano <strong>and</strong> others 1998).<br />

Only a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment is passed through <strong>and</strong><br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed with a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle storm event. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sediment that is generated by a storm is deposited<br />

120 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


at the base <str<strong>on</strong>g>of</str<strong>on</strong>g> hillslopes, <str<strong>on</strong>g>in</str<strong>on</strong>g> floodpla<str<strong>on</strong>g>in</str<strong>on</strong>g>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g high<br />

overl<strong>and</strong> flows, <strong>and</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> stream or river channels<br />

(DeBano <strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003).<br />

The relati<strong>on</strong>ships between hillslope soil erosi<strong>on</strong> <strong>and</strong><br />

downslope <strong>and</strong> downstream sedimentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volve a<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> channel processes <strong>and</strong> their dynamics,<br />

both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are poorly understood. Nevertheless, the<br />

sediment that is eventually deposited <str<strong>on</strong>g>in</str<strong>on</strong>g>to the channels<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> changes the physical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the burned <strong>water</strong>shed.<br />

Physical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Water _________________________<br />

Am<strong>on</strong>g the more important physical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to<br />

hydrologists <strong>and</strong> <strong>water</strong>shed managers are suspended<br />

sediment c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> turbidity <strong>and</strong> elevated<br />

streamflow temperatures (thermal polluti<strong>on</strong>). Suspended<br />

sediment c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> silts <strong>and</strong> colloids <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

materials has impacts <strong>on</strong> <strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human, agricultural, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial uses <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong><br />

<strong>and</strong> aquatic organisms <strong>and</strong> their envir<strong>on</strong>ments (see<br />

chapter 7). Elevated streamflow temperatures can<br />

also impact <strong>water</strong> quality characteristics <strong>and</strong> aquatic<br />

organisms <strong>and</strong> envir<strong>on</strong>ments.<br />

Sediment<br />

Watersheds that have been severely denuded by a<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten vulnerable to accelerated rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil erosi<strong>on</strong> <strong>and</strong>, therefore, can yield large (but <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

variable) amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> sediment (fig. 6.2).<br />

Figure 6.2—Stermer Ridge <strong>water</strong>shed burned at<br />

high severity dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rodeo-Chediski Fire, Ariz<strong>on</strong>a,<br />

2002. Note recently deposited sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

lower porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the photo. (Photo by Daniel Neary).<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s generally produce more sediment than prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The large <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

stream follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> can tax the transport<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream <strong>and</strong> lead to channel depositi<strong>on</strong><br />

(aggradati<strong>on</strong>). However, prescribed burns by their<br />

design do not normally c<strong>on</strong>sume extensive layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter or accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> other organic materials.<br />

Hence, sedimentati<strong>on</strong> is generally less than that<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Suspended Sediment C<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> Turbidity—Suspended<br />

sediment c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> turbidity<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the most dramatic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Turbidity is an expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

optical property <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> that scatters light (Dunne<br />

<strong>and</strong> Leopold 1978, Satterlund <strong>and</strong> Adams 1992, Brooks<br />

<strong>and</strong> others 2003). Turbidity reduces the depth to<br />

which sunlight can penetrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>water</strong> <strong>and</strong>, therefore,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis. Sediment<br />

c<strong>on</strong>centrati<strong>on</strong>s are comm<strong>on</strong>ly expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> parts per<br />

milli<strong>on</strong> (ppm) or milligrams per liter (mg/L) (Internati<strong>on</strong>al<br />

System <str<strong>on</strong>g>of</str<strong>on</strong>g> Units), while turbidity is measured <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nephelometeric units. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> suspended<br />

sediment c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> turbidity can result from<br />

erosi<strong>on</strong> <strong>and</strong> overl<strong>and</strong> flow, channel scour<str<strong>on</strong>g>in</str<strong>on</strong>g>g because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow discharge, creep accumulati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels, or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

three acti<strong>on</strong>s after a <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Less is known about the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> turbidity<br />

than <strong>on</strong> the sedimentati<strong>on</strong> processes. One problem<br />

c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to this lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is that turbidity<br />

has been historically difficult to measure because it<br />

is highly transient, variable, <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent, <strong>and</strong> varies<br />

by <str<strong>on</strong>g>in</str<strong>on</strong>g>strument used. With the development <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous<br />

turbidimeters or nephelometers, some suspended<br />

sediment estimates are now based <strong>on</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous turbidity<br />

measurements. These turbidity estimates must<br />

be translated to suspended sediment us<str<strong>on</strong>g>in</str<strong>on</strong>g>g turbidityto-suspended<br />

sediment rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g curves that are time<br />

c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g, carefully calibrated, site specific, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument<br />

specific.<br />

Nevertheless, it has been observed that post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

turbidity levels <str<strong>on</strong>g>in</str<strong>on</strong>g> stream <strong>water</strong> are affected by the<br />

steepness <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned <strong>water</strong>shed (table 6.1). The<br />

turbidity <str<strong>on</strong>g>of</str<strong>on</strong>g> overl<strong>and</strong> flow from burned steep slopes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

central Texas that had been c<strong>on</strong>verted from woodl<strong>and</strong><br />

to an herbaceous cover was higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

overl<strong>and</strong> flow from burned slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> lesser steepness<br />

(Wright <strong>and</strong> others 1976, 1982). Turbidity <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are generally a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> suspensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ash <strong>and</strong> silt-to-clay sized soil particles <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <strong>water</strong> (fig. 6.3).<br />

The primary st<strong>and</strong>ards for suspended sediment c<strong>on</strong>centrati<strong>on</strong><br />

<strong>and</strong> turbidity with respect to dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

are written <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> turbidity (U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency 1999). However, <strong>on</strong>ly two <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the studies reviewed by L<strong>and</strong>sberg <strong>and</strong> Tiedemann<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 121


Table 6.1—Water turbidity after <str<strong>on</strong>g>fire</str<strong>on</strong>g> or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with other treatments (Adapted from L<strong>and</strong>sberg<br />

<strong>and</strong> Tiedemann 2000).<br />

Treatment<br />

Treatment Habitat Locati<strong>on</strong> Pre Post Reference<br />

Jacks<strong>on</strong> Turbidity Units<br />

Rx <str<strong>on</strong>g>fire</str<strong>on</strong>g>, pile, <strong>and</strong> burn Juniper Central Texas Wright <strong>and</strong><br />

3-4% slope 12 12 others 1976<br />

8-20% slope 20 53<br />

37-61% slope 12 132<br />

Pile <strong>and</strong> burn Juniper Central Texas 12 162 Wright <strong>and</strong><br />

Pile, burn, seed 12 72 others 1982<br />

Figure 6.3—Ash slurry flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a ephemeral dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age after the<br />

Rodeo-Chediski Fire, Ariz<strong>on</strong>a, 2002, Apache-Sitgreaves Nati<strong>on</strong>al<br />

Forest. (Photo by Daniel Neary).<br />

(2000) <str<strong>on</strong>g>in</str<strong>on</strong>g> their synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific literature <strong>on</strong><br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> used turbidity<br />

measured <str<strong>on</strong>g>in</str<strong>on</strong>g> nephelometric units as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

suspended sediment c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> (table<br />

6.1). Other studies reported c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended<br />

sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> ppm or mg/L as the measure<br />

(table 6.2). While suspended sediment c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> ppm (mg/L) have been c<strong>on</strong>verted to turbidity<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> nephelometric units <str<strong>on</strong>g>in</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient losses by<br />

soil erosi<strong>on</strong> after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, the relati<strong>on</strong>ship is sitespecific.<br />

Beschta (1980) found that a relati<strong>on</strong>ship<br />

between suspended sediment c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong><br />

turbidity can be established for a specified <strong>water</strong>shed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, but that the relati<strong>on</strong>ship differs<br />

significantly am<strong>on</strong>g <strong>water</strong>sheds. He suggested, therefore,<br />

that this relati<strong>on</strong>ship be established <strong>on</strong> a <strong>water</strong>shed-by-<strong>water</strong>shed<br />

basis.<br />

The few post<str<strong>on</strong>g>fire</str<strong>on</strong>g> values for turbidity found <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

literature (table 6.1) exceed the allowable <strong>water</strong> quality<br />

st<strong>and</strong>ard for turbidty (U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong><br />

Table 6.2—Suspended sediment c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow after <str<strong>on</strong>g>fire</str<strong>on</strong>g> al<strong>on</strong>e or <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with other treatments<br />

(Adapted from L<strong>and</strong>sberg <strong>and</strong> Tiedemann 2000).<br />

Treatment<br />

Treatment Habitat Locati<strong>on</strong> Pre Post Reference<br />

ppm (mg/L)<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Taiga Interior Alaska 10.6 6.0 Lotspeich <strong>and</strong> others 1970<br />

Clearcut, slash burn Douglas-fir W. Oreg<strong>on</strong> 2.0 150.0 Fredriksen 1971<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e E. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> — 1,200.0 Helvey 1980<br />

Pile <strong>and</strong> burn Juniper Texas 1.1 3.7 Wright <strong>and</strong> others 1982<br />

Pile, burn, <strong>and</strong> seed Juniper Texas 1.0 3.7 Wright <strong>and</strong> others 1982<br />

Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a 26.0 33.0 Douglass <strong>and</strong> Van Lear 1983<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Mixed c<strong>on</strong>ifer M<strong>on</strong>tana


Agency 1999). Therefore, L<strong>and</strong>sberg <strong>and</strong> Tiedemann<br />

(2000) recommended that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> turbidity<br />

per se needs further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> to better underst<strong>and</strong><br />

the processes <str<strong>on</strong>g>in</str<strong>on</strong>g>volved. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the elevated<br />

suspended sediment c<strong>on</strong>centrati<strong>on</strong>s after <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>related<br />

treatments, it is difficult to imag<str<strong>on</strong>g>in</str<strong>on</strong>g>e that some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>centrati<strong>on</strong>s would not have produced turbidity<br />

above the permitted level for <strong>water</strong> supplies.<br />

Sediment Yields—While the level <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended<br />

sediment c<strong>on</strong>centrati<strong>on</strong>s is a primary factor <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

c<strong>on</strong>cern, sediment yield is important <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the sediment buildup <str<strong>on</strong>g>in</str<strong>on</strong>g> reservoirs or other<br />

impoundments (Wetzel 1983). The sediment yield <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<strong>water</strong>shed is the total sediment outflow from the<br />

<strong>water</strong>shed for a specified period <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>and</strong> a def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> the stream channel. Sediment yields are<br />

dependent mostly <strong>on</strong> the physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sediment, the supply <str<strong>on</strong>g>of</str<strong>on</strong>g> soil particles to a stream<br />

channel, the magnitude <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow discharge,<br />

<strong>and</strong> the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed. The values<br />

presented <str<strong>on</strong>g>in</str<strong>on</strong>g> tables 2.8 to 2.10 are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> variability that can be expected <str<strong>on</strong>g>in</str<strong>on</strong>g> the changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> sediment yields follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This variability<br />

generally reflects the <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g factors <str<strong>on</strong>g>of</str<strong>on</strong>g> geology,<br />

soil, topography, vegetati<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> characteristics,<br />

weather patterns, <strong>and</strong> l<strong>and</strong> use practices <strong>on</strong> the impacted<br />

<strong>water</strong>shed. The higher values resulted from<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> steep slopes <strong>and</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g granite<br />

that readily erode. These higher sediment yields are<br />

sufficient <str<strong>on</strong>g>in</str<strong>on</strong>g> their magnitude to generate c<strong>on</strong>cern<br />

about soil impoverishment <strong>and</strong> <strong>water</strong> turbidity. The<br />

lower values were generally associated with flat sites<br />

<strong>and</strong> lower severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Although the magnitudes<br />

shown are site specific, the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment transport<br />

presented reflect resp<strong>on</strong>ses that can be expected<br />

from wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> sediment yields are generally the highest <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the first year or so after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, especially when the<br />

burned <strong>water</strong>shed has been exposed to large, high<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events immediately after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> has<br />

exposed the soil surface. These sediment yields are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> the partial or complete c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter <strong>and</strong> other decomposed organic matter <strong>on</strong> the soil<br />

surface, a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, <strong>and</strong> a c<strong>on</strong>sequent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> overl<strong>and</strong> flow (DeBano <strong>and</strong> others 1998,<br />

Brooks <strong>and</strong> others 2003). Sediment yields typically<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent years as the protective vegetati<strong>on</strong><br />

becomes reestablished <strong>on</strong> the burned <strong>water</strong>shed.<br />

Water Temperature<br />

Water temperature is a critical <strong>water</strong> quality characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many streams <strong>and</strong> aquatic habitats. Temperature<br />

c<strong>on</strong>trols the survival <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> flora <strong>and</strong> fauna<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong> that are sensitive to <strong>water</strong> temperature.<br />

The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> streambank vegetati<strong>on</strong> by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g can<br />

cause <strong>water</strong> temperature to rise, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal polluti<strong>on</strong><br />

to occur, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease biological<br />

activity <str<strong>on</strong>g>in</str<strong>on</strong>g> a stream (DeBano <strong>and</strong> others 1998, Brooks<br />

<strong>and</strong> others 2003). Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> biological activity place<br />

a greater dem<strong>and</strong> <strong>on</strong> the dissolved oxygen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>water</strong>, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the more important <strong>water</strong> quality characteristics<br />

from a biological perspective.<br />

There are no established nati<strong>on</strong>al st<strong>and</strong>ards for the<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>. However, under the<br />

Clean Water Act, States are required to develop <strong>water</strong><br />

quality st<strong>and</strong>ards to protect beneficial uses such as<br />

fish habitat <strong>and</strong> <strong>water</strong> quality restorati<strong>on</strong>. The U.S.<br />

Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency provides oversight<br />

<strong>and</strong> approval <str<strong>on</strong>g>of</str<strong>on</strong>g> these State st<strong>and</strong>ards. Currently,<br />

about 86 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>al list<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>bodies<br />

with temperature-impaired <strong>water</strong> quality are <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Pacific Northwest (Ice <strong>and</strong> others, <str<strong>on</strong>g>in</str<strong>on</strong>g> press). One <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

problems with these st<strong>and</strong>ards is identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g natural<br />

temperature patterns caused by vegetati<strong>on</strong>, geology,<br />

geomorphology, climate, seas<strong>on</strong>, <strong>and</strong> natural disturbance<br />

history. Also, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> stream <strong>water</strong> temperatures<br />

can have important <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten detrimental<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> stream eutrophicati<strong>on</strong>. Accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stream eutrophicati<strong>on</strong> can adversely affect the color,<br />

taste, <strong>and</strong> smell <str<strong>on</strong>g>of</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>.<br />

Severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s can functi<strong>on</strong> like streamside timber<br />

clearcuts <str<strong>on</strong>g>in</str<strong>on</strong>g> rais<str<strong>on</strong>g>in</str<strong>on</strong>g>g the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> streams due to<br />

direct heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> surface. Increases up to<br />

62 °F (16.7 °C) have been measured <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflows<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (table 6.3). When riparian (streamside)<br />

vegetati<strong>on</strong> is removed by <str<strong>on</strong>g>fire</str<strong>on</strong>g> or other means, the<br />

stream surface is exposed to direct solar radiati<strong>on</strong>, <strong>and</strong><br />

stream temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g>crease (Levno <strong>and</strong> Rothacher<br />

1969, Brown 1970, Swift <strong>and</strong> Messner 1971, Gibb<strong>on</strong>s<br />

<strong>and</strong> Salo 1973, Brooks <strong>and</strong> others 2003).<br />

Another important aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature issue<br />

is the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> fish mortality posed by stream<br />

temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>cerns relative to<br />

aquatic biota are the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dissolved oxygen (O 2) that occurs with ris<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperatures,<br />

fish pathogen activity, <strong>and</strong> elevated metabolic<br />

activity. All <str<strong>on</strong>g>of</str<strong>on</strong>g> these can impair the survivability <strong>and</strong><br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic populati<strong>on</strong>s <strong>and</strong> communities.<br />

Dissolved O 2 c<strong>on</strong>tents are affected by temperature,<br />

altitude, <strong>water</strong> turbulence, aquatic organism<br />

respirati<strong>on</strong>, aquatic plant photosynthesis, <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

reacti<strong>on</strong>s, <strong>and</strong> tributary <str<strong>on</strong>g>in</str<strong>on</strong>g>flow. When O 2 c<strong>on</strong>centrati<strong>on</strong>s<br />

become less than 10 ppm (less than 10 mg/L),<br />

they create problems for salm<strong>on</strong>id fishes. Increases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2 to 9 °F (1-5 °C), which are not a problem at sea level,<br />

become problematic for salm<strong>on</strong>ids at high altitude.<br />

Warm <strong>water</strong> fishes can tolerate stream temperatures<br />

below 10 ppm (10 mg/L) <strong>and</strong> are not as easily impacted<br />

by O 2 c<strong>on</strong>centrati<strong>on</strong> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 123


pH <str<strong>on</strong>g>of</str<strong>on</strong>g> Water<br />

Table 6.3—Temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow after <str<strong>on</strong>g>fire</str<strong>on</strong>g> al<strong>on</strong>e <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with other treatments.<br />

Locati<strong>on</strong> Treatment Buffer Temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>crease Reference<br />

°F (°C)<br />

M221 CENTRAL APPALACHIAN BROADLEAF-CONIFER FOREST PROVINCE<br />

Pennsylvania Clearcut Yes 3.1 (1.7) mn 1<br />

Lynch <strong>and</strong> Corbett 1990<br />

North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Clearcut, farm No 20.9 (11.6) mx Swift <strong>and</strong> Messner 1971<br />

Clearcut No 5.9 (3.3) mx<br />

Understory cut No 2.0 (1.1) mx<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE<br />

Oreg<strong>on</strong> Clearcut Yes 14.0 (7.8) mn Brown <strong>and</strong> Krygier 1970<br />

Oreg<strong>on</strong> Patch cut Yes 0.0 (0.0) Hall <strong>and</strong> others 1987<br />

Clearcut No 30.1 (16.7) d<br />

Oreg<strong>on</strong> Clearcut Rx burn No 13.0 (7.2) sm Levno <strong>and</strong> Rothacher 1969<br />

Oreg<strong>on</strong> Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>: 26% slope No 18.0 (10.0) mx Amaranthus <strong>and</strong> others 1989<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>: 54% slope No 5.9 (3.3) mx<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> No 18.0 (10.0) sm Helvey 1980<br />

M331 SOUTHERN ROCKY MOUNTAINS STEPPE-WOODLAND-CONIFER PROVINCE<br />

Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>* No 18.0 (10.0) mx Hungerford <strong>and</strong> others 1991<br />

1<br />

sm = summer mean temperature, mn = mean temperature, d = daily temperature, mx = maximum.<br />

* = Yellowst<strong>on</strong>e Fires 1988.<br />

The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> at a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> time is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the balance <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical equilibria <str<strong>on</strong>g>in</str<strong>on</strong>g> a <strong>water</strong> body. Its<br />

level affects the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> some chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

<strong>water</strong>. The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> can be affected by ash depositi<strong>on</strong>s<br />

immediately after a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In the first year after<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased pH values <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil (Wells <strong>and</strong> others<br />

1979, DeBano <strong>and</strong> others 1998, L<strong>and</strong>sberg <strong>and</strong><br />

Tiedemann 2000) can also c<strong>on</strong>tribute to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow pH. A sec<strong>on</strong>dary dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

quality st<strong>and</strong>ard for pH is 6.5 to 8.5 (U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency 1999). In the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s<br />

reviewed by L<strong>and</strong>sberg <strong>and</strong> others (1999), there was<br />

<strong>on</strong>ly <strong>on</strong>e study that reported pH values outside the<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency st<strong>and</strong>ards<br />

(table 6.4). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first 8 m<strong>on</strong>ths after the Entiat<br />

Fires <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, Tiedemann (1973) detected<br />

transient pH values up to 9.5 <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

<strong>water</strong> <strong>and</strong>, 2 days after fertilizer applicati<strong>on</strong>, a<br />

transient pH value <str<strong>on</strong>g>of</str<strong>on</strong>g> 9.2. These latter values are<br />

generally reflective <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic limits <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong>.<br />

Chemical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Water _________________________<br />

Watershed-scale studies provide an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated view<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> chemical (i<strong>on</strong>ic) c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>and</strong> losses. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators have reported little<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the chemical c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed <strong>and</strong>, therefore,<br />

have c<strong>on</strong>cluded that reported <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>fire</str<strong>on</strong>g>-caused transpirati<strong>on</strong>al reducti<strong>on</strong>s<br />

had likely masked c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (Helvey <strong>and</strong><br />

others 1976, Tiedemann <strong>and</strong> others 1978, Gottfried<br />

<strong>and</strong> DeBano 1990, DeBano <strong>and</strong> others 1998). Other<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators observed higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow from burned <strong>water</strong>sheds<br />

(Snyder <strong>and</strong> others 1975, Campbell <strong>and</strong> others 1977).<br />

However, these elevated c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten return<br />

to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels after the first flush <str<strong>on</strong>g>of</str<strong>on</strong>g> flow.<br />

Dissolved Chemical C<strong>on</strong>stituents<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved chemical c<strong>on</strong>stituents<br />

(nutrients) <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong> flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <strong>water</strong>sheds are<br />

geologic weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g, decompositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthetic<br />

products <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>organic substances, <strong>and</strong> large storm<br />

events. Vegetative communities accumulate <strong>and</strong> cycle<br />

large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> their biological role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil, <strong>water</strong>, <strong>and</strong> atmosphere <str<strong>on</strong>g>in</str<strong>on</strong>g>to a biological<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum (Tiedemann <strong>and</strong> others 1979, DeBano <strong>and</strong><br />

others 1998, Brooks <strong>and</strong> others 2003). Nutrients are<br />

cycled <str<strong>on</strong>g>in</str<strong>on</strong>g> a largely orderly (tight) <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten predictable<br />

manner until a disturbance alters the form <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

distributi<strong>on</strong>. One such disturbance is <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the nutrient capital (status) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <strong>water</strong>shed ecosystem are largely manifested by a<br />

rapid m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutrients<br />

124 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 6.4—The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g> al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with other treatments (Adapted from L<strong>and</strong>sberg <strong>and</strong><br />

Tiedemann 2000).<br />

Treatment<br />

Treatment Habitat Locati<strong>on</strong> Pre Post Reference<br />

- - - - - pH - - - - -<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> — 7.2-8.5 Tiedemann 1973<br />

<strong>and</strong> Douglas-fir<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> + N — 7.1-9.5<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> + N Mixed c<strong>on</strong>ifer California 6.2-7.0 6.7-7.0 H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman <strong>and</strong> Ferreira 1976<br />

Pile burn Juniper Texas Wright <strong>and</strong> others 1976<br />

Slopes<br />

3-4% 7.3 7.3<br />

8-20% 7.6 7.7<br />

37-61% 7.4 7.7<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> P<str<strong>on</strong>g>in</str<strong>on</strong>g>e, spruce M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota 6.2 6.3 Tarapchak <strong>and</strong> Wright 1977<br />

Rx <str<strong>on</strong>g>fire</str<strong>on</strong>g> P<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Ariz<strong>on</strong>a 6.2 6.4 Sims <strong>and</strong> others 1981<br />

Pile burn Juniper Texas 7.1 7.3 Wright <strong>and</strong> others 1982<br />

Slash burn Hemlock/cedar British Columbia 6.8 7.8 Feller <strong>and</strong> Kimm<str<strong>on</strong>g>in</str<strong>on</strong>g>s 1984<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Mixed c<strong>on</strong>ifer Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g 7.4 7.5 Lathrop 1994<br />

from an <str<strong>on</strong>g>in</str<strong>on</strong>g>trabiotic to an extrabiotic state (Grier 1975,<br />

Tiedemann <strong>and</strong> others 1979, DeBano <strong>and</strong> others 1998,<br />

Brooks <strong>and</strong> others 2003). Part <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant- <strong>and</strong> litter<str<strong>on</strong>g>in</str<strong>on</strong>g>corporated<br />

N, P, K, Ca, Mg, copper (Cu), Fe, manganese<br />

(Mn), <strong>and</strong> z<str<strong>on</strong>g>in</str<strong>on</strong>g>c (Zn) are volatilized <strong>and</strong>, through<br />

this process, evacuated from the system. Metallic<br />

nutrients such as Ca, Mg, <strong>and</strong> K are c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

oxides <strong>and</strong> deposited as ash layers <strong>on</strong> the soil surface.<br />

Oxides are low <str<strong>on</strong>g>in</str<strong>on</strong>g> solubility until they react with<br />

carb<strong>on</strong> dioxide (CO 2) <strong>and</strong> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the atmosphere<br />

<strong>and</strong>, as a result, are c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to bicarb<strong>on</strong>ate salts.<br />

In this form, they are more soluble <strong>and</strong> vulnerable to<br />

loss through leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g or overl<strong>and</strong> flow than they are as<br />

oxides, or they are <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to plant tissues or<br />

litter.<br />

In a post<str<strong>on</strong>g>fire</str<strong>on</strong>g> situati<strong>on</strong> where, compared to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s, there are less vegetative cover <strong>and</strong> lower<br />

accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> other organic materials,<br />

the result is an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> susceptibility to nutrient<br />

loss from a <strong>water</strong>shed through erosi<strong>on</strong>. With a reduced<br />

vegetative cover, soil-plant cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms reduce<br />

nutrient uptake, further <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the potential<br />

nutrient loss by leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the more important nutrients to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g paragraphs.<br />

Nitrogen<br />

NO 3-N, NH 4-N, <strong>and</strong> organic-N are the nitrogen<br />

forms most comm<strong>on</strong>ly studied as <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

disturbance. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrologists <strong>and</strong><br />

<strong>water</strong>shed managers relative to <strong>water</strong> quality resp<strong>on</strong>ses<br />

to <str<strong>on</strong>g>fire</str<strong>on</strong>g> focuses <strong>on</strong> NO 3-N because it is highly<br />

mobile. The potential for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is attributed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly to<br />

accelerated m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong> nitrificati<strong>on</strong> (Vitousek<br />

<strong>and</strong> Melillo 1979, Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> Sackett 1986, 1992,<br />

DeBano <strong>and</strong> others 1998) <strong>and</strong> reduced plant dem<strong>and</strong><br />

(Vitousek <strong>and</strong> Melillo 1979). This <str<strong>on</strong>g>in</str<strong>on</strong>g>crease results<br />

from the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic N to available forms<br />

(Kovacic <strong>and</strong> others 1986), m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> (Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong><br />

<strong>and</strong> Sackett 1992, Ojima <strong>and</strong> others 1994), or mobilizati<strong>on</strong><br />

by microbial biomass through the fertiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ash nutrients <strong>and</strong> improved microclimate<br />

(Koell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> Kucera 1965, Hulbert 1969, Ojima <strong>and</strong><br />

others 1995). These post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are short lived,<br />

however, usually last<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly a year or so (Kovacic <strong>and</strong><br />

others 1986, M<strong>on</strong>le<strong>on</strong> <strong>and</strong> others 1997).<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is varied. Some<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators have found no significant change <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflows, while others<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 125


eport <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> either the soil soluti<strong>on</strong><br />

or streamflow (Hibbert <strong>and</strong> others 1974, Tiedemann<br />

<strong>and</strong> others 1979). Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> NO 3-N<br />

(table 6.5) with <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> followup applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

herbicides caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the largest <str<strong>on</strong>g>in</str<strong>on</strong>g>creases are shown <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

most studies <str<strong>on</strong>g>of</str<strong>on</strong>g> forest disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow to <str<strong>on</strong>g>fire</str<strong>on</strong>g> (<strong>and</strong> the <strong>on</strong>ly case not related to<br />

herbicides where the primary <strong>water</strong> quality st<strong>and</strong>ard<br />

was exceeded) was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California,<br />

where N load<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from atmospheric depositi<strong>on</strong> are<br />

relatively high, <strong>and</strong> the frequent wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

chaparral shrubl<strong>and</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten high <str<strong>on</strong>g>in</str<strong>on</strong>g> their <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severities (Riggan <strong>and</strong> others 1994). Severe burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> this Mediterranean-type resulted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a maximum NO 3-N level <str<strong>on</strong>g>of</str<strong>on</strong>g> 15.3 ppm (mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow compared to 2.5 ppm (mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

from an unburned c<strong>on</strong>trol <strong>water</strong>shed. Maximum c<strong>on</strong>centrati<strong>on</strong><br />

for a moderately burned <strong>water</strong>shed was<br />

9.5 ppm (mg/L). These results are likely to represent<br />

an “unusual resp<strong>on</strong>se” because the <strong>water</strong>sheds studied<br />

were subject to a chr<strong>on</strong>ic atmospheric depositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants. Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the treatment or treatment<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <strong>on</strong> these <strong>water</strong>sheds, levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> the streamflows were well below maximum<br />

allowable c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> most other studies.<br />

Beschta (1990) reached the same c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> his<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow NO 3-N resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> associated treatments.<br />

Table 6.5—Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> forest disturbances <strong>on</strong> maximum NO 3-N levels <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow (Adapted from Neary <strong>and</strong><br />

Hornbeck 1994, Neary <strong>and</strong> Michael 1997, L<strong>and</strong>sberg <strong>and</strong> Tiedemann 2000).<br />

Locati<strong>on</strong> Forest type Treatment Maximum NO 3-N Reference<br />

ppm (mg/L)<br />

1. Harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

M212 ADIRONDACK-NEW ENGLAND MIXED FOREST PROVINCE<br />

New Hampshire Hardwoods Clearcut 6.1 Hornbeck <strong>and</strong> others 1987<br />

M242 CASCADE MIXED-CONIFER-MEADOW FOREST PROVINCE<br />

Oreg<strong>on</strong> Douglas-fir Clearcut 2.1 Brown <strong>and</strong> others 1973<br />

2. Herbicides<br />

M212 ADIRONDACK-NEW ENGLAND MIXED FOREST PROVINCE<br />

New Hampshire Hardwoods Cut, herbicide 17.8 Aubert<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Patric 1974<br />

313 COLORADO PLATEAU SEMIDESERT PROVINCE<br />

Ariz<strong>on</strong>a Chaparral Herbicide 15.3 Davis 1984<br />

3. Fire<br />

231 SOUTHEASTERN MIXED FOREST PROVINCE<br />

South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e Rx <str<strong>on</strong>g>fire</str<strong>on</strong>g>


Tiedemann (1973) <strong>and</strong> Tiedemann <strong>and</strong> others (1978)<br />

show that fertilizer applicati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> resulted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflows<br />

than <str<strong>on</strong>g>fire</str<strong>on</strong>g> al<strong>on</strong>e. It is probably safe to c<strong>on</strong>clude, however,<br />

that neither <str<strong>on</strong>g>fire</str<strong>on</strong>g> nor fertilizati<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g> will<br />

have adverse <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

(Tiedemann <strong>and</strong> others 1978, L<strong>and</strong>sberg <strong>and</strong> others<br />

1999, Scatena 2000).<br />

NO 2-N was reported by itself rather than <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

with N0 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> two studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>on</strong> the chemical c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflows <str<strong>on</strong>g>in</str<strong>on</strong>g> California<br />

<strong>and</strong> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. At the Lex<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Reservoir <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

southern California, Taylor <strong>and</strong> others (1993) found<br />

NO 2-N levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03 ppm (mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflows after<br />

a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> a sub<strong>water</strong>shed that dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the reservoir, while c<strong>on</strong>trol levels were 0.01 ppm (mg/L).<br />

Tiedemann (1973) reported that NO 2-N c<strong>on</strong>centrati<strong>on</strong>s<br />

were below that <str<strong>on</strong>g>of</str<strong>on</strong>g> analytical detecti<strong>on</strong> after a<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>.<br />

Other studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> or prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> both N <strong>and</strong> other dissolved chemical c<strong>on</strong>stituents<br />

are summarized <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g paragraphs.<br />

The observed elevated post<str<strong>on</strong>g>fire</str<strong>on</strong>g> i<strong>on</strong>ic c<strong>on</strong>centrati<strong>on</strong>s<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> these studies returned to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels<br />

after the first flush <str<strong>on</strong>g>of</str<strong>on</strong>g> flows follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> most<br />

cases.<br />

The maximum c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflows <str<strong>on</strong>g>in</str<strong>on</strong>g>creased from less than 0.016 to 0.56 ppm<br />

(mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> the 3 years after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> destroyed the<br />

mixed c<strong>on</strong>ifer forest cover <strong>on</strong> a 1,410 acre (564 ha)<br />

<strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> (Tiedemann <strong>and</strong><br />

others 1978). These <str<strong>on</strong>g>in</str<strong>on</strong>g>creases appeared to be a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased nitrificati<strong>on</strong>. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> total P <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

streamflow from the burned <strong>water</strong>shed were 1.5 to<br />

three times greater than those from an undisturbed<br />

<strong>water</strong>shed. Despite the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>,<br />

elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> these magnitudes <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that the<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> significantly affected the P levels <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow,<br />

at least <str<strong>on</strong>g>in</str<strong>on</strong>g> the short term. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ca, Mg, K, <strong>and</strong> Na <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow before the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

ranged from 12.0 to 14.9 ppm (mg/L). The c<strong>on</strong>centrati<strong>on</strong>s<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.4 to 10.5 ppm (mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

sec<strong>on</strong>d post<str<strong>on</strong>g>fire</str<strong>on</strong>g> year because <str<strong>on</strong>g>of</str<strong>on</strong>g> the diluti<strong>on</strong> caused by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow. These losses were <str<strong>on</strong>g>in</str<strong>on</strong>g>significant<br />

relative to the total capital <str<strong>on</strong>g>of</str<strong>on</strong>g> these nutrients, however.<br />

The chemical quality <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflows from two small<br />

<strong>water</strong>sheds that orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally supported p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

forests <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Ariz<strong>on</strong>a was not greatly affected by<br />

a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (Campbell <strong>and</strong> others 1977). One <strong>water</strong>shed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 20.2 acres (8.1 ha) was severely burned while a<br />

smaller <strong>water</strong>shed <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 acres (4 ha) was moderately<br />

burned. While c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca, Mg, <strong>and</strong> K <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

with the first post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow events from<br />

these <strong>water</strong>sheds, c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these i<strong>on</strong>s decreased<br />

rapidly <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent flow events. Sodium<br />

(Na) c<strong>on</strong>centrati<strong>on</strong>s were largely unaffected by the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

or the observed changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow discharges.<br />

Comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed organic-<str<strong>on</strong>g>in</str<strong>on</strong>g>organic N c<strong>on</strong>centrati<strong>on</strong>s also<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow event <strong>and</strong><br />

then quickly decreased to the level that was found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

streamflow from the unburned <strong>water</strong>shed.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> stream <strong>water</strong> quality changes for<br />

N after prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> are normally less than those<br />

observed after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. It is unlikely that prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g would c<strong>on</strong>sume as much <str<strong>on</strong>g>of</str<strong>on</strong>g> the litter <strong>and</strong> other<br />

organic materials, understory herbaceous vegetati<strong>on</strong>,<br />

or overstory trees as severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s (McNabb <strong>and</strong><br />

Cromack 1990, DeBano <strong>and</strong> others 1998). Stream<br />

chemistry resp<strong>on</strong>ses to prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> an undisturbed<br />

1,163 acre (470 ha) Southwestern p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <strong>water</strong>shed (Gottfried <strong>and</strong> DeBano 1990)<br />

support the speculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal changes <str<strong>on</strong>g>in</str<strong>on</strong>g> N<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Surface fuels were burned<br />

<strong>on</strong> 43 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>water</strong>shed, <strong>and</strong> 5 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

trees were killed. The prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> relatively<br />

small <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> NO 3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> the streamflow, the<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> which did not approach the primary <strong>water</strong><br />

quality st<strong>and</strong>ard. Measures taken to protect streams<br />

<strong>and</strong> riparian corridors with unburned buffers could<br />

also m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> stream chemistry.<br />

Several studies show that <str<strong>on</strong>g>in</str<strong>on</strong>g>creased streamflow<br />

discharges <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

streamflow from burned areas can cause an accelerated<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> N from <strong>water</strong>shed l<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the short term.<br />

While these losses <str<strong>on</strong>g>in</str<strong>on</strong>g> N have not been referenced to the<br />

total N capital <strong>on</strong> a <strong>water</strong>shed, these losses likely pose<br />

little threat to c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued <strong>on</strong>site productivity (DeBano<br />

<strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003).<br />

The primary dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> st<strong>and</strong>ard for NO 3-N<br />

is 10 ppm (mg/L), <strong>and</strong> the st<strong>and</strong>ard for NO 2-N is 1 ppm<br />

(m/L). There is no st<strong>and</strong>ard for dissolved organic N,<br />

NH 4-N, or urea-N <str<strong>on</strong>g>in</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these N forms seldom exceed 1 ppm<br />

(mg/L), <strong>and</strong> dissolved organic N is usually the most<br />

abundant form.<br />

Phosphorus<br />

Phosphorus is present <str<strong>on</strong>g>in</str<strong>on</strong>g> several forms <str<strong>on</strong>g>in</str<strong>on</strong>g> soil soluti<strong>on</strong><br />

<strong>and</strong> streamflow. These are reactive orthophosphate<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>organic phosphate), dissolved complex organic<br />

phosphate, particulate organic phosphate, <strong>and</strong><br />

other <str<strong>on</strong>g>in</str<strong>on</strong>g>organic forms (Ice 1996). Total phosphate<br />

(PO 4-P) is reported as total P <str<strong>on</strong>g>in</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the P resp<strong>on</strong>se to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. PO 4-P is not as readily leached<br />

as NO 3-N because it complexes with organic compounds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil (Black 1968). Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> soil leachates<br />

have reported <str<strong>on</strong>g>in</str<strong>on</strong>g>creased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total phosphorous<br />

due to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g accelerated mobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphorous after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (McColl <strong>and</strong> Grigal 1975,<br />

Knight<strong>on</strong> 1977). PO 4-P c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflows<br />

prior to <str<strong>on</strong>g>fire</str<strong>on</strong>g> can range from 0.007 to 0.17 ppm (mg/L)<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 127


(L<strong>on</strong>gstreth <strong>and</strong> Patten 1975, H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman <strong>and</strong> Ferreira<br />

1976, Wright <strong>and</strong> others 1976, Tiedemann <strong>and</strong> others<br />

1978, Tiedemann <strong>and</strong> others 1988). After wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or the clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> timber followed<br />

by broadcast burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the slash, L<strong>on</strong>gstreth<br />

<strong>and</strong> Patten (1975) reported that PO 4-P c<strong>on</strong>centrati<strong>on</strong>s<br />

stayed the same or <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>on</strong>ly as high as 0.2 ppm<br />

(mg/L).<br />

Phosphorus c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> overl<strong>and</strong> flow from the<br />

hillslopes <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, although these <str<strong>on</strong>g>in</str<strong>on</strong>g>creases are not always sufficient<br />

to alter the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong>shed’s streamflow<br />

regime (L<strong>on</strong>gstreth <strong>and</strong> Patten 1975, Gifford <strong>and</strong> others<br />

1976). There is no established st<strong>and</strong>ard for PO 4-P <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>. Phosphorus can be limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> aquatic<br />

habitats, but <strong>on</strong>ce <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong>, it is taken up quickly by<br />

aquatic organisms, especially algae.<br />

Sulfur<br />

Sulfate (SO 4-S) is relatively mobile <str<strong>on</strong>g>in</str<strong>on</strong>g> soil-<strong>water</strong><br />

systems (Johns<strong>on</strong> <strong>and</strong> Cole 1977). Although not as<br />

well studied as those for N, the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> processes<br />

for S are essentially similar. Observed levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SO 4-S <str<strong>on</strong>g>in</str<strong>on</strong>g> the streamflow from most wildl<strong>and</strong> <strong>water</strong>sheds<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g>herently low. Pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

i<strong>on</strong> can range from as low as 1.17 ppm (mg/L) to as high<br />

as 66 ppm (mg/L), while post<str<strong>on</strong>g>fire</str<strong>on</strong>g> values range from 1.7<br />

to 76 ppm (mg/L). All <str<strong>on</strong>g>of</str<strong>on</strong>g> the SO 4-S c<strong>on</strong>centrati<strong>on</strong>s<br />

reported by L<strong>and</strong>sberg <strong>and</strong> Tiedemann (2000) were<br />

below the sec<strong>on</strong>dary <strong>water</strong> quality st<strong>and</strong>ard for dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>water</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm (mg/L) (U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency 1999).<br />

Chloride<br />

Chloride i<strong>on</strong> (Cl) resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> have been documented<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> several studies (L<strong>and</strong>sberg <strong>and</strong> Tiedemann<br />

2000). All resp<strong>on</strong>ses were significantly lower (less than<br />

5 ppm, or mg/L) than the <strong>water</strong> quality st<strong>and</strong>ard <str<strong>on</strong>g>of</str<strong>on</strong>g> 250<br />

ppm (mg/L) established by the U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency (1999). C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some natural<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl (such as geothermal areas) are reportedly<br />

larger than those produced by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Bicarb<strong>on</strong>ate<br />

Bicarb<strong>on</strong>ate i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> soil soluti<strong>on</strong>s <strong>and</strong> streamflows<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <str<strong>on</strong>g>in</str<strong>on</strong>g>creased as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The<br />

bicarb<strong>on</strong>ate i<strong>on</strong> represents the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal ani<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

soluti<strong>on</strong>, the end product <str<strong>on</strong>g>of</str<strong>on</strong>g> root respirati<strong>on</strong> <strong>and</strong> a<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide c<strong>on</strong>versi<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g> (McColl <strong>and</strong> Cole<br />

1968, Tiedemann <strong>and</strong> others 1979, DeBano <strong>and</strong> others<br />

1998). C<strong>on</strong>comitant fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bicarb<strong>on</strong>ate <strong>and</strong><br />

cati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that bicarb<strong>on</strong>ate is a<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g> carrier <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil soluti<strong>on</strong> (Davis<br />

1987).<br />

Total Dissolved Solids<br />

In their synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific literature <strong>on</strong> the<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from natural<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, L<strong>and</strong>sberg <strong>and</strong> Tiedemann (2000) found<br />

<strong>on</strong>ly two studies that reported c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

dissolved solids (TDS), although the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

other studies have measured some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TDS but not TDS per se. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman <strong>and</strong> Ferreira<br />

(1976) detected TDS c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> about 11 ppm<br />

(mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> the streamflow from an unburned area <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

K<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Cany<strong>on</strong> Nati<strong>on</strong>al Park <str<strong>on</strong>g>of</str<strong>on</strong>g> California <strong>and</strong> 13 ppm<br />

(mg/L) <str<strong>on</strong>g>in</str<strong>on</strong>g> the streamflow from an adjacent burned<br />

area, which had been a mixed c<strong>on</strong>ifer <strong>and</strong> shrub st<strong>and</strong>.<br />

Lathrop (1994) found that Yellowst<strong>on</strong>e Lake <strong>and</strong> Lewis<br />

Lake <str<strong>on</strong>g>in</str<strong>on</strong>g> Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park had pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> TDS<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 65.8 <strong>and</strong> 70 ppm (mg/L), respectively,<br />

<strong>and</strong> that these c<strong>on</strong>centrati<strong>on</strong>s were similar to<br />

those observed after the <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. These values were<br />

significantly below the sec<strong>on</strong>dary st<strong>and</strong>ard <str<strong>on</strong>g>of</str<strong>on</strong>g> TDS for<br />

dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm (mg/L) recommended by<br />

the U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (1999).<br />

Nutrients <strong>and</strong> Heavy Metals<br />

Heavy metals are a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> some forested<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States. Particular c<strong>on</strong>cern<br />

exists about the release <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals to the air <strong>and</strong><br />

eventually to streams by <str<strong>on</strong>g>in</str<strong>on</strong>g>creased prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

programs <strong>and</strong> large wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Lefevre, pers<strong>on</strong>al communicati<strong>on</strong>).<br />

Informati<strong>on</strong> <strong>on</strong> this aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality<br />

<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> use <strong>and</strong> management is relatively scarce.<br />

One potentially important source <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient <strong>and</strong><br />

heavy metal loss from a <strong>water</strong>shed that is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten ignored<br />

is that transported by sediment particles (Gifford<br />

<strong>and</strong> Busby 1973, Fisher <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>ckley 1978, Gosz <strong>and</strong><br />

others 1980, Brooks <strong>and</strong> others 2003). Sediment has<br />

been reported to transport relatively high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients <strong>and</strong> heavy metals (Ang<str<strong>on</strong>g>in</str<strong>on</strong>g>o <strong>and</strong> others 1974,<br />

Potter <strong>and</strong> others 1975), although most <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators<br />

have looked at large river bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

numerous comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bedrock <strong>and</strong> vegetati<strong>on</strong>.<br />

Few studies have focused directly <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nutrient <strong>and</strong> heavy metal losses that are<br />

transported by sediment from smaller upl<strong>and</strong> <strong>water</strong>sheds.<br />

One study reported that sediment losses <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

P, <strong>and</strong> i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow from burned <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chaparral shrubl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> southern California chaparral<br />

can substantially exceed those lost <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong><br />

(DeBano <strong>and</strong> C<strong>on</strong>rad 1978). Nitrogen <strong>and</strong> P losses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

13.5 <strong>and</strong> 3.0 lb/acre (5.1 <strong>and</strong> 3.4 kg/ha), respectively,<br />

were found <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments, as compared to <strong>on</strong>ly trace<br />

levels <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong>. Furthermore, losses <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca, Mg, Na,<br />

<strong>and</strong> K <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> were <strong>on</strong>ly <strong>on</strong>e-fourth <str<strong>on</strong>g>of</str<strong>on</strong>g> the losses <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sediment. However, sediment <strong>and</strong> soluti<strong>on</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

P, K, Mg, Ca, <strong>and</strong> Na were <strong>on</strong>ly a small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

128 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


total pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> nutrient capital <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, litter accumulati<strong>on</strong>s,<br />

<strong>and</strong> the upper 4 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (10 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil.<br />

Biological Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Water________<br />

Accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other decomposed<br />

organic matter <strong>on</strong> the soil surface <str<strong>on</strong>g>of</str<strong>on</strong>g>ten functi<strong>on</strong> as a<br />

filter that removes bacteria <strong>and</strong> other biological organisms<br />

from overl<strong>and</strong> flow. Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>and</strong> snowmelt that percolates through a litter layer or<br />

strip <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter can c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> fewer bacteria than<br />

<strong>water</strong> that had not passed through the strip (DeBano<br />

<strong>and</strong> others 1998, Brooks <strong>and</strong> others 2003). It follows,<br />

therefore, that the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this layer or strip by<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g might result <str<strong>on</strong>g>in</str<strong>on</strong>g> higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial<br />

<strong>and</strong> other biological organisms flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g overl<strong>and</strong><br />

to a stream channel.<br />

Fire Retardants _________________<br />

Fire retardants are frequently used <str<strong>on</strong>g>in</str<strong>on</strong>g> the suppressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Although their <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the soil<strong>water</strong><br />

envir<strong>on</strong>ment are not a direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, their<br />

use <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s can produce adverse<br />

envir<strong>on</strong>mental impacts. A brief discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality is provided here to<br />

acqua<str<strong>on</strong>g>in</str<strong>on</strong>g>t the reader with the topic. More detailed<br />

reviews <strong>and</strong> studies have been completed by Labat<br />

<strong>and</strong> Anders<strong>on</strong> Inc. (1994), Adams <strong>and</strong> Simm<strong>on</strong>s (1999),<br />

Kalabokidis (2000), <strong>and</strong> Gimenez <strong>and</strong> others (2004).<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>cerns with <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant<br />

use are: (1) <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality <strong>and</strong> aquatic organisms,<br />

(2) toxicity to vegetati<strong>on</strong>, <strong>and</strong> (3) human health<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Amm<strong>on</strong>ium-based <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants (diamm<strong>on</strong>ium<br />

phosphate, m<strong>on</strong>oamm<strong>on</strong>ium phosphate, amm<strong>on</strong>ium<br />

sulfate, or amm<strong>on</strong>ium polyphosphate) play an important<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>shed resources from destructive<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (fig. 6.4; table 6.6). However, their<br />

use can affect <strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, <strong>and</strong><br />

they can also be toxic to aquatic biota (table 6.7; see<br />

also chapter 7).<br />

Nitrogen-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants have the potential<br />

to affect the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>, although<br />

the research <strong>on</strong> the applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these retardants to<br />

streams has largely focused <strong>on</strong> their impacts <strong>on</strong> aquatic<br />

envir<strong>on</strong>ments (Norris <strong>and</strong> Webb 1989). For example,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro study to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

retardant formulati<strong>on</strong>s to stream organisms, McD<strong>on</strong>ald<br />

<strong>and</strong> others (1996) evaluated the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> two n<strong>on</strong>foam<br />

retardants c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g SO 4-S, PO 4-P, <strong>and</strong> amm<strong>on</strong>ium<br />

compounds (Fire-trol GST-R <strong>and</strong> Phos-Chek D75-F), a<br />

retardant c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g amm<strong>on</strong>ium <strong>and</strong> phosphate<br />

compounds (Fire-Trol LCG-R), <strong>and</strong> two foam suppressant<br />

compounds that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed neither S, P, nor<br />

amm<strong>on</strong>ium compounds (Phos-Chek WD-881 <strong>and</strong><br />

Figure 6.4—Fire retardant drop from an c<strong>on</strong>tract<br />

P-3 Ori<strong>on</strong>, San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al Forest,<br />

California. (Photo by USDA Forest Service).<br />

Silv-Ex). These <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators found that c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NO3-N <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> rose from (0.08) to 3.93 ppm<br />

(mg/L) after add<str<strong>on</strong>g>in</str<strong>on</strong>g>g the n<strong>on</strong>foam retardants. They also<br />

discovered that NO2-N reached c<strong>on</strong>centrati<strong>on</strong>s as high<br />

as 33.2 ppm (mg/L), well above the primary <strong>water</strong><br />

quality st<strong>and</strong>ard <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 ppm (mg/L). However, the soluti<strong>on</strong>s<br />

they tested were much less c<strong>on</strong>centrated than<br />

that which is used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>fight<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> chemical <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> streams 24 hours<br />

after a retardant drop is amm<strong>on</strong>ia nitrogen (NH3 +<br />

Table 6.6—Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants (Adapted<br />

from Johns<strong>on</strong> <strong>and</strong> S<strong>and</strong>ers 1977).<br />

Trade name <strong>and</strong> Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ent<br />

chemical comp<strong>on</strong>ents C<strong>on</strong>centrate Field mix<br />

- - - - - - - ppm(mg/L) - - - - - -<br />

FIRE-TROL 100<br />

(NH4) 2SO4 635,000 178,624<br />

NH4 173,353 48,764<br />

FIRE-TROL 931<br />

Amm<strong>on</strong>ium polyphosphate 930,000 268,122<br />

NH 4 119,235 34,376<br />

PHOS-CHEK 202<br />

(NH 4) 2HPO 4 833,500 114,085<br />

NH 4 241,372 31,168<br />

PHOS-CHEK 259<br />

(NH 4) 2HPO 4 919,500 155,358<br />

NH 4 251,207 42,443<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 129<br />

NH 4<br />

+ ; table 6.6). Un-i<strong>on</strong>ized amm<strong>on</strong>ia (NH3) is the<br />

pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal toxic comp<strong>on</strong>ent to aquatic species. The<br />

distances downstream <str<strong>on</strong>g>in</str<strong>on</strong>g> which potentially toxic c<strong>on</strong>diti<strong>on</strong>s<br />

persist depend <strong>on</strong> stream volume, the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> retardant drops, <strong>and</strong> the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drops to the<br />

stream l<strong>on</strong>g-axis (table 6.8). While c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>


Table 6.7—Fire retardant lethal levels for aquatic organisms (Adapted from Johns<strong>on</strong><br />

<strong>and</strong> S<strong>and</strong>ers 1977).<br />

24 hour LC50 c<strong>on</strong>centrati<strong>on</strong> 1<br />

FIRE-TROL FIRE-TROL PHOS-CHEK PHOS-CHEK<br />

Organism 100 931 202 259<br />

- - - - - - - - - - - - - - - - - - - (ppm) mg/L - - - - - - - - - - - - - - - - - - -<br />

Coho salm<strong>on</strong><br />

Yolk-sac fry 160 > 500 175 > 200<br />

Swim-up fry 1,100 1,050 210 175<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>gerl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout<br />

> 1,500 1,050 320 250<br />

Yolk-sac fry 158 > 500 140 > 200<br />

Swim-up fry 900 780 210 175<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>gerl<str<strong>on</strong>g>in</str<strong>on</strong>g>g > 1,000 > 1,000 230 175<br />

Bluegill > 1,500 > 1,500 840 600<br />

Fathead m<str<strong>on</strong>g>in</str<strong>on</strong>g>now > 1,500 > 1,500 820 470<br />

Largemouth bass > 1,500 > 1,500 840 720<br />

Scud > 100 > 100 100 > 100<br />

1<br />

LC50 c<strong>on</strong>centrati<strong>on</strong> is the c<strong>on</strong>centrati<strong>on</strong> needed to kill 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the exposed <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

given time period (24 hr).<br />

+<br />

NH3 + NH4 can reach 200 to 300 ppm (mg/L) with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

164 to 328 feet (50-100 m) below drop po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts, toxic<br />

levels may persist for over 3,280 feet (1,000 m) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stream channel.<br />

Inadvertent applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

stream could have <strong>water</strong> quality c<strong>on</strong>sequences for<br />

NO3-N, SO4-S, <strong>and</strong> possibly trace elements. However,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> about these potential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> retardants<br />

<strong>on</strong> <strong>water</strong> quality is limited.<br />

Another source <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern is <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sodium ferrocyanide (YPS) (Little <strong>and</strong> Calfee 2002).<br />

Photo-enhanced YPS has a low lethal c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong> for aquatic organisms. Fortunately, YPS, like the<br />

other retardant chemicals, is adsorbed <strong>on</strong>to organic <strong>and</strong><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral cati<strong>on</strong> exchange sites <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. Thus, its potential<br />

for leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> is reduced.<br />

Gimenez <strong>and</strong> others (2004) c<strong>on</strong>cluded that the most<br />

significant envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants is<br />

the toxic effect <strong>on</strong> aquatic organisms <str<strong>on</strong>g>in</str<strong>on</strong>g> streams. They<br />

noted that the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant used <strong>and</strong> its<br />

placement <strong>on</strong> the l<strong>and</strong>scape are the two ma<str<strong>on</strong>g>in</str<strong>on</strong>g> factors<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impact.<br />

Thus, placement plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> operati<strong>on</strong>al c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant aircraft are critical for m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g impacts<br />

<strong>on</strong> streams <strong>and</strong> lakes <strong>and</strong> their biota.<br />

Table 6.8—Fish mortality related to a hypothetical <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant drop orientati<strong>on</strong><br />

(Adapted from Norris <strong>and</strong> Webb 1989).<br />

Angle to l<strong>on</strong>g axis <str<strong>on</strong>g>of</str<strong>on</strong>g> a stream Distance for 100% mortality<br />

Degrees Positi<strong>on</strong> St<strong>and</strong>ard drop 2 st<strong>and</strong>ard drops<br />

- - - - - - - - - - - - ft (m) - - - - - - - - - - - - -<br />

90 Perpendicular 164 (50) 1,575 (480)<br />

67 164 (50) 1,837 (560)<br />

45 328 (100) 3,281 (1,000)<br />

22 787 (240) >3,281 (>1,000)<br />

0 Over stream 3,281 (1,000) >3,281 (>1,000)<br />

130 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Rodeo-Chediski Fire, 2002: A Water<br />

Quality Case History _____________<br />

The Rodeo-Chediski Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 was the largest<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a’s history (Neary <strong>and</strong> Gottfried<br />

2002, Ffolliott <strong>and</strong> Neary 2003). This <str<strong>on</strong>g>fire</str<strong>on</strong>g> damaged,<br />

destroyed, or disrupted the hydrologic functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

ecological structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

at the head<strong>water</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Salt River, a major<br />

river supply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the city <str<strong>on</strong>g>of</str<strong>on</strong>g> Phoenix’s ma<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> supply<br />

reservoir, Lake Roosevelt. The Rodeo-Chediski<br />

Fire was actually two <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that ignited <strong>on</strong> l<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

White Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Apache Nati<strong>on</strong> <strong>and</strong> merged <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>on</strong>e.<br />

Ars<strong>on</strong> was the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rodeo Fire, which began a<br />

few miles from Cibecue, a small streamside village, <strong>on</strong><br />

June 18, 2002. The Chediski Fire was set <strong>on</strong> the<br />

Reservati<strong>on</strong> as a signal <str<strong>on</strong>g>fire</str<strong>on</strong>g> by a seem<str<strong>on</strong>g>in</str<strong>on</strong>g>gly lost pers<strong>on</strong><br />

a few days later. This sec<strong>on</strong>d <str<strong>on</strong>g>fire</str<strong>on</strong>g> spread out <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol,<br />

mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g toward <strong>and</strong> eventually merged with the <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> still out <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol Rodeo Fire. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g northeastwardly,<br />

the renamed Rodeo-Chediski Fire then<br />

burned <strong>on</strong>to the Apache-Sitgreaves Nati<strong>on</strong>al Forest,<br />

al<strong>on</strong>g the Mogoll<strong>on</strong> Rim <str<strong>on</strong>g>in</str<strong>on</strong>g> central Ariz<strong>on</strong>a, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> the White Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> tourist communities<br />

scattered al<strong>on</strong>g the Mogoll<strong>on</strong> Rim from Heber to Show<br />

Low. Over 30,000 local people were eventually forced<br />

to flee the <str<strong>on</strong>g>in</str<strong>on</strong>g>ferno.<br />

The Rodeo-Chediski Fire had burned 276,507 acres<br />

(111,898 ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> Apache l<strong>and</strong>, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

total <str<strong>on</strong>g>of</str<strong>on</strong>g> 467,066 acres (189,015 ha) were <strong>on</strong> the Apache-<br />

Sitgreaves Nati<strong>on</strong>al Forest. Nearly 500 build<str<strong>on</strong>g>in</str<strong>on</strong>g>gs were<br />

destroyed; more than half <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned structures<br />

were houses <str<strong>on</strong>g>of</str<strong>on</strong>g> local residents or sec<strong>on</strong>d homes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

summer visitors. Rehabilitati<strong>on</strong> efforts began immediately<br />

after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> was c<strong>on</strong>trolled <strong>and</strong> after it was<br />

declared safe to enter <str<strong>on</strong>g>in</str<strong>on</strong>g>to the burned area. Two BAER<br />

teams operated out <str<strong>on</strong>g>of</str<strong>on</strong>g> the White Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Apache<br />

Tribe headquarters at White River, AZ, <strong>and</strong> the other<br />

for the Apache-Sitgreaves Nati<strong>on</strong>al Forest at Show<br />

Low, AZ. Watershed protecti<strong>on</strong> was <str<strong>on</strong>g>of</str<strong>on</strong>g> prime importance<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the municipal <strong>water</strong>shed values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these l<strong>and</strong>s.<br />

Culverts were removed from roads to help mitigate<br />

the anticipated flash flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g that is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten caused by<br />

high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, short-durati<strong>on</strong> m<strong>on</strong>so<strong>on</strong>al ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

events that comm<strong>on</strong>ly occur <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a from early July<br />

through August <strong>and</strong>, occasi<strong>on</strong>ally, <str<strong>on</strong>g>in</str<strong>on</strong>g>to September.<br />

Temporary detenti<strong>on</strong> dams <strong>and</strong> other diversi<strong>on</strong>s were<br />

c<strong>on</strong>structed to divert <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent <strong>water</strong> flows <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated<br />

by these storms away from critical <str<strong>on</strong>g>in</str<strong>on</strong>g>frastructures.<br />

In a major rehabilitati<strong>on</strong> activity, helicopters<br />

ferried bales <str<strong>on</strong>g>of</str<strong>on</strong>g> straw to burned sites susceptible to<br />

erosi<strong>on</strong>, <strong>and</strong> the straw was spread <strong>on</strong>to the ground to<br />

alleviate the erosive impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>so<strong>on</strong>al ra<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly established grasses <strong>and</strong> other<br />

herbaceous plants accompanied this rehabilitative<br />

activity, which c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued <str<strong>on</strong>g>in</str<strong>on</strong>g>to the late summer <strong>and</strong><br />

early autumn.<br />

Water-quality c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> primary <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to<br />

hydrologists, l<strong>and</strong> managers, <strong>and</strong> <strong>water</strong>shed managers<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Southwestern <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are sediment c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>and</strong> dissolved nutrients, specifically nitrogen<br />

<strong>and</strong> phosphorus (DeBano <strong>and</strong> others 1996). In July,<br />

m<strong>on</strong>so<strong>on</strong> thunderstorms <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from<br />

the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>-burned area. While there was not an<br />

opportunity to collect samples to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the quality<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>water</strong> flows from several<br />

<strong>water</strong>sheds with<str<strong>on</strong>g>in</str<strong>on</strong>g> the Rodeo-Chediski Fire area<br />

(Stermer Ridge <strong>water</strong>sheds; Ffolliott <strong>and</strong> Neary 2003),<br />

samples were taken <str<strong>on</strong>g>of</str<strong>on</strong>g> the ash <strong>and</strong> sediment-laden<br />

streamflow farther downstream where the Salt River<br />

enters <str<strong>on</strong>g>in</str<strong>on</strong>g>to Lake Roosevelt. The storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

streamflows c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic debris,<br />

dissolved nutrients (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrogen, phosphorus,<br />

<strong>and</strong> carb<strong>on</strong>), <strong>and</strong> other chemicals that were<br />

released by the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the elevated c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>and</strong> phosphorus may have orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

from the <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants dropped to slow the advancement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The sediment- <strong>and</strong> organic-rich <strong>water</strong> significantly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the Salt River, the<br />

major tributary to the Theodore Roosevelt Reservoir,<br />

a primary source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> for Phoenix <strong>and</strong> its surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

metropolitan communities. The Salt River<br />

Project provides dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> irrigati<strong>on</strong> <strong>water</strong>, as well<br />

as power, to 2 milli<strong>on</strong> residential, bus<str<strong>on</strong>g>in</str<strong>on</strong>g>ess, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial<br />

customers <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2,900 mile 2 (7,511 km 2 ) service<br />

area <str<strong>on</strong>g>in</str<strong>on</strong>g> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Maricopa, Gila, <strong>and</strong> P<str<strong>on</strong>g>in</str<strong>on</strong>g>al Counties,<br />

Ariz<strong>on</strong>a (Autobee 1993). Water is furnished primarily<br />

by the Salt <strong>and</strong> Verde Rivers, which dra<str<strong>on</strong>g>in</str<strong>on</strong>g> a <strong>water</strong>shed<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> 13,000 miles 2 (33,670 km 2 ). Four storage reservoirs<br />

<strong>on</strong> the Salt River form a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous cha<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes<br />

almost 60 miles (96 km) l<strong>on</strong>g. An important supplemental<br />

supply is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from well pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g units.<br />

Capacity assigned to flood c<strong>on</strong>trol is 556,000 acre-feet<br />

(685.8 milli<strong>on</strong> m 3 ). Total storage capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> Salt<br />

River reservoirs is more than 2.4 milli<strong>on</strong> acre-feet<br />

(3.0 trilli<strong>on</strong> m 3 ). Total hydroelectric generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity<br />

is 232 megawatts, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g power from pumped<br />

storage units.<br />

What made this situati<strong>on</strong> more serious than would<br />

be expected were the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rodeo-Chediski Fire<br />

<strong>and</strong> the critically low level <str<strong>on</strong>g>of</str<strong>on</strong>g> the drought-impacted<br />

Roosevelt reservoir, which was less than 15 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its capacity at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The reservoir has a<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age area <str<strong>on</strong>g>of</str<strong>on</strong>g> 5,830 miles 2 (3.7 milli<strong>on</strong> acres or 1.5<br />

milli<strong>on</strong> ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> which about 12 percent was burned <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Rodeo-Chediski Fire. Even with a small percent<br />

burned, there was a c<strong>on</strong>cern that the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> ash <strong>and</strong><br />

debris might threaten the aquatic life <str<strong>on</strong>g>in</str<strong>on</strong>g>habit<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

reservoir, leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g it lifeless for m<strong>on</strong>ths to come. However,<br />

this dire situati<strong>on</strong> failed to materialize. Even<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 131


though some fish died upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir <strong>and</strong> a<br />

few carcasses showed up at the diversi<strong>on</strong> dam above<br />

Roosevelt Dam, the reservoir <strong>water</strong> body itself suffered<br />

little permanent envir<strong>on</strong>mental damage.<br />

The largest pulses <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> quality parameters were<br />

for suspended sediment, c<strong>on</strong>ductivity, <strong>and</strong> turbidity.<br />

Nutrient levels (particularly P <strong>and</strong> N) <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong><br />

shot <str<strong>on</strong>g>of</str<strong>on</strong>g>f the chart <str<strong>on</strong>g>in</str<strong>on</strong>g> the first few days <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (U.S. Geological Survey 2002,<br />

Tecle, pers<strong>on</strong>al communicati<strong>on</strong>; table 6.9) but fell<br />

quickly, <strong>and</strong> therefore, the large algae blooms that<br />

were predicted to form <strong>and</strong> c<strong>on</strong>sume much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>water</strong>’s oxygen did not form. The post<str<strong>on</strong>g>fire</str<strong>on</strong>g> debris <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

<strong>water</strong> was never a health risk to people as most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pollutants were easily removed at <strong>water</strong> treatment<br />

plants. The outcome would be different <str<strong>on</strong>g>in</str<strong>on</strong>g> a situati<strong>on</strong><br />

where a much larger percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> a municipal <strong>water</strong>shed<br />

is burned by a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Management Implicati<strong>on</strong>s ________<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> management c<strong>on</strong>siderati<strong>on</strong>s relate to<br />

<strong>water</strong> quality <strong>and</strong> the use or management <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. These c<strong>on</strong>siderati<strong>on</strong>s are<br />

tied to both Federal <strong>and</strong> State regulati<strong>on</strong>s <strong>and</strong> laws<br />

such as the Nati<strong>on</strong>al Forest Management Act <str<strong>on</strong>g>of</str<strong>on</strong>g> 1976,<br />

the Clean Water Act <str<strong>on</strong>g>of</str<strong>on</strong>g> 1972 as amended, the Code <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Federal Regulati<strong>on</strong>s (36 CFR 219.13), <strong>and</strong> State laws.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> these laws <strong>and</strong> regulati<strong>on</strong>s is to<br />

c<strong>on</strong>serve soil <strong>and</strong> <strong>water</strong> resources, m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize serious<br />

or l<strong>on</strong>g-last<str<strong>on</strong>g>in</str<strong>on</strong>g>g hazards from flood, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d, wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

erosi<strong>on</strong>, or other natural forces, <strong>and</strong> to protect streams,<br />

lakes, wetl<strong>and</strong>s, <strong>and</strong> other bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>. The approach<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these regulati<strong>on</strong>s is to use Best Management<br />

Practices to achieve <strong>water</strong> quality goals <strong>and</strong><br />

protecti<strong>on</strong>. Special attenti<strong>on</strong> is given to l<strong>and</strong> <strong>and</strong><br />

vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> recognizable areas dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by riparian<br />

vegetati<strong>on</strong>.<br />

Several sources <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> measures guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

relate to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> (table 6.10) <strong>and</strong><br />

the management <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (table 6.11) to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong> quality. These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency (1993), the USDA Forest Service<br />

(1988, 1989a,b, 1990a), California Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forestry (1998), Georgia Forestry Associati<strong>on</strong> (1995),<br />

to menti<strong>on</strong> just a few.<br />

In some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances c<strong>on</strong>servati<strong>on</strong> measures may be<br />

prohibitive or at least impractical because <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s, hydrology, weather, fuels, or <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

behavior. The ground rule is to use comm<strong>on</strong> sense<br />

when apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g these guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es. If c<strong>on</strong>servati<strong>on</strong> measures<br />

or actual State-m<strong>and</strong>ated Best Management<br />

Practices are to be used, it is important to clearly<br />

communicate objectives <strong>and</strong> goals at brief<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>and</strong> <strong>on</strong><br />

operati<strong>on</strong>al period <str<strong>on</strong>g>fire</str<strong>on</strong>g> plans. Assistance from staff<br />

hydrologists <strong>and</strong> soil scientists is also crucial <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

successfully apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g these <strong>water</strong> quality protecti<strong>on</strong><br />

guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

Table 6.9—Water quality at the Salt River entrance to Lake Roosevelt, Ariz<strong>on</strong>a, Salt River Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, before<br />

<strong>and</strong> after the Rodeo-Chediski Fire, 2002, compared to exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> quality st<strong>and</strong>ards<br />

(U.S. Geological Survey 2002).<br />

Water quality Dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

parameter Unit st<strong>and</strong>ard Pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> level Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> peak<br />

Arsenic mg/L 0.05 0.05-0.350 0.685<br />

Bicarb<strong>on</strong>ate mg/L 380.0 80-250 312.0<br />

Calcium mg/L 50.0 30-85 144.0<br />

Chloride mg/L 250.0 100-1,100 2,110.0<br />

Copper mg/L 1.0


Table 6.10—Suggested c<strong>on</strong>servati<strong>on</strong> measures for prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Fire type Item Best Management Practice<br />

Prescribed 1 Carefully plan burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g to adhere to weather, time <str<strong>on</strong>g>of</str<strong>on</strong>g> year, <strong>and</strong> fuel c<strong>on</strong>diti<strong>on</strong>s<br />

that will help achieve the desired results <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize impacts <strong>on</strong> <strong>water</strong><br />

quality.<br />

2 Evaluate ground c<strong>on</strong>diti<strong>on</strong>s to c<strong>on</strong>trol the pattern <strong>and</strong> timimg <str<strong>on</strong>g>of</str<strong>on</strong>g> the burn.<br />

3 Intense prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> for site preparati<strong>on</strong> should not be c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Streamside Management Z<strong>on</strong>es (SMZ) except to achieve riparian<br />

vegetati<strong>on</strong> management objectives.<br />

4 Pil<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g for slash removal should not be c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> SMZs.<br />

5 Avoid c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> SMZs.<br />

6 Avoid c<strong>on</strong>diti<strong>on</strong>s requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g extensive blad<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es by heavy equipment.<br />

7 Use h<strong>and</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, <str<strong>on</strong>g>fire</str<strong>on</strong>g>breaks, <strong>and</strong> hoselays to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize blad<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

8 Use natural or <str<strong>on</strong>g>in</str<strong>on</strong>g>-place barriers to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize the need for <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong>.<br />

9 C<strong>on</strong>struct <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> a manner that m<str<strong>on</strong>g>in</str<strong>on</strong>g>imizes erosi<strong>on</strong> <strong>and</strong> prevents<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from directly enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>courses.<br />

10 Locate <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <strong>on</strong> the c<strong>on</strong>tour whenever possible, <strong>and</strong> avoid straight updownhill<br />

placement<br />

11 Install grades, ditches, <strong>and</strong> <strong>water</strong> bars while the l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is be<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>structed.<br />

12 Install <strong>water</strong> bars <strong>on</strong> any <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g up-down slope, <strong>and</strong> direct run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong>to<br />

a filter strip or sideslope, not <str<strong>on</strong>g>in</str<strong>on</strong>g>to a dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age.<br />

13 C<strong>on</strong>struct <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es at a grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 percent or less where possible.<br />

14 Adequately cross-ditch all <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es at time <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>.<br />

15 C<strong>on</strong>struct simple diversi<strong>on</strong> ditches or turnouts at <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals as needed to direct<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g>f a plowed l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>and</strong> <strong>on</strong>to undisturbed forest floor or<br />

vegetati<strong>on</strong> for dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> soil particles.<br />

16 C<strong>on</strong>struct <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <strong>on</strong>ly as deep <strong>and</strong> wide as necessary to c<strong>on</strong>trol the spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

17 Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the erosi<strong>on</strong> c<strong>on</strong>trol measures <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es after the burn.<br />

18 Revegetate <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es with adapted herbaceous species. Native plants are<br />

preferable when there are adequate sources <str<strong>on</strong>g>of</str<strong>on</strong>g> seed.<br />

19 Execute burns with a well-tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed crew <strong>and</strong> avoid high-severity burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Table 6.11—Suggested c<strong>on</strong>servati<strong>on</strong> measures for wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Fire type Item Best Management Practice<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 1 Review <strong>and</strong> use BMPs listed for prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s when possible.<br />

2 Whenever possible, avoid us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>-retardant chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> SMZs <strong>and</strong> over<br />

<strong>water</strong>courses, <strong>and</strong> use measures to prevent their run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>water</strong>courses.<br />

3 Do not clean retardant applicati<strong>on</strong> equipment <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>courses or locati<strong>on</strong>s that<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to <strong>water</strong>ways.<br />

4 Close <strong>water</strong> wells excavated for wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong> activities as so<strong>on</strong> as<br />

practical follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>trol.<br />

5 Provide advance plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>fire</str<strong>on</strong>g>fighters that c<strong>on</strong>siders <strong>water</strong><br />

quality impacts when fight<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. This can <str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

awareness so direct applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants to <strong>water</strong>bodies is avoided<br />

<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es are placed <str<strong>on</strong>g>in</str<strong>on</strong>g> the least detrimental positi<strong>on</strong>.<br />

6 Avoid heavy equipment use <strong>on</strong> fragile <strong>soils</strong> <strong>and</strong> steep slopes.<br />

7 Implement Burned Area Emergency Rehabilitati<strong>on</strong> (BAER) team<br />

recommendati<strong>on</strong>s for <strong>water</strong>shed stabilizati<strong>on</strong> as so<strong>on</strong> as possible.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 133


Summary ______________________<br />

When a wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurs, the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal c<strong>on</strong>cerns<br />

for change <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> quality are: (1) the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment; (2) the potential <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrates, especially<br />

if the foliage be<str<strong>on</strong>g>in</str<strong>on</strong>g>g burned is <str<strong>on</strong>g>in</str<strong>on</strong>g> an area chr<strong>on</strong>ic<br />

atmospheric depositi<strong>on</strong>; (3) the possible <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals from <strong>soils</strong> <strong>and</strong> geologic sources with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the burned area; <strong>and</strong> (4) the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant<br />

chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g>to streams that can reach levels toxic<br />

to aquatic organisms.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality<br />

is primarily driven by <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, <strong>and</strong> not necessarily<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. Fire severity is a qualitative term<br />

describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed, while <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is a quantitative measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

release (see chapter 1). In other words, the more severe<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the greater the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed <strong>and</strong><br />

nutrients released, <strong>and</strong> the more susceptible the site is<br />

to erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to the stream where<br />

they could potentially affect <strong>water</strong> quality. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

usually are more severe than prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. As a<br />

result, they are more likely to produce significant<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality. On the other h<strong>and</strong>, prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are designed to be less severe <strong>and</strong> would be<br />

expected to produce less effect <strong>on</strong> <strong>water</strong> quality. Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> allows the manager the opportunity to<br />

c<strong>on</strong>trol the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> to avoid creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

large areas burned at high severity. The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity is also related to the vegetati<strong>on</strong> type. For<br />

example, <str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong>s the differences between prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> are probably small. In forested<br />

envir<strong>on</strong>ments, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality will probably be much lower after<br />

a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> than after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

larger amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed <str<strong>on</strong>g>in</str<strong>on</strong>g> a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. We<br />

expect canopy-c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s to be the greatest<br />

c<strong>on</strong>cern to managers because <str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> canopy<br />

coupled with the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil aggregates. These<br />

losses present the worst-case scenario <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> quality. The differences between wild <strong>and</strong> prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> shrubl<strong>and</strong>s are probably <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate<br />

between those seen <str<strong>on</strong>g>in</str<strong>on</strong>g> grass <strong>and</strong> forest envir<strong>on</strong>ments.<br />

Another important determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality is slope. Steepness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the slope has a significant <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to stream channels where it can<br />

affect <strong>water</strong> quality. Wright <strong>and</strong> others (1976) found<br />

that as slope <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, erosi<strong>on</strong><br />

from slopes accelerated. If at all possible, the vegetative<br />

canopy <strong>on</strong> steep, erodible slopes needs to be<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, particularly if adequate streamside<br />

buffer strips do not exist to trap the large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment <strong>and</strong> nutrients that could be transported<br />

quickly <str<strong>on</strong>g>in</str<strong>on</strong>g>to the stream channel. It is important to<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> streamside buffer strips whenever possible,<br />

especially when develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> plans. These<br />

buffer strips will capture much <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>and</strong><br />

nutrients from burned upslope areas.<br />

Nitrogen is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern to <strong>water</strong> quality. If <strong>soils</strong> <strong>on</strong> a<br />

particular site are close to N saturati<strong>on</strong>, it is possible<br />

to exceed maximum c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N<br />

(10 ppm or 10 mg/L) after a severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Such areas<br />

should not have N-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g fertilizer applied after<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Review chapter 3 for more discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N.<br />

Fire retardants typically c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

<strong>and</strong> they can cause <strong>water</strong> quality problems where<br />

drops are made close to streams.<br />

The propensity for a site to develop <strong>water</strong> repellency<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g> must be c<strong>on</strong>sidered (see chapter 2). Waterrepellent<br />

<strong>soils</strong> do not allow precipitati<strong>on</strong> to penetrate<br />

down <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> therefore are c<strong>on</strong>ducive to<br />

erosi<strong>on</strong>. Severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> such sites can put large amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to surface <strong>water</strong>.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, heavy ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> recently burned l<strong>and</strong> can<br />

seriously degrade <strong>water</strong> quality. Severe erosi<strong>on</strong> <strong>and</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f are not limited to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> sites al<strong>on</strong>e. But if<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> storms deliver large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

or short-durati<strong>on</strong> high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls, accelerated<br />

erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f can occur even after a carefully<br />

planned prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. C<strong>on</strong>versely, if below-average<br />

precipitati<strong>on</strong> occurs after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, there may not be<br />

a substantial <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> no<br />

effect <strong>on</strong> <strong>water</strong> quality.<br />

Fire managers can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

<strong>water</strong> quality by careful plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g before prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, avoid<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

steep slopes, <strong>and</strong> limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> potentially <strong>water</strong>-repellent<br />

<strong>soils</strong> will reduce the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality.<br />

134 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


John N. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne<br />

Gerald R. Jacoby<br />

Chapter 7:<br />

Aquatic Biota<br />

Fire Effects <strong>on</strong> Fish ______________<br />

Prior to the 1990s, little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> existed <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes <strong>and</strong> their habitats (fig. 7.1).<br />

Severs<strong>on</strong> <strong>and</strong> R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne (1988) reported that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> riparian-stream <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>—<br />

that is, habitat for fishes—was <strong>on</strong> hydrological <strong>and</strong><br />

erosi<strong>on</strong>al resp<strong>on</strong>ses to vegetati<strong>on</strong> removal <strong>and</strong> resultant<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> sedimentati<strong>on</strong> <strong>and</strong> <strong>water</strong> quality.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these studies were c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1970s<br />

(Anders<strong>on</strong> 1976, Tiedemann <strong>and</strong> others 1978) <strong>and</strong><br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>water</strong> quality <strong>and</strong> quantity <str<strong>on</strong>g>effects</str<strong>on</strong>g>, algae,<br />

<strong>and</strong> aquatic micro- <strong>and</strong> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly,<br />

they addressed the potential “<str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g>”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes; n<strong>on</strong>e addressed the “direct <str<strong>on</strong>g>effects</str<strong>on</strong>g>” <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes.<br />

The Yellowst<strong>on</strong>e Fires <str<strong>on</strong>g>in</str<strong>on</strong>g> 1988 ushered <str<strong>on</strong>g>in</str<strong>on</strong>g> an extensive<br />

effort to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e both the direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong><br />

others 1989, M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> Brock1991). Other studies<br />

<strong>on</strong> fishes were c<strong>on</strong>ducted follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g some <str<strong>on</strong>g>of</str<strong>on</strong>g> the historically<br />

worst wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern United States<br />

Figure 7.1—Crown<str<strong>on</strong>g>in</str<strong>on</strong>g>g Clear Creek Fire, Salm<strong>on</strong>, Idaho.<br />

(Photo by Karen Wattenmaker).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 135


(R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 1996, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Neary 1996). The result is that<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

fishes <strong>and</strong> their habitats has been generated <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

1990s <strong>and</strong> <strong>on</strong> a regi<strong>on</strong>al basis. By the late 1990s,<br />

summary <strong>and</strong> review papers <strong>on</strong> the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fishes, were drafted<br />

(Reiman <strong>and</strong> Clayt<strong>on</strong> 1997, Gresswell 1999), which<br />

brought 20th century <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> together <strong>and</strong> suggested<br />

future research <strong>and</strong> management directi<strong>on</strong> for<br />

both corroborat<str<strong>on</strong>g>in</str<strong>on</strong>g>g aquatics-fisheries <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management<br />

<strong>and</strong> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native, sensitive species<br />

(fig. 7.2). This state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-our-knowledge documentati<strong>on</strong><br />

is what we use to base 21st century fisheries <strong>and</strong><br />

aquatic management relative to both wild <strong>and</strong> prescripti<strong>on</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased number, size, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s commenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western <strong>and</strong> Southwestern<br />

United States, we now see a marked <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> data describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> post-wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> events<br />

<strong>on</strong> fishes (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Carter, <str<strong>on</strong>g>in</str<strong>on</strong>g> press, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 2003a,b).<br />

While before the turn <str<strong>on</strong>g>of</str<strong>on</strong>g> the century we had <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> salm<strong>on</strong>id species <strong>on</strong>ly, now the<br />

data base <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes a dozen native fish species <strong>and</strong><br />

several n<strong>on</strong>native fish species (table 7.1). Key messages<br />

from these data are discussed below.<br />

Direct Fire Effects<br />

Fire can result <str<strong>on</strong>g>in</str<strong>on</strong>g> immediate mortalities to fishes,<br />

but few studies have documented direct mortality<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> (McMah<strong>on</strong> <strong>and</strong> de Calesta 1990,<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> Brock 1991, Reiman <strong>and</strong> others 1997).<br />

High severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> heavy fuel <strong>and</strong> slash accumulati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the riparian z<strong>on</strong>e are the comm<strong>on</strong> predispos<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

factors for direct fish mortality. Mor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> Lantz<br />

(1975) found some fish mortality after prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

c<strong>on</strong>ducted after harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the Alsea Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Figure 7.2—Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> encroach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a riparian area,<br />

M<strong>on</strong>tana, 2002. (Photo courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong><br />

Management, Nati<strong>on</strong>al Interagency Fire Center, Image<br />

Portal).<br />

Oreg<strong>on</strong>. The fish kill was c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to stream heads<br />

where slash accumulati<strong>on</strong>s were heavy <strong>and</strong> the prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> reached levels <str<strong>on</strong>g>of</str<strong>on</strong>g> high severity. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne<br />

(1996) found no significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> three streams as a direct result <str<strong>on</strong>g>of</str<strong>on</strong>g> a large <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(Dude Fire, Ariz<strong>on</strong>a, 1990) that burned across the<br />

<strong>water</strong>sheds encompass<str<strong>on</strong>g>in</str<strong>on</strong>g>g them. Although the Dude<br />

Fire had large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

riparian areas either suffered <strong>on</strong>ly low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> or<br />

did not burn at all. Reiman <strong>and</strong> others (1997) reported<br />

both dead fish <strong>and</strong> reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> stream with no live fish<br />

after a high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> burned through two riparian<br />

corridors <str<strong>on</strong>g>in</str<strong>on</strong>g> Idaho. On the other h<strong>and</strong>, no mortalities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the endangered Gila trout were reported immediately<br />

after the Divide Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> southwestern New Mexico<br />

(Propst <strong>and</strong> others 1992).<br />

Key factors <str<strong>on</strong>g>in</str<strong>on</strong>g> immediate post<str<strong>on</strong>g>fire</str<strong>on</strong>g> fish mortality are<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the riparian area, the riparian fuel load, <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity, <strong>and</strong> stream size. Small streams with high<br />

fuel loads <strong>and</strong> high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g> are the <strong>on</strong>es most<br />

likely to suffer immediate aquatic organism mortality<br />

from <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Fire retardants can also be a source <str<strong>on</strong>g>of</str<strong>on</strong>g> fish mortality<br />

(chapter 6 this volume, Van Meter <strong>and</strong> Hardy 1975).<br />

Dead fish have been reported follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant<br />

applicati<strong>on</strong> (J<strong>on</strong>es <strong>and</strong> others 1989); however, documentati<strong>on</strong><br />

is poor (Norris <strong>and</strong> Webb 1989). The number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> retardant drops <strong>and</strong> orientati<strong>on</strong> to the stream<br />

are key factors determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g fish mortality.<br />

Indirect Fire Effects<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> fishes are better<br />

documented <strong>and</strong> can be significant (Reiman <strong>and</strong><br />

Clayt<strong>on</strong> 1997). With<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 weeks after the Divide Fire <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

New Mexico, a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle Gila trout was collected from<br />

Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> Diam<strong>on</strong>d Creek. Sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 m<strong>on</strong>ths later suggested<br />

extirpati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this endangered species from this<br />

head<strong>water</strong> stream (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Neary 1996). Similarly,<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne (1996) reported dead fishes <strong>on</strong> streambanks 2<br />

weeks post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> documented <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle brook<br />

trout at spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g outflow <str<strong>on</strong>g>in</str<strong>on</strong>g> Dude Creek rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 3<br />

m<strong>on</strong>ths after the Dude Fire. In both cases, “slurry ash<br />

flows” appeared resp<strong>on</strong>sible for fish mortality with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> summer m<strong>on</strong>so<strong>on</strong>s <strong>and</strong> basically local extirpati<strong>on</strong><br />

after several m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stream corridors result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from heavy m<strong>on</strong>so<strong>on</strong> precipitati<strong>on</strong><br />

<strong>and</strong> vegetati<strong>on</strong> removal (fig. 7.3).<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Carter (<str<strong>on</strong>g>in</str<strong>on</strong>g> press) documented the complete<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> four species <strong>and</strong> more than 2,000 <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

fishes from the <str<strong>on</strong>g>fire</str<strong>on</strong>g> impacted reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>on</strong>il Creek,<br />

New Mexico, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the P<strong>on</strong>il Complex 2002 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

(table 7.2). Drought c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> stream <str<strong>on</strong>g>in</str<strong>on</strong>g>termittency<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with ash <strong>and</strong> flood flows synergistically<br />

resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> this total loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Carter<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g> press). By comparis<strong>on</strong>, post<str<strong>on</strong>g>fire</str<strong>on</strong>g> ash <strong>and</strong> flood flows<br />

136 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 7.1—Species that have been affected by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern United States from 1989 to<br />

2003. Species are listed by respective-named <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> locati<strong>on</strong>s. N<strong>on</strong>native species are<br />

denoted by an asterisk.<br />

Fire State Comm<strong>on</strong> name Scientific name Stream<br />

Divide AZ Gila trout Oncorhynchus gilae Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> Diam<strong>on</strong>d<br />

Dude AZ *Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout Oncorhynchus mykiss Dude <strong>and</strong> Ellis<strong>on</strong><br />

*Brook trout Salvel<str<strong>on</strong>g>in</str<strong>on</strong>g>us f<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>alis B<strong>on</strong>ita Creek<br />

P<strong>on</strong>il NM *Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout Oncorhynchus mykiss P<strong>on</strong>il<br />

Blacknose dace Rh<str<strong>on</strong>g>in</str<strong>on</strong>g>ichthys atratulus P<strong>on</strong>il<br />

Creek chub Semotilus atromaculatus P<strong>on</strong>il<br />

White sucker Catostomus commers<strong>on</strong>i P<strong>on</strong>il<br />

Borrego NM *Brown trout Salmo trutta Rio Medio<br />

Cub Mtn. NM Desert sucker Catostomus clarki West Fork Gila<br />

S<strong>on</strong>ora sucker Catostomus <str<strong>on</strong>g>in</str<strong>on</strong>g>signis West Fork Gila<br />

L<strong>on</strong>gf<str<strong>on</strong>g>in</str<strong>on</strong>g> dace Agosia chrysogaster West Fork Gila<br />

Speckled dace Rh<str<strong>on</strong>g>in</str<strong>on</strong>g>ichthys osculus West Fork Gila<br />

Spikedace Meda fulgida West Fork Gila<br />

Loach M<str<strong>on</strong>g>in</str<strong>on</strong>g>now Rh<str<strong>on</strong>g>in</str<strong>on</strong>g>ichthys cobitis West Fork Gila<br />

Roundtail chub Gila robusta West Fork Gila<br />

Picture AZ Head<strong>water</strong> chub Gila nigra Turkey (T), R, S<br />

Speckled dace Rh<str<strong>on</strong>g>in</str<strong>on</strong>g>ichthys osculus T, Rock (R), S<br />

Desert Sucker Catostomus clarki T, R, Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g (S)<br />

*Green sunfish Lepomis cyanellus R, S<br />

*Yellow bullhead Ameiurus natalis R, S<br />

*Brown trout Salmo trutta R, S<br />

Dry Lakes NM Gila chub Gila <str<strong>on</strong>g>in</str<strong>on</strong>g>termedia Turkey<br />

Figure 7.3—Slurry ash flow after the Rodeo-Chediski<br />

Fire, Apache-Sitgreaves Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a, 2002.<br />

(Photo by Daniel Neary).<br />

Table 7.2—Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish species abundance <strong>and</strong><br />

total fish numbers <str<strong>on</strong>g>in</str<strong>on</strong>g> P<strong>on</strong>il Creek, site <strong>on</strong>e, at<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itial (June) <strong>and</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al autumn (October) sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

2002.<br />

M<strong>on</strong>th<br />

Species June October<br />

- - - - Number <str<strong>on</strong>g>of</str<strong>on</strong>g> fish - - - - -<br />

Site 1: (Unburned)<br />

Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout 18 13<br />

White sucker 8 5<br />

Creek chub 6 2<br />

L<strong>on</strong>gnose dace 15 29<br />

TOTAL: Site 1 47 49<br />

TOTAL: Sites 2-8 1,910 0<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 137


<str<strong>on</strong>g>in</str<strong>on</strong>g> Rio Medio, New Mexico, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Borrego Fire,<br />

reduced brown trout Salmo trutta populati<strong>on</strong>s by 70<br />

percent from June to October 2002 (table 7.3). Similarly,<br />

six native cypr<str<strong>on</strong>g>in</str<strong>on</strong>g>iform (m<str<strong>on</strong>g>in</str<strong>on</strong>g>now <strong>and</strong> sucker)<br />

species were reduced 70 percent <str<strong>on</strong>g>in</str<strong>on</strong>g> the West Fork <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Gila River follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Cub Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Fire<br />

(table 7.4). Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these streams had summer, baseflush<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

flows that apparently diluted the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ash <strong>and</strong> flood flows from July to October 2002 <strong>and</strong><br />

enabled fishes to survive <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-impacted reaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the river. In 2003, the Picture Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a impacted<br />

three streams <strong>and</strong> six species <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

three native species). It markedly altered stream<br />

habitat <strong>on</strong> the T<strong>on</strong>to Nati<strong>on</strong>al Forest (Carter <strong>and</strong><br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <str<strong>on</strong>g>in</str<strong>on</strong>g> press). Overall, fish numbers were reduced<br />

by 90 percent (fig. 7.4). F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, two <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, the Lake<br />

Complex <str<strong>on</strong>g>in</str<strong>on</strong>g> New Mexico <strong>and</strong> the Aspen Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a,<br />

probably resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> total loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the endangered<br />

Gila chub (Gila <str<strong>on</strong>g>in</str<strong>on</strong>g>termedia) <str<strong>on</strong>g>in</str<strong>on</strong>g> two streams. In<br />

summary, short-term data suggest from 70 percent to<br />

total loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>-impacted reaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streams <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 2003a,b).<br />

Bozek <strong>and</strong> Young (1994) noted mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>ids 2 years post<str<strong>on</strong>g>fire</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g heavy<br />

precipitati<strong>on</strong> <strong>and</strong> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a burned <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Death was attributed to the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Table 7.3—Pre- <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brown trout densities<br />

per 50-m reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> stream, Rio Medio, Santa<br />

Fe Nati<strong>on</strong>al Forest. Percent reducti<strong>on</strong>s between<br />

June <strong>and</strong> October are <str<strong>on</strong>g>in</str<strong>on</strong>g> parentheses. Sites 2 <strong>and</strong><br />

3 were not sampled <str<strong>on</strong>g>in</str<strong>on</strong>g> August.<br />

M<strong>on</strong>th<br />

Site June August October<br />

- - - - - - Number <str<strong>on</strong>g>of</str<strong>on</strong>g> fish per 50 m reach - - - - - -<br />

1 74 33 21 (72)<br />

2 77 — 19 (75)<br />

3 97 — 18 (86)<br />

suspended sediment load<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In M<strong>on</strong>tana <strong>and</strong> Idaho,<br />

Novak <strong>and</strong> White (1989) reported that flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

debris flows extirpated fish from stream reaches below<br />

forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

Other Anthropogenic Influenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g Factors<br />

Watershed disturbances have occurred <strong>on</strong> the l<strong>and</strong>scapes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Forests for the past century. Roads<br />

to support timber harvest, timber harvest itself, <strong>and</strong><br />

graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds have cumulatively disturbed<br />

<strong>and</strong> altered <strong>water</strong>sheds. Dams, diversi<strong>on</strong>s, <strong>and</strong> road<br />

culverts, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>cert with <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>native<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes, have fragmented <strong>and</strong> isolated native<br />

fish populati<strong>on</strong>s (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 2003a,b). Fire suppressi<strong>on</strong><br />

itself has greatly altered the vegetative <strong>and</strong> litter<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> forested l<strong>and</strong>scapes (Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong><br />

Moore 1992, Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> others 1994), <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

tree densities <strong>and</strong> litter loads. These comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed have<br />

facilitated <str<strong>on</strong>g>in</str<strong>on</strong>g>tense crown<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that can be more<br />

devastat<str<strong>on</strong>g>in</str<strong>on</strong>g>g to fishes <strong>and</strong> aquatic habitats (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong><br />

Neary 1996).<br />

Temporal-Spatial Scales<br />

Most <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that burn <strong>on</strong> the l<strong>and</strong>scape are less than<br />

several acres (1 ha) <str<strong>on</strong>g>in</str<strong>on</strong>g> size because they are normally<br />

suppressed through <str<strong>on</strong>g>fire</str<strong>on</strong>g> management. By comparis<strong>on</strong>,<br />

<strong>on</strong>ly 1 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are resp<strong>on</strong>sible for<br />

more than 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>and</strong>scaped burned<br />

(DeBano <strong>and</strong> others 1998). Most studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes <strong>and</strong> aquatic systems are <str<strong>on</strong>g>of</str<strong>on</strong>g> short term<br />

(less than 5 years) (Gresswell 1999). Although attempts<br />

have been made to extrapolate the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic systems <strong>and</strong> organisms to a <strong>water</strong>shed<br />

scale, this <str<strong>on</strong>g>in</str<strong>on</strong>g> reality has not been achieved to date<br />

(Gresswell 1999). Attempts to c<strong>on</strong>nect the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> 25 to 50 years previous have been made (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong><br />

Neary 1996, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 2003a,b, Alb<str<strong>on</strong>g>in</str<strong>on</strong>g> 1979) but are want<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

at best. Sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> two streams impacted by the<br />

Dude Fire (1990), a decade after the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, suggests<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> stream fish populati<strong>on</strong>s may be<br />

Table 7.4—Total numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> 50-meter reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> stream <str<strong>on</strong>g>in</str<strong>on</strong>g> the West<br />

Fork <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gila River, July <strong>and</strong> October, 2002, after the Cub<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Fire.<br />

Date Stream c<strong>on</strong>diti<strong>on</strong> Site 1 Site 2<br />

- - Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish - -<br />

Early July Post-Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 168 560<br />

Late July Post-Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, After 1 st Storm 278 481<br />

October Post-Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, After 2 nd Storm 50 118<br />

138 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Figure 7.4—Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the Picture Fire <strong>on</strong> fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g Creek, T<strong>on</strong>to Nati<strong>on</strong>al Forest, 2003.<br />

chr<strong>on</strong>ic (fig. 7.5). Further, attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to simplify these<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> time <strong>and</strong> space is not advisable.<br />

Species C<strong>on</strong>siderati<strong>on</strong>s<br />

Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes to a stream can occur quickly<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <strong>and</strong> refugia<br />

populati<strong>on</strong>s to replenish locally extirpated populati<strong>on</strong>s<br />

(Propst <strong>and</strong> others 1992, Reiman <strong>and</strong> Clayt<strong>on</strong><br />

1997, Gresswell 1999, R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne <strong>and</strong> Calamusso <str<strong>on</strong>g>in</str<strong>on</strong>g> press).<br />

In the Southwest, fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> streams as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> uses, coupled with fisheries management<br />

such as the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>native fishes,<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten preclude access <strong>and</strong> replenish<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes<br />

to a <str<strong>on</strong>g>fire</str<strong>on</strong>g>-extirpated stream. A big c<strong>on</strong>siderati<strong>on</strong> is<br />

whether the species is a threatened or endangered<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish<br />

Sampled - 2001<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

NATIVES NONNATIVES<br />

PINE BONI ELLS HORT CHRS<br />

DUDE FIRE STREAM<br />

Figure 7.5—Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> fish numbers <str<strong>on</strong>g>in</str<strong>on</strong>g> two streams,<br />

B<strong>on</strong>ita (BONI) <strong>and</strong> Ellis<strong>on</strong> (ELLS) Creeks, compared to<br />

three n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> impacted streams, P<str<strong>on</strong>g>in</str<strong>on</strong>g>e (PINE), Hort<strong>on</strong><br />

(HORT), <strong>and</strong> Christopher (CHRS) Creeks, 11 years after<br />

the Dude Fire, 1990, T<strong>on</strong>to Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a.<br />

Before<br />

After<br />

<strong>on</strong>e, such as the Gila trout <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest or the<br />

Bull or redb<strong>and</strong> trout <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific Northwest. These<br />

cases may necessitate quick removal <str<strong>on</strong>g>of</str<strong>on</strong>g> surviv<str<strong>on</strong>g>in</str<strong>on</strong>g>g fishes<br />

prior to ash flows or <str<strong>on</strong>g>in</str<strong>on</strong>g>tense flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

<strong>water</strong>shed denudati<strong>on</strong>. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> put <strong>and</strong> take, <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced<br />

sport fishes, these can always be replenished<br />

through stock<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Managers should be vigilant <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

opportunities to restore native stocks or races <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fishes to streams where <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced species have been<br />

removed through the aftermath <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. This has<br />

been successfully completed for the Gila trout <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Dude Creek a decade after extirpati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a brook<br />

trout populati<strong>on</strong> by the Dude Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 1990.<br />

Summary <strong>and</strong> General Management<br />

Implicati<strong>on</strong>s for Fish<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fish are mostly <str<strong>on</strong>g>in</str<strong>on</strong>g>direct,<br />

with most studies dem<strong>on</strong>strat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ash flows, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic regimes, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> suspended sediment <strong>on</strong> fishes. These impacts<br />

are marked, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 70 percent to total loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fishes. There are some documented <str<strong>on</strong>g>in</str<strong>on</strong>g>stances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s kill<str<strong>on</strong>g>in</str<strong>on</strong>g>g fish directly (Reiman <strong>and</strong> others 1997).<br />

The largest problems arise from the l<strong>on</strong>ger term<br />

impact <strong>on</strong> habitat that <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes changes <str<strong>on</strong>g>in</str<strong>on</strong>g> stream<br />

temperature due to plant understory <strong>and</strong> overstory<br />

removal, ash-laden slurry flows, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> flood<br />

peakflows, <strong>and</strong> sedimentati<strong>on</strong> due to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased l<strong>and</strong>scape<br />

erosi<strong>on</strong> (fig. 7.6).<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

fishes has been generated s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce about 1990. The<br />

Yellowst<strong>on</strong>e Fires <str<strong>on</strong>g>of</str<strong>on</strong>g> 1988 resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> extensive study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fishes.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants <strong>on</strong> fishes are observati<strong>on</strong>al<br />

<strong>and</strong> not well documented. Further, all <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

is from forested biomes as opposed to grassl<strong>and</strong>s.<br />

Anthropogenic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences, largely l<strong>and</strong> use activities<br />

over the past century, cumulatively <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 139


Figure 7.6—Four-Corners Fire encroach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a lake<br />

near Crane Prairie, Oreg<strong>on</strong>. (Photo by Tom Iraci).<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes. Fire suppressi<strong>on</strong> al<strong>on</strong>e has affected<br />

vegetati<strong>on</strong> densities <strong>on</strong> the l<strong>and</strong>scape, <strong>and</strong> affected the<br />

severity <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, its <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> fishes. Most studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes are short term (less than 5 years) <strong>and</strong><br />

local <str<strong>on</strong>g>in</str<strong>on</strong>g> nature. A l<strong>and</strong>scape approach to analyses has<br />

not been made to date. Fish can recover rapidly from<br />

populati<strong>on</strong> reducti<strong>on</strong>s or loss but can be markedly<br />

limited or precluded by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> stream c<strong>on</strong>nectivity<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> human-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced barriers. Fisheries management<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> should be based <strong>on</strong> species <strong>and</strong> fisheries<br />

<strong>and</strong> their management status. Managers should<br />

be vigilant <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunities to restore native fishes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

event <str<strong>on</strong>g>of</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced, n<strong>on</strong>native, translocated<br />

species.<br />

Recent advances <str<strong>on</strong>g>in</str<strong>on</strong>g> atmospheric, mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <strong>and</strong> terrestrial<br />

ecosystem science have resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> the correlati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ocean temperature oscillati<strong>on</strong>s, tree r<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

data, <strong>and</strong> drought. These newer advances, al<strong>on</strong>g with<br />

current <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes <strong>and</strong> data<br />

<strong>on</strong> climate change, drought, <strong>and</strong> recent <str<strong>on</strong>g>in</str<strong>on</strong>g>sect <str<strong>on</strong>g>in</str<strong>on</strong>g>festati<strong>on</strong>s,<br />

all comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e to show that the greatest impacts <strong>on</strong><br />

fish may lie ahead. For example, new climate change<br />

analyses suggest that the Southeastern <strong>and</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Western United States have a high probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> future drought <str<strong>on</strong>g>in</str<strong>on</strong>g>to the next 20 to 30<br />

years, <strong>and</strong> that the potential impact <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest is marked. Also, the overarch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

global <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators are start<str<strong>on</strong>g>in</str<strong>on</strong>g>g to unfold: tree r<str<strong>on</strong>g>in</str<strong>on</strong>g>g data<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate 2002 was the driest year <str<strong>on</strong>g>in</str<strong>on</strong>g> the past 1,000<br />

years (Service 2004); Atlantic <strong>and</strong> Pacific oceanic<br />

temperatures are <str<strong>on</strong>g>in</str<strong>on</strong>g> turn correlated with historic wet<br />

<strong>and</strong> dry cycles.<br />

The cumulative impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> warmer <strong>and</strong> drier climate,<br />

with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>sect outbreaks at higher <strong>and</strong><br />

higher elevati<strong>on</strong>s, will potentially <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> throughout the ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> Southwestern native<br />

fishes (fig. 7.7). Such impacts <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the future<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fish gene pools <strong>and</strong> Southwestern native<br />

fishes’ susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability.<br />

Birds __________________________<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> bird populati<strong>on</strong>s are covered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

volume 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> this series (Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Fauna, Smith<br />

2000). Aquatic areas <strong>and</strong> wetl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten provide refugia<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. However, wetl<strong>and</strong>s such as cienegas,<br />

marshes, cypress swamps, spruce <strong>and</strong> larch swamps,<br />

<strong>and</strong> so forth do burn under the right c<strong>on</strong>diti<strong>on</strong>s. The<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual birds <strong>and</strong> populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wetl<strong>and</strong>s would then depend up<strong>on</strong> the seas<strong>on</strong>, uniformity,<br />

<strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Smith 2000).<br />

Reptiles <strong>and</strong> Amphibians _________<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> reptile <strong>and</strong> amphibian populati<strong>on</strong>s<br />

are also covered <str<strong>on</strong>g>in</str<strong>on</strong>g> volume 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> this series (Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>on</strong> Fauna, Smith 2000). Russell <strong>and</strong> others<br />

(1999) c<strong>on</strong>cluded that there are few reports <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>caused<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jury to herpet<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>in</str<strong>on</strong>g> general, much less<br />

aquatic <strong>and</strong> wetl<strong>and</strong> species. They noted that aquatic<br />

<strong>and</strong> semiaquatic herpet<str<strong>on</strong>g>of</str<strong>on</strong>g>auna benefit from wetl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s due to vegetati<strong>on</strong> structure improvement <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> open <strong>water</strong>. Excessive<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> streams or small st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> could potentially reduce habitat for<br />

reptile <strong>and</strong> amphibian populati<strong>on</strong>s. However, the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

are not well documented.<br />

Mammals ______________________<br />

Aquatic <strong>and</strong> wetl<strong>and</strong> dwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g mammals are usually<br />

not adversely impacted by <str<strong>on</strong>g>fire</str<strong>on</strong>g>s due to animal mobility<br />

<strong>and</strong> the lower frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> these areas. Ly<strong>on</strong><br />

<strong>and</strong> others (2000a,b) discuss factors such as <str<strong>on</strong>g>fire</str<strong>on</strong>g> uniformity,<br />

size, durati<strong>on</strong>, <strong>and</strong> severity that affect mammals.<br />

However, most <str<strong>on</strong>g>of</str<strong>on</strong>g> their discussi<strong>on</strong> relates to<br />

terrestrial mammals, not aquatic <strong>and</strong> wetl<strong>and</strong> <strong>on</strong>es.<br />

Aquatic <strong>and</strong> wetl<strong>and</strong> habitats also provide safety z<strong>on</strong>es<br />

for mammals dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Invertebrates ___________________<br />

The fauna volume <str<strong>on</strong>g>in</str<strong>on</strong>g> this series deals ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly with<br />

terrestrial <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates (Smith 2000). As with fishes,<br />

little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> existed <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates prior to 1980, although<br />

some studies were c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1970s (Anders<strong>on</strong><br />

140 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 7.7—Multiple, cumulative impacts are occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the West <strong>and</strong> Southwest to<br />

greatly <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> further the marked loss <str<strong>on</strong>g>of</str<strong>on</strong>g> native fishes.<br />

1976). Tiedemann <strong>and</strong> others (1978) exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>water</strong><br />

quality <strong>and</strong> quantity <str<strong>on</strong>g>effects</str<strong>on</strong>g>, algae, <strong>and</strong> aquatic micro<strong>and</strong><br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates. As with fishes, these studies<br />

addressed the potential “<str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g>” <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates rather than any “direct<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>.”<br />

Parallel with <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> generati<strong>on</strong> <strong>on</strong> fishes, the<br />

Yellowst<strong>on</strong>e Fires <str<strong>on</strong>g>in</str<strong>on</strong>g> 1988 ushered <str<strong>on</strong>g>in</str<strong>on</strong>g> an extensive<br />

effort to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e both the direct <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> others<br />

1989, M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> Brock 1991). Isolated studies <strong>on</strong><br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates have been c<strong>on</strong>ducted follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the historically worst wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Southwestern United States (R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 1996). By the late<br />

1990s, a summary <strong>and</strong> review paper <strong>on</strong> the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g aquatic<br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates, was produced (Gresswell 1999).<br />

As for fishes, the Gresswell paper is the state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art<br />

reference for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates,<br />

collates a comprehensive review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

from the 20 th century, <strong>and</strong> suggests future<br />

research <strong>and</strong> management directi<strong>on</strong>.<br />

Resp<strong>on</strong>se to Fire<br />

Similar to fishes, the direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates have not been observed or reported.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g> (1979) reported no change <str<strong>on</strong>g>in</str<strong>on</strong>g> aquatic<br />

macro <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates abundance dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> no dead macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates observable. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne<br />

(1996) could not document any changes <str<strong>on</strong>g>in</str<strong>on</strong>g> mean<br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate density <str<strong>on</strong>g>in</str<strong>on</strong>g> three head<strong>water</strong><br />

streams from pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> to immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the then-worst wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> Ariz<strong>on</strong>a history, the<br />

Dude Fire (table 7.5). However, sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g after <str<strong>on</strong>g>in</str<strong>on</strong>g>itial<br />

“ash slurry flows” (<str<strong>on</strong>g>in</str<strong>on</strong>g> the 2 weeks post<str<strong>on</strong>g>fire</str<strong>on</strong>g>) revealed an<br />

Table 7.5—Aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate densities follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Ariz<strong>on</strong>a Dude Fire, T<strong>on</strong>to Nati<strong>on</strong>al<br />

Forest, 1990 (Adapted from R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne 1996).<br />

Date<br />

Stream Pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> 07/03/90 07/26/90 05/20/91 06/08/91<br />

- - - - - - - - - - - - - - - - - - - - - - Number/m 2 x 1,000 - - - - - - - - - - - - - - - - - - - - - - -<br />

Dude Creek 5.4 5.0 0.1 2.8 2.5<br />

B<strong>on</strong>ita Creek 8.6 3.8 0.1 6.0 3.8<br />

Ellis<strong>on</strong> Creek 9.7 10.8 0.0 6.5 2.9<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 141


80 to 90 percent reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> mean densities. Further<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g after several significant flood events determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

that macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate populati<strong>on</strong>s were near<br />

zero. Sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g over the next 2 years revealed dramatic<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> density <strong>and</strong> diversity (number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species) <str<strong>on</strong>g>of</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates <str<strong>on</strong>g>in</str<strong>on</strong>g> all three streams.<br />

In general, resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> by aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates,<br />

as with fishes, are <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <strong>and</strong> vary<br />

widely <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se. Studies <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1970s by Lotspeich<br />

<strong>and</strong> others (1970) <strong>and</strong> Stefan (1977) suggested the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> were m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal or undetectable. La Po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

<strong>and</strong> others (1996) also reported no difference <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate distributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> streams encompassed<br />

by burned <strong>and</strong> unburned sites nor shifts <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong> chemistry. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> functi<strong>on</strong>al feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g groups<br />

(Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>s 1978) by aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates have<br />

been noted <strong>and</strong> attributed to substrate stability differences<br />

between <str<strong>on</strong>g>fire</str<strong>on</strong>g> impacted <strong>and</strong> n<strong>on</strong>impacted streams.<br />

By comparis<strong>on</strong>, Richards <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall (1992) reported<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g> the first 5 years post<str<strong>on</strong>g>fire</str<strong>on</strong>g>, macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> streams affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

exhibited greater annual variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> diversity than <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

unaffected streams. Annual fluctuati<strong>on</strong>s or variati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> diversity did decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e with time; however, greater<br />

species richness was susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> streams with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

burned areas.<br />

Shann<strong>on</strong> Weaver Index<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

As <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong>, the Yellowst<strong>on</strong>e<br />

Fires provided an opportunity to study the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> to generate most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

available <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In the first year post<str<strong>on</strong>g>fire</str<strong>on</strong>g>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>or<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate abundances, species<br />

richness, <strong>and</strong> diversity were recorded (Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> <strong>and</strong><br />

others 1994, Lawrence <strong>and</strong> M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall 1994, M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall<br />

<strong>and</strong> others 1995, Mihuc <strong>and</strong> others 1996). Two years<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g>, these <str<strong>on</strong>g>in</str<strong>on</strong>g>dices had <str<strong>on</strong>g>in</str<strong>on</strong>g>creased but less so <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

smaller order streams (M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall <strong>and</strong> others 1997).<br />

Food supply, <str<strong>on</strong>g>in</str<strong>on</strong>g> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned coarse particulate<br />

material, was suggested to be the factor most<br />

important to macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates.<br />

J<strong>on</strong>es <strong>and</strong> others (1993) reported macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

abundance fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> four larger (fifth <strong>and</strong> sixth<br />

order) streams <str<strong>on</strong>g>in</str<strong>on</strong>g> Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park, yet<br />

species diversity <strong>and</strong> richness did not decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e. A change<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> functi<strong>on</strong>al feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g groups from shredder-collector<br />

species to scraper-filter feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g species occurred (J<strong>on</strong>es<br />

<strong>and</strong> others 1993).<br />

Temporally, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

can be susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for up to a decade (Roby 1989) or<br />

possibly l<strong>on</strong>ger (greater than three decades; Alb<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

1979). Roby <strong>and</strong> Azuma (1995) studied changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

benthic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> two streams<br />

after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern California (fig. 7.8).<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Years After Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

Unburned Burned<br />

Figure 7.8—Invertebrate diversity changes after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern California. (Adapted from Roby, K.B.; Azuma, D.L.<br />

1995. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a reach <str<strong>on</strong>g>of</str<strong>on</strong>g> a northern California stream. Figure 2. Envir<strong>on</strong>mental Management. Copyright © 1995. With<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>d permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger Science <strong>and</strong> Bus<str<strong>on</strong>g>in</str<strong>on</strong>g>ess Media).<br />

142 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Invertebrate diversity, density, <strong>and</strong> taxa richness <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the stream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned <strong>water</strong>shed were low immediately<br />

after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> compared to the unburned <strong>water</strong>shed.<br />

With<str<strong>on</strong>g>in</str<strong>on</strong>g> 3 years, mean density was significantly<br />

higher <str<strong>on</strong>g>in</str<strong>on</strong>g> the burned <strong>water</strong>shed (fig. 7.9). A decade<br />

after the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, taxa richness <strong>and</strong> species diversity<br />

were still lower <str<strong>on</strong>g>in</str<strong>on</strong>g> the stream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burned <strong>water</strong>shed.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g> (1979) reported lower diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates <str<strong>on</strong>g>in</str<strong>on</strong>g> reference compared to streams<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> burned areas. Macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate density also was<br />

greater <str<strong>on</strong>g>in</str<strong>on</strong>g> burned streams; however, Chir<strong>on</strong>omidae<br />

(immature midges adapted to disturbed areas characterized<br />

by f<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments) were the most abundant<br />

group represented <str<strong>on</strong>g>in</str<strong>on</strong>g> samples. Mihuc <strong>and</strong> others<br />

(1996) suggested changes <str<strong>on</strong>g>in</str<strong>on</strong>g> physical habitat <strong>and</strong><br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food supply are the primary factors<br />

affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g post<str<strong>on</strong>g>fire</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

populati<strong>on</strong>s.<br />

Number Per 0.1m 2<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Invertebrate Summary<br />

Figure 7.9—Invertebrate density changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streams after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> northern California. (Adapted from Roby, K.B.; Azuma, D.L.<br />

1995. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a reach <str<strong>on</strong>g>of</str<strong>on</strong>g> a northern California stream. Figure<br />

2. Envir<strong>on</strong>mental Management. Copyright © 1995. With k<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger Science <strong>and</strong> Bus<str<strong>on</strong>g>in</str<strong>on</strong>g>ess Media).<br />

Similar to fishes, the recorded <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates are <str<strong>on</strong>g>in</str<strong>on</strong>g>direct as opposed<br />

to direct. Most data have been produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the 1990s. Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g abundance, diversity, or<br />

richness, resp<strong>on</strong>se varies from m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal to no changes,<br />

<strong>and</strong> from c<strong>on</strong>siderable to significant changes. Abundance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates may actually <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-affected streams, but diversity generally is<br />

reduced. These differences are undoubtedly related<br />

to l<strong>and</strong>scape variability, burn size <strong>and</strong> severity, stream<br />

size, nature <strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g events,<br />

<strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> time. Temporally, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dices <str<strong>on</strong>g>in</str<strong>on</strong>g> the first 5 years post<str<strong>on</strong>g>fire</str<strong>on</strong>g> can<br />

be different from ensu<str<strong>on</strong>g>in</str<strong>on</strong>g>g years, <strong>and</strong> l<strong>on</strong>g-term (10 to<br />

30 years) <str<strong>on</strong>g>effects</str<strong>on</strong>g> have been suggested.<br />

Unburned<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 143<br />

Burned<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Years After Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

144 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Part C<br />

Other Topics<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 145


146 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Daniel G. Neary<br />

Part C—Other Topics<br />

Chapters 8 through 11 <str<strong>on</strong>g>in</str<strong>on</strong>g> this part <str<strong>on</strong>g>of</str<strong>on</strong>g> the volume deal<br />

with special topics that were not c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series” <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong><br />

(Wells <strong>and</strong> others 1979) <strong>and</strong> <strong>water</strong> (Tiedemann <strong>and</strong><br />

others 1979). These topics <str<strong>on</strong>g>in</str<strong>on</strong>g>clude wetl<strong>and</strong>s <strong>and</strong> riparian<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> models <strong>and</strong> soil erosi<strong>on</strong><br />

models, the Burned Area Emergency Rehabilitati<strong>on</strong><br />

(BAER) program with its various treatments <strong>and</strong><br />

results, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> sources such as databases,<br />

Web sites, journals, books, <strong>and</strong> so forth. Part C c<strong>on</strong>cludes<br />

with the References secti<strong>on</strong> <strong>and</strong> an appendix <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glossary terms.<br />

Wetl<strong>and</strong>s science has advanced c<strong>on</strong>siderably s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce<br />

the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al “Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series” was published <str<strong>on</strong>g>in</str<strong>on</strong>g> 1979,<br />

<strong>and</strong> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is now<br />

understood more completely. Tiedemann <strong>and</strong> others<br />

(1979) briefly discussed everglades wetl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> southern<br />

Florida <strong>and</strong> cypress wetl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> northern Florida.<br />

Chapter 8 <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume recognizes the extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> North America bey<strong>on</strong>d the swamps <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Florida. The authors go <str<strong>on</strong>g>in</str<strong>on</strong>g>to c<strong>on</strong>siderable detail <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s <strong>and</strong> their associated riparian<br />

areas.<br />

Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> models <strong>and</strong> soil erosi<strong>on</strong> models were <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

their <str<strong>on</strong>g>in</str<strong>on</strong>g>fancy <str<strong>on</strong>g>in</str<strong>on</strong>g> the mid 1970s, <strong>and</strong> researchers <strong>and</strong><br />

l<strong>and</strong> managers then <strong>on</strong>ly dreamed <str<strong>on</strong>g>of</str<strong>on</strong>g> the compact,<br />

high speed desktop <strong>and</strong> laptop computers we now have<br />

that are able to do the milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s needed<br />

to run these models. Chapter 9 briefly exam<str<strong>on</strong>g>in</str<strong>on</strong>g>es how<br />

these models <str<strong>on</strong>g>in</str<strong>on</strong>g>crease our underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong>. While this discussi<strong>on</strong><br />

is not <str<strong>on</strong>g>in</str<strong>on</strong>g>tended as <str<strong>on</strong>g>in</str<strong>on</strong>g>clusive <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> models, we do <str<strong>on</strong>g>in</str<strong>on</strong>g>tend to illustrate some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

more comm<strong>on</strong>ly available <strong>on</strong>es.<br />

Rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burned l<strong>and</strong>scapes has l<strong>on</strong>g been<br />

recognized as a necessary step for heal<str<strong>on</strong>g>in</str<strong>on</strong>g>g severely<br />

burned <strong>water</strong>sheds to reduce erosi<strong>on</strong> <strong>and</strong> mitigate<br />

adverse changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrology. However, the BAER<br />

program did not start until the mid 1970s <strong>and</strong> was not<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itially well organized nor well understood. Chapter<br />

10 provides a much needed synopsis <str<strong>on</strong>g>of</str<strong>on</strong>g> the BAER<br />

program based <strong>on</strong> a Robichaud <strong>and</strong> others (2000)<br />

literature <strong>and</strong> research review publicati<strong>on</strong>.<br />

The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> textbooks, research reports, journal<br />

articles, users guides, <strong>and</strong> databases with specific<br />

focus <strong>on</strong> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> have rapidly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

past quarter century. And now <str<strong>on</strong>g>in</str<strong>on</strong>g> the 21 st century, we<br />

have readily accessible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

such as databases <strong>and</strong> Web sites that did not exist<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the 1970s. The Web sites facilitate rapid dissem<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> to managers, researchers,<br />

<strong>and</strong> the general public. Their use <strong>and</strong> importance<br />

will c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to grow. Chapter 11 details these <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

sources.<br />

Chapter 12 is an overall summary <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume <strong>and</strong><br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s suggesti<strong>on</strong>s for research needs <strong>and</strong> priorities.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 147


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

148 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


James R. Reard<strong>on</strong><br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Daniel G. Neary<br />

Chapter 8:<br />

Wetl<strong>and</strong>s <strong>and</strong> Riparian<br />

Systems<br />

Introducti<strong>on</strong> ____________________<br />

Wetl<strong>and</strong>s <strong>and</strong> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> biotic<br />

communities that develop because <str<strong>on</strong>g>of</str<strong>on</strong>g> the regular presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> (Brooks <strong>and</strong> others 2003). Undisturbed<br />

or well-managed wetl<strong>and</strong>s <strong>and</strong> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

provide benefits that are proporti<strong>on</strong>ally much more<br />

important compared to the relatively small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the l<strong>and</strong> area that they occupy because these <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

support a diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> plants <strong>and</strong> animals that<br />

are not found elsewhere. Wetl<strong>and</strong>s <strong>and</strong> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

also play important roles relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g to enhanced<br />

<strong>water</strong> quality, flood peak attenuati<strong>on</strong>, <strong>and</strong><br />

reduced erosi<strong>on</strong> <strong>and</strong> sediment transport. At the same<br />

time, these <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten fragile <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

easily disturbed, <strong>and</strong> both wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> prescribed<br />

burns can affect the soil, <strong>water</strong>, litter, <strong>and</strong> vegetati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s <strong>and</strong> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Although the terms “wetl<strong>and</strong>” <strong>and</strong> “riparian” are<br />

sometimes used <str<strong>on</strong>g>in</str<strong>on</strong>g>terchangeably, it is important to<br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between the two systems both ecologically<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> their <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

While the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> is an essential feature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, wetl<strong>and</strong>s are more typically represented<br />

by large accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> surface organic matter<br />

that are <strong>water</strong>logged for l<strong>on</strong>g periods dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

year, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g persistent anaerobic soil c<strong>on</strong>diti<strong>on</strong>s;<br />

riparian areas, <strong>on</strong> the other h<strong>and</strong>, are characterized<br />

more as communities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> obligate plants that are<br />

typically found al<strong>on</strong>g river systems where moisture is<br />

readily available but the <strong>soils</strong> are saturated for <strong>on</strong>ly<br />

short periods. These differences <str<strong>on</strong>g>in</str<strong>on</strong>g> morphology <strong>and</strong><br />

hydric envir<strong>on</strong>ment str<strong>on</strong>gly affect the type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> that<br />

burns <str<strong>on</strong>g>in</str<strong>on</strong>g> each ecosystem. When the <strong>water</strong> table is low<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s, surface <strong>and</strong> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten ignite smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

gr<strong>on</strong>d <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g>k layers <str<strong>on</strong>g>of</str<strong>on</strong>g> humus, peat, <strong>and</strong><br />

muck result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> deep depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn. C<strong>on</strong>versely,<br />

when the <strong>water</strong> table is high, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s exhibit low depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. In riparian<br />

areas <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten back down hill at low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g irregular mixed severity burns. Periodically,<br />

however, riparian areas experience high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s due to the high fuel c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity <strong>and</strong> the<br />

chimney effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the terra<str<strong>on</strong>g>in</str<strong>on</strong>g>. Thus mixed severity<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes are comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> <strong>and</strong> riparian<br />

communities.<br />

Wetl<strong>and</strong>s ______________________<br />

Wetl<strong>and</strong>s are widely distributed from tropical to<br />

arctic regi<strong>on</strong>s <strong>and</strong> found <str<strong>on</strong>g>in</str<strong>on</strong>g> both arid <strong>and</strong> humid envir<strong>on</strong>ments.<br />

They cover approximately 4 to 6 percent<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 149


<str<strong>on</strong>g>of</str<strong>on</strong>g> Earth’s l<strong>and</strong> area <strong>and</strong> display a broad ecological<br />

range with characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> both aquatic <strong>and</strong> terrestrial<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Mitsch <strong>and</strong> Gossel<str<strong>on</strong>g>in</str<strong>on</strong>g>k 1993). The<br />

wide distributi<strong>on</strong> <strong>and</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s make<br />

form<str<strong>on</strong>g>in</str<strong>on</strong>g>g generalizati<strong>on</strong>s <strong>and</strong> widely adaptable management<br />

soluti<strong>on</strong>s difficult (Lugo 1995) (fig. 8.1).<br />

Wetl<strong>and</strong> functi<strong>on</strong>s are crucial to envir<strong>on</strong>mental<br />

quality. They supply the habitat requirements for a<br />

diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, animals, <strong>and</strong> other organisms,<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> which are threatened <strong>and</strong> endangered.<br />

Wetl<strong>and</strong>s regulate <strong>water</strong> quality <strong>and</strong> quantity <strong>and</strong><br />

are an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral element <str<strong>on</strong>g>of</str<strong>on</strong>g> global climate c<strong>on</strong>trol.<br />

Improved underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s <strong>and</strong> the relati<strong>on</strong>ship<br />

between <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wetl<strong>and</strong>s has become <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly<br />

important for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

c<strong>on</strong>cerns about wetl<strong>and</strong> habitat loss, global<br />

warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, toxic metal accumulati<strong>on</strong>, <strong>and</strong> the treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hazardous fuels.<br />

While the c<strong>on</strong>necti<strong>on</strong> between wetl<strong>and</strong>s <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

appears tenuous, <str<strong>on</strong>g>fire</str<strong>on</strong>g> plays an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral role <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

creati<strong>on</strong> <strong>and</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> species <strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> climate <strong>and</strong> vegetati<strong>on</strong> are recorded<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>ossils, pollen, <strong>and</strong><br />

peat, <strong>and</strong> disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g> are also recorded<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this depositi<strong>on</strong>al record (Jasieniuk <strong>and</strong> Johns<strong>on</strong><br />

1982, Cohen <strong>and</strong> others 1984, Kuhry <strong>and</strong> Vitt 1996).<br />

Paleoecological evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> is derived from a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g pollen analysis <strong>and</strong><br />

charcoal distributi<strong>on</strong>. Charcoal, which is produced<br />

when plant materials are pyrolized, is a record <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Cope<br />

<strong>and</strong> Chal<strong>on</strong>er 1985). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen <strong>and</strong><br />

charcoal with<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> <strong>soils</strong> reflect both <str<strong>on</strong>g>fire</str<strong>on</strong>g> history<br />

<strong>and</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Kuhry 1994).<br />

Paleoecological studies show c<strong>on</strong>sistent evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a wide distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s from<br />

the Southeastern United States to the boreal regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Canada <strong>and</strong> Alaska. For example, peat cores from<br />

the Okefenokee Swamp <str<strong>on</strong>g>in</str<strong>on</strong>g> Georgia exhibited dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

charcoal b<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> history (Cohen <strong>and</strong><br />

others 1984, Hermann <strong>and</strong> others 1991). Patterns <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

pollen <strong>and</strong> charcoal distributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Wisc<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong><br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota wetl<strong>and</strong>s show changes that reflect variati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency<br />

(Davis 1979, Clark 1998). Trees from mires <str<strong>on</strong>g>of</str<strong>on</strong>g> northern<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota show <str<strong>on</strong>g>fire</str<strong>on</strong>g> scars as evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

history (Glaser <strong>and</strong> others 1981). In boreal regi<strong>on</strong>s,<br />

peat sediments from sphagnum-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated wetl<strong>and</strong>s<br />

show a <str<strong>on</strong>g>fire</str<strong>on</strong>g> history as dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct charcoal layers <strong>and</strong><br />

pollen changes (Kuhry 1994).<br />

Figure 8.1—Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> North American. Shaded areas have a<br />

significant percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s.<br />

150 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Wetl<strong>and</strong> <strong>and</strong> Hydric Soil Classificati<strong>on</strong><br />

Not <strong>on</strong>ly are there a c<strong>on</strong>fus<str<strong>on</strong>g>in</str<strong>on</strong>g>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> terms <strong>and</strong><br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s to describe organic <strong>soils</strong> <strong>and</strong> organic matter<br />

while classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g wetl<strong>and</strong>s (table 8.1), but dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the past three decades several new wetl<strong>and</strong> classificati<strong>on</strong><br />

systems have been developed <strong>and</strong> used by various<br />

government agencies. This array <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong> systems<br />

reflects both our underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> processes<br />

<strong>and</strong> the missi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual agencies.<br />

The system developed <strong>and</strong> currently <str<strong>on</strong>g>in</str<strong>on</strong>g> use by the<br />

U.S. Fish <strong>and</strong> Wildlife Service (Coward<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others<br />

1979; table 8.2) for wetl<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory is well suited for<br />

ecological applicati<strong>on</strong>s (Mitsch <strong>and</strong> Gossel<str<strong>on</strong>g>in</str<strong>on</strong>g>k 1993).<br />

In this classificati<strong>on</strong> system, the divisi<strong>on</strong>s between the<br />

five wetl<strong>and</strong> systems are based <strong>on</strong> hydrologic similarities<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong> source <strong>and</strong> flow. Wetl<strong>and</strong> systems <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest to <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers <str<strong>on</strong>g>in</str<strong>on</strong>g> this classificati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e wetl<strong>and</strong>s, which are associated<br />

with lakes <strong>and</strong> reservoirs.<br />

• River<str<strong>on</strong>g>in</str<strong>on</strong>g>e wetl<strong>and</strong>s, which are associated with<br />

flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers.<br />

• Estuar<str<strong>on</strong>g>in</str<strong>on</strong>g>e wetl<strong>and</strong>s, which <str<strong>on</strong>g>in</str<strong>on</strong>g>clude salt<br />

marshes.<br />

• Palustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e wetl<strong>and</strong>s, which <str<strong>on</strong>g>in</str<strong>on</strong>g>clude swamps,<br />

bogs, fens <strong>and</strong> other comm<strong>on</strong> fresh<strong>water</strong><br />

wetl<strong>and</strong>s.<br />

Table 8.1—Terms <strong>and</strong> def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s used to describe organic <strong>soils</strong> <strong>and</strong> organic matter (Adapted from Soil<br />

Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America 1997, <strong>and</strong> Mitsch <strong>and</strong> Gossel<str<strong>on</strong>g>in</str<strong>on</strong>g>k 1993).<br />

Term Def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s<br />

Bog A peat-accumulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wetl<strong>and</strong> that has no significant <str<strong>on</strong>g>in</str<strong>on</strong>g>flows <strong>and</strong> supports acidophilic<br />

mosses, particularly sphagnum.<br />

Fen A peat-accumulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wetl<strong>and</strong> that receives some dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age from surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

<strong>soils</strong> <strong>and</strong> usually supports marsh-like vegetati<strong>on</strong>. These areas are richer <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrients<br />

<strong>and</strong> less acidic than bogs. The <strong>soils</strong> under fens are peat (Histosol) if the fen has<br />

been present for a while.<br />

Fibric A type <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil where less than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> the material is decomposed, <strong>and</strong><br />

more than two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> plant fibers are identifiable.<br />

Marsh A frequently or c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ually <str<strong>on</strong>g>in</str<strong>on</strong>g>undated wetl<strong>and</strong> characterized by emergent herbaceous<br />

vegetati<strong>on</strong> adapted to saturated soil c<strong>on</strong>diti<strong>on</strong>s.<br />

Muck Organic soil material <str<strong>on</strong>g>in</str<strong>on</strong>g> which the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al plant rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s is not recognizable. C<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

more m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matter <strong>and</strong> is usually darker <str<strong>on</strong>g>in</str<strong>on</strong>g> color than peat.<br />

Muskeg Large expanses <str<strong>on</strong>g>of</str<strong>on</strong>g> peatl<strong>and</strong>s or bogs; particularly used <str<strong>on</strong>g>in</str<strong>on</strong>g> Canada <strong>and</strong> Alaska.<br />

Oligotrophic Describes a body <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> (for example, a lake) with a poor supply <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <strong>and</strong> a<br />

low rate <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter by phototsynthesis.<br />

Ombrotrophic True raised bogs that have developed peat layers higher than their surround<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>and</strong><br />

which receive nutrients <strong>and</strong> other m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals exclusively by precipitati<strong>on</strong>.<br />

Peat Organic soil materials <str<strong>on</strong>g>in</str<strong>on</strong>g> which the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al plant rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s are recognizable (fibric<br />

material).<br />

Peatl<strong>and</strong>s A generic term for any wetl<strong>and</strong> that accumulated partially decayed plant matter.<br />

Pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> Temperate z<strong>on</strong>e evergreen shrub bogs dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by p<strong>on</strong>d p<str<strong>on</strong>g>in</str<strong>on</strong>g>e, ericaceous shrubs,<br />

<strong>and</strong> sphagnum.<br />

Sapric Type <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil where two-thirds or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the material is decomposed, <strong>and</strong><br />

less than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> plant fibers are identifiable.<br />

Wet Grassl<strong>and</strong> with <strong>water</strong>logged soil near the surface but without st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> most<br />

meadow <str<strong>on</strong>g>of</str<strong>on</strong>g> the year.<br />

Wet Similar to marsh but with <strong>water</strong> levels usually <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate between a marsh <strong>and</strong> a<br />

prairie wet meadow.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 151


At a f<str<strong>on</strong>g>in</str<strong>on</strong>g>er level, the divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> systems <strong>and</strong><br />

subsystems <str<strong>on</strong>g>in</str<strong>on</strong>g>to wetl<strong>and</strong> classes is based up<strong>on</strong> the<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant vegetati<strong>on</strong> type or substrate. The major<br />

wetl<strong>and</strong> classes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> this system <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• Forested<br />

• Scrub-shrub<br />

• Emergent<br />

• Moss-lichen<br />

Table 8.2—U.S. Fish <strong>and</strong> Wildlife Service classificati<strong>on</strong> hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> <strong>and</strong> deep<strong>water</strong><br />

habitats (Coward<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others 1979). These are wetl<strong>and</strong> classes <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest to <str<strong>on</strong>g>fire</str<strong>on</strong>g> management. Wetl<strong>and</strong>s are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> bold pr<str<strong>on</strong>g>in</str<strong>on</strong>g>t.<br />

System Subsystem Class<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Subtidal Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed, Reef<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Intertidal Aquatic Bed, Unc<strong>on</strong>solidated Bottom, Aquatic Bed, Reef<br />

Estuar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Subtidal Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed, Reef<br />

Estuar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Intertidal Aquatic Bed, Reef, Streambed,<br />

Rocky Shore, Unc<strong>on</strong>solidated Shore<br />

Emergent Wetl<strong>and</strong><br />

Scrub-Shrub Wetl<strong>and</strong><br />

Forested Wetl<strong>and</strong><br />

River<str<strong>on</strong>g>in</str<strong>on</strong>g>e Tidal Rock Bottom, Unc<strong>on</strong>solidated Streambed, Aquatic Bed<br />

Streambed, Rocky Shore, Unc<strong>on</strong>solidated Shore<br />

Emergent Wetl<strong>and</strong><br />

River<str<strong>on</strong>g>in</str<strong>on</strong>g>e Low Perennial Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed<br />

Rocky Shore, Unc<strong>on</strong>solidated Shore<br />

Emergent Wetl<strong>and</strong><br />

River<str<strong>on</strong>g>in</str<strong>on</strong>g>e Upper Perennial Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed<br />

Rocky Shore, Unc<strong>on</strong>solidated Shore<br />

River<str<strong>on</strong>g>in</str<strong>on</strong>g>e Intermittent Streambed<br />

Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Limnetic Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed<br />

Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Littoral Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed<br />

Rocky Shore, Unc<strong>on</strong>solidated Shore<br />

Emergent Wetl<strong>and</strong><br />

Palustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Rock Bottom, Unc<strong>on</strong>solidated Bottom, Aquatic Bed<br />

Unc<strong>on</strong>solidated Shore<br />

Moss-Lichen Wetl<strong>and</strong><br />

Emergent Wetl<strong>and</strong><br />

Scrub-Shrub Wetl<strong>and</strong><br />

Forested Wetl<strong>and</strong><br />

Wetl<strong>and</strong> classes are further modified by factors<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> regime, <strong>water</strong> chemistry, <strong>and</strong> soil<br />

factors.<br />

In additi<strong>on</strong> to unique vegetati<strong>on</strong> <strong>and</strong> hydrologic<br />

characteristics, wetl<strong>and</strong>s are also dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished by the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric <strong>soils</strong>. The def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric <strong>soils</strong><br />

has evolved dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last few decades, <strong>and</strong> the<br />

changes to the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> reflect our <str<strong>on</strong>g>in</str<strong>on</strong>g>creased underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> <strong>soils</strong> genesis (Richards<strong>on</strong> <strong>and</strong><br />

Vepraskas 2001). Although organic <strong>soils</strong> (Histisols)<br />

are comm<strong>on</strong>ly associated with wetl<strong>and</strong>s, poorly dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <strong>soils</strong> with wet moisture regimes are also<br />

comm<strong>on</strong> <strong>on</strong> wetl<strong>and</strong> sites. An additi<strong>on</strong>al soil order has<br />

recently been added to the U.S soil classificati<strong>on</strong><br />

system (Gelisols). This new soil order reflects the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> low temperatures <strong>and</strong> soil moisture <strong>on</strong><br />

soil processes. Thus, wetl<strong>and</strong> <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the boreal<br />

peatl<strong>and</strong>s are now classified as Gelisols (Bridgham<br />

<strong>and</strong> others 2001).<br />

The current def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes both<br />

histisols <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <strong>soils</strong> (table 8.3). The primary<br />

factor c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the differences between hydric<br />

<strong>and</strong> n<strong>on</strong>wetl<strong>and</strong> <strong>soils</strong> is the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong> table<br />

152 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 8.3—Def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric <strong>soils</strong> (Adapted from Mausbach <strong>and</strong> Parker 2001).<br />

1. All Histosols<br />

2. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral Soils<br />

a. Somewhat poorly dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with a <strong>water</strong> table equal to 0.0 foot (0.0 m) from the surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>, or<br />

b. Poorly dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed or very poorly dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>soils</strong> that have either:<br />

(1) <strong>water</strong> table equal to 0.0 foot (0.0 m) from the surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> if textures are<br />

coarse s<strong>and</strong>, s<strong>and</strong>, or f<str<strong>on</strong>g>in</str<strong>on</strong>g>e s<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> all layers with<str<strong>on</strong>g>in</str<strong>on</strong>g> 20 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (51 cm), or for other <strong>soils</strong>, or<br />

(2) <strong>water</strong> table at less than or equal to 0.5 foot (0.15 m) from the surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

seas<strong>on</strong> if permeability is equal to or greater than 6.0 <str<strong>on</strong>g>in</str<strong>on</strong>g>/hr (15 mm/hr), or<br />

(3) <strong>water</strong> table at less than or equal to 1.0 foot (0.3 m) from the surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

seas<strong>on</strong>, or<br />

3. Soils that are frequently p<strong>on</strong>ded for l<strong>on</strong>g durati<strong>on</strong> or very l<strong>on</strong>g durati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>, or<br />

4. Soils that are frequently flooded for l<strong>on</strong>g durati<strong>on</strong> or very l<strong>on</strong>g durati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>.<br />

close to the soil surface or frequent l<strong>on</strong>g-durati<strong>on</strong><br />

flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g or p<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The oxygen-limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> these <strong>water</strong>logged envir<strong>on</strong>ments affect micro<strong>and</strong><br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal organisms <strong>and</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes<br />

<strong>and</strong> result <str<strong>on</strong>g>in</str<strong>on</strong>g> decreased decompositi<strong>on</strong> rates<br />

<strong>and</strong> different metabolic end products (Stevens<strong>on</strong> 1986).<br />

Wetl<strong>and</strong> Hydrology <strong>and</strong> Fire<br />

Wetl<strong>and</strong> hydrology is a complex cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>flows<br />

<strong>and</strong> outflows that are balanced by the <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships<br />

between biotic <strong>and</strong> abiotic factors. The presence<br />

<strong>and</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant factors<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g wetl<strong>and</strong> dynamics, nutrient <strong>and</strong> energy<br />

flow, soil chemistry, organic matter decompositi<strong>on</strong>,<br />

<strong>and</strong> plant <strong>and</strong> animal community compositi<strong>on</strong>.<br />

Wetl<strong>and</strong> systems are characterized by annual <strong>water</strong><br />

budgets compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g storage, precipitati<strong>on</strong>, evapotranspirati<strong>on</strong>,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, <strong>and</strong> surface <strong>and</strong> ground <strong>water</strong><br />

comp<strong>on</strong>ents. In additi<strong>on</strong> to <strong>water</strong> budgets, the seas<strong>on</strong>ality<br />

<strong>and</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> is characterized by<br />

hydroperiod <strong>and</strong> hydrodynamics. Hydroperiod is the<br />

time a soil is saturated or flooded, <strong>and</strong> results from<br />

<strong>water</strong> table movements caused by dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct seas<strong>on</strong>al<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the balance between <str<strong>on</strong>g>in</str<strong>on</strong>g>flows <strong>and</strong> outflows<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a particular wetl<strong>and</strong>. Hydrodynamics is the movement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s <strong>and</strong> is an important process<br />

affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil nutrients <strong>and</strong> productivity.<br />

Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground <strong>water</strong> levels <strong>and</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

by anthropogenic activities such as ditch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> is a serious c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

management (Bacchus 1995). L<strong>on</strong>g-term changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

hydroperiod or hydrodynamics affect productivity,<br />

decompositi<strong>on</strong>, fuel accumulati<strong>on</strong>, <strong>and</strong> the subsidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong>. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> these wetl<strong>and</strong> characteristics<br />

lead to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong> ground <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

potential.<br />

Water budgets, hydroperiods, <strong>and</strong> hydrodynamics<br />

are unique for each wetl<strong>and</strong> type <strong>and</strong>, as a result, have<br />

substantial effect <strong>on</strong> site productivity <strong>and</strong> decompositi<strong>on</strong><br />

rates (Mitsch <strong>and</strong> Gossel<str<strong>on</strong>g>in</str<strong>on</strong>g>k 1993). Significant<br />

ground <strong>and</strong> surface <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>puts are characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>water</strong> budgets <str<strong>on</strong>g>of</str<strong>on</strong>g> marshes <strong>and</strong> fens, while precipitati<strong>on</strong><br />

<strong>and</strong> evapotranspirati<strong>on</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the <strong>water</strong><br />

budgets <str<strong>on</strong>g>of</str<strong>on</strong>g> bogs <strong>and</strong> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> pattern<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>in</str<strong>on</strong>g>puts has a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurrence.<br />

For example, the <strong>water</strong> budget <str<strong>on</strong>g>of</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Southeastern United States is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <strong>and</strong> evapotranspirati<strong>on</strong> with m<str<strong>on</strong>g>in</str<strong>on</strong>g>or<br />

surface <strong>and</strong> ground <strong>water</strong> comp<strong>on</strong>ents. Typically, the<br />

highest wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> danger occurs between March <strong>and</strong><br />

May because the evapotranspirati<strong>on</strong> rate is higher<br />

than precipitati<strong>on</strong>, thereby caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <strong>water</strong> deficit <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

these <strong>soils</strong> (fig. 8.2).<br />

In c<strong>on</strong>trast to the pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal<br />

black spruce/feather moss wetl<strong>and</strong>s, frozen soil restricts<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> early summer, <strong>and</strong><br />

the organic soil reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>.<br />

Typically, soil dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> these communities is delayed<br />

until <str<strong>on</strong>g>in</str<strong>on</strong>g> June or July (Foster 1983). Early seas<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> these wetl<strong>and</strong>s c<strong>on</strong>sume little organic soil material,<br />

while <str<strong>on</strong>g>fire</str<strong>on</strong>g>s later <str<strong>on</strong>g>in</str<strong>on</strong>g> the seas<strong>on</strong> or dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g extended<br />

droughts can c<strong>on</strong>sume significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

soil material (He<str<strong>on</strong>g>in</str<strong>on</strong>g>selman 1981, Johns<strong>on</strong> 1992,<br />

Duchesne <strong>and</strong> Hawkes 2000, Kasischke <strong>and</strong> Stocks<br />

2000).<br />

Although studies have identified <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships<br />

am<strong>on</strong>g hydrology, <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> esosystems<br />

(Kologiski 1977, Sharitz <strong>and</strong> Gibb<strong>on</strong>s 1982, Frost<br />

1995), the codom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> hydrology<br />

is not clear. Hydrologic characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> turn the <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences<br />

postburn hydrology <strong>and</strong> future <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity. Both<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 153


Figure 8.2—An example <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <strong>and</strong> evapotranspirati<strong>on</strong> dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> habitat measured for a 3-year period. (Adapted from Daniel 1981, Pocos<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Wetl<strong>and</strong>s, Copyright © 1981, Elsevier B.V. All rights reserved).<br />

these factors also affect numerous ecological variables<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil moisture, soil aerati<strong>on</strong>, <strong>and</strong> soil temperature<br />

regime. The separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

from hydrological <str<strong>on</strong>g>effects</str<strong>on</strong>g> is difficult because wetl<strong>and</strong><br />

resp<strong>on</strong>se to disturbance is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

numerous spatial <strong>and</strong> temporal gradients (Trett<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>and</strong> others 1996).<br />

Wetl<strong>and</strong> community resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency,<br />

hydroperiod, <strong>and</strong> organic soil depth were <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> (scrub-shrub wetl<strong>and</strong>). The<br />

results showed that emergent sedge bogs <strong>on</strong> deep organic<br />

<strong>soils</strong> with l<strong>on</strong>g hydroperiods were associated with<br />

frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Deciduous bay forest communities with<br />

shallower organic <strong>soils</strong> <strong>and</strong> shorter hydroperiods were<br />

associated with decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, while p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

savanna communities with shallow organic <strong>soils</strong> <strong>and</strong><br />

short hydroperiods were associated with a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency (Kologiski 1977) (fig. 8.3). A similar<br />

relati<strong>on</strong>ship between <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> hydroperiod was found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a study <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida cypress domes communities. Emergent/persistent<br />

wetl<strong>and</strong>s with l<strong>on</strong>g hydroperiods were<br />

associated with frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, while forested alluvial<br />

wetl<strong>and</strong>s with shorter hydroperiods were associated<br />

with <str<strong>on</strong>g>in</str<strong>on</strong>g>frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Ewel 1990) (fig. 8.4).<br />

Fire regimes are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term patterns<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the severity <strong>and</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Brown<br />

2000). They reflect the <str<strong>on</strong>g>in</str<strong>on</strong>g>terdependence <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

factors <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g climate, fuel accumulati<strong>on</strong>, <strong>and</strong> igniti<strong>on</strong><br />

sources. Several <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime classificati<strong>on</strong> systems<br />

have been developed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> characteristics or<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> produced by the <str<strong>on</strong>g>fire</str<strong>on</strong>g> (Agee 1993, Brown 2000).<br />

Wetl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes vary <str<strong>on</strong>g>in</str<strong>on</strong>g> frequency <strong>and</strong> severity.<br />

Light, frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the herbaceous vegetati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> emergent meadows such as tidal marshes <strong>and</strong><br />

sedge meadows (Frost 1995) (fig. 8.5). Light surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Carex stricta dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated sedge meadows remove<br />

surface litter <strong>and</strong> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased forb<br />

germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>and</strong> species diversity (Warners 1997).<br />

Infrequent st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are needed to regenerate<br />

Atlantic white cedar <strong>and</strong> black spruce/feather<br />

moss forested wetl<strong>and</strong>s (Kasischke <strong>and</strong> Stocks 2000).<br />

Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s associated with high <strong>water</strong> table c<strong>on</strong>diti<strong>on</strong>s<br />

reduce shrub <strong>and</strong> grass cover <strong>and</strong> produce c<strong>on</strong>diti<strong>on</strong>s<br />

favorable for Atlantic white cedar germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

<strong>and</strong> survival (Laderman 1989). Experimental results<br />

have shown that when the organic soil horiz<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

black spruce/feather moss wetl<strong>and</strong>s are removed by<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g elevated nutrient levels<br />

154 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Frequent<br />

Fire frequency<br />

Absent<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

Short<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Savanna<br />

(grass understory)<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Savanna<br />

(shrub understory)<br />

C<strong>on</strong>ifer/Hardwood/Shrub<br />

(P<strong>on</strong>d P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Woodl<strong>and</strong>)<br />

Deciduous<br />

Bay Forest<br />

Soil Type<br />

Hydroperiod<br />

Atlantic White Cedar<br />

Forest<br />

Figure 8.3—Idealized <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships between <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, hydroperiod, <strong>and</strong> organic soil depth <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. (Adapted from Kologski 1977).<br />

Figure 8.4—Fire frequency, hydrological, <strong>and</strong> ecological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> palustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e wetl<strong>and</strong>s.<br />

Sedge Bog<br />

Shrub-scrub/P<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

(Low <strong>and</strong> High Pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>)<br />

Evergreen Bay Forest<br />

Organic<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 155<br />

L<strong>on</strong>g


Figure 8.5—Emergent wetl<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Agassiz Wildlife<br />

Refuge, M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota: (top) fall prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, (bottom)<br />

postburn ground surface. (Photos by USDA Forest<br />

Service).<br />

<strong>and</strong> soil temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g>crease site productivity<br />

(Viereck 1983) (fig. 8.6).<br />

Fuel accumulati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> productivity<br />

<strong>and</strong> decompositi<strong>on</strong>. Productivity is a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydroperiod <strong>and</strong> hydrodynamics, which regulate<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>flows <strong>and</strong> outflows <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, nutrients, <strong>and</strong><br />

oxygen. The seas<strong>on</strong>al or temporary flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g that is<br />

comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> tidal marshes <strong>and</strong> alluvial forest wetl<strong>and</strong>s<br />

Figure 8.6—Black spruce/feather moss forested<br />

wetl<strong>and</strong>, Tetl<str<strong>on</strong>g>in</str<strong>on</strong>g> Wildlife Refuge, Alaska: (top) prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (7/1993); (middle <strong>and</strong> bottom)<br />

postburn ground surfaces. (Photos by Roger<br />

Hungerford <strong>and</strong> James Reard<strong>on</strong>).<br />

156 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


provides external <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> nutrients <strong>and</strong><br />

results <str<strong>on</strong>g>in</str<strong>on</strong>g> high productivity <strong>and</strong> high decompositi<strong>on</strong><br />

rates. In c<strong>on</strong>trast, the l<strong>on</strong>g, stable hydroperiod <strong>and</strong><br />

dependence <strong>on</strong> precipitati<strong>on</strong> for <strong>water</strong> <strong>and</strong> nutrients<br />

comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> bogs, pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <strong>and</strong> other nutrient-limited<br />

wetl<strong>and</strong>s result <str<strong>on</strong>g>in</str<strong>on</strong>g> lower productivity <strong>and</strong> slower decompositi<strong>on</strong><br />

rates.<br />

On the nutrient-limited wetl<strong>and</strong>s with l<strong>on</strong>g, stable<br />

hydroperiods, greater amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel accumulate<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> slower decompositi<strong>on</strong> rates <str<strong>on</strong>g>in</str<strong>on</strong>g> the relatively<br />

nutrient-poor litter <strong>and</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels. This slower decompositi<strong>on</strong><br />

rate leads to more frequent <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> the nutrient-limited<br />

sites compared to the productive sites that<br />

have <str<strong>on</strong>g>in</str<strong>on</strong>g>herently less litter <strong>and</strong> fuels producti<strong>on</strong><br />

(Christensen 1985).<br />

Surface Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Wetl<strong>and</strong>s—In wetl<strong>and</strong> <strong>soils</strong>, the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> produced by surface <strong>and</strong> ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are related<br />

to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy at<br />

either the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface or the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> n<strong>on</strong>burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic soil materials.<br />

In general, surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be characterized as short<br />

durati<strong>on</strong>, variable <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, while<br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be characterized as l<strong>on</strong>ger durati<strong>on</strong><br />

<strong>and</strong> lower <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (see chapter 1).<br />

Fire severity, which is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the immediate <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> plants <strong>and</strong> <strong>soils</strong>, is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> both the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

organic materials (Ryan <strong>and</strong> Noste 1985, Ryan 2002).<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g igniti<strong>on</strong>, surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior depends <strong>on</strong><br />

weather, topography, <strong>and</strong> fuels (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i 1976, Alex<strong>and</strong>er<br />

1982, F<str<strong>on</strong>g>in</str<strong>on</strong>g>ney 1998). Behavior is characterized by parameters<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread, <strong>and</strong><br />

flame geometry. One factor <str<strong>on</strong>g>of</str<strong>on</strong>g> significance <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior is fuel compactness<br />

(pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratio). Compactness is the relati<strong>on</strong>ship between<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>in</str<strong>on</strong>g> each size class (fuel<br />

load<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <strong>and</strong> the physical volume it occupies (fuel<br />

depth), <strong>and</strong> it is correlated with rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (Burgan <strong>and</strong> Rothermel 1984). The compactness<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g to fuel depth reflects the<br />

structure <strong>and</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> (Brown<br />

1981).<br />

Wetl<strong>and</strong> vegetati<strong>on</strong> types range from short sedge<br />

meadows to forested wetl<strong>and</strong>s. The surface fuels <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

gram<str<strong>on</strong>g>in</str<strong>on</strong>g>oid-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated or scrub-shrub wetl<strong>and</strong>s are<br />

primarily vertical, <strong>and</strong> these fuel types rapidly <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> depth as load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creases. In c<strong>on</strong>trast, the<br />

fuels <str<strong>on</strong>g>in</str<strong>on</strong>g> forested wetl<strong>and</strong>s, which are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated more<br />

by overstory species, are primarily horiz<strong>on</strong>tal, <strong>and</strong><br />

these fuel types slowly <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> depth as fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases (Anders<strong>on</strong> 1982). The fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

many wetl<strong>and</strong>s is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> both the horiz<strong>on</strong>tal fuel<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the understory <strong>and</strong> the vertical comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the overstory.<br />

Physiography <strong>and</strong> vegetati<strong>on</strong> structure are important<br />

factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g localized surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior<br />

(Foster 1983). A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior occurs <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wetl<strong>and</strong>s due to the diverse wetl<strong>and</strong> plant communities<br />

<strong>and</strong> their associated fuel types. Fires <str<strong>on</strong>g>in</str<strong>on</strong>g> hardwood<br />

swamps will typically burn with low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities <strong>and</strong><br />

low flame lengths, while <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub wetl<strong>and</strong>s<br />

can exhibit extreme behavior (Wade <strong>and</strong> Ward 1973).<br />

Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> depths show characteristics similar to the chaparral<br />

vegetati<strong>on</strong> type with higher load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e live <strong>and</strong><br />

dead materials (Scott 2001). In pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>s, high fuel<br />

loads <str<strong>on</strong>g>in</str<strong>on</strong>g> the small size classes <strong>and</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

volatile oils <strong>and</strong> res<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the vegetati<strong>on</strong> c<strong>on</strong>tribute to<br />

high rates <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <strong>and</strong> high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

suppressi<strong>on</strong> difficult (Anders<strong>on</strong> 1982).<br />

Ground Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Wetl<strong>and</strong>s—Due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material, ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are a<br />

special c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> Histisols, Gelisols, <strong>and</strong> other soil<br />

types with thick organic horiz<strong>on</strong>s. Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that<br />

result from periodic fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong> table are<br />

correlated with weather cycles. These <str<strong>on</strong>g>fire</str<strong>on</strong>g>s generally<br />

c<strong>on</strong>sume the available surface fuels but little organic<br />

soil material (Curtis 1959). However, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that occur<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>ger or more severe <strong>water</strong> table decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

result <str<strong>on</strong>g>in</str<strong>on</strong>g> significant c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both surface fuels<br />

<strong>and</strong> organic soil material (Johns<strong>on</strong> 1992, Kasischke<br />

<strong>and</strong> Stocks 2000).<br />

Susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed combusti<strong>on</strong> <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn are correlated<br />

with soil <strong>water</strong> c<strong>on</strong>tent, which is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

<strong>water</strong> hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity, hydroperiod, <strong>and</strong> evapotranspirati<strong>on</strong>.<br />

While soil moisture <strong>and</strong> aerati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong><br />

l<strong>and</strong>scapes are c<strong>on</strong>trolled by hydrology, the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil to store <strong>water</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by the organic matter<br />

c<strong>on</strong>tent <strong>and</strong> its degree <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>. Soil <strong>water</strong><br />

storage capacity is correlated with physical properties<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>clude bulk density, organic matter c<strong>on</strong>tent, <strong>and</strong><br />

hydraulic c<strong>on</strong>ductivity. Slightly decomposed fibric<br />

materials <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by sphagnum moss material<br />

have low bulk density, high hydraulic c<strong>on</strong>ductivity,<br />

high porosity, <strong>and</strong> hold a high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

at saturati<strong>on</strong>. At saturati<strong>on</strong> this fibric material can<br />

hold greater than 850 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> its dry weight as<br />

<strong>water</strong> (USDA Natural Resources C<strong>on</strong>servati<strong>on</strong> Service<br />

1998). In c<strong>on</strong>trast, the highly decomposed sapric<br />

materials found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> formed <str<strong>on</strong>g>in</str<strong>on</strong>g> the pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s<br />

have greater bulk density, f<str<strong>on</strong>g>in</str<strong>on</strong>g>er pore structure,<br />

<strong>and</strong> lower hydraulic c<strong>on</strong>ductivity. At saturati<strong>on</strong>, sapric<br />

material can hold up to 450 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> its dry weight <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong> (USDA Natural Resources C<strong>on</strong>servati<strong>on</strong> Service<br />

1998).<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil material,<br />

the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

(that is, ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>) is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture <strong>and</strong><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent. Laboratory studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 157


etween these two factors were c<strong>on</strong>ducted us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

st<strong>and</strong>ardized igniti<strong>on</strong> source <strong>and</strong> commercial peat moss<br />

as an organic soil/duff surrogate. Peat moss was used<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its physical <strong>and</strong> chemical uniformity.<br />

The results show an <str<strong>on</strong>g>in</str<strong>on</strong>g>verse relati<strong>on</strong>ship between<br />

the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g moisture limit <strong>and</strong> moisture <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

c<strong>on</strong>tent. C<strong>on</strong>sequently, these results were used<br />

to derive a susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g probability distributi<strong>on</strong><br />

based up<strong>on</strong> moisture <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent factors.<br />

For comparis<strong>on</strong> purposes, the results are reported at<br />

the moisture c<strong>on</strong>tent for a 50 percent probability level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed combusti<strong>on</strong> (Fr<strong>and</strong>sen 1987, Hartford<br />

1989) (table 8.4).<br />

Organic soil materials from various wetl<strong>and</strong>s show<br />

a similar relati<strong>on</strong>ship between smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g moisture<br />

limit <strong>and</strong> moisture <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent. The smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> low m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent <strong>soils</strong> from a North<br />

Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> site is greater than the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> high m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent <strong>soils</strong> from a Michigan<br />

sedge meadow site. The results also show soil depth<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limits. Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limits<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g depth <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> black spruce/sphagnum, sedge meadow,<br />

<strong>and</strong> other sites (Fr<strong>and</strong>sen 1997) (fig. 8.7).<br />

Although the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limits for both peat moss<br />

<strong>and</strong> organic soil materials are the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

<strong>and</strong> moisture c<strong>on</strong>tents, differences exist between the<br />

predicted smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limits derived from the peat<br />

moss surrogate <strong>and</strong> the limits derived from organic<br />

soil material. With the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples from<br />

black spruce/feather moss sites <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska, at the 50<br />

percent probability level, organic soil materials from<br />

other sites smoldered at c<strong>on</strong>sistently higher moisture<br />

c<strong>on</strong>tents than the limits predicted for peat moss.<br />

Fr<strong>and</strong>sen (1997) speculated that igniti<strong>on</strong> methods<br />

were partially resp<strong>on</strong>sible for some <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference.<br />

Fire l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity al<strong>on</strong>e does not give the total heat<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>put to the soil surface because it does not take <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

account the residence time <str<strong>on</strong>g>of</str<strong>on</strong>g> the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

or smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> (Peter 1992,<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt 1995). The l<strong>on</strong>g durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> is an important characteristic<br />

that differentiates the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong><br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s (We<str<strong>on</strong>g>in</str<strong>on</strong>g> 1983).<br />

In laboratory studies, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

depended <strong>on</strong> both moisture <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent<br />

(Fr<strong>and</strong>sen 1991a,b), with the laboratory estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with the 1.2 to<br />

4.7 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/hour (3 to 12 cm/hour) reported by We<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

(1983). The results <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship<br />

between c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> moisture c<strong>on</strong>tent<br />

have shown that susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sphagnum<br />

moss was possible at up to 130 percent moisture<br />

c<strong>on</strong>tent, <strong>and</strong> that the percent c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

material was l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to the variability <str<strong>on</strong>g>in</str<strong>on</strong>g> moisture<br />

distributi<strong>on</strong> (Campbell <strong>and</strong> others 1995).<br />

Table 8.4—Moisture limits <str<strong>on</strong>g>of</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed combusti<strong>on</strong> <strong>and</strong> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> soil materials.<br />

Average Moisture c<strong>on</strong>tent<br />

Average organic for 50 percent<br />

Vegetati<strong>on</strong> Wetl<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic bulk probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type class c<strong>on</strong>tent density Depth susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed combusti<strong>on</strong><br />

Percent kg/m 3<br />

cm <str<strong>on</strong>g>in</str<strong>on</strong>g> Percent<br />

Sphagnum (upper) Forested Wetl<strong>and</strong> 12.4 22 0-5 0-2 118<br />

Sphagnum (lower) Forested Wetl<strong>and</strong> 56.7 119 10-25 25-64 81<br />

Spruce/Moss Forested Wetl<strong>and</strong> 18.1 43 0-25 0-64 39<br />

Spruce/Moss/Lichen Forested Wetl<strong>and</strong> 26.1 56 0-5 0-2 117<br />

Sedge Meadow (upper) Emergent Wetl<strong>and</strong> 23.3 69 5-15 2-6 117<br />

Sedge Meadow (lower) Emergent Wetl<strong>and</strong> 44.9 92 15-25 6-64 72<br />

White Spruce Duff Upl<strong>and</strong> 35.9 122 0-5 0-2 84<br />

Peat Peat Moss 9.4 222 17-25 7-64 88<br />

Peat Muck Peat Moss 34.9 203 12-20 5-8 43<br />

Sedge Meadow (Seney) Emergent Wetl<strong>and</strong> 35.4 183 17-25 7-64 70<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duff (Seney) Upl<strong>and</strong> 36.5 190 0-5 0-2 77<br />

Spruce/P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duff Upl<strong>and</strong> 30.7 116 0-5 0-2 101<br />

Grass/Sedge Marsh Wetl<strong>and</strong> 35.2 120 0-5 0-2 106<br />

Southern P<str<strong>on</strong>g>in</str<strong>on</strong>g>e Duff Upl<strong>and</strong> 68.0 112 0-5 0-2 39<br />

Pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> Shrub-Scrub 18.2 210 10-30 25-12 150<br />

158 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 8.7—Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicted moisture<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limits <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil materials <str<strong>on</strong>g>in</str<strong>on</strong>g> different<br />

wetl<strong>and</strong>s with the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g limit <str<strong>on</strong>g>of</str<strong>on</strong>g> an organic soil<br />

surrogate. The dotted l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is the 50 percent probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn limit. (Adapted from Hungerford <strong>and</strong> others<br />

1995b).<br />

Heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> organic <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <strong>soils</strong> is a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy produced by combusti<strong>on</strong> <strong>and</strong><br />

soil thermal properties. The energy produced by flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> depends <strong>on</strong> fuel properties<br />

<strong>and</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Soil thermal<br />

properties are affected by soil characteristics <strong>and</strong><br />

moisture c<strong>on</strong>tent. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> thermal properties are<br />

primarily the result <str<strong>on</strong>g>of</str<strong>on</strong>g> soil dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> advance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t (Peter 1992, Campbell <strong>and</strong> others<br />

1994, 1995).<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior characteristics, the depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn is an important factor <str<strong>on</strong>g>in</str<strong>on</strong>g> predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> wetl<strong>and</strong><br />

<strong>soils</strong>. In m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil, the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between the burnable<br />

organic materials <strong>and</strong> unburnable m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is<br />

significant because <str<strong>on</strong>g>of</str<strong>on</strong>g> differences <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient pools <strong>and</strong><br />

heat transfer properties. In wetl<strong>and</strong> <strong>soils</strong>, the depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn, which is the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

n<strong>on</strong>burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic soil materials, is important because<br />

it reflects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material c<strong>on</strong>sumed.<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors are correlated with depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrient volatilizati<strong>on</strong>, ash depositi<strong>on</strong>,<br />

<strong>and</strong> emissi<strong>on</strong>s.<br />

Fall prescribed burns were c<strong>on</strong>ducted by the Nature<br />

C<strong>on</strong>servancy <str<strong>on</strong>g>in</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> 1997<br />

<strong>and</strong> 1998 at Green Swamp, North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. The <strong>soils</strong><br />

were Histosols that were greater than 3 feet (0.9 m)<br />

deep. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g average years the study site is temporally<br />

flooded a number <str<strong>on</strong>g>of</str<strong>on</strong>g> times, <strong>and</strong> the <strong>soils</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

saturated most <str<strong>on</strong>g>of</str<strong>on</strong>g> the year. The vegetati<strong>on</strong> <strong>and</strong> surface<br />

fuels <str<strong>on</strong>g>of</str<strong>on</strong>g> the burn units were dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by shrubs<br />

species (Ly<strong>on</strong>ia lucida <strong>and</strong> Ilex glabra), scattered p<strong>on</strong>d<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us serot<str<strong>on</strong>g>in</str<strong>on</strong>g>a), <strong>and</strong> evergreen bays (Persia<br />

borb<strong>on</strong>ia, Gord<strong>on</strong>ia lasianthus). Fuel <strong>and</strong> soil moisture<br />

variability was <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by the hummock <strong>and</strong><br />

depressi<strong>on</strong> microtopography <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground surface.<br />

The surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> both burns were active to runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s with passive crown<str<strong>on</strong>g>in</str<strong>on</strong>g>g that was associated<br />

with s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle or small clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>and</strong><br />

evergreen bay species (Hungerford <strong>and</strong> Reard<strong>on</strong>, unpublished<br />

data).<br />

The 1997 fall prescribed burn was c<strong>on</strong>ducted dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a period <str<strong>on</strong>g>of</str<strong>on</strong>g> extended drought <strong>and</strong> dry soil c<strong>on</strong>diti<strong>on</strong>s<br />

(fig. 8.8, top). At the time <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the <strong>water</strong> table<br />

depth was greater than 28 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (71 cm) from the<br />

Figure 8.8—Prescribed burn <str<strong>on</strong>g>of</str<strong>on</strong>g> a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrubshrub<br />

wetl<strong>and</strong> c<strong>on</strong>ducted with dry soil c<strong>on</strong>diti<strong>on</strong>s,<br />

Green Swamp, North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a (September 1997):<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> (Top, photo by Gary Curcio);<br />

postburn surface, (Middle, photo by Roger<br />

Hungerford); postburn hydrologic <strong>and</strong> species<br />

changes (Bottom, photo by James Reard<strong>on</strong>).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 159


ground surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the depressi<strong>on</strong> areas. Soil moisture<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the upper pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile ranged from 85 percent at the<br />

surface to 144 percent at 6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (15 cm). These<br />

moisture c<strong>on</strong>tents <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile were less<br />

than the moisture limits predicted to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. The moisture c<strong>on</strong>tents <str<strong>on</strong>g>in</str<strong>on</strong>g> the lower<br />

soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (greater than 18 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches or 46 cm) were<br />

greater than 200 percent <strong>and</strong> exceeded the moisture<br />

limits predicted to susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g (table 8.4).<br />

The surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> extended smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g resulted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> significant c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil organic material <strong>and</strong><br />

surface fuels (fig. 8.8, middle). After the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g fr<strong>on</strong>t advanced both laterally with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the upper soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>and</strong> downward. Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the downward directi<strong>on</strong> was limited by soil moisture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lower soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn varied between<br />

18 <strong>and</strong> 24 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (46 to 61 cm) <strong>and</strong> reflected both<br />

the soil moisture distributi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<strong>and</strong> the hummock <strong>and</strong> depressi<strong>on</strong> microtopogaphy<br />

comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s (fig. 8.9).<br />

Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g below the burn/no-burn <str<strong>on</strong>g>in</str<strong>on</strong>g>terface was<br />

primarily the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g durati<strong>on</strong> temperature<br />

pulse associated with the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment.<br />

Maximum measured temperatures 0.2 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (0.5 cm)<br />

below the burn/no-burn <str<strong>on</strong>g>in</str<strong>on</strong>g>terface were greater than<br />

680 °F (360 °C), while maximum temperature measured<br />

2.6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (6.5 cm) below the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terface<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> unburned soil was less than 158 °F (70 °C) (fig. 8.10).<br />

Figure 8.9—Pre- <strong>and</strong> postburn microelevati<strong>on</strong> transect <str<strong>on</strong>g>of</str<strong>on</strong>g> a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> dry burn study site (Hungerford<br />

<strong>and</strong> Reard<strong>on</strong>, unpublished data).<br />

Figure 8.10—Soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile temperature measurements from a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

prescribed burn c<strong>on</strong>ducted with dry soil c<strong>on</strong>diti<strong>on</strong>s (Hungerford <strong>and</strong><br />

Reard<strong>on</strong>, unpublished data).<br />

160 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


In areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high burn severity, the hydrologic changes<br />

associated with the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil have<br />

led to species compositi<strong>on</strong> changes (fig. 8.8, bottom).<br />

The 1998 fall prescribed burn was c<strong>on</strong>ducted dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a period <str<strong>on</strong>g>of</str<strong>on</strong>g> saturated soil c<strong>on</strong>diti<strong>on</strong>s (fig. 8.11, top).<br />

This burn resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> limited c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

fuels <strong>and</strong> organic soil materials <strong>and</strong> limited soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(fig. 8.11, middle). At the time <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, soil<br />

moisture <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile exceeded 250 percent,<br />

<strong>and</strong> the <strong>water</strong> table was with<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 to 5 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (5.1<br />

to 12.7 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> the depressi<strong>on</strong> ground surface. The<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn was limited, <strong>and</strong> the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic soil material was restricted to the top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hummocks <strong>and</strong> microsites with dryer soil c<strong>on</strong>diti<strong>on</strong>s.<br />

Litter <strong>and</strong> surface fuels were scorched but not c<strong>on</strong>sumed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> much <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit (fig. 8.11, bottom). Soil<br />

Figure 8.11—Prescribed burn <str<strong>on</strong>g>of</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub<br />

wetl<strong>and</strong> c<strong>on</strong>ducted with wet soil c<strong>on</strong>diti<strong>on</strong>s, Green<br />

Swamp, North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a (September 1998): (top) surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior, (middle <strong>and</strong> bottom) fuel c<strong>on</strong>sumpti<strong>on</strong><br />

<strong>and</strong> postburn ground surface. (Photos by Roger<br />

Hungerford <strong>and</strong> James Reard<strong>on</strong>)<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g below the burn/no-burn <str<strong>on</strong>g>in</str<strong>on</strong>g>terface was limited<br />

<strong>and</strong> resulted from the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> primarily<br />

associated with the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The maximum measured<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned soil at 2.8 <strong>and</strong> 4.3<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ch (7.0 <strong>and</strong> 11.0 cm) depths were 171 °F (77 °C) <strong>and</strong><br />

189 °F (87 °C), respectively (fig. 8.12). The removal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dead <strong>and</strong> live f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuel resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> no significant species<br />

compositi<strong>on</strong> changes <strong>and</strong> regrowth, <strong>and</strong> fuel accumulati<strong>on</strong><br />

was sufficient to reburn the unit <str<strong>on</strong>g>in</str<strong>on</strong>g> autumn<br />

2001.<br />

The <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s is correlated with<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn. In additi<strong>on</strong> to the direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> caused<br />

by organic soil combusti<strong>on</strong>, the physical removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil material creates a number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelated physical,<br />

biological, <strong>and</strong> hydrological c<strong>on</strong>sequences. Removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this material can result <str<strong>on</strong>g>in</str<strong>on</strong>g> soil moisture,<br />

temperature, <strong>and</strong> aerati<strong>on</strong> changes that affect microorganism<br />

activity changes <strong>and</strong> ultimately decompositi<strong>on</strong><br />

rate changes (Armentano <strong>and</strong> Menges 1986).<br />

In boreal wetl<strong>and</strong> systems, the active <strong>and</strong> permafrost<br />

layers depend <strong>on</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

moss layer (Viereck 1973, Van Cleve <strong>and</strong> Viereck<br />

1983). A dynamic relati<strong>on</strong>ship exists between the<br />

depth to permafrost, organic layer thickness, <strong>and</strong> soil<br />

temperature. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic layer<br />

by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g leads to an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperatures,<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil moisture regime, <strong>and</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

depth to permafrost. Over time, successi<strong>on</strong>al processes<br />

<strong>and</strong> the reestablishment <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic layer<br />

will cause a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperatures <strong>and</strong> a<br />

decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the permafrost layer (P<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> others 1992) (fig. 8.13).<br />

Resp<strong>on</strong>ses to litter c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> soil exposure<br />

after spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sedge meadow wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Michigan also result <str<strong>on</strong>g>in</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperature<br />

Figure 8.12—Soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile temperature measurements<br />

from a pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> prescribed burn c<strong>on</strong>ducted with wet<br />

soil c<strong>on</strong>diti<strong>on</strong>s (Hungerford <strong>and</strong> Reard<strong>on</strong>, unpublished<br />

data).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 161


egime. Prescribed burns were c<strong>on</strong>ducted over a range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities <strong>and</strong> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

litter <strong>and</strong> a blackened soil surface. The postburn soil<br />

surface had higher soil temperatures <strong>and</strong> produced<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Carex strica (Warners<br />

1997).<br />

We<str<strong>on</strong>g>in</str<strong>on</strong>g> (1983) suggested that low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s favor<br />

bog-form<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes because the thick organic layers<br />

that rema<str<strong>on</strong>g>in</str<strong>on</strong>g> after low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s decompose slowly<br />

<strong>and</strong> cause temperature <strong>and</strong> moisture changes by <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the soil <strong>and</strong> reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g moisture. In c<strong>on</strong>trast,<br />

deep hot <str<strong>on</strong>g>fire</str<strong>on</strong>g>s resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased soil temperatures<br />

<strong>and</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates. These c<strong>on</strong>diti<strong>on</strong>s favor<br />

plant communities dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by vascular plants.<br />

Wetl<strong>and</strong> Fire Effects <strong>and</strong> Soil Nutrient<br />

Resp<strong>on</strong>ses<br />

Figure 8.13—Fire cycle <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil microclimate, permafrost,<br />

<strong>and</strong> vegetati<strong>on</strong> successi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska. (adapted from Van Cleve<br />

<strong>and</strong> Viereck 1983, P<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> others 1992).<br />

Soil nutrient resp<strong>on</strong>ses are the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrient volatilizati<strong>on</strong>, c<strong>on</strong>densati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> products <strong>on</strong> cool soil surfaces, ash<br />

depositi<strong>on</strong>, <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Soil nutrients exhibit a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity to temperature changes.<br />

Nitrogen-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g compounds are the most heatsensitive<br />

<strong>and</strong> show changes at temperatures as low as<br />

392 °F (200 °C) while cati<strong>on</strong>s such as magnesium (Mg)<br />

<strong>and</strong> calcium (Ca) are less sensitive <strong>and</strong> show changes<br />

at temperatures greater than 1,832 °F (1,000 °C) (see<br />

chapter 3; DeBano <strong>and</strong> others 1998).<br />

Nutrient volatilizati<strong>on</strong> is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <strong>and</strong> nutrient temperature sensitivity.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients lost to the atmosphere<br />

or rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the ash layer are dependent <strong>on</strong><br />

combusti<strong>on</strong> temperatures <strong>and</strong> preburn nutrient c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fuels (Rais<strong>on</strong> 1979, Soto <strong>and</strong> Diaz-Fierros<br />

1993). Laboratory studies <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong><br />

were c<strong>on</strong>ducted with wetl<strong>and</strong> organic soil cores from<br />

black spruce/ feather moss (Alaska) <strong>and</strong> sedge meadow<br />

(Michigan) sites. Different depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn treatments<br />

were simulated by c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil core moisture. The<br />

results dem<strong>on</strong>strated that ash differences <str<strong>on</strong>g>in</str<strong>on</strong>g> total<br />

carb<strong>on</strong> (C) <strong>and</strong> total nitrogen (N) c<strong>on</strong>tent produced by<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> reflected both depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<br />

treatment <strong>and</strong> preburn nutrient levels. The ash <strong>and</strong><br />

char residue derived from the deep burn treatments<br />

showed the largest reducti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> total N <strong>and</strong> C<br />

(Hungerford <strong>and</strong> Reard<strong>on</strong> unpublished data) (fig. 8.14).<br />

In comparis<strong>on</strong> with the flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aboveground biomass, the smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> high N c<strong>on</strong>tent<br />

organic <strong>soils</strong> from pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub wetl<strong>and</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a produced larger amm<strong>on</strong>ia (NH 3)<br />

<strong>and</strong> hydrocarb<strong>on</strong> emissi<strong>on</strong>s. Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g also produced<br />

a “tar-like” substance that c<strong>on</strong>densed <strong>on</strong> cool surfaces.<br />

This material had a total N c<strong>on</strong>tent that was six to<br />

seven times greater than the parent material (Yokels<strong>on</strong><br />

<strong>and</strong> others 1997).<br />

In additi<strong>on</strong> to nutrient volatilizati<strong>on</strong>, combusti<strong>on</strong><br />

temperatures, <strong>and</strong> preburn fuel nutrient c<strong>on</strong>tent, the<br />

162 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Figure 8.14—Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preburn <strong>and</strong> postburn NH 4–N distributi<strong>on</strong> from<br />

the laboratory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> spruce/feather moss soil cores (Hungerford <strong>and</strong><br />

Reard<strong>on</strong>, unpublished data).<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> ash depositi<strong>on</strong> is also dependent <strong>on</strong> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> between <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> hydrology. Postburn spatial<br />

<strong>and</strong> temporal <strong>water</strong> movement dynamics are the<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> surface microtopography changes <strong>and</strong> reflect<br />

the extent <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn. In wetl<strong>and</strong>s, the durati<strong>on</strong><br />

<strong>and</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the postburn ash-derived nutrient<br />

pulse is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preburn nutrient levels,<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> seas<strong>on</strong>al <strong>water</strong>flow.<br />

The significance <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship between ash<br />

depositi<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased nutrient availability was<br />

tested <str<strong>on</strong>g>in</str<strong>on</strong>g> Michigan Carex stricta dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated sedge<br />

meadow sites. No significant <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> productivity<br />

due to ash additi<strong>on</strong>s was found (Warners 1997). The<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> ash material due to <strong>water</strong> movement was not a<br />

factor <str<strong>on</strong>g>in</str<strong>on</strong>g> this study, <strong>and</strong> the results suggest that either<br />

productivity was not limited by the nutrients present<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the ash residue or the ash produced from burnt<br />

sedge meadow litter was nutrient poor (Warners 1997).<br />

Nitrogen <strong>and</strong> phosphorus (P) additi<strong>on</strong>s were made<br />

to a brackish marsh site <str<strong>on</strong>g>in</str<strong>on</strong>g> coastal North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a at<br />

rates <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to simulate ash depositi<strong>on</strong> from burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

The nutrient additi<strong>on</strong>s were made al<strong>on</strong>g a sal<str<strong>on</strong>g>in</str<strong>on</strong>g>ity<br />

<strong>and</strong> hydroperiod gradient. A significant productivity<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease to low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>and</strong> P additi<strong>on</strong> was observed<br />

at <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate sal<str<strong>on</strong>g>in</str<strong>on</strong>g>ity levels (Bryant <strong>and</strong> others<br />

1991). In c<strong>on</strong>trast to the Michigan sedge study (Warners<br />

1997) these f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs suggest that nutrient release<br />

from burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g may stimulate growth.<br />

Soil <strong>and</strong> tissue nutrient c<strong>on</strong>centrati<strong>on</strong>s from<br />

Carex spp. dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated meadows showed complex<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships between nutrient c<strong>on</strong>centrati<strong>on</strong>s,<br />

<strong>water</strong> depth, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <strong>and</strong><br />

<strong>water</strong> depth were negatively correlated with plant<br />

tissue N, P, potassium (K), copper (Cu), manganese<br />

(Mn), <strong>and</strong> z<str<strong>on</strong>g>in</str<strong>on</strong>g>c (Zn) c<strong>on</strong>centrati<strong>on</strong>s. The results suggest<br />

that volatilizati<strong>on</strong> <strong>and</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these nutrients by<br />

snowmelt <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f after spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s may result <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

losses <str<strong>on</strong>g>of</str<strong>on</strong>g> these elements (Auclair 1977).<br />

The site-specific studies <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> systems presented<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter have shown mixed results <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

relati<strong>on</strong>ship between burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> nutrient loss <strong>and</strong><br />

retenti<strong>on</strong>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>terelati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient loss, seas<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> wetl<strong>and</strong> system are not well<br />

understood, <strong>and</strong> generalizati<strong>on</strong>s across wetl<strong>and</strong> systems<br />

<strong>and</strong> classes are limited at this time.<br />

Nutrient Transformati<strong>on</strong>s <strong>and</strong> Cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g—In<br />

nutrient deficient wetl<strong>and</strong>s with low decompositi<strong>on</strong><br />

rates, the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate nitrogen<br />

(NO 3-N), amm<strong>on</strong>ium nitrogen (NH 4-N), <strong>and</strong> phosphate<br />

(PO 4) is l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked with burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g because a high<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> soil nutrients are stored <str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

sediments <strong>and</strong> plant material (Wilbur <strong>and</strong> Christensen<br />

1983). Nutrient transformati<strong>on</strong>s that result from soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g are primarily dependent <strong>on</strong> soil temperatures<br />

(DeBano <strong>and</strong> others 1998). The destructive distillati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic materials occurs at relatively low temperatures<br />

392 to 572 °F (200 to 300 °C) (Hungerford<br />

<strong>and</strong> others 1991), <strong>and</strong> soil temperatures above 482 °F<br />

(250 °C) result <str<strong>on</strong>g>in</str<strong>on</strong>g> a decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> available nutrients<br />

(Kutiel <strong>and</strong> Shaviv 1992).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 163


Wetl<strong>and</strong> soil nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes are similar<br />

to those <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial envir<strong>on</strong>ments, but oxygen (O 2)<br />

limitati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the wetl<strong>and</strong> soil envir<strong>on</strong>ment lead to<br />

important differences. Anaerobic reacti<strong>on</strong>s require<br />

both a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> organic C <strong>and</strong> a soil saturated with<br />

slow mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g or stagnant <strong>water</strong>. In this envir<strong>on</strong>ment,<br />

aerobic organisms deplete the available O 2, <strong>and</strong> anaerobic<br />

organisms utilize other compounds as electr<strong>on</strong><br />

acceptors to respire <strong>and</strong> decompose organic tissues<br />

(Craft 1999). Soil organisms dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>in</str<strong>on</strong>g> aerobic <strong>soils</strong><br />

do not functi<strong>on</strong> as efficiently <str<strong>on</strong>g>in</str<strong>on</strong>g> low O 2 envir<strong>on</strong>ments<br />

(Stevens<strong>on</strong> 1986), <strong>and</strong> soil chemical transformati<strong>on</strong>s<br />

are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by reducti<strong>on</strong> reacti<strong>on</strong>s. Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant reacti<strong>on</strong>s<br />

tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g place <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the denitrificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N, the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn, ir<strong>on</strong> (Fe), sulfur (S), <strong>and</strong><br />

methane producti<strong>on</strong>. These reacti<strong>on</strong>s depend <strong>on</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> accept<str<strong>on</strong>g>in</str<strong>on</strong>g>g compounds (such as<br />

NO -3 , Fe +3 Mn +4 , SO -4 ), temperature, pH, <strong>and</strong> other<br />

factors (Craft 1999).<br />

Aerobic c<strong>on</strong>diti<strong>on</strong>s may dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate a shallow surface<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>logged <strong>soils</strong>. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> this layer<br />

depends <strong>on</strong> hydrology <strong>and</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn. The chemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by reducti<strong>on</strong><br />

reacti<strong>on</strong>s that result from the anaerobic or O 2<br />

limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s.<br />

Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g has numerous direct <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong> nutrient<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes. The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>and</strong> litter<br />

material changes the surface soil moisture <strong>and</strong> temperature<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> bare <strong>soils</strong>, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

microbial compositi<strong>on</strong> <strong>and</strong> activity. Altered microbial<br />

activity can result <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>, nitrificati<strong>on</strong> rates, <strong>and</strong> phosphorous<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> rates.<br />

Wetl<strong>and</strong> Soil Nutrients—Carb<strong>on</strong> is stored <str<strong>on</strong>g>in</str<strong>on</strong>g> both<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dead plant materials. In wetl<strong>and</strong> <strong>soils</strong> the<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the total C stored <str<strong>on</strong>g>in</str<strong>on</strong>g> dead materials is<br />

greater than <str<strong>on</strong>g>in</str<strong>on</strong>g> other terrestrial systems. Because the C<br />

sequestered <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s approximately 10 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the global C pool, wetl<strong>and</strong>s play an important role<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the global C cycle (Schles<str<strong>on</strong>g>in</str<strong>on</strong>g>ger 1991). The C balance<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s is sensitive to l<strong>and</strong> management <strong>and</strong><br />

envir<strong>on</strong>mental factors (Trett<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others 2001) <strong>and</strong> is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelated factors <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

productivity, decompositi<strong>on</strong>, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency.<br />

Factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g C accumulati<strong>on</strong> rates were<br />

studied <str<strong>on</strong>g>in</str<strong>on</strong>g> sphagnum-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated boreal peatl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Western Canada (Kuhry 1994). The results showed<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>creased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> peat surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s led to<br />

decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> C accumulati<strong>on</strong> rates <strong>and</strong> organic layer<br />

thickness. Kuhry (1994) c<strong>on</strong>cludes that <str<strong>on</strong>g>in</str<strong>on</strong>g> these systems,<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased short-term productivity from<br />

postburn nutrient release may not compensate for the<br />

peat lost from frequent burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

In c<strong>on</strong>trast to sphagnum-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated boreal systems,<br />

the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> forested wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southeastern<br />

United States can lead to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased C accumulati<strong>on</strong><br />

rates. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> overstory vegetati<strong>on</strong> that results<br />

from burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g produces changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the balance between<br />

transpirati<strong>on</strong> from vegetati<strong>on</strong> <strong>and</strong> surface evaporati<strong>on</strong><br />

from exposed soil. Evapotranspirati<strong>on</strong> changes<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to higher <strong>water</strong> levels <strong>and</strong> reduced soil O 2<br />

limitati<strong>on</strong> may cause decreased decompositi<strong>on</strong> rates<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased C accumulati<strong>on</strong> rates (Craft 1999).<br />

In fresh<strong>water</strong> wetl<strong>and</strong>s, N is present <str<strong>on</strong>g>in</str<strong>on</strong>g> both organic<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic forms. Organic N is associated with<br />

plants, microbes, <strong>and</strong> sediments, while <str<strong>on</strong>g>in</str<strong>on</strong>g>organic N is<br />

associated primarily with <strong>water</strong> <strong>and</strong> sediments (Craft<br />

1999). Important transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> available N <str<strong>on</strong>g>in</str<strong>on</strong>g>volve<br />

the diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4-N between aerobic layers<br />

where m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong> nitrificati<strong>on</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate N<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> anaerobic layers where denitrificati<strong>on</strong><br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates N cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Patrick 1982, Schmalzer <strong>and</strong><br />

H<str<strong>on</strong>g>in</str<strong>on</strong>g>kle 1992).<br />

Laboratory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> soil cores showed the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <strong>on</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

available N. Different depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn treatments were<br />

simulated by manipulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil core moisture. Comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pre- <strong>and</strong> postburn available N distributi<strong>on</strong>s<br />

showed postburn NH 4-N enrichment below the<br />

ash depositi<strong>on</strong> layer <strong>and</strong> the burn/no-burn <str<strong>on</strong>g>in</str<strong>on</strong>g>terface<br />

(Hungerford <strong>and</strong> Reard<strong>on</strong> unpublished data). The<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs support the c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> DeBano <strong>and</strong> others<br />

(1976) <strong>and</strong> suggest that the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> available N<br />

was caused by soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong>/or the c<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N-rich combusti<strong>on</strong> products <strong>on</strong> unburned soil surfaces<br />

(fig. 8.15).<br />

Phosphorous limitati<strong>on</strong> is comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s because<br />

unlike N <strong>and</strong> C, it has no significant biologically<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>duced or atmospheric <str<strong>on</strong>g>in</str<strong>on</strong>g>puts (Paul <strong>and</strong> Clark 1989).<br />

In wetl<strong>and</strong>s the vegetati<strong>on</strong> <strong>and</strong> organic sediments are<br />

the major storage sites for P, <strong>and</strong> cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s<br />

is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by vegetati<strong>on</strong> <strong>and</strong> microbes (Craft 1999).<br />

Phosphorus is present <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forms: organic forms <str<strong>on</strong>g>in</str<strong>on</strong>g> live <strong>and</strong> partially decomposed<br />

plant materials, <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral form bound to alum<str<strong>on</strong>g>in</str<strong>on</strong>g>um<br />

(Al), Fe, Ca, Mg, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> orthophosphate compounds<br />

(Craft 1999).<br />

The spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> scrub-shrub wetl<strong>and</strong><br />

sites produced immediate <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> NO 3-N, NH 4-N,<br />

<strong>and</strong> PO 4. Surface temperatures were moderate, <strong>and</strong><br />

<strong>on</strong>ly limited smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> was observed.<br />

Postburn NO 3-N levels <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <strong>and</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed high<br />

throughout the 18-m<strong>on</strong>th study. Postburn PO 4 c<strong>on</strong>centrati<strong>on</strong>s<br />

were <str<strong>on</strong>g>in</str<strong>on</strong>g>itially elevated but returned to<br />

preburn levels by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the first grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>.<br />

The NH 4-N levels were high throughout the first<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g but returned to<br />

pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> that grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>. The<br />

limited soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> additi<strong>on</strong>al<br />

results from laboratory soil <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> studies<br />

suggested that postburn N <strong>and</strong> P nutrient <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

were primarily the result <str<strong>on</strong>g>of</str<strong>on</strong>g> ash depositi<strong>on</strong> (Wilbur<br />

1985).<br />

164 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Burn (cm)<br />

Figure 8.15—Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the preburn <strong>and</strong> postburn percent C <strong>and</strong> N <str<strong>on</strong>g>in</str<strong>on</strong>g> ash <strong>and</strong><br />

char material from the laboratory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> black spruce/feather moss soil cores<br />

(Hungerford <strong>and</strong> Reard<strong>on</strong>, unpublished data).<br />

The spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Juncus spp. <strong>and</strong> Spart<str<strong>on</strong>g>in</str<strong>on</strong>g>a spp.<br />

marshes <str<strong>on</strong>g>in</str<strong>on</strong>g> central Florida resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> significant soil<br />

nutrient changes. Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> PO 4 <strong>and</strong> soil cati<strong>on</strong>s<br />

were attributed to ash depositi<strong>on</strong> (Schmalzer <strong>and</strong><br />

H<str<strong>on</strong>g>in</str<strong>on</strong>g>kle 1992). In c<strong>on</strong>trast, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Juncus <strong>and</strong> Spart<str<strong>on</strong>g>in</str<strong>on</strong>g>a marsh communities <strong>on</strong><br />

the Mississippi Gulf Coast suggested that <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

extractable P were the result <str<strong>on</strong>g>of</str<strong>on</strong>g> mild heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

sediments, <strong>and</strong> the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ash-derived nutrients<br />

may be a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meteorological factors, tidal<br />

regimes, <strong>and</strong> topography (Faulkner <strong>and</strong> de la Cruz<br />

1982).<br />

Amm<strong>on</strong>ium nitrogen levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the Juncus <strong>and</strong><br />

Spart<str<strong>on</strong>g>in</str<strong>on</strong>g>a Florida marsh study sites were elevated for<br />

a period after the burn when the <strong>water</strong> table decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<strong>and</strong> soil temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g>creased. The results suggest<br />

that the NH 4-N changes were the result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

soil O 2, soil temperatures, <strong>and</strong> higher N m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

rates. Postburn soil NO 3-N levels were high <strong>and</strong><br />

eventually decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed because <str<strong>on</strong>g>of</str<strong>on</strong>g> a return <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic<br />

c<strong>on</strong>diti<strong>on</strong>s 6 to 9 m<strong>on</strong>ths after burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The authors<br />

suggest that NO 3-N decl<str<strong>on</strong>g>in</str<strong>on</strong>g>es were the caused by either<br />

decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> nitrificati<strong>on</strong> or <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> denitrificati<strong>on</strong><br />

rates. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g was limited by st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> the results suggest that<br />

available nitrogen nutrient resp<strong>on</strong>ses were l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked<br />

with seas<strong>on</strong>al hydrology.<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the biogeochemical cycles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trace metals is not well understood, <strong>and</strong> much research<br />

is currently be<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> this area. Organic<br />

sediments accumulate metals such as mercury (Hg),<br />

arsenic, <strong>and</strong> selenium (Se) as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g atmospheric depositi<strong>on</strong> <strong>and</strong><br />

<strong>water</strong> movement from upstream sources. The orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these trace metals range from natural processes<br />

such as geochemical weather<str<strong>on</strong>g>in</str<strong>on</strong>g>g to anthropogenic processes<br />

such as fossil fuel burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> agricultural<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. These metals are transformed by microorganisms<br />

<strong>and</strong> enter the food web <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong> envir<strong>on</strong>ments<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> methylated forms (Stevens<strong>on</strong> 1986). The accumulati<strong>on</strong><br />

<strong>and</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g> these metals is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern because<br />

they are toxic to many organisms.<br />

Selenium accumulati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> Western States due to widespread geological<br />

sources. Wetl<strong>and</strong> plants such as cattails <strong>and</strong><br />

bullrush can accumulate Se, <strong>and</strong> the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the dead plant material produces organic sediments<br />

with large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> Se volatilizati<strong>on</strong> from wetl<strong>and</strong> plants was<br />

studied at Bent<strong>on</strong> Lakes Nati<strong>on</strong>al Wildlife Refuge <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

M<strong>on</strong>tana (Zang 1997). The result showed that burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> plants can volatilize up to 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Se <str<strong>on</strong>g>in</str<strong>on</strong>g> leaves <strong>and</strong> stems, <strong>and</strong> the author suggests that<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> may be an effective method <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the selenium<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> sediments.<br />

Mercury accumulati<strong>on</strong> is a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong><br />

management. It is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric<br />

depositi<strong>on</strong> <strong>and</strong> fossil fuel combusti<strong>on</strong>. Inorganic Hg <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sediments is transformed to methylated forms by<br />

microbial activity. The methylated forms <str<strong>on</strong>g>of</str<strong>on</strong>g> Hg are<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 165


highly bioaccumlative <strong>and</strong> are readily <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the food web. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> prol<strong>on</strong>ged<br />

dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> methylati<strong>on</strong> rates were studied <str<strong>on</strong>g>in</str<strong>on</strong>g> the Florida<br />

Everglades (Krabbenh<str<strong>on</strong>g>of</str<strong>on</strong>g>t <strong>and</strong> others 2001). The results<br />

showed that burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> prol<strong>on</strong>ged dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

changed soil <strong>and</strong> ground <strong>water</strong> properties <strong>and</strong> resulted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Hg methylati<strong>on</strong> rate <str<strong>on</strong>g>in</str<strong>on</strong>g>creases. These rate<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases were l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked with postburn sulfate availability<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g reflood<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> the average hydroperiod<br />

may result <str<strong>on</strong>g>in</str<strong>on</strong>g> a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the occurrence <strong>and</strong><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked with high methylati<strong>on</strong><br />

rates.<br />

Wetl<strong>and</strong> Management C<strong>on</strong>siderati<strong>on</strong>s<br />

The wide distributi<strong>on</strong> <strong>and</strong> critical ecological functi<strong>on</strong>s<br />

that are provided by wetl<strong>and</strong>s make their c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued<br />

health crucial to envir<strong>on</strong>mental quality. C<strong>on</strong>trary<br />

to the general percepti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s, ecological <strong>and</strong><br />

paleoecological evidence suggests that creati<strong>on</strong> <strong>and</strong><br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> these important <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> depends<br />

<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> other disturbances. L<strong>and</strong> managers deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

with wetl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> need to underst<strong>and</strong> the<br />

ecological role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Experience ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the renewed<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> prescribed natural<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s will improve our underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

important wetl<strong>and</strong> processes <strong>and</strong> vegetati<strong>on</strong> development.<br />

Increased knowledge will enable us to deal more<br />

effectively with wetl<strong>and</strong> management challenges such<br />

as habitat restorati<strong>on</strong>, threatened <strong>and</strong> endangered<br />

species management, <strong>and</strong> hazardous fuel reducti<strong>on</strong>.<br />

Riparian Ecosystems ____________<br />

Riparian areas are an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <strong>and</strong> important comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds throughout most <str<strong>on</strong>g>of</str<strong>on</strong>g> the United<br />

States (Baker <strong>and</strong> others 1998, Brooks <strong>and</strong> others<br />

2003). They occur <str<strong>on</strong>g>in</str<strong>on</strong>g> both arid <strong>and</strong> humid regi<strong>on</strong>s <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude the green-plant communities al<strong>on</strong>g the banks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rivers <strong>and</strong> streams (Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

2002) (fig. 8.16). Riparian areas are found not <strong>on</strong>ly<br />

al<strong>on</strong>g most major <strong>water</strong>ways <str<strong>on</strong>g>in</str<strong>on</strong>g> arid <strong>and</strong> humid areas<br />

throughout the United States, but they are also important<br />

management areas <strong>on</strong> small perennial, ephemeral,<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent streams.<br />

Riparian areas are a particularly unique <strong>and</strong> important<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>and</strong>scape <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United<br />

States where they represent the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between<br />

aquatic <strong>and</strong> adjacent terrestrial <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> are<br />

made up <str<strong>on</strong>g>of</str<strong>on</strong>g> unique vegetative <strong>and</strong> animal communities<br />

that require the regular presence <str<strong>on</strong>g>of</str<strong>on</strong>g> free or unbound<br />

<strong>water</strong>. Riparian vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States<br />

ranges widely <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes high mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> meadows,<br />

deciduous <strong>and</strong> evergreen forests, p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong> juniper <strong>and</strong><br />

enc<str<strong>on</strong>g>in</str<strong>on</strong>g>al woodl<strong>and</strong>s, shrubl<strong>and</strong>s, deserts, <strong>and</strong> desert<br />

grassl<strong>and</strong>s. In most <strong>water</strong>sheds, riparian areas make<br />

up <strong>on</strong>ly a small percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the total l<strong>and</strong> area (for<br />

example, <strong>on</strong>ly about 1 percent or less <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western<br />

United States), yet their hydrologic <strong>and</strong> biological<br />

functi<strong>on</strong>s must be c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> <strong>and</strong> other resource management goals for the<br />

entire <strong>water</strong>shed.<br />

Figure 8.16—Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian areas: Gila River,<br />

New Mexico (Top, photo by Daniel Neary); Black River,<br />

Ariz<strong>on</strong>a (Middle, photo by Alv<str<strong>on</strong>g>in</str<strong>on</strong>g> Med<str<strong>on</strong>g>in</str<strong>on</strong>g>a); Black River,<br />

Ariz<strong>on</strong>a (Bottom, photo by Alv<str<strong>on</strong>g>in</str<strong>on</strong>g> Med<str<strong>on</strong>g>in</str<strong>on</strong>g>a).<br />

166 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Riparian areas have high value <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity<br />

because they share characteristics with both adjacent<br />

upl<strong>and</strong> <strong>and</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> (Crow <strong>and</strong> others<br />

2000). The k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> biological <strong>and</strong> physical diversity<br />

vary widely, spatially <strong>and</strong> temporally, <strong>and</strong> thereby<br />

c<strong>on</strong>tribute greatly to the overall diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers,<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds, <strong>and</strong> patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<strong>and</strong>scape <strong>and</strong> <strong>water</strong>scape<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> al<strong>on</strong>g with a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological processes<br />

associated with these patterns (Lap<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong><br />

Barnes 1995). Also, riparian areas support a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants <strong>and</strong> animals that are not found elsewhere,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g threatened <strong>and</strong> endangered species. They<br />

play other important, but less obvious, roles relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to enhanced <strong>water</strong> quality, flood peak attenuati<strong>on</strong>,<br />

<strong>and</strong> reduced erosi<strong>on</strong> <strong>and</strong> sediment transport.<br />

Riparian Def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <strong>and</strong> Classificati<strong>on</strong><br />

Riparian areas can be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> many ways depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

up<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>ts or purposes. These<br />

approaches can reflect agency c<strong>on</strong>cepts, the discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volved, or the particular functi<strong>on</strong>al role that a riparian<br />

area plays <str<strong>on</strong>g>in</str<strong>on</strong>g> the total ecosystem (Ilhardt <strong>and</strong> others<br />

2000). For example, a technical def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> developed by<br />

the Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management <strong>and</strong> the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

L<strong>and</strong> Management (Anders<strong>on</strong> 1987, p. 70) is:<br />

A riparian area is a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct ecological site, or<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sites, <str<strong>on</strong>g>in</str<strong>on</strong>g> which soil moisture is sufficiently<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> that otherwise available locally, due<br />

to run-<strong>on</strong> <strong>and</strong>/or subsurface seepage, so as to result <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

an exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g or potential soil-vegetati<strong>on</strong> complex that<br />

depicts the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> that extra soil moisture. Riparian<br />

areas may be associated with lakes; reservoirs;<br />

estuaries; potholes; spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs; bogs; wet meadows;<br />

muskegs; <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent <strong>and</strong> perennial streams.<br />

The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil-vegetati<strong>on</strong> complex are<br />

the differentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g criteria.<br />

Discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>ary def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s are oriented to the particular<br />

discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>volved, whereas functi<strong>on</strong>al def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s<br />

focus <strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>and</strong> materials<br />

as their basis rather than be<str<strong>on</strong>g>in</str<strong>on</strong>g>g based <strong>on</strong> static state<br />

variables.<br />

Classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g riparian systems has <str<strong>on</strong>g>in</str<strong>on</strong>g>volved schemes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hierarchical approaches based <strong>on</strong> geomorphology,<br />

<strong>soils</strong>, moisture regimes, plant successi<strong>on</strong>, vegetati<strong>on</strong>,<br />

<strong>and</strong> stream channels, or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these parameters.<br />

Resource managers are <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>terested<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> classify<str<strong>on</strong>g>in</str<strong>on</strong>g>g riparian systems because <str<strong>on</strong>g>of</str<strong>on</strong>g> their important<br />

<strong>and</strong> unique values. A basic underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian systems is complicated by extreme<br />

variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> geology, climate, terra<str<strong>on</strong>g>in</str<strong>on</strong>g>, hydrology, <strong>and</strong><br />

disturbances by humans. Geomorphology is especially<br />

useful <strong>on</strong> riparian sites where the natural vegetati<strong>on</strong><br />

compositi<strong>on</strong>, <strong>soils</strong>, or <strong>water</strong> regimes, or a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these, have been altered by past disturbance, either<br />

natural or human <str<strong>on</strong>g>in</str<strong>on</strong>g>duced. Other classificati<strong>on</strong><br />

schemes are based <strong>on</strong> stream classificati<strong>on</strong> systems<br />

such as that developed by Rosgen (1994).<br />

Hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> Riparian Systems<br />

Riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> are c<strong>on</strong>trolled by <strong>water</strong>, vegetati<strong>on</strong>,<br />

<strong>soils</strong>, <strong>and</strong> a host <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic organisms extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> size from microorganisms to large mammals. Water<br />

<strong>and</strong> its hydrologic processes, however, are a central<br />

functi<strong>on</strong>al force affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the riparian-<strong>water</strong>shed system<br />

<strong>and</strong> are the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> comp<strong>on</strong>ent that l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks a particular<br />

stream <strong>and</strong> associated riparian vegetati<strong>on</strong> to the<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>shed. The magnitude <strong>and</strong> directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the riparian-<strong>water</strong>shed relati<strong>on</strong>ship is further tempered<br />

by geology, geomorphology, topography, <strong>and</strong><br />

climate—<strong>and</strong> their <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. This <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ship<br />

between riparian area <strong>and</strong> surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>shed<br />

is the most sensitive to natural <strong>and</strong> humanrelated<br />

disturbances, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> (DeBano <strong>and</strong><br />

Neary 1996, DeBano <strong>and</strong> others 1998).<br />

The important hydrologic processes <str<strong>on</strong>g>in</str<strong>on</strong>g>clude run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>and</strong> erosi<strong>on</strong>, ground <strong>water</strong> movement, <strong>and</strong> streamflow.<br />

As the boundary between l<strong>and</strong> <strong>and</strong> stream habitats,<br />

streambanks occupy a unique positi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the riparian<br />

system (Bohn 1986). Bank <strong>and</strong> channel pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles affect<br />

stream temperature, <strong>water</strong> velocity, sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>put,<br />

<strong>and</strong> hid<str<strong>on</strong>g>in</str<strong>on</strong>g>g cover <strong>and</strong> suitable liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g space for fish.<br />

Streamside vegetati<strong>on</strong> <strong>on</strong> stable banks provides food<br />

<strong>and</strong> shade for both fish <strong>and</strong> wildlife. As a result,<br />

streambank c<strong>on</strong>diti<strong>on</strong> <strong>and</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish habitat<br />

are closely l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked.<br />

Riparian systems <str<strong>on</strong>g>in</str<strong>on</strong>g> arid envir<strong>on</strong>ments are hydrologically<br />

different from those found <str<strong>on</strong>g>in</str<strong>on</strong>g> more humid<br />

areas. In the arid West, <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent streamflow <strong>and</strong><br />

variable annual precipitati<strong>on</strong> are more comm<strong>on</strong> than<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the more humid areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eastern United States.<br />

As a result, riparian systems <str<strong>on</strong>g>in</str<strong>on</strong>g> humid regi<strong>on</strong>s are less<br />

dependent <strong>on</strong> annual recharge by episodic events to<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g> flow <strong>and</strong> are more dependent <strong>on</strong> a regular <strong>and</strong><br />

dependable ground <strong>water</strong> flow accompanied by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terflow (subsurface flow) <strong>and</strong>, to a lesser extent, <strong>on</strong><br />

overl<strong>and</strong> flow. Watersheds <str<strong>on</strong>g>in</str<strong>on</strong>g> humid regi<strong>on</strong>s also comm<strong>on</strong>ly<br />

have lakes, p<strong>on</strong>ds, <strong>and</strong> other systems that<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g> flows over much <str<strong>on</strong>g>of</str<strong>on</strong>g> the year. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variable precipitati<strong>on</strong>, sediment transport is more<br />

episodic <str<strong>on</strong>g>in</str<strong>on</strong>g> the arid West, where pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> aggradati<strong>on</strong><br />

<strong>and</strong> degradati<strong>on</strong> are punctuated by periods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>activity.<br />

Unlike <strong>on</strong> humid <strong>water</strong>sheds, side-slope erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

dryl<strong>and</strong>s is disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous, <strong>and</strong> there are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten l<strong>on</strong>g lag<br />

periods between <strong>water</strong>shed events <strong>and</strong> sediment delivery<br />

(Heede <strong>and</strong> others 1988). Channels <str<strong>on</strong>g>in</str<strong>on</strong>g> humid<br />

regi<strong>on</strong>s tend to be more stable over the l<strong>on</strong>g term, <strong>and</strong><br />

the macrotopography <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems, though still<br />

resp<strong>on</strong>sive to flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g events, tends to evolve much<br />

more slowly.<br />

Riparian Fire Effects<br />

Fire is a comm<strong>on</strong> disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> both riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g><br />

<strong>and</strong> the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g hillslopes, <strong>and</strong> both<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 167


wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> prescribed burns occur <str<strong>on</strong>g>in</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

riparian-<strong>water</strong>shed systems. Fire affects riparian areas<br />

both directly <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>directly. The direct <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

c<strong>on</strong>sist ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to the vegetati<strong>on</strong> (trees,<br />

shrubs, <strong>and</strong> grasses) that <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepts precipitati<strong>on</strong>, <strong>and</strong><br />

the partial c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g litter layer.<br />

The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the damage to the riparian vegetati<strong>on</strong><br />

depends up<strong>on</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, which could<br />

c<strong>on</strong>sume part or all <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong>. Severe wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

can cause pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound damage to plant cover <strong>and</strong> can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease streamflow velocity, sedimentati<strong>on</strong> rates, <strong>and</strong><br />

stream <strong>water</strong> temperatures, as c<strong>on</strong>trasted to low severity,<br />

cool-burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, which have less<br />

severe c<strong>on</strong>sequences. When <str<strong>on</strong>g>fire</str<strong>on</strong>g> burns the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>water</strong>shed, the <str<strong>on</strong>g>in</str<strong>on</strong>g>direct effect <strong>on</strong> the riparian area<br />

is that it decreases bas<str<strong>on</strong>g>in</str<strong>on</strong>g> stability, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> steep erodible<br />

topography, debris flows al<strong>on</strong>g with dry ravel <strong>and</strong><br />

small l<strong>and</strong>slides <str<strong>on</strong>g>of</str<strong>on</strong>g>f hillslopes are comm<strong>on</strong>. Therefore,<br />

the recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> reflects the<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> both the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> together they can impact the time required for<br />

revegetati<strong>on</strong> <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> efforts.<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Large Woody Debris<br />

Large organic debris is a major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds<br />

<strong>and</strong> river systems because <str<strong>on</strong>g>of</str<strong>on</strong>g> its important role<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> hydraulics, sediment rout<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> channel morphology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> streams flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g through riparian systems<br />

(Smith <strong>and</strong> others 1993, DeBano <strong>and</strong> Neary 1996). An<br />

additi<strong>on</strong>al benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> large woody debris is <str<strong>on</strong>g>in</str<strong>on</strong>g> nutrient<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> forest vegetati<strong>on</strong>.<br />

Through time, entire live <strong>and</strong> dead trees <strong>and</strong> shrubs,<br />

or parts <str<strong>on</strong>g>of</str<strong>on</strong>g> them, are likely to fall <str<strong>on</strong>g>in</str<strong>on</strong>g>to stream channels<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. This woody debris <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> stream habitats by physically<br />

obstruct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> flow. For example, trees extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

partially across the channel deflect the current<br />

laterally, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to widen the streambed. Sediment<br />

stored by debris also adds to hydraulic complexity,<br />

especially <str<strong>on</strong>g>in</str<strong>on</strong>g> organically rich channels that are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

wide <strong>and</strong> shallow <strong>and</strong> possess a high diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> riffles<br />

<strong>and</strong> pools <str<strong>on</strong>g>in</str<strong>on</strong>g> low gradient streams <str<strong>on</strong>g>of</str<strong>on</strong>g> alluvial valley<br />

floors. Stream stabilizati<strong>on</strong> after major floods, debris<br />

torrents, or massive l<strong>and</strong>slides is accelerated by large<br />

woody debris al<strong>on</strong>g <strong>and</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the channel. After<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, while the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> forest is develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the<br />

aquatic habitat may be ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by large woody<br />

debris supplied to the stream by the pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> forests.<br />

Coarse woody debris accumulati<strong>on</strong>s are usually larger<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the first few years follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> than <str<strong>on</strong>g>in</str<strong>on</strong>g> pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

years, but they generally decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e to below pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

thereafter. The recovery time to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

ranges from 25 to 300 years depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the stability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ecosystem burned. While <str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels, this<br />

added debris can have a beneficial effect <strong>on</strong> aquatic<br />

habitats <str<strong>on</strong>g>in</str<strong>on</strong>g> the short term by provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g structure to the<br />

streams. L<strong>on</strong>g-term impacts can be disruptive to stream<br />

morphology <strong>and</strong> the c<strong>on</strong>sequent streamflow <strong>and</strong> sediment<br />

transport regimes. Carefully prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> should<br />

not affect the accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse woody debris<br />

either <strong>on</strong> the <strong>water</strong>shed or <str<strong>on</strong>g>in</str<strong>on</strong>g> the channel. Recommended<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> woody debris to be left <strong>on</strong> the<br />

<strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a, Idaho, <strong>and</strong> M<strong>on</strong>tana are given<br />

earlier <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 4 (see also Graham <strong>and</strong> others 1994).<br />

Coarse woody debris <str<strong>on</strong>g>in</str<strong>on</strong>g> the stream channels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burned riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> larger <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual size, <strong>and</strong> forms larger accumulati<strong>on</strong>s,<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> unburned systems. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> debris<br />

is also likely to be moved more frequently over l<strong>on</strong>ger<br />

distances <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent streamflow events (Young<br />

1994). Managers frequently debate the merits <str<strong>on</strong>g>of</str<strong>on</strong>g> leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

burned dead debris <str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Some managers feel that this material could jam<br />

culverts <strong>and</strong> bridges, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g these structures to wash<br />

out <strong>and</strong> cause flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong>, as a c<strong>on</strong>sequence, these<br />

managers feel the debris should be removed (Barro<br />

<strong>and</strong> others 1989). However, removal <str<strong>on</strong>g>of</str<strong>on</strong>g> this debris can<br />

also result <str<strong>on</strong>g>in</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> channel morphology, a scour<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the channel bed, <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow velocities<br />

<strong>and</strong> sediment loads, an export <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ecosystem, <strong>and</strong> a deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic habitats.<br />

Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse woody<br />

debris, therefore, is likely to best be decided <strong>on</strong> a sitespecific<br />

basis.<br />

Riparian Management C<strong>on</strong>siderati<strong>on</strong>s<br />

Fire is an important factor to c<strong>on</strong>sider <str<strong>on</strong>g>in</str<strong>on</strong>g> the management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Most <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> riparian<br />

areas can be <str<strong>on</strong>g>in</str<strong>on</strong>g>tense <strong>and</strong> cause extensive damage to<br />

the vegetati<strong>on</strong>. However, even after severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, recovery<br />

can be rapid with<str<strong>on</strong>g>in</str<strong>on</strong>g> a couple years to pre<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> some envir<strong>on</strong>ments, but not all. The<br />

recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> reflects the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> both the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Riparian areas are particularly important because<br />

they provide buffer strips that trap sediment <strong>and</strong><br />

nutrients that are released when surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>sheds<br />

are burned. The width <str<strong>on</strong>g>of</str<strong>on</strong>g> these buffer strips is<br />

critical for m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment <strong>and</strong> nutrient movement<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the streams. The best available guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

for buffer width associated with prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> are<br />

that for low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, less than 2 feet (0.6 m) high,<br />

that do not kill stream-shad<str<strong>on</strong>g>in</str<strong>on</strong>g>g shrubs <strong>and</strong> trees. Such<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> can be used throughout the riparian area without<br />

creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g substantial damage. Where <str<strong>on</strong>g>fire</str<strong>on</strong>g> damages<br />

woody vegetati<strong>on</strong>, the width should be proporti<strong>on</strong>al to<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g area, slope, cultural practices<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the upslope area, <strong>and</strong> the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age<br />

below. A general rule <str<strong>on</strong>g>of</str<strong>on</strong>g> thumb is that a width <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30 feet (9 m) plus (0.46 x percent slope) be left al<strong>on</strong>g the<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream to protect the riparian resource<br />

(DeBano <strong>and</strong> others 1998).<br />

168 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Managers need to c<strong>on</strong>sider the mixed c<strong>on</strong>cerns about<br />

leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g downed large woody debris <str<strong>on</strong>g>in</str<strong>on</strong>g>, or near, channel<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. On <strong>on</strong>e h<strong>and</strong>, large woody debris plays<br />

an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> hydraulics, sediment rout<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> channel morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> streams flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g through<br />

riparian systems, thereby enhanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g these systems.<br />

On the other h<strong>and</strong>, to protect life <strong>and</strong> property, channel<br />

clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatments follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> is usually desirable.<br />

The USDA Forest Service suggests that the best<br />

management practice balances downstream value<br />

protecti<strong>on</strong> with the envir<strong>on</strong>mental implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

treatment.<br />

Summary ______________________<br />

While the c<strong>on</strong>necti<strong>on</strong> between wetl<strong>and</strong>s <strong>and</strong> riparian<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> appears <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>gruous, <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

plays an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral role <str<strong>on</strong>g>in</str<strong>on</strong>g> the creati<strong>on</strong> <strong>and</strong> persistence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydric species <strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Wetl<strong>and</strong> <strong>and</strong> riparian<br />

systems have been classified with various classificati<strong>on</strong><br />

systems that reflect both the current underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biogeochemical processes <strong>and</strong> the missi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual l<strong>and</strong> management agencies.<br />

This chapter exam<str<strong>on</strong>g>in</str<strong>on</strong>g>es some <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex <strong>water</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flows <strong>and</strong> outflows that are balanced by the <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships<br />

between biotic <strong>and</strong> abiotic factors. The<br />

presence <strong>and</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant factors<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> with wetl<strong>and</strong> dynamics,<br />

nutrient <strong>and</strong> energy flow, soil chemistry, organic<br />

matter decompositi<strong>on</strong>, <strong>and</strong> plant <strong>and</strong> animal<br />

community compositi<strong>on</strong>.<br />

In wetl<strong>and</strong> <strong>and</strong> riparian <strong>soils</strong>, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> produced<br />

by surface <strong>and</strong> ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are related to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> at either the soil surface or the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> n<strong>on</strong>burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic soil materials.<br />

In general, surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be characterized as short<br />

durati<strong>on</strong>, variable <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>on</strong>es, while ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

can be characterized as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>ger durati<strong>on</strong> <strong>and</strong><br />

lower <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. However, the latter type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can<br />

also produce high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s with pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound physical<br />

<strong>and</strong> chemical changes.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 169


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

170 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> Ryan<br />

William J. Elliot<br />

Chapter 9:<br />

Fire Effects <strong>and</strong> Soil<br />

Erosi<strong>on</strong> Models<br />

Introducti<strong>on</strong> ____________________<br />

In many cases, decisi<strong>on</strong>s about <str<strong>on</strong>g>fire</str<strong>on</strong>g> have to be made<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> short timeframes with limited <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. Fire<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> models have been developed or adapted to help<br />

l<strong>and</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers make decisi<strong>on</strong>s <strong>on</strong> the potential<br />

<strong>and</strong> actual <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> both prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> ecosystem resources (fig. 9.1). Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

models <strong>and</strong> associated erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models apply<br />

the best <str<strong>on</strong>g>fire</str<strong>on</strong>g> science to crucial management decisi<strong>on</strong>s.<br />

These models are undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>stant revisi<strong>on</strong><br />

<strong>and</strong> update to make the latest <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available to<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> managers us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art computer<br />

hardware <strong>and</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> these models requires<br />

a commitment to underst<strong>and</strong> their assumpti<strong>on</strong>s, benefits,<br />

<strong>and</strong> shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> a commitment to c<strong>on</strong>stant<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al development.<br />

First Order Fire Effects Model<br />

(FOFEM) _______________________<br />

FOFEM (First Order Fire Effects Model) is a computer<br />

program that was developed to meet the needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resource managers, planners, <strong>and</strong> analysts <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Figure 9.1—<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s such as the Rodeo-<br />

Chediski Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 affect the complete range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical, chemical, <strong>and</strong> biological comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. (Photo by USDA Forest Service).<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 171


predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. FOFEM provides<br />

quantitative predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> for plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that best accomplish resource<br />

needs, for impact assessment, <strong>and</strong> for l<strong>on</strong>g-range plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> policy development. FOFEM was developed<br />

from l<strong>on</strong>g-term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> data collected by USDA<br />

Forest Service <strong>and</strong> other scientists across the United<br />

States <strong>and</strong> Canada (fig. 9.2).<br />

Descripti<strong>on</strong>, Overview, <strong>and</strong> Features<br />

First order <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are those that c<strong>on</strong>cern the<br />

direct or <str<strong>on</strong>g>in</str<strong>on</strong>g>direct immediate c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. First<br />

order <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> form an important basis for predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

sec<strong>on</strong>dary <str<strong>on</strong>g>effects</str<strong>on</strong>g> such as tree regenerati<strong>on</strong> plant<br />

successi<strong>on</strong>, soil erosi<strong>on</strong>, <strong>and</strong> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity,<br />

but these l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> generally <str<strong>on</strong>g>in</str<strong>on</strong>g>volve <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><br />

with many variables (for example, weather,<br />

animal use, <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, <strong>and</strong> disease) <strong>and</strong> are not predicted<br />

by this program. FOFEM predicts fuel c<strong>on</strong>sumpti<strong>on</strong>,<br />

smoke producti<strong>on</strong>, <strong>and</strong> tree mortality. The area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicability is nati<strong>on</strong>wide <strong>on</strong> forest <strong>and</strong> n<strong>on</strong>forest<br />

vegetati<strong>on</strong> types. FOFEM also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

mode for prescripti<strong>on</strong> development.<br />

Applicati<strong>on</strong>s, Potential Uses, Capabilities,<br />

<strong>and</strong> Goals<br />

FOFEM makes <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> research results readily<br />

available to managers. Potential uses <str<strong>on</strong>g>in</str<strong>on</strong>g>clude wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

impact assessment, development <str<strong>on</strong>g>of</str<strong>on</strong>g> salvage specificati<strong>on</strong>s,<br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> prescripti<strong>on</strong>s, envir<strong>on</strong>mental<br />

Figure 9.2—Development <str<strong>on</strong>g>of</str<strong>on</strong>g> FOFEM <strong>and</strong> other <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> models stemmed from l<strong>on</strong>g-term <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

data collected by USDA Forest Service <strong>and</strong> other<br />

scientists across North America. (Photo by USDA<br />

Forest Service).<br />

assessment, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g. FOFEM<br />

can also be used <str<strong>on</strong>g>in</str<strong>on</strong>g> real time, quickly estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g tree<br />

mortality, smoke generati<strong>on</strong>, <strong>and</strong> fuel c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Scope <strong>and</strong> Primary Geographic<br />

Applicati<strong>on</strong>s<br />

FOFEM—nati<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g> scope—uses four geographic<br />

regi<strong>on</strong>s: Pacific West, Interior West, Northeast, <strong>and</strong><br />

Southeast. Forest cover types provide an additi<strong>on</strong>al<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> resoluti<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> each regi<strong>on</strong>, <strong>and</strong> SAF <strong>and</strong><br />

FRES vegetati<strong>on</strong> types to stratify data <strong>and</strong> methods.<br />

Geographic regi<strong>on</strong>s <strong>and</strong> cover types are used both as<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the algorithm selecti<strong>on</strong> key, <strong>and</strong> also as a key<br />

to default <str<strong>on</strong>g>in</str<strong>on</strong>g>put values. FOFEM c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s data <strong>and</strong><br />

predicti<strong>on</strong> equati<strong>on</strong>s that apply throughout the United<br />

States for most forest <strong>and</strong> rangel<strong>and</strong> vegetati<strong>on</strong> types<br />

that experience <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Input Variables <strong>and</strong> Data Requirements<br />

FOFEM was designed so that data requirements are<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal <strong>and</strong> flexible. Default values are provided for<br />

almost all <str<strong>on</strong>g>in</str<strong>on</strong>g>puts, but users can modify any or all<br />

defaults to provide custom <str<strong>on</strong>g>in</str<strong>on</strong>g>puts.<br />

Output, Products, <strong>and</strong> Performance<br />

FOFEM computes the direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> or wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. It estimates fuel c<strong>on</strong>sumpti<strong>on</strong> by fuel<br />

comp<strong>on</strong>ent for duff, litter, small <strong>and</strong> large woody fuels,<br />

herbs, shrubs <strong>and</strong> tree regenerati<strong>on</strong>, <strong>and</strong> crown foliage<br />

<strong>and</strong> branchwood. It also estimates m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil<br />

exposure, smoke producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO, PM10, <strong>and</strong> PM2.5,<br />

<strong>and</strong> percent tree mortality by species <strong>and</strong> size class.<br />

Alternatively, if the user enters desired levels <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>, FOFEM computes fuel moistures <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensities that should result <str<strong>on</strong>g>in</str<strong>on</strong>g> desired <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Advantages, Benefits, <strong>and</strong> Disadvantages<br />

FOFEM is easy to use, applies to most vegetati<strong>on</strong><br />

types <strong>and</strong> geographic areas, synthesizes <strong>and</strong> makes<br />

available a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> available research results,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>corporates plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> predicti<strong>on</strong> modes, <strong>and</strong> provides<br />

a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> data <str<strong>on</strong>g>in</str<strong>on</strong>g> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> default <str<strong>on</strong>g>in</str<strong>on</strong>g>puts<br />

for different vegetati<strong>on</strong> <strong>and</strong> fuel types. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

disadvantage is that FOFEM is not currently l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to<br />

any other models (<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior, smoke dispersi<strong>on</strong>,<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> successi<strong>on</strong>).<br />

System <strong>and</strong> Computer Requirements<br />

FOFEM versi<strong>on</strong> 5.0 is available for IBM-compatible<br />

PCs with W<str<strong>on</strong>g>in</str<strong>on</strong>g>dows 98 <strong>and</strong> W<str<strong>on</strong>g>in</str<strong>on</strong>g>dows 2000 operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

systems. FOFEM is supported by the Fire Effects<br />

Research Work Unit, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Fire Sciences<br />

172 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Lab, Missoula, MT 59807. Additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> can<br />

be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from:<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>.org/<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>lab.org/<br />

FOFEM <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes embedded help <strong>and</strong> user’s <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>.<br />

The current versi<strong>on</strong> (5.21) can be downloaded<br />

for use with WINDOWS @ 98, 2000, <strong>and</strong> XP at:<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>.org/<str<strong>on</strong>g>in</str<strong>on</strong>g>dex.php?opti<strong>on</strong>=com_<br />

c<strong>on</strong>tent&task=view&id=58&Itemid=25<br />

POWERPOINT @ tutorials provide a FOFEM overview<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> for basic <strong>and</strong> advanced users. FOFEM<br />

4.0 should be replaced with FOFEM 5.21. For more<br />

detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>tact Elizabeth Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt at:<br />

ere<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt@fs.fed.us<br />

Models for Heat <strong>and</strong> Moisture<br />

Transport <str<strong>on</strong>g>in</str<strong>on</strong>g> Soils _______________<br />

Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil beneath a <str<strong>on</strong>g>fire</str<strong>on</strong>g> produces<br />

a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>site <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> to the physical,<br />

chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> (Hungerford<br />

1990) that <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• plant mortality <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>jury<br />

• soil organism mortality <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>jury<br />

• thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

• oxidati<strong>on</strong> or volatilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the upper soil pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

• other physiochemical changes<br />

To predict the nature <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>effects</str<strong>on</strong>g>, we<br />

need to underst<strong>and</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles with<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

soil beneath burned areas (Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others 1996).<br />

Temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are rarely measured <str<strong>on</strong>g>in</str<strong>on</strong>g> actual<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, so some type <str<strong>on</strong>g>of</str<strong>on</strong>g> model is needed to predict soil<br />

temperatures <strong>and</strong> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> to the thermal<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>put. Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others (1996) reviewed a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g models to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e their applicability <strong>and</strong><br />

recommend future development goals.<br />

The Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others (1996) review <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer<br />

models from the soil science, eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> geophysics<br />

fields c<strong>on</strong>cluded that the <strong>on</strong>ly useful models<br />

for describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat transfer phenomena for wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s come from the soil science arena. The models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Campbell <strong>and</strong> others (1992, 1995) seem to functi<strong>on</strong><br />

well <str<strong>on</strong>g>in</str<strong>on</strong>g> predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperature histories <strong>and</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> heated at rates <strong>and</strong> temperatures c<strong>on</strong>sistent<br />

with wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Their model did not perform as<br />

well with soil moisture c<strong>on</strong>tents as with temperatures.<br />

Because many <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil moisture, this is an important ability for heat<br />

transfer predicti<strong>on</strong> models.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others (1996) identified the omissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> important features <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil science<br />

models. These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude diffusive transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> as<br />

a vapor or liquid, momentum equati<strong>on</strong>s, predicti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the transient movement <str<strong>on</strong>g>of</str<strong>on</strong>g> phase-change boundaries,<br />

lateral n<strong>on</strong>homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong>, <strong>and</strong> the rapid<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid <strong>water</strong> to quartz<br />

near 149 °F (65 °C).<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i <strong>and</strong> others (1996) made recommendati<strong>on</strong>s<br />

for further model development <strong>and</strong> simplificati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g models. They believed that some<br />

simplificati<strong>on</strong> would improve the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

models without much sacrifice <str<strong>on</strong>g>in</str<strong>on</strong>g> the fidelity <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

predicti<strong>on</strong>s.<br />

WEPP, WATSED, <strong>and</strong> RUSLE Soil<br />

Erosi<strong>on</strong> Models _________________<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten necessary to use some<br />

st<strong>and</strong>ard predicti<strong>on</strong> technology to evaluate the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil erosi<strong>on</strong>. For forests that tend to regenerate rapidly,<br />

the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> decreases quickly after the first<br />

year, at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> almost 90 percent each year. For<br />

example, the year follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> may experience 0.4<br />

to 0.9 t<strong>on</strong>s/acre (1 to 2 Mg/ha) erosi<strong>on</strong>, the sec<strong>on</strong>d year<br />

less than 0.04 to 0.10 t<strong>on</strong>s/acre (0.1 to 0.3 Mg/ha), <strong>and</strong><br />

the third year may be negligible (Robichaud <strong>and</strong> Brown<br />

1999). The erosi<strong>on</strong> rate depends <strong>on</strong> the climate, topography,<br />

soil properties (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrophobicity), <strong>and</strong><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> surface cover. Surface cover may <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

unburned duff, rock, <strong>and</strong> needle cast follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Three models are comm<strong>on</strong>ly used after soil erosi<strong>on</strong>.<br />

In USDA Forest Service Regi<strong>on</strong>s 1 <strong>and</strong> 4, the WATSED<br />

<strong>and</strong> similar models have frequently been used (USDA<br />

Forest Service 1990b). The Universal Soil Loss Equati<strong>on</strong><br />

(USLE) has been used widely for many years, <strong>and</strong><br />

more recently, the Revised USLE, or RUSLE, has<br />

become comm<strong>on</strong> (Renard <strong>and</strong> others 1997). The Water<br />

Erosi<strong>on</strong> Predicti<strong>on</strong> Project (WEPP) model has recently<br />

been parameterized for predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

<strong>and</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>terface has been developed to aid <str<strong>on</strong>g>in</str<strong>on</strong>g> that<br />

predicti<strong>on</strong>. Improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> the usability <str<strong>on</strong>g>of</str<strong>on</strong>g> both the<br />

RUSLE <strong>and</strong> WEPP predicti<strong>on</strong> technologies are <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

The WATSED model is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to be a cumulative<br />

affects model, to be applied at <strong>water</strong>shed scale.<br />

RUSLE <strong>and</strong> WEPP are hillslope models. WEPP has a<br />

<strong>water</strong>shed versi<strong>on</strong> under development, but it has<br />

received little use outside <str<strong>on</strong>g>of</str<strong>on</strong>g> research evaluati<strong>on</strong>.<br />

WATSED is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended as a <strong>water</strong>shed model to comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the cumulative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest operati<strong>on</strong>s, <str<strong>on</strong>g>fire</str<strong>on</strong>g>s,<br />

<strong>and</strong> roads <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> sediment yield for a given<br />

<strong>water</strong>shed. Factors that account for burned area with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <strong>water</strong>shed, soil properties, topography, <strong>and</strong> delivery<br />

ratios are identified, <strong>and</strong> an average sediment<br />

delivery is calculated. This sediment delivery is reduced<br />

over a 15-year period follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> before the<br />

impact is assumed to be zero. With<str<strong>on</strong>g>in</str<strong>on</strong>g> the Western<br />

geographical territory <str<strong>on</strong>g>of</str<strong>on</strong>g> the Forest Service Regi<strong>on</strong>s,<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the factors have been adjusted to calibrate the<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 173


model for local c<strong>on</strong>diti<strong>on</strong>s, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> models such as NEZSED <strong>and</strong> BOISED. The erosi<strong>on</strong><br />

predicti<strong>on</strong>s are based <strong>on</strong> observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Regi<strong>on</strong>s 1 <strong>and</strong> 4, <strong>and</strong> are not <str<strong>on</strong>g>in</str<strong>on</strong>g>tended for use<br />

elsewhere. Table 9.1 provides the erosi<strong>on</strong> rates predicted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> WATSED, corrected for a USLE LS factor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

11.2 (Wischmeier <strong>and</strong> Smith 1978). These rates are<br />

adjusted for topography, l<strong>and</strong>scape, <strong>and</strong> soil properties<br />

before arriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a f<str<strong>on</strong>g>in</str<strong>on</strong>g>al predicti<strong>on</strong>. A variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the technology <str<strong>on</strong>g>in</str<strong>on</strong>g> WATSED has been adopted by the<br />

State <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> for its Watershed Analysis procedure<br />

(Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Forest Practices Board 1997).<br />

The Revised USLE was developed not <strong>on</strong>ly for agriculture,<br />

but also <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded rangel<strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s. The<br />

RUSLE base equati<strong>on</strong> is:<br />

A = R K LS C P (1)<br />

Where A is the average annual erosi<strong>on</strong> rate, R is the<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall erosivity factor, K is the soil erodibility factor,<br />

LS is the slope length <strong>and</strong> steepness factor, C is the<br />

cover management factor, <strong>and</strong> P is the c<strong>on</strong>servati<strong>on</strong><br />

management factor. Although it has not been widely<br />

tested, the RUSLE values appear to give reas<strong>on</strong>able<br />

erosi<strong>on</strong> values for rangel<strong>and</strong>s (Renard <strong>and</strong> Simant<strong>on</strong><br />

1990, Elliot <strong>and</strong> others 2000) <strong>and</strong> will likely do the same<br />

for forests. There are no forest climates available <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

RUSLE database. Table 9.1 provides some assumpti<strong>on</strong>s<br />

about rate <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> regenerati<strong>on</strong> <strong>and</strong> typical<br />

erosi<strong>on</strong> rates estimated for burned <strong>and</strong> recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest<br />

c<strong>on</strong>diti<strong>on</strong>s based <strong>on</strong> those assumed cover values.<br />

The RUSLE LS factor was about 6.54, almost half <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the USLE C-factor used for WATSED. The RUSLE LS<br />

factor is based <strong>on</strong> more recent research <strong>and</strong> the analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a greater number <str<strong>on</strong>g>of</str<strong>on</strong>g> plots (McCool <strong>and</strong> others 1987,<br />

1989), so it should probably be used with the WATSED<br />

technology to adjust for slope length <strong>and</strong> steepness.<br />

The RUSLE R factor was estimated as 20 from the<br />

documentati<strong>on</strong> (Renard <strong>and</strong> others 1997). This is a<br />

relatively low value because much <str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Northern Rockies comes as snowfall, <strong>and</strong> snowmelt<br />

events cause much less erosi<strong>on</strong> than ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall<br />

events.<br />

The most recent erosi<strong>on</strong> predicti<strong>on</strong> technology is the<br />

Water Erosi<strong>on</strong> Predicti<strong>on</strong> Project (WEPP) model<br />

(Flanagan <strong>and</strong> Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>gst<strong>on</strong> 1995). WEPP is a complex<br />

process-based computer model that predicts soil erosi<strong>on</strong><br />

by model<str<strong>on</strong>g>in</str<strong>on</strong>g>g the processes that cause erosi<strong>on</strong>.<br />

These processes <str<strong>on</strong>g>in</str<strong>on</strong>g>clude daily plant growth, residue<br />

accumulati<strong>on</strong> <strong>and</strong> decompositi<strong>on</strong>, <strong>and</strong> daily soil <strong>water</strong><br />

balance. Each day that has a precipitati<strong>on</strong> or snow<br />

melt event, WEPP calculates the <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

<strong>and</strong> sediment detachment, transport, depositi<strong>on</strong>, <strong>and</strong><br />

yield.<br />

WEPP was released for general use <str<strong>on</strong>g>in</str<strong>on</strong>g> 1995, with an<br />

MS DOS text-based <str<strong>on</strong>g>in</str<strong>on</strong>g>terface. Currently a W<str<strong>on</strong>g>in</str<strong>on</strong>g>dows<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface is under development <strong>and</strong> is available for<br />

general use (USDA 2000). Elliot <strong>and</strong> Hall (1997) developed<br />

a set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>put templates to describe forest c<strong>on</strong>diti<strong>on</strong>s<br />

for the WEPP model, for the MS DOS <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

The WEPP model allows the user to describe the site<br />

c<strong>on</strong>diti<strong>on</strong>s with hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> variables, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

model extremely flexible, but also mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g it difficult<br />

for the casual user to apply to a given set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

To make the WEPP model run more easily for forest<br />

c<strong>on</strong>diti<strong>on</strong>s, Elliot <strong>and</strong> others (2000) developed a suite<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces to run WEPP over the Internet us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Web<br />

browsers. The forest versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> WEPP can be found at:<br />

http://forest.moscowfsl.wsu.edu/fswepp<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces is Disturbed WEPP, which<br />

allows the user to select from a set <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s that describe the <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

c<strong>on</strong>diti<strong>on</strong>s. The Disturbed WEPP alters both the<br />

soil <strong>and</strong> the vegetati<strong>on</strong> properties when a given vegetati<strong>on</strong><br />

treatment is selected. Table 9.2 shows the<br />

vegetati<strong>on</strong> treatment selected for each <str<strong>on</strong>g>of</str<strong>on</strong>g> the years <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recovery. In all cases, the cover <str<strong>on</strong>g>in</str<strong>on</strong>g>put was calibrated to<br />

ensure that WEPP generated the desired cover given<br />

Table 9.1—Erosi<strong>on</strong> rates observed <strong>and</strong> predicted by WATSED, RUSLE, <strong>and</strong> WEPP for the<br />

cover shown, for a 30 percent steepness, 60-m l<strong>on</strong>g slope.<br />

Year Observed Predicted erosi<strong>on</strong> rate<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g> Estimated cover erosi<strong>on</strong> rate WATSED RUSLE WEPP<br />

Percent Mg/ha - - - - - - - - - - Mg/ha - - - - - - - - - -<br />

1 50 2.2 1.92 3.35 1.74<br />

2 65 0.02 1.64 1.30 0.37<br />

3 80 0.01 0.96 0.54 0.02<br />

4 95 0.00 0.48 0.20 0.00<br />

5 97 0.00 0.29 0.16 0.00<br />

6 99 0.00 0.15 0.09 0.00<br />

7 100 0.00 0.06 0.07 0.00<br />

1 From Robichaud <strong>and</strong> Brown (1999)<br />

174 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 9.2—Vegetati<strong>on</strong> treatment selected for each year <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recovery with the Disturbed WEPP <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

Years s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>fire</str<strong>on</strong>g> Disturbed WEPP vegetati<strong>on</strong> treatment<br />

0 High severity <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

1 Low severity <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

3 Short grass<br />

4 Tall grass<br />

5 Shrubs<br />

6 5-year-old forest (99 percent cover)<br />

7 5-year-old forest (100 percent cover)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.1. The Disturbed WEPP <str<strong>on</strong>g>in</str<strong>on</strong>g>terface has access<br />

to a database <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 2,600 weather stati<strong>on</strong>s to<br />

allow the user to select the nearest stati<strong>on</strong> to the<br />

disturbed site. The values <str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.3 were predicted<br />

for Warren, ID, climate. Warren climate is similar to<br />

the climate for Robichaud <strong>and</strong> Brown’s study, <strong>and</strong> also<br />

near the site where the WATSED base erosi<strong>on</strong> rates<br />

were developed <str<strong>on</strong>g>in</str<strong>on</strong>g> central Idaho.<br />

An important aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is<br />

that the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> depends <strong>on</strong> the weather the<br />

year immediately follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Table 9.1 shows<br />

the rapid recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a forest <str<strong>on</strong>g>in</str<strong>on</strong>g> the years after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. If<br />

the year after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> has a number <str<strong>on</strong>g>of</str<strong>on</strong>g> erosive storms,<br />

then the erosi<strong>on</strong> rate will be high. If the year after the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> is relatively dry, then the erosi<strong>on</strong> rate will be low.<br />

The values presented <str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.1 are all average<br />

values. There is a 50 percent chance that the erosi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this most susceptible year will be less than the<br />

average value. To allow managers to better evaluate<br />

the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> a given level <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the<br />

Disturbed WEPP <str<strong>on</strong>g>in</str<strong>on</strong>g>terface <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes some probability<br />

analyses with the output, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the user an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the probability associated with a given level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

erosi<strong>on</strong>. Table 9.3 shows that there is a <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> 50, or<br />

2 percent, chance that the erosi<strong>on</strong> rate from the<br />

specified hill will exceed 3.18 t<strong>on</strong>s/acre (7.12 Mg/ha),<br />

<strong>and</strong> the sediment delivery will exceed 2.88 t<strong>on</strong>s/acre<br />

(6.45 Mg/ha). There is a <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> 10, or 10 percent,<br />

chance that the erosi<strong>on</strong> <strong>and</strong> sediment delivery rate<br />

will exceed 2.11 t<strong>on</strong>s/acre (4.72 Mg/ha), <strong>and</strong> so forth.<br />

This feature will allow users to evaluate risks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

upl<strong>and</strong> erosi<strong>on</strong> <strong>and</strong> sediment delivery to better determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> that may be justified<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a given <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In California, for example,<br />

erosi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten estimated for a 5-year c<strong>on</strong>diti<strong>on</strong>, which<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this case is 1.47 t<strong>on</strong>s/acre (3.3 Mg/ha). Disturbed<br />

WEPP also predicted that there was an 80 percent<br />

chance that there would be erosi<strong>on</strong> <strong>on</strong> this hillslope the<br />

year follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The variability <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g> due to the<br />

climate makes any measurements difficult to evaluate.<br />

Note <str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.1 the large drop from year 1 to<br />

year 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> rate. This decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e was likely due not<br />

<strong>on</strong>ly to regenerati<strong>on</strong> but also to the lower precipitati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> 1996. In the nearby Warren, ID, climate, the average<br />

precipitati<strong>on</strong> is 696 mm; the year follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

it was 722 mm, <strong>and</strong> the sec<strong>on</strong>d year after the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong>ly<br />

537 mm. These variati<strong>on</strong>s from the mean also help<br />

expla<str<strong>on</strong>g>in</str<strong>on</strong>g> why the Disturbed WEPP predicted erosi<strong>on</strong><br />

rates <str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.1 for “average” c<strong>on</strong>diti<strong>on</strong>s were below<br />

the observed value the first year but above the observed<br />

value the sec<strong>on</strong>d year.<br />

The variability <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> observati<strong>on</strong>s <strong>and</strong> predicti<strong>on</strong>s<br />

is <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced not <strong>on</strong>ly by climate but also by spatial<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> topographic properties. In soil<br />

erosi<strong>on</strong> research to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e soil properties, it is not<br />

uncomm<strong>on</strong> to have a st<strong>and</strong>ard deviati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> observati<strong>on</strong>s<br />

from identical plots greater than the mean. A rule<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thumb <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong> observati<strong>on</strong>s or predicti<strong>on</strong>s<br />

is that the true “average” value is likely to be<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> plus or m<str<strong>on</strong>g>in</str<strong>on</strong>g>us 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed value.<br />

In other words, if a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 t<strong>on</strong>s/acre (2 Mg/ha) is<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the field from a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle observati<strong>on</strong>, the true<br />

“average” erosi<strong>on</strong> from that hillside is likely to be<br />

between 0.4 <strong>and</strong> 1.3 t<strong>on</strong>s/acre (1 <strong>and</strong> 3 Mg/ha). Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

this rule leads to the c<strong>on</strong>clusi<strong>on</strong>s that WATSED,<br />

RUSLE, <strong>and</strong> WEPP predicti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> table 9.1 are not<br />

different from the observed erosi<strong>on</strong> rates.<br />

Table 9.3—Exceedance probabilities associated with different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> soil erosi<strong>on</strong> for the year<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a severe wild <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> central Idaho.<br />

Return period Precipitati<strong>on</strong> Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Erosi<strong>on</strong> Sediment<br />

Years mm <str<strong>on</strong>g>in</str<strong>on</strong>g> mm <str<strong>on</strong>g>in</str<strong>on</strong>g> Mg/ha t<strong>on</strong>s/ac Mg/ha t<strong>on</strong>s/ac<br />

50.0 973.60 38.33 31.82 1.25 7.12 3.18 6.45 2.88<br />

25.0 892.80 35.15 31.79 1.25 6.45 2.88 6.32 2.82<br />

10.0 811.50 31.95 27.65 1.09 4.72 2.11 4.72 2.11<br />

5.0 756.10 29.77 20.56 0.81 3.30 1.47 3.30 1.47<br />

2.5 671.80 26.45 14.74 0.58 1.80 0.80 1.80 0.80<br />

Average 670.92 26.41 12.47 0.49 1.74 0.78 1.74 0.78<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 175


In the years <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong>, it appears that both<br />

WATSED <strong>and</strong> RUSLE are overpredict<str<strong>on</strong>g>in</str<strong>on</strong>g>g observed<br />

erosi<strong>on</strong> rates, whereas the Disturbed WEPP predicti<strong>on</strong>s<br />

are nearer to the observed values. WATSED, as<br />

a cumulative <str<strong>on</strong>g>effects</str<strong>on</strong>g> model, is c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the disturbance <strong>on</strong> a <strong>water</strong>shed scale. Frequently<br />

eroded sediments follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a disturbance may take<br />

several years to be routed through the <strong>water</strong>shed,<br />

whereas WEPP is <strong>on</strong>ly c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hillslope <str<strong>on</strong>g>in</str<strong>on</strong>g> its<br />

predicti<strong>on</strong>s. RUSLE is also a hillslope model but c<strong>on</strong>siders<br />

<strong>on</strong>ly the upl<strong>and</strong> erod<str<strong>on</strong>g>in</str<strong>on</strong>g>g part <str<strong>on</strong>g>of</str<strong>on</strong>g> the hillside <strong>and</strong><br />

does not c<strong>on</strong>sider any downslope depositi<strong>on</strong>. This<br />

means that RUSLE values will frequently be<br />

overpredicted unless methods to estimate delivery<br />

ratio are c<strong>on</strong>sidered. A RUSLE2 model currently under<br />

development addresses downslope depositi<strong>on</strong> <strong>and</strong><br />

sediment delivery.<br />

Model Selecti<strong>on</strong><br />

Managers must determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e which model most suits<br />

the problem at h<strong>and</strong>. The WATSED technology is<br />

geographic specific, as is the Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Forest Practices<br />

model. These models should not be used outside<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the areas for which they were developed. The<br />

WATSED technology is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to assist <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>shed<br />

analysis <strong>and</strong> not necessarily <str<strong>on</strong>g>in</str<strong>on</strong>g>tended for estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil erosi<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. RUSLE is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to<br />

predict upl<strong>and</strong> erosi<strong>on</strong> <strong>and</strong> is best suited for estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> <strong>on</strong> <strong>on</strong>site productivity.<br />

It is less well suited for predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g>fsite sediment<br />

delivery. The WEPP technology provides estimates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both upl<strong>and</strong> erosi<strong>on</strong> for soil productivity c<strong>on</strong>siderati<strong>on</strong>s<br />

<strong>and</strong> sediment delivery for <str<strong>on</strong>g>of</str<strong>on</strong>g>fsite <strong>water</strong> quality<br />

c<strong>on</strong>cerns. The WEPP DOS <strong>and</strong> W<str<strong>on</strong>g>in</str<strong>on</strong>g>dows technology<br />

requires skill to apply <strong>and</strong> should be c<strong>on</strong>sidered <strong>on</strong>ly<br />

by tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed specialists. The Disturbed WEPP <str<strong>on</strong>g>in</str<strong>on</strong>g>terface<br />

requires little tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> documentati<strong>on</strong> with examples<br />

is <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <strong>on</strong> the Web site, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g it available<br />

to a wider range <str<strong>on</strong>g>of</str<strong>on</strong>g> users.<br />

DELTA-Q <strong>and</strong> FOREST<br />

Models ________________________<br />

Two other models warrant brief menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g. They<br />

can assist <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers <str<strong>on</strong>g>in</str<strong>on</strong>g> deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g with <strong>water</strong>shed<br />

scale changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> flow <strong>and</strong> erosi<strong>on</strong>. These are<br />

DELTA-Q <strong>and</strong> FOREST. Both programs require an<br />

ESRI Arc 8.x license. Further documentati<strong>on</strong> can be<br />

found at:<br />

http://www.cnr.colostate.edu/frws/people/faculty<br />

macd<strong>on</strong>ald/model.htm.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the difficult tasks fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>and</strong> managers, <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

managers, <strong>and</strong> hydrologists is quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow after forest disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

The changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest are alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peak, median,<br />

<strong>and</strong> low flows as well as the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

quality due to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased sediment delivery to channels<br />

or channel degradati<strong>on</strong>.<br />

DELTA-Q is a model designed to calculate the cumulative<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow <strong>on</strong> a <strong>water</strong>shed scale<br />

from areas subjected to the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> road c<strong>on</strong>structi<strong>on</strong>. Flow changes due to forest<br />

cover removal by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> can also be calculated. A<br />

current data limitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the model is that it evaluates<br />

<strong>on</strong>ly changes due to vegetati<strong>on</strong> combusti<strong>on</strong>, not<br />

the possible <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> alterati<strong>on</strong>s to run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong><br />

streamflow generati<strong>on</strong> processes. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DELTA-Q is to provide <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <strong>water</strong>shed managers<br />

with a GIS-based tool that can quickly approximate<br />

the sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> different flow percentiles. The<br />

model does not estimate the <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow<br />

from extreme events (see chapters 2 <strong>and</strong> 5). The model<br />

was designed to be used for plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g at <strong>water</strong>shed<br />

scales <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 to 50 mi 2 (3,200 to 32,000 acres, or 1,300 to<br />

13,000 ha).<br />

The FOREST (FORest Erosi<strong>on</strong> Simulati<strong>on</strong> Tools)<br />

model functi<strong>on</strong>s with DELTA-Q. It calculates changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the sediment regime due to forest disturbances. It<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a hillslope model that uses a polyg<strong>on</strong> GIS<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> disturbances to calculate sediment producti<strong>on</strong>.<br />

Road-related sediment is treated separately<br />

because roads are l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear features <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<strong>and</strong>scape.<br />

Input values for the road segment can be generated by<br />

several means <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g WEPP.Road. FOREST does<br />

not deal with changes <str<strong>on</strong>g>in</str<strong>on</strong>g> channel stability.<br />

Models Summary _______________<br />

This chapter is not meant as a comprehensive look at<br />

simulati<strong>on</strong> models. Several older model<str<strong>on</strong>g>in</str<strong>on</strong>g>g technologies<br />

comm<strong>on</strong>ly used estimate <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g> (FOFEM, WATSED, WEPP, RUSLE, <strong>and</strong><br />

others). New <strong>on</strong>es such as DELTA-Q, FOREST have<br />

been recently developed, <strong>and</strong> others are under c<strong>on</strong>structi<strong>on</strong>.<br />

These process-based models provide managers<br />

with additi<strong>on</strong>al tools to estimate the magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil <strong>and</strong> <strong>water</strong> produced by l<strong>and</strong><br />

disturbance. FOFEM was developed to meet needs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resource managers, planners, <strong>and</strong> analysts <str<strong>on</strong>g>in</str<strong>on</strong>g> predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Quantitative predicti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are needed for plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s that best accomplish resource needs, for impact<br />

assessment, <strong>and</strong> for l<strong>on</strong>g-range plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> policy<br />

development. FOFEM was developed to meet this<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> need. The WATSED technology was developed<br />

for <strong>water</strong>shed analysis. The RUSLE model<br />

was developed for agriculture <strong>and</strong> rangel<strong>and</strong> hillslopes<br />

<strong>and</strong> has been extended to forest l<strong>and</strong>s. The WEPP<br />

model was designed as an improvement over RUSLE<br />

that can either be run as a st<strong>and</strong>-al<strong>on</strong>e computer<br />

176 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


model by specialists, or accessed through a special<br />

Internet <str<strong>on</strong>g>in</str<strong>on</strong>g>terface designed for forest applicati<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

All <str<strong>on</strong>g>of</str<strong>on</strong>g> these models have limitati<strong>on</strong>s that must be<br />

understood by <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers or <strong>water</strong>shed specialists<br />

before they are applied. The models are <strong>on</strong>ly as good as<br />

the data used to create <strong>and</strong> validate them. Some<br />

processes such as extreme flow <strong>and</strong> erosi<strong>on</strong> events are<br />

not simulated very well because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> good<br />

data or the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes. However, they<br />

do provide useful tools to estimate l<strong>and</strong>scape changes<br />

to disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Potential users should<br />

make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensive documentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

models <strong>and</strong> c<strong>on</strong>sult with the developers to ensure the<br />

most appropriate applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the models.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 177


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

178 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Peter R. Robichaud<br />

Jan L. Beyers<br />

Daniel G. Neary<br />

Chapter 10:<br />

Watershed Rehabilitati<strong>on</strong><br />

Recent large, high severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the United States,<br />

coupled with subsequent major hydrological events,<br />

have generated renewed <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>kage between<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <strong>on</strong>site <strong>and</strong> downstream <str<strong>on</strong>g>effects</str<strong>on</strong>g> (fig. 10.1).<br />

Fire is a natural <strong>and</strong> important disturbance mechanism<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> many <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. However, the <str<strong>on</strong>g>in</str<strong>on</strong>g>tenti<strong>on</strong>al<br />

human suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United<br />

Figure 10.1—Flood flow <strong>on</strong> the Apache-Sitgreaves<br />

Nati<strong>on</strong>al Forest, Ariz<strong>on</strong>a, after the Rodeo-Chediski<br />

Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002. (Photo by Dave Maurer).<br />

States, beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the early 1900s, altered natural<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> many areas (Agee 1993). Fire suppressi<strong>on</strong><br />

can allow fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> forest floor material to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> greater <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong><br />

extent than might have occurred otherwise (Norris<br />

1990).<br />

High severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern because<br />

the potential affects <strong>on</strong> soil productivity, <strong>water</strong>shed<br />

resp<strong>on</strong>se, <strong>and</strong> downstream sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten pose<br />

threats to human life <strong>and</strong> property. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g severe <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

seas<strong>on</strong>s, the USDA Forest Service <strong>and</strong> other Federal<br />

<strong>and</strong> State l<strong>and</strong> management agencies spend milli<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dollars <strong>on</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> emergency <strong>water</strong>shed rehabilitati<strong>on</strong><br />

measures <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize flood run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>on</strong>site<br />

erosi<strong>on</strong>, <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsite sedimentati<strong>on</strong> <strong>and</strong> hydrologic damage.<br />

Increased erosi<strong>on</strong> <strong>and</strong> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g are certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly the<br />

most visible <strong>and</strong> dramatic impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> apart from<br />

the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>.<br />

Burned Area Emergency<br />

Rehabilitati<strong>on</strong> (BAER) ____________<br />

The first formal reports <strong>on</strong> emergency <strong>water</strong>shed<br />

rehabilitati<strong>on</strong> after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s were prepared <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

1960s <strong>and</strong> early 1970s, although post<str<strong>on</strong>g>fire</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 179


grasses <strong>and</strong> other herbaceous species was c<strong>on</strong>ducted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> many areas <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1930s, 1940s, <strong>and</strong> 1950s (Christ<br />

1934, Gleas<strong>on</strong> 1947). C<strong>on</strong>tour furrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

were used when flood c<strong>on</strong>trol was a major c<strong>on</strong>cern<br />

( Noble 1965, DeByle 1970b). The Forest Service <strong>and</strong><br />

other agencies had no formal emergency rehabilitati<strong>on</strong><br />

program. Funds for <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong> disturbance<br />

were covered by <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong> authorizati<strong>on</strong>. Watershed<br />

rehabilitati<strong>on</strong> fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from<br />

emergency flood c<strong>on</strong>trol programs or, more comm<strong>on</strong>ly,<br />

restorati<strong>on</strong> accounts. Prior to 1974, the fiscal year had<br />

ended June 30 <str<strong>on</strong>g>of</str<strong>on</strong>g> each year, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g year-end project<br />

funds to be shifted to early seas<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. After July 1,<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s were covered by shifts <str<strong>on</strong>g>in</str<strong>on</strong>g> the new fiscal year<br />

fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The shift to an October 1 to September 30<br />

fiscal year made it difficult to provide timely post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

emergency treatments or create appropriated <strong>water</strong>shed<br />

restorati<strong>on</strong> accounts.<br />

In resp<strong>on</strong>se to a C<strong>on</strong>gressi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>quiry <strong>on</strong> fiscal<br />

accountability, <str<strong>on</strong>g>in</str<strong>on</strong>g> 1974 a formal authority for $2 milli<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> activities was provided<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Interior <strong>and</strong> Related Agencies appropriati<strong>on</strong>.<br />

Called Burned Area Emergency Rehabilitati<strong>on</strong><br />

(BAER), this authorizati<strong>on</strong> was similar to the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

fight<str<strong>on</strong>g>in</str<strong>on</strong>g>g funds <str<strong>on</strong>g>in</str<strong>on</strong>g> that it allowed the Forest Service to<br />

use any available funds to cover the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed<br />

treatments when an emergency need was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<strong>and</strong> authorized. Typically, C<strong>on</strong>gress reimbursed accounts<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent annual appropriati<strong>on</strong>s.<br />

Later, annual appropriati<strong>on</strong>s provided similar authorities<br />

for the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management <strong>and</strong><br />

then other Interior agencies. The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

large <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> California <strong>and</strong> southern Oreg<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1987<br />

caused expenditures for BAER treatments to exceed<br />

the annual BAER authorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> $2 milli<strong>on</strong>. C<strong>on</strong>gressi<strong>on</strong>al<br />

committees were c<strong>on</strong>sulted <strong>and</strong> the fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

cap was removed. The BAER program evolved, <strong>and</strong><br />

policies were ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed based <strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g what c<strong>on</strong>stituted<br />

a legitimate emergency warrant<str<strong>on</strong>g>in</str<strong>on</strong>g>g rehabilitati<strong>on</strong><br />

treatments.<br />

The BAER-related policies were <str<strong>on</strong>g>in</str<strong>on</strong>g>itially <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the Forest Service Manual (FSM 2523) <strong>and</strong><br />

the Burned Area Emergency Rehabilitati<strong>on</strong> (BAER)<br />

H<strong>and</strong>book (FSH 2509.13) <str<strong>on</strong>g>in</str<strong>on</strong>g> 1976. These policies required<br />

an immediate assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> site c<strong>on</strong>diti<strong>on</strong>s<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong>, where necessary, implementati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> emergency rehabilitati<strong>on</strong> measures. These directives<br />

del<str<strong>on</strong>g>in</str<strong>on</strong>g>eated the objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> the BAER program<br />

as:<br />

1. M<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the threat to life <strong>and</strong> property <strong>on</strong>site<br />

<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsite.<br />

2. Reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> <strong>on</strong>site productivity.<br />

3. Reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>.<br />

4. Reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality.<br />

As post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatment <str<strong>on</strong>g>in</str<strong>on</strong>g>creased, debates<br />

arose over the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

its negative impacts <strong>on</strong> natural regenerati<strong>on</strong>. Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

was the most widely used <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual treatment, <strong>and</strong> it<br />

was <str<strong>on</strong>g>of</str<strong>on</strong>g>ten applied <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with other hillslope<br />

treatments, such as c<strong>on</strong>tour-felled logs <strong>and</strong> channel<br />

treatments.<br />

In the mid 1990s, a major effort was undertaken to<br />

revise <strong>and</strong> update the BAER h<strong>and</strong>book. A steer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

committee, c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al BAER coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ators<br />

<strong>and</strong> other specialists, organized <strong>and</strong> developed the<br />

h<strong>and</strong>book used today. The issue <str<strong>on</strong>g>of</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g native species<br />

for emergency revegetati<strong>on</strong> emerged as a major topic,<br />

<strong>and</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour-felled logs (fig. 10.2)<br />

<strong>and</strong> mulches caused rehabilitati<strong>on</strong> expenditures to<br />

escalate. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the busy 1996 <str<strong>on</strong>g>fire</str<strong>on</strong>g> seas<strong>on</strong>, for example,<br />

the Forest Service spent $11 milli<strong>on</strong> <strong>on</strong> BAER<br />

projects. In 2000, 2001, <strong>and</strong> 2002 the average annual<br />

BAER spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g rose to more than $50 milli<strong>on</strong>.<br />

Improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> the BAER program <str<strong>on</strong>g>in</str<strong>on</strong>g> the late<br />

1990s <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g>creased BAER tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

review. Increased tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g needs were identified for<br />

BAER team leaders, project implementati<strong>on</strong>, <strong>and</strong> <strong>on</strong>the-ground<br />

treatment <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>. Courses were developed<br />

for the first two tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g needs but not the last.<br />

Current fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g requests are scrut<str<strong>on</strong>g>in</str<strong>on</strong>g>ized by regi<strong>on</strong>al<br />

<strong>and</strong> nati<strong>on</strong>al BAER coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ators to verify that funded<br />

projects are m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal, necessary, reas<strong>on</strong>able, practicable,<br />

cost effective, <strong>and</strong> a significant improvement<br />

over natural recovery.<br />

In the late 1990s, a program was <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated to <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrate<br />

nati<strong>on</strong>al BAER policies across different Federal agencies<br />

(Forest Service, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management,<br />

Nati<strong>on</strong>al Park Service, Fish <strong>and</strong> Wildlife Service, <strong>and</strong><br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Affairs) as each agency had different<br />

authorities provided <str<strong>on</strong>g>in</str<strong>on</strong>g> the Annual Appropriati<strong>on</strong>s Acts.<br />

Figure 10.2—Install<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tour-felled logs for erosi<strong>on</strong><br />

c<strong>on</strong>trol after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. (Photo by Peter Robichaud).<br />

180 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


The U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Interior approved a jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t policy for a c<strong>on</strong>sistent<br />

approach to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1998. The new<br />

policy broadened the scope <strong>and</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER<br />

analysis <strong>and</strong> treatment. Major changes <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded:<br />

1. M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e if additi<strong>on</strong>al treatment<br />

is needed <strong>and</strong> evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g to improve treatment<br />

effectiveness.<br />

2. Repair<str<strong>on</strong>g>in</str<strong>on</strong>g>g facilities for safety reas<strong>on</strong>s.<br />

3. Stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g biotic communities.<br />

4. Prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g unacceptable degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> critical<br />

known cultural sites <strong>and</strong> natural resources.<br />

BAER Program Analysis<br />

Early BAER efforts were pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally aimed at c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> c<strong>on</strong>sequently erosi<strong>on</strong>. Research by<br />

Bailey <strong>and</strong> Copel<strong>and</strong> (1961), Christ (1934), Copel<strong>and</strong><br />

(1961, 1968), Ferrell (1959), Heede (1960, 1970), <strong>and</strong><br />

Noble (1965) dem<strong>on</strong>strated that various <strong>water</strong>shed<br />

management techniques could be used <strong>on</strong> forest, woodl<strong>and</strong>,<br />

shrub, <strong>and</strong> grassl<strong>and</strong> <strong>water</strong>sheds to c<strong>on</strong>trol both<br />

storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> (fig. 10.3). Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

techniques were developed from other discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>es (such<br />

as agriculture <strong>and</strong> c<strong>on</strong>structi<strong>on</strong>) <strong>and</strong> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed or augmented<br />

to form the set <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER treatments <str<strong>on</strong>g>in</str<strong>on</strong>g> use<br />

today (table 10.1).<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> the BAER process<br />

<strong>and</strong> the wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> practical experience obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed over<br />

the past several decades, the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

emergency rehabilitati<strong>on</strong> methods have not been systematically<br />

tested or validated. Measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong><br />

<strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f is expensive, complex, <strong>and</strong> labor <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive<br />

(fig. 10.4). Few researchers or management specialists<br />

have the resources or the energy to do it. BAER team<br />

Figure 10.3—Straw bale check dams placed <str<strong>on</strong>g>in</str<strong>on</strong>g> channel<br />

by the Denver Water Board after the Hayman Fire, 2002,<br />

near Deckers, CO. (Photo by Peter Robichaud).<br />

leaders <strong>and</strong> decisi<strong>on</strong>makers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten do not have <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

available to evaluate the short- <strong>and</strong> l<strong>on</strong>g-term<br />

benefits (<strong>and</strong> costs) <str<strong>on</strong>g>of</str<strong>on</strong>g> various treatment opti<strong>on</strong>s.<br />

In 1998, a jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t study by the USDA Forest Service<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong> <strong>and</strong> the Pacific<br />

Southwest Research Stati<strong>on</strong> evaluated the use <strong>and</strong><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> emergency rehabilitati<strong>on</strong><br />

methods (Robichaud <strong>and</strong> others 2000).<br />

The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> the study were to:<br />

1. Evaluate the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatments<br />

at reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> erosi<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, or<br />

other <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

2. Assess the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatments<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> mitigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the downstream <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased sedimentati<strong>on</strong> <strong>and</strong> peakflows.<br />

3. Investigate the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatments<br />

<strong>on</strong> natural processes <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem recovery,<br />

both <str<strong>on</strong>g>in</str<strong>on</strong>g> the short <strong>and</strong> l<strong>on</strong>g term.<br />

4. Compare hillslope <strong>and</strong> channel treatments to <strong>on</strong>e<br />

another <strong>and</strong> to a no-treatment opti<strong>on</strong>.<br />

5. Collect available <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> ec<strong>on</strong>omic, social,<br />

<strong>and</strong> envir<strong>on</strong>mental costs <strong>and</strong> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various rehabilitati<strong>on</strong> treatment opti<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

no treatment.<br />

6. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e how knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e locati<strong>on</strong> can be transferred to another<br />

locati<strong>on</strong>.<br />

7. Identify <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> gaps need<str<strong>on</strong>g>in</str<strong>on</strong>g>g further research<br />

<strong>and</strong> evaluati<strong>on</strong>.<br />

Robichaud <strong>and</strong> others (2000) collected <strong>and</strong> analyzed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> past use <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER treatments <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e attributes <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s that led<br />

to treatment success or failure <str<strong>on</strong>g>in</str<strong>on</strong>g> achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER<br />

goals. Robichaud <strong>and</strong> others (2000) restricted this<br />

study to USDA Forest Service BAER projects <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental Western United States <strong>and</strong> began by<br />

request<str<strong>on</strong>g>in</str<strong>on</strong>g>g Burned Area Report (FS-2500-8) forms<br />

<strong>and</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports from the Regi<strong>on</strong>al headquarters<br />

<strong>and</strong> Forest Supervisors’ <str<strong>on</strong>g>of</str<strong>on</strong>g>fices. The <str<strong>on</strong>g>in</str<strong>on</strong>g>itial efforts<br />

revealed that <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> collected <strong>on</strong> the Burned<br />

Area Report forms <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the relatively few exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports was not sufficient to assess<br />

treatment effectiveness, nor did the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

capture the knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER specialists. Therefore,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terview questi<strong>on</strong>s were designed to enable<br />

rank<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> expert op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong>s <strong>on</strong> treatment effectiveness,<br />

to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the treatments that<br />

lead to success or failure, <strong>and</strong> to allow for comments<br />

<strong>on</strong> various BAER-related topics.<br />

Interview forms were developed after c<strong>on</strong>sultati<strong>on</strong><br />

with several BAER specialists. The forms were used<br />

to record <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> when BAER team members<br />

<strong>and</strong> regi<strong>on</strong>al <strong>and</strong> nati<strong>on</strong>al leaders were <str<strong>on</strong>g>in</str<strong>on</strong>g>terviewed.<br />

Onsite <str<strong>on</strong>g>in</str<strong>on</strong>g>terviews were c<strong>on</strong>ducted because much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the support<str<strong>on</strong>g>in</str<strong>on</strong>g>g data were located <str<strong>on</strong>g>in</str<strong>on</strong>g> the Forest Supervisors’<br />

<strong>and</strong> District Rangers’ <str<strong>on</strong>g>of</str<strong>on</strong>g>fices <strong>and</strong> could be<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 181


Table 10.1—Burned Area Emergency Rehabilitati<strong>on</strong> (BAER) treatments (From<br />

Robichaud <strong>and</strong> others 2000).<br />

Hillslope Channel Road <strong>and</strong> trail<br />

Broadcast seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g Straw bale check dams Roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips<br />

Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g plus fertilizer Log grade stabilizers Water bars<br />

Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rock grade stabilizers Cross dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

C<strong>on</strong>tour-felled logs Channel debris clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g Culvert overflows<br />

C<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g Bank/channel armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Culvert upgrades<br />

Scarificati<strong>on</strong> <strong>and</strong> ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g In-channel tree fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g Culvert armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g Log dams Culvert removal<br />

Erosi<strong>on</strong> fabric Debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s Trash racks<br />

Straw wattles Straw wattle dams Storm patrols<br />

Slash scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rock gabi<strong>on</strong> dams Ditch improvements<br />

Silt fences Armored fords<br />

Geotextiles Outslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

S<strong>and</strong> or soil bags Sign<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

retrieved dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terviews. Because much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> was qualitative, attempts were made to<br />

ask questi<strong>on</strong>s that would allow for group<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

rank<str<strong>on</strong>g>in</str<strong>on</strong>g>g results.<br />

BAER program specialists were asked to identify<br />

treatments used <strong>on</strong> specific <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> what envir<strong>on</strong>mental<br />

factors affected success <strong>and</strong> failure. For each<br />

treatment, specific questi<strong>on</strong>s were asked regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Figure 10.4—Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a short durati<strong>on</strong> high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g> event, this research sediment trap was filled.<br />

Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g pre- <strong>and</strong> postsurveys, Hydrologist Bob Brown<br />

<strong>and</strong> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer Joe Wagenbrenner measure the sediment<br />

collected with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a skid-steer loader.<br />

Research plots are <str<strong>on</strong>g>in</str<strong>on</strong>g> high severity burned areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 2002 Hayman Fire, Pike-San Isabel Nati<strong>on</strong>al<br />

Forest near Deckers, CO. (Photo by J.Yost).<br />

the factors that caused the treatment to succeed or<br />

fail, such as slope classes, soil type, <strong>and</strong> storm events<br />

(ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> durati<strong>on</strong>) affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the treated<br />

areas. They were also asked questi<strong>on</strong>s regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g implementati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> treatments <strong>and</strong> whether any effectiveness<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g was completed. For cases where m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

was c<strong>on</strong>ducted (either formal or <str<strong>on</strong>g>in</str<strong>on</strong>g>formal),<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terviewees were asked to describe the type <strong>and</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the data collected (if applicable) <strong>and</strong> to give<br />

an overall effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> “excellent,” “good,”<br />

“fair,” or “poor ” for each treatment.<br />

This evaluati<strong>on</strong> covered 470 <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> 321 BAER<br />

projects, from 1973 through 1998 <str<strong>on</strong>g>in</str<strong>on</strong>g> USDA Forest<br />

Service Regi<strong>on</strong>s 1 through 6. A literature review,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terviews with key Regi<strong>on</strong>al <strong>and</strong> Forest BAER specialists,<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> burned area reports, <strong>and</strong> review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest <strong>and</strong> District m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports were used <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the evaluati<strong>on</strong>. The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g report, Evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Rehabilitati<strong>on</strong> Treatments<br />

(Robichaud <strong>and</strong> others 2000), <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes these major<br />

secti<strong>on</strong>s:<br />

1. Informati<strong>on</strong> acquisiti<strong>on</strong> <strong>and</strong> analysis methods.<br />

2. Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results, which <str<strong>on</strong>g>in</str<strong>on</strong>g>clude hydrologic,<br />

erosi<strong>on</strong> <strong>and</strong> risk assessments, m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports,<br />

<strong>and</strong> treatment evaluati<strong>on</strong>s.<br />

3. Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER assessments <strong>and</strong> treatment<br />

effectiveness.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s drawn from the analysis.<br />

5. Recommendati<strong>on</strong>s.<br />

This chapter provides a synopsis <str<strong>on</strong>g>of</str<strong>on</strong>g> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

that report, as well as new <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> that has been<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the report was published.<br />

182 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Rehabilitati<strong>on</strong> Treatment<br />

Decisi<strong>on</strong>s ______________________<br />

The BAER Team <strong>and</strong> BAER Report<br />

As so<strong>on</strong> as possible (even before a <str<strong>on</strong>g>fire</str<strong>on</strong>g> is fully c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed),<br />

a team <str<strong>on</strong>g>of</str<strong>on</strong>g> specialists is brought together to<br />

evaluate the potential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> to recommend<br />

what post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong>, if any, should be<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> around the burned area. Hydrology <strong>and</strong><br />

soil science are the predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>es represented<br />

<strong>on</strong> nearly all BAER teams. Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the<br />

locati<strong>on</strong>, severity, <strong>and</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, wildlife biologists,<br />

timber, range, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers, eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers,<br />

archeologists, fishery biologists, <strong>and</strong> c<strong>on</strong>tracted specialists<br />

may be <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <strong>on</strong> the team.<br />

The Burned Area Report filed by the BAER team<br />

describes the hydrologic <strong>and</strong> soil c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

area as well as the predicted <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, erosi<strong>on</strong>,<br />

<strong>and</strong> sedimentati<strong>on</strong>. The basic <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes<br />

the <strong>water</strong>shed locati<strong>on</strong>, size, suppressi<strong>on</strong> cost,<br />

vegetati<strong>on</strong>, <strong>soils</strong>, geology, <strong>and</strong> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> stream channels,<br />

roads, <strong>and</strong> trails affected by the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The <strong>water</strong>shed<br />

descripti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude areas <str<strong>on</strong>g>in</str<strong>on</strong>g> low, moderate, <strong>and</strong><br />

high severity burn categories as well as areas with<br />

<strong>water</strong> repellent <strong>soils</strong>. The run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, erosi<strong>on</strong>, <strong>and</strong> sedimentati<strong>on</strong><br />

predicti<strong>on</strong>s are then evaluated <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

with both the <strong>on</strong>site <strong>and</strong> downstream values at<br />

risk to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the selecti<strong>on</strong> <strong>and</strong> placement <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency<br />

rehabilitati<strong>on</strong> treatments. The BAER team uses<br />

data from previous <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, climate model<str<strong>on</strong>g>in</str<strong>on</strong>g>g, erosi<strong>on</strong><br />

predicti<strong>on</strong> tools, <strong>and</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al judgment to make<br />

the BAER recommendati<strong>on</strong>s.<br />

Erosi<strong>on</strong> Estimates from BAER Reports<br />

Robichaud <strong>and</strong> others (2000) found a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential erosi<strong>on</strong> <strong>and</strong> <strong>water</strong>shed sediment yield estimates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Burned Area Report forms. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

high values could be c<strong>on</strong>sidered unrealistic (fig. 10.5).<br />

Erosi<strong>on</strong> potential varied from 1 to 6,913 t<strong>on</strong>s/acre (2 to<br />

15,500 Mg/ha), <strong>and</strong> sediment yield varied over six<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. Erosi<strong>on</strong> potential <strong>and</strong> sediment<br />

yield potential did not correlate well (r = 0.18, n = 117).<br />

Different methods were used to calculate these estimates<br />

<strong>on</strong> different <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g comparis<strong>on</strong>s difficult.<br />

Methods <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded empirical base models such as Universal<br />

Soil Loss Equati<strong>on</strong> (USLE), values based <strong>on</strong><br />

past estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> known erosi<strong>on</strong> events, <strong>and</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al<br />

judgment. In recent years, c<strong>on</strong>siderable effort<br />

has been made to improve erosi<strong>on</strong> predicti<strong>on</strong> after<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> through the development <strong>and</strong> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new models (Elliot <strong>and</strong> others 1999, 2000). These<br />

models are built <strong>on</strong> the Water Erosi<strong>on</strong> Predicti<strong>on</strong><br />

Project (WEPP) technology (Flanagan <strong>and</strong> others<br />

1994), which has been adapted for applicati<strong>on</strong> after<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. The model adaptati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ard w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces to simplify use <strong>and</strong><br />

Web-based dissem<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> for general accessibility at:<br />

http://forest.moscowfsl.wsu.edu/fswepp/<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 183<br />

Watershed Sediment Yield<br />

(yds3 mi -2 )<br />

<strong>and</strong><br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1<br />

(2.24)<br />

10<br />

(22.4)<br />

100<br />

(222.4)<br />

1000<br />

(2224)<br />

Erosi<strong>on</strong> Potential t ac -1 (Mg ha -1 )<br />

http://fsweb.moscow.rmrs.fs.fed.us/fswepp.<br />

Hydrologic Resp<strong>on</strong>se Estimates<br />

295000<br />

29500<br />

2950<br />

0.295<br />

10000<br />

(22240)<br />

Evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the potential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> hydrologic<br />

resp<strong>on</strong>ses is an important first step <str<strong>on</strong>g>in</str<strong>on</strong>g> the BAER<br />

process. This <str<strong>on</strong>g>in</str<strong>on</strong>g>volves determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g storm magnitude,<br />

durati<strong>on</strong>, <strong>and</strong> return <str<strong>on</strong>g>in</str<strong>on</strong>g>terval for which treatments<br />

are to be designed. Robichaud <strong>and</strong> others (2000) found<br />

that the most comm<strong>on</strong> design storms were 10-year<br />

return events (fig. 10.6, 10.7). Storm durati<strong>on</strong>s were<br />

295<br />

29.5<br />

2.95<br />

Figure 10.5—Estimated hillslope erosi<strong>on</strong> potential <strong>and</strong><br />

<strong>water</strong>shed sediment yield potential (log scale) for all<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s request<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (From Robichaud <strong>and</strong><br />

others 2000).<br />

Design Storm Magnitude<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

Design Storm Return Period (yr)<br />

Figure 10.6—Design storm durati<strong>on</strong> by return period<br />

for all <str<strong>on</strong>g>fire</str<strong>on</strong>g>s request<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (From Robichaud<br />

<strong>and</strong> others 2000).<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Watershed Sediment Yield<br />

(m3 km-2 )<br />

Design Storm Magnitude<br />

(mm)


Design Storm Durati<strong>on</strong> (hr)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

Design Storm Return Period (yr)<br />

Figure 10.7—Design storm magnitude <strong>and</strong> return<br />

period for all <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United States request<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (From Robichaud <strong>and</strong> others<br />

2000).<br />

usually less than 24 hours, with the comm<strong>on</strong> design<br />

storm magnitudes from 1 to 6 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (25 to 150 mm).<br />

Five design storms were greater than 12 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (305<br />

mm), with design return <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 years or less.<br />

The variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> estimates reflects some climatic differences<br />

throughout the Western United States.<br />

The Burned Area Report also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s an estimate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> burned <strong>water</strong>sheds that have<br />

<strong>water</strong> repellent soil c<strong>on</strong>diti<strong>on</strong>s. Soils <str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>diti<strong>on</strong><br />

Water Repellant Area (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

mean=34<br />

n=41<br />

Metamorphic<br />

mean=29<br />

n=51<br />

Geologic Parent Material<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reported after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> are expected to<br />

occur more comm<strong>on</strong>ly <strong>on</strong> coarse-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>soils</strong>, such as<br />

those derived from granite (fig. 10.8). However, no<br />

statistical difference was found <str<strong>on</strong>g>in</str<strong>on</strong>g> the geologic parent<br />

material <strong>and</strong> the percent <str<strong>on</strong>g>of</str<strong>on</strong>g> burned area that was<br />

<strong>water</strong> repellent. Robichaud <strong>and</strong> Hungerford (2000)<br />

also found no differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong> repellant c<strong>on</strong>diti<strong>on</strong>s<br />

with various soil types. BAER teams estimate a<br />

percentage reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity as part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Burned Area Report. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rate to percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> area that was <strong>water</strong><br />

repellent showed no statistically significant relati<strong>on</strong>ship<br />

(fig. 10.9). However, Robichaud (2000) <strong>and</strong> Piers<strong>on</strong><br />

<strong>and</strong> others (2001a) showed a 10 to 35 percent reducti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> after the first year. Factors other than<br />

<strong>water</strong> repellent soil c<strong>on</strong>diti<strong>on</strong>s, such as loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

protective forest floor layers, obviously affect <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong><br />

capacity.<br />

Estimati<strong>on</strong> methods for expected changes <str<strong>on</strong>g>in</str<strong>on</strong>g> channel<br />

flow due to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> were variable but primarily<br />

based <strong>on</strong> predicted change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates. Thus,<br />

a 20 percent reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> an<br />

estimated 20 percent <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> channel flows. Various<br />

methods were used to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e channel flow<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g empirical-based models, past U.S. Geological<br />

Survey records from nearby <strong>water</strong>sheds that had<br />

a flood resp<strong>on</strong>se, <strong>and</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al judgment. Some<br />

reports show a large percent <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> design flows<br />

(fig. 10.10).<br />

mean=40<br />

n=47<br />

Sedimentary Granitic Volcanic<br />

mean=25<br />

n=43<br />

Figure 10.8—Fire-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellent soil areas <strong>and</strong> their geologic parent material for<br />

all <str<strong>on</strong>g>fire</str<strong>on</strong>g>s request<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Fire-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellency was not significantly<br />

different by parent material (t-test, alpha = 0.05). (From Robichaud <strong>and</strong> others 2000).<br />

184 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Areas Infiltrati<strong>on</strong> (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Hillslope Treatments <strong>and</strong><br />

Results ________________________<br />

Hillslope Treatments<br />

R 2 = 0.31<br />

n=125<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Water Repellant Area (%)<br />

Figure 10.9—Fire-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced <strong>water</strong> repellent soil areas<br />

compared to the estimated reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> for<br />

all <str<strong>on</strong>g>fire</str<strong>on</strong>g>s request<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (From Robichaud<br />

<strong>and</strong> others 2000).<br />

Design Peak Flow Change (%)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0 20 40 60 80 100<br />

Infiltrati<strong>on</strong> Reducti<strong>on</strong> (%)<br />

Figure 10.10—Estimated design peakflow change<br />

(log scale) due to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> burned areas relative to the<br />

estimated reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> for all <str<strong>on</strong>g>fire</str<strong>on</strong>g>s request<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (From Robichaud <strong>and</strong> others 2000).<br />

Hillslope treatments are <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to reduce surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> keep postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g> soil <str<strong>on</strong>g>in</str<strong>on</strong>g> place <strong>on</strong> the<br />

hillslope <strong>and</strong> thereby prevent sediment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

unwanted areas. These treatments are regarded as a<br />

first l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> defense aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st post<str<strong>on</strong>g>fire</str<strong>on</strong>g> erosi<strong>on</strong> <strong>and</strong> sediment<br />

movement. Hillslope treatments comprise the<br />

greatest porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time, effort, <strong>and</strong> expense <str<strong>on</strong>g>in</str<strong>on</strong>g> most<br />

BAER projects. C<strong>on</strong>sequently, more <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is<br />

1:1<br />

available <strong>on</strong> hillslope treatments than <strong>on</strong> channel or<br />

road treatments.<br />

Broadcast Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g— The most comm<strong>on</strong> BAER<br />

practice is broadcast seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g after <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

for range improvement has been practiced for decades,<br />

with the <str<strong>on</strong>g>in</str<strong>on</strong>g>tent to ga<str<strong>on</strong>g>in</str<strong>on</strong>g> useful products from l<strong>and</strong> that<br />

will not return to timber producti<strong>on</strong> for many years<br />

(Christ 1934, McClure 1956). As an emergency treatment,<br />

rapid vegetati<strong>on</strong> establishment has been regarded<br />

as the most cost-effective method to promote<br />

rapid <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> keep soil <strong>on</strong> hillslopes<br />

(Noble 1965, Rice <strong>and</strong> others 1965, Miles <strong>and</strong> others<br />

1989).<br />

Grasses are particularly desirable for this purpose<br />

because their extensive, fibrous root systems <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <strong>and</strong> hold soil <str<strong>on</strong>g>in</str<strong>on</strong>g> place. Fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

n<strong>on</strong>native species have typically been used. They are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>expensive <strong>and</strong> readily available <str<strong>on</strong>g>in</str<strong>on</strong>g> large quantities<br />

when an emergency arises (Barro <strong>and</strong> C<strong>on</strong>ard 1987,<br />

Miles <strong>and</strong> others 1989, Agee 1993). Legumes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

added to seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g mixes for their ability to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

available nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil after the post<str<strong>on</strong>g>fire</str<strong>on</strong>g> nutrient<br />

flush has been exhausted, aid<str<strong>on</strong>g>in</str<strong>on</strong>g>g the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeded grasses <strong>and</strong> native vegetati<strong>on</strong> (Ratliff <strong>and</strong><br />

McD<strong>on</strong>ald 1987). Seed mixes were ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for particular<br />

areas as germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>and</strong> establishment success<br />

were evaluated. Most mixes c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed annual grasses<br />

to provide quick cover <strong>and</strong> perennials to establish<br />

l<strong>on</strong>ger term protecti<strong>on</strong> (Klock <strong>and</strong> others 1975, Ratliff<br />

<strong>and</strong> McD<strong>on</strong>ald, 1987). However, n<strong>on</strong>native species<br />

that persist can delay recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> native flora <strong>and</strong> alter<br />

local plant diversity. Native grass seed can be expensive<br />

<strong>and</strong> hard to acquire <str<strong>on</strong>g>in</str<strong>on</strong>g> large quantities or <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

timely manner compared to cereal gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s or pasture<br />

grasses. When native seed is used, it should come from<br />

a nearby source area to preserve local genetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity.<br />

When native seed is not available, BAER specialists<br />

have recommended us<str<strong>on</strong>g>in</str<strong>on</strong>g>g n<strong>on</strong>reproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g annuals,<br />

such as cereal gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s or sterile hybrids that provide<br />

quick cover <strong>and</strong> then die out to let native vegetati<strong>on</strong><br />

reoccupy the site.<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed can be d<strong>on</strong>e from the air or <strong>on</strong> the<br />

ground. In steep areas <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> areas where access is<br />

limited, aerial seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the <strong>on</strong>ly opti<strong>on</strong>. Effective<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed by fixed-w<str<strong>on</strong>g>in</str<strong>on</strong>g>g aircraft or helicopter<br />

requires global positi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g system (GPS) navigati<strong>on</strong>,<br />

significant pilot skill, <strong>and</strong> low w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds for even<br />

cover. Ground seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, applied from all-terra<str<strong>on</strong>g>in</str<strong>on</strong>g> vehicles<br />

or by h<strong>and</strong>, assures more even seed applicati<strong>on</strong><br />

than aerial seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with<br />

other treatments, such as mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> scarify<str<strong>on</strong>g>in</str<strong>on</strong>g>g, as<br />

these additi<strong>on</strong>al treatments help anchor the seeds <strong>and</strong><br />

improve seed germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>.<br />

Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g depends <strong>on</strong> timel<str<strong>on</strong>g>in</str<strong>on</strong>g>ess <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seed applicati<strong>on</strong>, choice <str<strong>on</strong>g>of</str<strong>on</strong>g> seed, protecti<strong>on</strong> from graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> luck <str<strong>on</strong>g>in</str<strong>on</strong>g> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g gentle ra<str<strong>on</strong>g>in</str<strong>on</strong>g>s to stimulate seed<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 185


germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> before w<str<strong>on</strong>g>in</str<strong>on</strong>g>d or heavy ra<str<strong>on</strong>g>in</str<strong>on</strong>g>s blow or wash<br />

soil <strong>and</strong> seed away. Proper tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> seed applicati<strong>on</strong><br />

depends <strong>on</strong> locati<strong>on</strong>. In some areas, it is best to seed<br />

directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to dry ash, before any ra<str<strong>on</strong>g>in</str<strong>on</strong>g> falls, to take<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluffy seedbed c<strong>on</strong>diti<strong>on</strong>, while <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

other areas, seed is best applied after the first snow so<br />

that it will germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> the spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Both c<strong>on</strong>diti<strong>on</strong>s<br />

also reduce loss to rodents. The potential advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeded grass to <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit the growth <strong>and</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

noxious weeds also depends <strong>on</strong> timely applicati<strong>on</strong> <strong>and</strong><br />

germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>.<br />

Mulch—Mulch is any organic material spread over<br />

the soil surface that functi<strong>on</strong>s like the organic forest<br />

floor that is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten destroyed <str<strong>on</strong>g>in</str<strong>on</strong>g> high <strong>and</strong> moderate<br />

severity burn areas. Both wet mulch (hydromulch)<br />

<strong>and</strong> dry mulch (wheat straw, jute excelsior, rice straw,<br />

<strong>and</strong> so forth) are available; however, mulches have<br />

<strong>on</strong>ly recently been used as a post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatment. Mulch is applied al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> to<br />

reduce ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop impact <strong>and</strong> overl<strong>and</strong> flow <strong>and</strong>, thereby,<br />

to enhance <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <strong>and</strong> reduce soil erosi<strong>on</strong>. It is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g to provide<br />

ground cover <str<strong>on</strong>g>in</str<strong>on</strong>g> critical areas. It also <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepts precipitati<strong>on</strong><br />

for subsequent <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>. Mulch protects<br />

the soil <strong>and</strong> improves moisture retenti<strong>on</strong> underneath<br />

it, benefit<str<strong>on</strong>g>in</str<strong>on</strong>g>g seeded plants <str<strong>on</strong>g>in</str<strong>on</strong>g> hot areas but not always<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> cool <strong>on</strong>es. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> straw from pasture may <str<strong>on</strong>g>in</str<strong>on</strong>g>troduce<br />

exotic grass seed or weeds, so BAER projects are now<br />

likely to seek “weed-free” mulch such as rice straw.<br />

Mulches can be applied from the air or from the<br />

ground. Aerial dry mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g uses helicopters with<br />

attached cargo net sl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g the straw mulch,<br />

which is released over the treatment area (San Dimas<br />

Technology Development Center 2003). Hydromulch<br />

can be applied from the air us<str<strong>on</strong>g>in</str<strong>on</strong>g>g helicopters fitted<br />

with hydromulch slurry tanks or buckets, which are<br />

released <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trolled drops over the treatment areas.<br />

Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these aerial applicati<strong>on</strong>s are expensive. Ground<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mulch is d<strong>on</strong>e by h<strong>and</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g all<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> vehicles to carry the straw from a stag<str<strong>on</strong>g>in</str<strong>on</strong>g>g area<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the treatment area. Ground applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydromulch is d<strong>on</strong>e from spray trucks <strong>and</strong> is limited to<br />

an area 200 feet (61 m) <str<strong>on</strong>g>of</str<strong>on</strong>g> either side <str<strong>on</strong>g>of</str<strong>on</strong>g> a road. Given<br />

its expense, mulch is usually used <str<strong>on</strong>g>in</str<strong>on</strong>g> high value areas,<br />

such as above or below roads, above streams, or below<br />

ridge tops.<br />

Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g is most effective <strong>on</strong> gentle slopes <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

areas where high w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds are not likely to occur. W<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

either blows the mulch <str<strong>on</strong>g>of</str<strong>on</strong>g>f site or piles it so deeply that<br />

seed germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>hibited. On steep slopes, ra<str<strong>on</strong>g>in</str<strong>on</strong>g> can<br />

wash some <str<strong>on</strong>g>of</str<strong>on</strong>g> the mulch material downslope. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

tackifier or fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g small trees across the mulch may<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <strong>on</strong>site retenti<strong>on</strong>. Hydromulches <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have<br />

tackifiers that help b<str<strong>on</strong>g>in</str<strong>on</strong>g>d the mulch <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil. Both<br />

hydromulch <strong>and</strong> dry mulch were used to stabilize <strong>soils</strong><br />

<strong>on</strong> the Cerro Gr<strong>and</strong>e Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000 <strong>and</strong> Rodeo-Chediski<br />

<strong>and</strong> Hayman Fires <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002. However, use <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

treatments escalated the BAER treatment costs to $10<br />

to $20 milli<strong>on</strong> per <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

C<strong>on</strong>tour Log Structures (C<strong>on</strong>tour Log Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

Log Erosi<strong>on</strong> Barriers, Log Terraces, Terracettes)—<br />

This treatment <str<strong>on</strong>g>in</str<strong>on</strong>g>volves fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g logs <strong>on</strong> burned-over<br />

hillsides <strong>and</strong> lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g them <strong>on</strong> the ground al<strong>on</strong>g the<br />

slope c<strong>on</strong>tour to provide mechanical barriers to <strong>water</strong><br />

flow, promote <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, <strong>and</strong> reduce sediment movement.<br />

C<strong>on</strong>tour-felled logs reduce <strong>water</strong> velocity, break<br />

up c<strong>on</strong>centrated flows, <str<strong>on</strong>g>in</str<strong>on</strong>g>duce hydraulic roughness to<br />

burned <strong>water</strong>sheds, <strong>and</strong> store sediment. The potential<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment stored is highly dependent <strong>on</strong><br />

slope, the layout design, the size <strong>and</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

felled trees, <strong>and</strong> the degree to which the felled trees are<br />

adequately staked <strong>and</strong> placed <str<strong>on</strong>g>in</str<strong>on</strong>g>to ground c<strong>on</strong>tact. In<br />

some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances c<strong>on</strong>tour-felled log barriers have filled<br />

with sediment follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first several storm events<br />

after <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>, while others have taken 1 to 2 years<br />

to fill (Robichaud 2000).<br />

This treatment was orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally designed to provide<br />

the same functi<strong>on</strong> as c<strong>on</strong>tour trenches <strong>and</strong> furrows.<br />

The primary functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the C<strong>on</strong>tour Log Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s or<br />

C<strong>on</strong>tour Log Terraces was to deta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrate<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from a design storm. To accomplish this, logs<br />

rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g generally from 6 to 12 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (15 to 30 cm) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

diameter were felled <strong>on</strong> the c<strong>on</strong>tour <strong>and</strong> staked <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

place. The treatment was begun at the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the slope<br />

because each course <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour logs depends <strong>on</strong> the<br />

design spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the upslope courses to<br />

be effective. The spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g depends <strong>on</strong> the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

structure to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the formula:<br />

S = RO/12 x C<br />

Where: S = spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> log courses down slope measured<br />

horiz<strong>on</strong>tally <str<strong>on</strong>g>in</str<strong>on</strong>g> feet.<br />

RO = Storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ches.<br />

C = Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> capacity <str<strong>on</strong>g>in</str<strong>on</strong>g> cubic feet/l<str<strong>on</strong>g>in</str<strong>on</strong>g>eal foot <str<strong>on</strong>g>of</str<strong>on</strong>g> log.<br />

Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s were created beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d each log by scrap<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the log to seal it. Earthen end sills <strong>and</strong> baffles<br />

complete the structure. To c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> 1.0 <str<strong>on</strong>g>in</str<strong>on</strong>g>ch (25 mm) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f typically requires spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 20 feet<br />

(9.6 m) between courses. C<strong>on</strong>tour placement is vital,<br />

<strong>and</strong> elim<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>g, un<str<strong>on</strong>g>in</str<strong>on</strong>g>terrupted flow paths by<br />

“brick cours<str<strong>on</strong>g>in</str<strong>on</strong>g>g” provides additi<strong>on</strong>al effectiveness. The<br />

treatments deta<str<strong>on</strong>g>in</str<strong>on</strong>g> storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong> site, thereby elim<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> eroded <strong>soils</strong>. If the design capacity<br />

is exceeded, the structure provides some sec<strong>on</strong>dary<br />

benefit by reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g slope length, which <str<strong>on</strong>g>in</str<strong>on</strong>g>terrupts<br />

c<strong>on</strong>centrated flows <strong>and</strong> sediment movement. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their small size, the effective life <str<strong>on</strong>g>of</str<strong>on</strong>g> properly <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled<br />

treatments is <strong>on</strong>ly a few years at most. Undesigned<br />

<strong>and</strong> underdesigned treatments with wide spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> lack<str<strong>on</strong>g>in</str<strong>on</strong>g>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f storage capacity can effectively<br />

c<strong>on</strong>centrate run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> cause damage that might<br />

186 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


c<strong>on</strong>ceivably be greater than no treatment. In high<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the West Coast, c<strong>on</strong>tour log bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

may be <str<strong>on</strong>g>in</str<strong>on</strong>g>feasible. In these cases, c<strong>on</strong>tour logs are<br />

placed <str<strong>on</strong>g>in</str<strong>on</strong>g> the same manner as above, but the excepti<strong>on</strong><br />

is that they will provide <strong>on</strong>ly sec<strong>on</strong>dary benefits. It<br />

should be kept <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d that these structures are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tended to deta<str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. If they immediately fill with<br />

sediment, they were likely underdesigned.<br />

Shallow, rocky <strong>soils</strong> that are uneven are problematic<br />

for anchor<str<strong>on</strong>g>in</str<strong>on</strong>g>g, so care must be taken to ensure<br />

that logs are adequately secured to the slope. Overly<br />

rocky <strong>and</strong> steep slopes should be avoided because<br />

benefits ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from c<strong>on</strong>tour-fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment can<br />

be easily <str<strong>on</strong>g>of</str<strong>on</strong>g>fset by the extra implementati<strong>on</strong> time<br />

required <strong>and</strong> the limited capacity to deta<str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f or<br />

provide stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> soil. Gentler<br />

slopes <strong>and</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>er textured <strong>soils</strong> (except clayey<br />

<strong>soils</strong>) lead to better <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong> <strong>and</strong> greater run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

c<strong>on</strong>trol efficiency. In highly erosive <strong>soils</strong> derived from<br />

parent material such as granitics or glacial till, so<br />

much sediment can be mobilized that it might overwhelm<br />

small c<strong>on</strong>tour-felled logs. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> straight trees must be c<strong>on</strong>sidered<br />

when choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g this treatment.<br />

Straw Wattles—Straw wattles ma<str<strong>on</strong>g>in</str<strong>on</strong>g> purpose is to<br />

break up slope length <strong>and</strong> reduce flow velocities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>centrated flow. Straw wattles are 9 to 10 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (23<br />

to 25 cm) <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter <strong>and</strong> made <str<strong>on</strong>g>of</str<strong>on</strong>g> nyl<strong>on</strong> mesh tubes<br />

filled with straw. They are permeable barriers used to<br />

deta<str<strong>on</strong>g>in</str<strong>on</strong>g> surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f l<strong>on</strong>g enough to reduce flow velocity<br />

<strong>and</strong> provide for sediment storage. With end sills,<br />

baffles, <strong>and</strong> <strong>on</strong> the proper design spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g, straw wattles<br />

can provide run<str<strong>on</strong>g>of</str<strong>on</strong>g>f detenti<strong>on</strong>.<br />

Straw wattles have been used <str<strong>on</strong>g>in</str<strong>on</strong>g> small, first order,<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages or <strong>on</strong> side slopes for deta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g small amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sediment. They should never be placed <str<strong>on</strong>g>in</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> or<br />

active dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages. Straw wattles functi<strong>on</strong> similarly to<br />

c<strong>on</strong>tour-felled logs. The sediment hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity can<br />

be <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by turn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 2 feet at each end <str<strong>on</strong>g>of</str<strong>on</strong>g> the wattle<br />

upslope. Straw wattles are a good alternative <str<strong>on</strong>g>in</str<strong>on</strong>g> burned<br />

areas where logs are absent, poorly shaped, or scarce.<br />

Straw wattles are relatively <str<strong>on</strong>g>in</str<strong>on</strong>g>expensive, but they can<br />

be disturbed by graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals or decompose or catch<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Although the wattle nett<str<strong>on</strong>g>in</str<strong>on</strong>g>g is photodegradable,<br />

there are c<strong>on</strong>cerns that it persists l<strong>on</strong>g enough to pose<br />

hazards for small animals.<br />

C<strong>on</strong>tour Trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> Terraces—Full-scale<br />

c<strong>on</strong>tour trenches are designed to totally deta<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from a design storm <strong>on</strong> site. The treatment<br />

must progress from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the slope downward as<br />

each trench course is dependent <strong>on</strong> the next <strong>on</strong>e<br />

upslope. Smaller “outside” trenches can be c<strong>on</strong>structed<br />

<strong>on</strong> slopes less than 30 percent. For slopes greater than<br />

30 percent an “<str<strong>on</strong>g>in</str<strong>on</strong>g>side” trench must be built. This requires<br />

build<str<strong>on</strong>g>in</str<strong>on</strong>g>g a “full bench” platform for bulldozers<br />

to operate <strong>on</strong>. In subsequent passes, the trench is<br />

tipped <str<strong>on</strong>g>in</str<strong>on</strong>g>to the slope, form<str<strong>on</strong>g>in</str<strong>on</strong>g>g a bas<str<strong>on</strong>g>in</str<strong>on</strong>g>. On the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

pass, bulldozers back out <strong>and</strong> push up baffles that<br />

segment the trench <strong>and</strong> allow flows to equalize <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

other cells. The formula for digg<str<strong>on</strong>g>in</str<strong>on</strong>g>g trenches is:<br />

S = RO/12 x C<br />

Where: S = spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> trench courses down slope<br />

measured horiz<strong>on</strong>tally <str<strong>on</strong>g>in</str<strong>on</strong>g> feet.<br />

RO = Storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ches.<br />

C = Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> capacity <str<strong>on</strong>g>in</str<strong>on</strong>g> cubic feet/l<str<strong>on</strong>g>in</str<strong>on</strong>g>eal foot <str<strong>on</strong>g>of</str<strong>on</strong>g> trench.<br />

The practical upper limit <str<strong>on</strong>g>of</str<strong>on</strong>g> capacity is about 3<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ches (76 mm) <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. C<strong>on</strong>tour trenches require a<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 feet (1.2 m) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil above bedrock for<br />

adequate c<strong>on</strong>structi<strong>on</strong>. They work best <str<strong>on</strong>g>in</str<strong>on</strong>g> gravelly<br />

loams <strong>and</strong> have been applied <str<strong>on</strong>g>in</str<strong>on</strong>g> granitic <strong>soils</strong> <strong>and</strong> clay<br />

<strong>soils</strong> with less success (Schmidt Pers<strong>on</strong>al Communicati<strong>on</strong><br />

2004). Granitic <strong>soils</strong> do not ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a structural<br />

shape well because <str<strong>on</strong>g>of</str<strong>on</strong>g> their coarseness <strong>and</strong> difficulty to<br />

get regenerated with cover. Clay <strong>soils</strong> can become<br />

plastic with the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>and</strong>slidepr<strong>on</strong>e<br />

topography, c<strong>on</strong>tour trenches can activate localized<br />

mass failures. C<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g has proven to be<br />

effective <str<strong>on</strong>g>in</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> localities <str<strong>on</strong>g>in</str<strong>on</strong>g> the past, but<br />

c<strong>on</strong>cerns about visual <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>and</strong> cultural heritage<br />

values have limited their use <str<strong>on</strong>g>in</str<strong>on</strong>g> the past three decades.<br />

More recently, smaller scale c<strong>on</strong>tour trenches have<br />

been used to break up the slope surface, to slow run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

to allow <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, <strong>and</strong> to trap sediment. These<br />

trenches or terraces are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with<br />

other treatments such as seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. They can be c<strong>on</strong>structed<br />

with mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery (deeper trenches) or by h<strong>and</strong><br />

(generally shallow). Width <strong>and</strong> depth vary with design<br />

storm, spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g, soil type, <strong>and</strong> slope. When <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled<br />

with heavy equipment, trenches may result <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>siderable<br />

soil disturbance that can create immediate<br />

erosi<strong>on</strong> problems. In additi<strong>on</strong>, erosi<strong>on</strong> problems can<br />

occur many years after <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong> when run<str<strong>on</strong>g>of</str<strong>on</strong>g>f cuts<br />

through the trench embankment. Trenches have high<br />

visual impact when used <str<strong>on</strong>g>in</str<strong>on</strong>g> open areas. Shallow h<strong>and</strong><br />

trenches tend to disappear with time as they are filled<br />

with sediment <strong>and</strong> covered by vegetati<strong>on</strong>. On the other<br />

h<strong>and</strong>, large trenches <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled several decades ago are<br />

still visible <strong>on</strong> the l<strong>and</strong>scape. Because c<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> terraces are ground-disturb<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities, cultural<br />

clearances are required, <strong>and</strong> these may significantly<br />

slow the <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong> process.<br />

Scarificati<strong>on</strong> <strong>and</strong> Ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Scarificati<strong>on</strong> <strong>and</strong> ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

are mechanical soil treatments aimed at improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> repellent <strong>soils</strong>. Tractors<br />

<strong>and</strong> ATVs can be used to pull shallow harrows <strong>on</strong><br />

slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 percent or less. H<strong>and</strong> scarificati<strong>on</strong> uses<br />

steel rakes (McLeods). These treatments may <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> macropore space <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> by the physical<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 187


eakup <str<strong>on</strong>g>of</str<strong>on</strong>g> dense or <strong>water</strong> repellent <strong>soils</strong>, <strong>and</strong> thus<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall that <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

soil. In additi<strong>on</strong>, scarificati<strong>on</strong> can provide a seedbed<br />

for plant<str<strong>on</strong>g>in</str<strong>on</strong>g>g that improves germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> rates. Shallow<br />

<strong>soils</strong>, rock outcrops, steep slopes, <str<strong>on</strong>g>in</str<strong>on</strong>g>cised dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages,<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-textured <strong>soils</strong>, <strong>and</strong> high tree density create significant<br />

problems for scarificati<strong>on</strong> <strong>and</strong> ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g. These<br />

treatments work best where there is good soil depth,<br />

the <strong>soils</strong> are coarse textured, slopes are less than 30<br />

percent, <strong>and</strong> woody vegetati<strong>on</strong> density is low.<br />

Silt Fences—Silt fences are <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled to trap sediment<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> swales, small ephemeral dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages, or al<strong>on</strong>g<br />

hillslopes where they provide temporary sediment<br />

storage. Given the labor-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensive <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>, they<br />

are used as treatment <strong>on</strong>ly when other methods would<br />

not be effective. They work best <strong>on</strong> gentler slopes, such<br />

as swales, but can be effective <strong>on</strong> steeper, rocky slopes<br />

where log erosi<strong>on</strong> barriers would not achieve good<br />

ground c<strong>on</strong>tact. Silt fences are also <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled to m<strong>on</strong>itor<br />

sediment movement as part <str<strong>on</strong>g>of</str<strong>on</strong>g> effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> can last several years before UV breakdown<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fabric (Robichaud <strong>and</strong> Brown 2002).<br />

Geotextiles <strong>and</strong> Geowebb<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Polymer textiles<br />

<strong>and</strong> webb<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are used to cover ground <strong>and</strong> c<strong>on</strong>trol<br />

erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> high-risk areas, such as extremely steep<br />

slopes, above roads or structures, or al<strong>on</strong>g streambanks.<br />

This material is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Geotextiles come <str<strong>on</strong>g>in</str<strong>on</strong>g> different grades with ultraviolet<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>hibitors that determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e how l<strong>on</strong>g they will last<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the field. Geotextiles must be anchored securely to<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g> effective, especially al<strong>on</strong>g streambanks. The<br />

complete cover provided by some geotextiles can reduce<br />

native plant establishment.<br />

S<strong>and</strong>, Soil, or Gravel Bags—S<strong>and</strong>, soil, or gravel<br />

bags are used <strong>on</strong> hillslopes or <str<strong>on</strong>g>in</str<strong>on</strong>g> small channels or to<br />

trap sediment <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terrupt <strong>water</strong> flow. Various seed<br />

mixes or willow w<strong>and</strong>s may be added to the bags to<br />

help establish vegetati<strong>on</strong>. The bags are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten placed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

staggered rows like c<strong>on</strong>tour-felled logs <str<strong>on</strong>g>in</str<strong>on</strong>g> areas where<br />

there are no trees available. Rows <str<strong>on</strong>g>of</str<strong>on</strong>g> bags break <strong>water</strong><br />

flow <strong>and</strong> promote <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>. They store sediment<br />

temporarily, then break down <strong>and</strong> release it. They are<br />

not appropriate for use <str<strong>on</strong>g>in</str<strong>on</strong>g> V-shaped channels.<br />

Temporary Fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g is used<br />

to keep graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g livestock <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f-highway vehicles<br />

(OHVs) out <str<strong>on</strong>g>of</str<strong>on</strong>g> burned areas <strong>and</strong> riparian z<strong>on</strong>es dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the recovery period. Resprout<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>site vegetati<strong>on</strong><br />

<strong>and</strong> seeded species attract graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals <strong>and</strong> require<br />

protecti<strong>on</strong> to be successful.<br />

Slash Spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Slash spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g covers the<br />

ground with organic material, <str<strong>on</strong>g>in</str<strong>on</strong>g>terrupt<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g> impact<br />

<strong>and</strong> trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. It is a comm<strong>on</strong> practice after<br />

timber sales, but it can also be used <strong>on</strong> burned slopes<br />

where dead vegetati<strong>on</strong> is present. Slash is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used<br />

to rehabilitate <str<strong>on</strong>g>fire</str<strong>on</strong>g>breaks <strong>and</strong> dozer <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es. It is also<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> moderately burned areas where there is more<br />

material available to spread, or below an <str<strong>on</strong>g>in</str<strong>on</strong>g>tensely<br />

burned slope or area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> repellent <strong>soils</strong>. To be<br />

effective, slash needs to be cut so it makes good c<strong>on</strong>tact<br />

with the ground.<br />

Needle Cast—Needle cast comm<strong>on</strong>ly occurs after<br />

low <strong>and</strong> moderate severity burns <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>iferous forests.<br />

The dead needles that fall to the ground provide<br />

surface cover that functi<strong>on</strong>s as a naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

mulch. Pannkuk <strong>and</strong> Robichaud (2003) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that<br />

50 percent ground cover can reduce <str<strong>on</strong>g>in</str<strong>on</strong>g>terrill erosi<strong>on</strong> by<br />

60 to 80 percent <strong>and</strong> rill erosi<strong>on</strong> 20 to 40 percent.<br />

Although needle cast is not an applied treatment, its<br />

presence may reduce or elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the need for other<br />

treatments.<br />

Hillslope Treatment Effectiveness<br />

Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <strong>and</strong> prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

soil from leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hillslope are c<strong>on</strong>sidered the most<br />

effective methods to slow run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, reduce flood peaks,<br />

reta<str<strong>on</strong>g>in</str<strong>on</strong>g> site productivity, <strong>and</strong> reduce downstream sedimentati<strong>on</strong>.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these hillslope treatments may be<br />

appropriate <str<strong>on</strong>g>in</str<strong>on</strong>g> critical areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high risk. M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

treatment effectiveness is needed to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e which<br />

treatments will work <str<strong>on</strong>g>in</str<strong>on</strong>g> specific sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs as well as<br />

their cost effectiveness (General Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g Office<br />

2003, Robichaud <strong>and</strong> others 2003).<br />

BAER Expert Rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Hillslope treatments are<br />

implemented to keep soil <str<strong>on</strong>g>in</str<strong>on</strong>g> place <strong>and</strong> comprise the<br />

greatest effort <str<strong>on</strong>g>in</str<strong>on</strong>g> most BAER projects (fig. 10.2). Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> geotextiles were rated the most effective<br />

hillslope treatments because they provide immediate<br />

ground cover to reduce ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop impact <strong>and</strong> overl<strong>and</strong><br />

flow as well as to hold soil <str<strong>on</strong>g>in</str<strong>on</strong>g> place. Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g was rated<br />

“excellent” <str<strong>on</strong>g>in</str<strong>on</strong>g> 67 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the evaluati<strong>on</strong>s, <strong>and</strong> nobody<br />

c<strong>on</strong>sidered it a “poor” treatment. Aerial seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

the most frequently used BAER treatment, was rated<br />

about equally across the spectrum from “excellent” to<br />

“poor.” Nearly 82 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the evaluati<strong>on</strong>s placed<br />

ground seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness <str<strong>on</strong>g>in</str<strong>on</strong>g> the “good” category.<br />

Evaluati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g plus fertilizer covered the spectrum<br />

from “excellent” to “poor,” although most resp<strong>on</strong>ses<br />

were “fair” or “poor.” After seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>tourfelled<br />

logs are the next most comm<strong>on</strong>ly applied hillslope<br />

treatment. The rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g for c<strong>on</strong>tour-felled logs was “excellent”<br />

or “good” <str<strong>on</strong>g>in</str<strong>on</strong>g> 66 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the evaluati<strong>on</strong>s. The<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>of</str<strong>on</strong>g> the hillslope treatments received <strong>on</strong>ly<br />

three evaluati<strong>on</strong>s each, so no c<strong>on</strong>clusi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered<br />

bey<strong>on</strong>d the fact that they were generally rated “excellent,”<br />

“good,” or “fair,” <strong>and</strong> n<strong>on</strong>e were evaluated as<br />

“poor.”<br />

188 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Research <strong>and</strong> M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Results<br />

Broadcast Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Robichaud <strong>and</strong> others (2000)<br />

reviewed published studies <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness<br />

after 1 <strong>and</strong> 2 years <strong>on</strong> 34 burned sites across the<br />

Western United States. Erosi<strong>on</strong> was not measured at<br />

16 sites (47 percent); <strong>on</strong>ly plant cover was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

At another 15 <str<strong>on</strong>g>of</str<strong>on</strong>g> the seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites (44 percent), seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

did not significantly reduce erosi<strong>on</strong> when compared to<br />

sites that were burned but not seeded. Soil erosi<strong>on</strong> was<br />

reduced by seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>on</strong>ly three sites (16, 31, <strong>and</strong> 80<br />

percent less sediment). Of 23 m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports that<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed some quantitative data <strong>on</strong> broadcast seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

15 (65 percent) did not determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e soil loss, <strong>and</strong> <strong>on</strong>e<br />

reported no difference <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> due to seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Three<br />

reports noted reducti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment yield <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 36<br />

percent (2.6 to 6.2 t<strong>on</strong>s/acre or 5.8 to 13.8 Mg/ha). Four<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports documented <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

yield <strong>on</strong> seeded areas <str<strong>on</strong>g>of</str<strong>on</strong>g> 118 to 386 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burned <strong>and</strong> untreated areas.<br />

In the studies <strong>and</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by<br />

Robichaud <strong>and</strong> others (2000), a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> grass<br />

species, mixes, <strong>and</strong> applicati<strong>on</strong> rates were used, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

generalizati<strong>on</strong>s difficult. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reported studies it is noted that grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g does not<br />

assure <str<strong>on</strong>g>in</str<strong>on</strong>g>creased plant cover (or any associated erosi<strong>on</strong><br />

reducti<strong>on</strong>) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first critical year after <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

In the mid-1900s, southern California foresters were<br />

urged to cauti<strong>on</strong> the public not to expect significant<br />

first-year sediment c<strong>on</strong>trol from post<str<strong>on</strong>g>fire</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(Gleas<strong>on</strong> 1947). Krammes (1960), <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California,<br />

found that as much as 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> first-year<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> hillslope sediment movement can occur as dry<br />

ravel before the first germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>-stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

even occur. Amaranthus (1989) measured the most<br />

first-year sediment movement <strong>on</strong> his Oreg<strong>on</strong> study<br />

site dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g several storms <str<strong>on</strong>g>in</str<strong>on</strong>g> December, before the<br />

seeded ryegrass had produced much cover. In the<br />

reported studies, erosi<strong>on</strong> was decreased by seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>on</strong>ly <strong>on</strong>e out <str<strong>on</strong>g>of</str<strong>on</strong>g> eight first-year studies (12.5 percent).<br />

However, several studies showed a trend toward lower<br />

sediment movement <strong>on</strong> seeded plots that was not<br />

statistically significant (Amaranthus 1989,<br />

Wohlgemuth <strong>and</strong> others 1998). One report suggested<br />

that measures other than seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g should be used <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

places where first-year c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment movement<br />

is critical (Ruby 1997).<br />

Better cover <strong>and</strong>, c<strong>on</strong>sequently, greater erosi<strong>on</strong> c<strong>on</strong>trol<br />

may occur by the sec<strong>on</strong>d post<str<strong>on</strong>g>fire</str<strong>on</strong>g> year. Amaranthus<br />

(1989) reported that <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d year after <str<strong>on</strong>g>fire</str<strong>on</strong>g>,<br />

seeded sites had greater total cover (plant <strong>and</strong> litter)<br />

than unseeded 42 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the time. Seeded species<br />

are expected to be <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest value dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the sec<strong>on</strong>d<br />

<strong>and</strong> third ra<str<strong>on</strong>g>in</str<strong>on</strong>g>y seas<strong>on</strong>s (Espl<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Shackleford 1978),<br />

when plant litter produced by the first year’s growth<br />

covers the soil. However, after the Bobcat Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Colorado Fr<strong>on</strong>t Range, Wagenbrenner (2003) found<br />

that seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g had no significant effect <strong>on</strong> sediment<br />

yields at the hillslope scale <str<strong>on</strong>g>in</str<strong>on</strong>g> either the first or sec<strong>on</strong>d<br />

years. In additi<strong>on</strong>, seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g had no significant effect <strong>on</strong><br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative cover compared to untreated<br />

areas (Wagenbrenner 2003).<br />

Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten most successful where it may be<br />

needed least—<strong>on</strong> gentle slopes <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> riparian areas.<br />

Janicki (1989) found that two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> plots with more<br />

than 30 percent annual ryegrass cover were <strong>on</strong> slopes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> less than 35 percent. He also noted that grass plants<br />

c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age bottoms <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that seed<br />

washed <str<strong>on</strong>g>of</str<strong>on</strong>g>f the slopes dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first two storm events.<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeded species at the base <str<strong>on</strong>g>of</str<strong>on</strong>g> slopes<br />

was also observed by L<str<strong>on</strong>g>of</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> others (1998).<br />

Little evidence suggests that fertilizer applied with<br />

seeded grass is effective <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g cover or reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

erosi<strong>on</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Several studies found no significant<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer <strong>on</strong> plant cover or erosi<strong>on</strong> (Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<strong>and</strong> Brooks 1979, Espl<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Shackleford 1980, Tyrrel<br />

1981).<br />

Retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>on</strong>site for productivity ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance<br />

is an important rehabilitati<strong>on</strong> treatment objective, but<br />

almost no evidence <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates whether seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is effective<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g this goal. Although some nutrients are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>evitably lost <str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, natural processes tend to<br />

replenish the soil over time (DeBano <strong>and</strong> others 1998).<br />

Mulch—Straw mulch applied at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 t<strong>on</strong>/<br />

acre (2 Mg/ha) significantly reduced sediment yield <strong>on</strong><br />

burned p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-shrub forest <str<strong>on</strong>g>in</str<strong>on</strong>g> Spa<str<strong>on</strong>g>in</str<strong>on</strong>g> over an 18-m<strong>on</strong>th<br />

period with 46 ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events (Bautista <strong>and</strong> others<br />

1996). Kay (1983) tested straw mulch laid down at<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5, 1.0, 1.5, <strong>and</strong> 4 t<strong>on</strong>s/acre (1.1, 2.2, 3.4, <strong>and</strong><br />

9.0 Mg/ha) aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st jute excelsior, <strong>and</strong> paper for erosi<strong>on</strong><br />

c<strong>on</strong>trol. Straw was the most cost-effective mulch, superior<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> protecti<strong>on</strong> to hydraulic mulches <strong>and</strong> comparable<br />

to expensive fabrics. Excelsior was less effective<br />

but better than paper strip synthetic yarn. The best<br />

erosi<strong>on</strong> c<strong>on</strong>trol came from jute applied over 1.5 t<strong>on</strong>s/<br />

acre (3.4 Mg/ha) straw. Miles <strong>and</strong> others (1989) studied<br />

the use <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat straw mulch <strong>on</strong> the 1987 South<br />

Fork <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fire, Shasta-Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al<br />

Forest <str<strong>on</strong>g>in</str<strong>on</strong>g> California. Wheat straw mulch was<br />

applied to fill slopes adjacent to perennial streams,<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, <strong>and</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme erosi<strong>on</strong> hazard. Mulch<br />

applied at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0 to 2.0 t<strong>on</strong>s/acre (2.2 to 4.5 Mg/ha)<br />

<strong>on</strong> large areas, reduced erosi<strong>on</strong> significantly 4.6 to 8.0<br />

yard 3 /acre (11 to 19 m 3 /ha). They c<strong>on</strong>sidered mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

highly effective <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong>. Edwards <strong>and</strong><br />

others (1995) exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> straw mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9, 1.8, 2.6, <strong>and</strong> 3.6 t<strong>on</strong>s/acre (2, 4, 6, <strong>and</strong><br />

8 Mg/ ha) <strong>on</strong> 5 to 9 percent slopes. They reported a<br />

significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil loss at 0.9 t<strong>on</strong>/acre (2 Mg/<br />

ha) mulch, but <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> mulch thickness provided<br />

no additi<strong>on</strong>al reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil loss. When compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

all the treatments used after the 2000 Cerro Gr<strong>and</strong>e<br />

Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> New Mexico, mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g provided the best<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 189


ehabilitati<strong>on</strong> results. Although precipitati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the two study years was below normal, the plots<br />

treated with aerial seed <strong>and</strong> straw mulch yielded 70<br />

percent less sediment than the no-treatment plots <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the first year <strong>and</strong> 95 percent less <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d year.<br />

Ground cover transects showed that aerial seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

without added straw mulch provided no appreciable<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> ground cover relative to untreated plots<br />

(Dean 2001). In a 2-year post<str<strong>on</strong>g>fire</str<strong>on</strong>g> study <str<strong>on</strong>g>in</str<strong>on</strong>g> the Colorado<br />

Fr<strong>on</strong>t Range, Wagenbrenner (2003) found that mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

reduced the erosi<strong>on</strong> significantly from storms with<br />

return periods <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 2 years. In the first study year,<br />

sediment yields from a high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (1.9 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches/hour,<br />

48 mm/hour) ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall event overwhelmed the silt fence<br />

sediment traps <strong>on</strong> both the treated <strong>and</strong> untreated<br />

study sites. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d year, sediment<br />

yields from mulched hillslope sites were significantly<br />

less than the sediment yields from untreated slopes<br />

<strong>and</strong> the slopes that were seeded without mulch<br />

(Wagenbrenner 2003).<br />

C<strong>on</strong>tour Structures—C<strong>on</strong>tour structures provide<br />

immediate benefits after <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> that they trap<br />

sediment dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first post<str<strong>on</strong>g>fire</str<strong>on</strong>g> year, which usually<br />

has the highest erosi<strong>on</strong> rates. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour<br />

structures to reduce run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> rill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>,<br />

<strong>and</strong> decrease downstream time-to-peak (slow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

velocities) has not been documented, even though<br />

these are reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten given for do<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tour fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

If c<strong>on</strong>tour structures slow or elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, sediment<br />

movement may not occur.<br />

Logs were c<strong>on</strong>tour-felled <strong>on</strong> 22 acres (9 ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

1979 Bridge Creek Fire, Deschutes Nati<strong>on</strong>al Forest <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Oreg<strong>on</strong> (McCamm<strong>on</strong> <strong>and</strong> Hughes 1980). Trees 6 to 12<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ches (150 to 300 mm) d.b.h. were placed <strong>and</strong> secured<br />

<strong>on</strong> slopes up to 50 percent at <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 to 20 feet<br />

(3 to 6 m). Logs were staked <strong>and</strong> holes underneath<br />

were filled. After the first storm event, about 63<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tour-felled logs were judged effective<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment. The rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der were either<br />

partially effective or did not receive flow. Nearly 60<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage space beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d c<strong>on</strong>tour-felled logs<br />

was full to capacity, 30 percent was half-full, <strong>and</strong> 10<br />

percent had <str<strong>on</strong>g>in</str<strong>on</strong>g>significant depositi<strong>on</strong>. Comm<strong>on</strong> failures<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded flow under the log <strong>and</strong> not plac<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

logs <strong>on</strong> c<strong>on</strong>tour (more than 25 degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>f c<strong>on</strong>tour<br />

caused trap efficiency to decrease to 20 percent). More<br />

than 1,600 yard 3 (1,225 m 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> material was estimated<br />

to be trapped beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d c<strong>on</strong>tour-felled logs <strong>on</strong> the treated<br />

area, or about 73 yard 3 /acre (135 m 3 /ha). Less than 1<br />

yard 3 (1 m 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment was deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>take<br />

p<strong>on</strong>d for a municipal <strong>water</strong> supply below.<br />

The few m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g studies d<strong>on</strong>e <strong>on</strong> c<strong>on</strong>tour-felled<br />

log treatments did not evaluate run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, or<br />

sediment movement changes after treatment <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>;<br />

they <strong>on</strong>ly reported sediment storage. For example,<br />

Miles <strong>and</strong> others (1989) m<strong>on</strong>itored c<strong>on</strong>tour-fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the 1987 South Fork Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fires, Shasta-<br />

Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al Forest <str<strong>on</strong>g>in</str<strong>on</strong>g> California. The treatment<br />

was applied to 200 acres (80 ha) with<str<strong>on</strong>g>in</str<strong>on</strong>g> 50,000 acres<br />

(20,240 ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> a burned area. Trees less than 10 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches<br />

(250 mm) d.b.h. spaced 15 to 20 feet (4.5 to 6 m) apart<br />

were felled at rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 to 100 trees/acre (200 to 250<br />

trees/ha). The c<strong>on</strong>tour-felled logs trapped 0 to 0.07<br />

yard 3 (0 to 0.05 m 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil per log, reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 1.6 to 6.7<br />

yard 3 /acre (3 to 13 m 3 /ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>on</strong>site. Miles <strong>and</strong><br />

others (1989) c<strong>on</strong>sidered sediment trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g efficiency<br />

low, <strong>and</strong> the cost high for this treatment. Sediment<br />

depositi<strong>on</strong> below treated areas was not measured.<br />

McCamm<strong>on</strong> <strong>and</strong> Hughes (1980), <strong>on</strong> the other h<strong>and</strong>,<br />

estimated storage at just over 10 times the amounts<br />

reported by Miles <strong>and</strong> others (1989) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a higher<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> logs. Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> log barrier density <strong>and</strong><br />

erosi<strong>on</strong> rates, this treatment could trap 5 to 47 percent<br />

annual sediment producti<strong>on</strong> from high severity burn<br />

areas. This wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates the<br />

need for proper estimati<strong>on</strong> techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> the erosi<strong>on</strong><br />

potential <strong>and</strong> for properly design<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tour-felled log<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> log numbers <strong>and</strong> spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g. If 60<br />

percent or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the expected sediment producti<strong>on</strong><br />

can be trapped, then c<strong>on</strong>tour-felled logs are probably<br />

cost effective.<br />

Dean (2001) found that plots treated with c<strong>on</strong>tourfelled<br />

logs as well as aerial seed <strong>and</strong> straw mulch<br />

yielded 77 percent less sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> the first year <strong>and</strong><br />

96 percent <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d year as compared to untreated<br />

areas; however, these results were not significantly<br />

different from the straw mulch with seed treatment<br />

al<strong>on</strong>e. Recent post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

efforts for six paired <strong>water</strong>sheds have <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that<br />

c<strong>on</strong>tour-felled logs can be effective for low to moderate<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity storm events. However, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g high<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events, their effectiveness is greatly<br />

reduced. The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour-felled logs decreases<br />

over time. Once the sediment storage area<br />

beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the log is filled, the barrier can no l<strong>on</strong>ger trap<br />

sediment that is mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g downslope (Robichaud 2000,<br />

Wagenbrenner 2003).<br />

C<strong>on</strong>tour Trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g—C<strong>on</strong>tour trenches have been<br />

used as a rehabilitati<strong>on</strong> treatment to reduce erosi<strong>on</strong>,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, trap sediment, <strong>and</strong> permit revegetati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged <strong>water</strong>sheds. Although they do<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates, the amounts are dependent<br />

<strong>on</strong> <strong>soils</strong> <strong>and</strong> geology (DeByle 1970b). C<strong>on</strong>tour trenches<br />

can significantly improve revegetati<strong>on</strong> by trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

more snow, but they do not affect <strong>water</strong> yield to any<br />

appreciable extent (Doty 1970, 1972). This treatment<br />

can be effective <str<strong>on</strong>g>in</str<strong>on</strong>g> alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hydrologic resp<strong>on</strong>se<br />

from short durati<strong>on</strong>, high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity storms typical <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

summer thunderstorms. However, this hillslope treatment<br />

does not significantly change peakflows result<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

from low <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, l<strong>on</strong>g durati<strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events<br />

(DeByle 1970a).<br />

190 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Doty (1971) noted that c<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

sagebrush (Artemisia spp.) porti<strong>on</strong> (upper 15 percent<br />

with the harshest sites) <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> central Utah<br />

did not significantly change streamflow <strong>and</strong> stormflow<br />

patterns. Doty did not discuss changes <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment<br />

yields. There were no observable changes <str<strong>on</strong>g>in</str<strong>on</strong>g> seas<strong>on</strong>al<br />

flows or the total flow volumes. However, the storm<br />

peakflows were substantially reduced. Costales <strong>and</strong><br />

Costales (1984) reported <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> recently burned steep slopes (40 to 50 percent)<br />

with clay loam <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Philipp<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

C<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g reduced sediment yield by 81 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> comparable, burned, but untreated areas.<br />

Other Treatments—Straw wattles may deta<str<strong>on</strong>g>in</str<strong>on</strong>g> surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, reduce velocities, store sediment, <strong>and</strong><br />

provide a seedbed for germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. They are a good<br />

alternative <str<strong>on</strong>g>in</str<strong>on</strong>g> burned areas where logs are absent,<br />

poorly shaped, or scarce. Although the wattle nett<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

is photodegradable, there are c<strong>on</strong>cerns that it persists<br />

l<strong>on</strong>g enough to pose hazards for small animals.<br />

Cattle exclusi<strong>on</strong> with temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be<br />

important for the first two post<str<strong>on</strong>g>fire</str<strong>on</strong>g> years.<br />

Ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> scarificati<strong>on</strong> is effective <strong>on</strong> roads,<br />

trails, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>breaks with slopes less than 35 percent.<br />

Slash spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g is effective if good ground<br />

c<strong>on</strong>tact is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

Channel Treatments <strong>and</strong><br />

Results ________________________<br />

Channel Treatments<br />

In general, channel treatments need to be coupled<br />

with hillslope treatments to be really effective. Channel<br />

treatments are implemented to modify sediment<br />

<strong>and</strong> <strong>water</strong> movement <str<strong>on</strong>g>in</str<strong>on</strong>g> ephemeral or small-order<br />

channels to prevent flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> debris torrents that<br />

may affect downstream values at risk. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>-channel<br />

structures are placed <strong>and</strong> secured to slow <strong>water</strong><br />

flow <strong>and</strong> allow sediment to settle out; sediment will<br />

later be released gradually as the structure decays.<br />

Channel clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g is d<strong>on</strong>e to remove large objects that<br />

might become mobilized <str<strong>on</strong>g>in</str<strong>on</strong>g> a flood. Much less <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

has been published <strong>on</strong> channel treatments than<br />

<strong>on</strong> hillslope methods.<br />

Straw Bale Check Dams—These structures are<br />

used to prevent or reduce sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>in</str<strong>on</strong>g>to perennial<br />

streams dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter or ra<str<strong>on</strong>g>in</str<strong>on</strong>g>y seas<strong>on</strong><br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Straw bales functi<strong>on</strong> by decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>water</strong> velocity <strong>and</strong> deta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment-laden surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f l<strong>on</strong>g enough for coarser sediments to drop<br />

out <strong>and</strong> be deposited beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the check dams. The<br />

decreased <strong>water</strong> velocity also reduces downcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ephemeral channels. Straw bale check dams are temporary<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>-channel grade c<strong>on</strong>trol structures c<strong>on</strong>structed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> commercially available straw or hay bales. They are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>expensive, easy to <str<strong>on</strong>g>in</str<strong>on</strong>g>stall, <strong>and</strong> effective at trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

sediment but eventually deteriorate due to climatic<br />

c<strong>on</strong>diti<strong>on</strong>s, streamflows, or cattle <strong>and</strong> wildlife disturbance.<br />

Straw bale check dams tend to fail <str<strong>on</strong>g>in</str<strong>on</strong>g> large<br />

storms. Failure can occur if the dams are poorly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stalled or put <str<strong>on</strong>g>in</str<strong>on</strong>g> locati<strong>on</strong>s where they cannot c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Straw bales are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used where materials are<br />

not available <strong>on</strong> site to c<strong>on</strong>struct check dams.<br />

Log Check Dams—Log check dams are another<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> temporary <str<strong>on</strong>g>in</str<strong>on</strong>g>-channel grade c<strong>on</strong>trol structure<br />

similar <str<strong>on</strong>g>in</str<strong>on</strong>g> functi<strong>on</strong> to straw bale check dams. They are<br />

used to prevent or reduce sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>in</str<strong>on</strong>g>to perennial<br />

streams dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter or ra<str<strong>on</strong>g>in</str<strong>on</strong>g>y seas<strong>on</strong><br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Log dams are c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

durable material than straw bale dams, usually small<br />

diameter <str<strong>on</strong>g>fire</str<strong>on</strong>g>-killed tree stems that are available<br />

nearby. Log check dams functi<strong>on</strong> by decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong><br />

velocity <strong>and</strong> deta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment-laden surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

l<strong>on</strong>g enough for coarser sediments to deposit beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

check dams. Decreased <strong>water</strong> velocity also reduces<br />

downcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> ephemeral channels. Log check dams<br />

require more effort <strong>and</strong> skill to <str<strong>on</strong>g>in</str<strong>on</strong>g>stall, but will last<br />

l<strong>on</strong>ger than straw bale check dams.<br />

Rock Dams <strong>and</strong> Rock Cage Gabi<strong>on</strong>s—Also known<br />

as rock fence check dams, these structures are used <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>termittent or small perennial channels to replace<br />

large woody debris that may have been burned out<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. The rock cage dams provide a degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grade stability <strong>and</strong> reduce flow velocities l<strong>on</strong>g enough<br />

to trap coarse sediments. Properly designed <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled<br />

rock check dams <strong>and</strong> rock cage (gabi<strong>on</strong>) dams<br />

are semipermanent structures capable <str<strong>on</strong>g>of</str<strong>on</strong>g> halt<str<strong>on</strong>g>in</str<strong>on</strong>g>g gully<br />

development <strong>and</strong> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment yields by c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

channel grade <strong>and</strong> stopp<str<strong>on</strong>g>in</str<strong>on</strong>g>g head cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> gullies.<br />

The rock cage dams must be properly sited, keyed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>, <strong>and</strong> anchored to stay <str<strong>on</strong>g>in</str<strong>on</strong>g> place dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f events.<br />

The dam cages should be filled with angular rock that<br />

will <str<strong>on</strong>g>in</str<strong>on</strong>g>terlock, prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g rock from mobiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

pound<str<strong>on</strong>g>in</str<strong>on</strong>g>g itself apart <str<strong>on</strong>g>in</str<strong>on</strong>g> the cages. Downslope energy<br />

dissipaters are recommended because they reduce the<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> the rock cage dams be<str<strong>on</strong>g>in</str<strong>on</strong>g>g undercut. C<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these structures is dependent <strong>on</strong> the availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adequate amounts <strong>and</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks. Rock cage<br />

dams usually need to be cleaned out periodically if<br />

they are to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> their effectiveness.<br />

Straw Wattle Dams—Straw wattle dams work <strong>on</strong><br />

the same pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple as straw bale check dams. They<br />

trap sediment <strong>on</strong> side slopes <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper ends <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ephemeral dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages by reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g channel gradient.<br />

Straw wattles are easy to place <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with the<br />

soil—a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct advantage over rigid barriers like<br />

logs—<strong>and</strong> provide a low risk barrier to soil movement.<br />

The closer together straw wattles are placed <str<strong>on</strong>g>in</str<strong>on</strong>g> steep<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g>, the more effective they are <str<strong>on</strong>g>in</str<strong>on</strong>g> deta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 191


sediment. Wattles can be used quite effectively <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with straw bale check dams. However,<br />

they should not be placed <str<strong>on</strong>g>in</str<strong>on</strong>g> the channels <str<strong>on</strong>g>of</str<strong>on</strong>g> first order<br />

or greater dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages <strong>and</strong> swales because <str<strong>on</strong>g>of</str<strong>on</strong>g> high failure<br />

rates. They are most effective <strong>on</strong> hillslopes.<br />

Log Grade Stabilizers—The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> log grade<br />

stabilizers is much the same as log dams, except that<br />

the emphasis is <strong>on</strong> stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the channel gradient<br />

rather than trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment. Numerous small log<br />

grade stabilizers are preferable to a few larger <strong>on</strong>es. In<br />

some locati<strong>on</strong>s, there might not be adequate, straight,<br />

woody material left after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> to build log grade<br />

stabilizers with <strong>on</strong>site resources.<br />

Rock Grade Stabilizers— Rock grade stabilizers<br />

functi<strong>on</strong> the same as log grade stabilizers, except that<br />

they are made <str<strong>on</strong>g>of</str<strong>on</strong>g> rock. The emphasis is <strong>on</strong> stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the channel gradient rather than trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment<br />

although some sediment will be trapped by these<br />

structures. Effectiveness is impacted by (1) the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rocks that are large enough to resist transport dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f events <strong>and</strong> (2) placement <str<strong>on</strong>g>of</str<strong>on</strong>g> screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g to collect<br />

<strong>and</strong> hold organic debris or sediment <strong>on</strong> the upstream<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> the grade stabilizer.<br />

Channel Debris Clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Channel clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g is<br />

the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> logs, organic debris, or sediment deposits<br />

to prevent them from be<str<strong>on</strong>g>in</str<strong>on</strong>g>g mobilized <str<strong>on</strong>g>in</str<strong>on</strong>g> debris<br />

flows or flood events. This treatment has been d<strong>on</strong>e to<br />

prevent creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> channel debris dams, which might<br />

result <str<strong>on</strong>g>in</str<strong>on</strong>g> flash floods or <str<strong>on</strong>g>in</str<strong>on</strong>g>crease flood heights or<br />

peakflows. Organic debris can lead to culvert failure<br />

by block<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>lets or reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g channel flow capacity.<br />

Excessive sediments <str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels can compromise<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>-channel storage capacity <strong>and</strong> the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Streambank Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> Channel<br />

Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Streambank <strong>and</strong> channel armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g is<br />

d<strong>on</strong>e to prevent erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> channel banks <strong>and</strong> bottoms<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f events. In some hydrologic systems,<br />

streambanks are a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment. Factors<br />

that c<strong>on</strong>tribute to the success <str<strong>on</strong>g>of</str<strong>on</strong>g> these treatments<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude proper sized materials, use <str<strong>on</strong>g>of</str<strong>on</strong>g> geotextile fabric,<br />

avoid<str<strong>on</strong>g>in</str<strong>on</strong>g>g overly steep areas, <strong>and</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

dissipaters.<br />

In-Channel Fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g—This rehabilitati<strong>on</strong> channel<br />

treatment is designed to replace woody material <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age bottoms that have been c<strong>on</strong>sumed by wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

It is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to trap organic debris <strong>and</strong> temporarily<br />

deta<str<strong>on</strong>g>in</str<strong>on</strong>g> or slow down storm run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Woody material<br />

felled <str<strong>on</strong>g>in</str<strong>on</strong>g>to channels will ultimately alter channel<br />

gradient <strong>and</strong> may cause sediment depositi<strong>on</strong> <strong>and</strong> channel<br />

aggradati<strong>on</strong>. This treatment is <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>flict with<br />

channel removal <str<strong>on</strong>g>of</str<strong>on</strong>g> woody debris as its objectives are<br />

totally different.<br />

Debris Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s— Debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s are c<strong>on</strong>structed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

stream systems that, under normal c<strong>on</strong>diti<strong>on</strong>s, carry<br />

high sediment loads. They are <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to c<strong>on</strong>trol<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> reduce deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality <strong>and</strong><br />

threats to human life <strong>and</strong> property. Debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s are<br />

c<strong>on</strong>sidered a last resort because they are extremely<br />

expensive to c<strong>on</strong>struct <strong>and</strong> require a commitment to<br />

annual ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance until they are ab<strong>and</strong><strong>on</strong>ed. In<br />

order for debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s to functi<strong>on</strong>, they must be able<br />

to trap at least 50 percent <strong>and</strong> preferably 70 to 80<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> 100-year flows. A spillway needs to be<br />

c<strong>on</strong>structed <str<strong>on</strong>g>in</str<strong>on</strong>g> the debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g> to safely release flow <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

excess <str<strong>on</strong>g>of</str<strong>on</strong>g> the design storage capacity. The downstream<br />

channel should be l<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to prevent scour (fig. 10.11. In<br />

some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, excavated pits <str<strong>on</strong>g>in</str<strong>on</strong>g> ephemeral channels<br />

have been used as debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s. These must be large<br />

enough to trap 50 to 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> flood flow. Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance<br />

is a key factor <str<strong>on</strong>g>in</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> this treatment.<br />

Although protecti<strong>on</strong> is immediate, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g debris<br />

bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s is a l<strong>on</strong>g-term commitment.<br />

Channel Treatment Effectiveness<br />

BAER Expert Rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs—Effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs for<br />

straw bale check dams <strong>and</strong> log grade stabilizers ranged<br />

relatively evenly from “excellent” to “poor” (table 10.2).<br />

While most <str<strong>on</strong>g>in</str<strong>on</strong>g>terviewees (71 percent) thought that<br />

channel debris clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness fell <str<strong>on</strong>g>in</str<strong>on</strong>g>to the “good”<br />

category, 29 percent rated it “poor.” Log dams <strong>and</strong><br />

straw wattle dams were rated “excellent” or “good” <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

effectiveness <strong>and</strong> better than rock grade stabilizers.<br />

No <strong>on</strong>e c<strong>on</strong>sidered the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> these rehabilitati<strong>on</strong><br />

treatments to be “poor.”<br />

Figure 10.11—Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<br />

Joe Wagenbrenner surveys a channel scour, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the Hayman Fire, 2002, Pike-San Isabel Nati<strong>on</strong>al<br />

Forest near Deckers, CO. (Photo by A. Covert).<br />

192 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Table 10.2—Rehabilitati<strong>on</strong> treatment effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual <str<strong>on</strong>g>fire</str<strong>on</strong>g>s as provided by BAER<br />

program specialists. Total resp<strong>on</strong>ses are listed as percentages <str<strong>on</strong>g>in</str<strong>on</strong>g> four classes. Only<br />

treatments that received three or more evaluati<strong>on</strong>s are <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded (From Robichaud <strong>and</strong><br />

others 2000).<br />

BAER treatment Fires Excellent Good Fair Poor<br />

Number - - - - - - - - - - - - - - - - - Percent - - - - - - - - - - - - - - - - -<br />

Hillslope treatment<br />

Aerial seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 83 24.1 27.7 27.7 20.5<br />

C<strong>on</strong>tour fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g 35 28.6 37.1 14.3 20.0<br />

Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g 12 66.8 16.6 16.6 0.0<br />

Ground seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 11 9.1 81.8 9.1 0.0<br />

Silt fence 8 37.5 62.5 0.0 0.0<br />

Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> fertilizer 4 25.0 0.0 50.0 25.0<br />

Rock grade stabilizers 3 0.0 33.3 67.7 0.0<br />

C<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 67.7 33.3 0.0 0.0<br />

Temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 0.0 67.7 33.3 0.0<br />

Straw wattles 3 33.3 33.3 33.3 0.0<br />

Till<str<strong>on</strong>g>in</str<strong>on</strong>g>g/ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 33.3 33.3 33.3 0.0<br />

Channel treatments<br />

Straw bale check dams 10 30.0 30.0 30.0 10.0<br />

Log grade stabilizers 10 30.0 30.0 10.0 30.0<br />

Channel debris clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g 7 0.0 71.4 0.0 28.6<br />

Log dams 5 40.0 60.0 0.0 0.0<br />

Rock grade stabilizers 3 0.0 33.3 67.7 0.0<br />

Straw wattle dams 3 33.3 67.7 0.0 0.0<br />

Road treatments<br />

Culvert upgrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g 6 6.7 66.6 0.0 16.7<br />

Trash racks 4 50.0 0.0 25.0 25.0<br />

Channel Treatment Research <strong>and</strong> M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Results—Here we look at various results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<br />

to researchers <strong>and</strong> l<strong>and</strong> managers.<br />

Straw bale check dams: Straw bale check dams are<br />

designed to reduce sediment <str<strong>on</strong>g>in</str<strong>on</strong>g>puts <str<strong>on</strong>g>in</str<strong>on</strong>g>to streams.<br />

They <str<strong>on</strong>g>of</str<strong>on</strong>g>ten fill <str<strong>on</strong>g>in</str<strong>on</strong>g> the first few storms, so their effectiveness<br />

dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes quickly, <strong>and</strong> they can blow out dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

high flows. Thus, their usefulness is short-lived. Miles<br />

<strong>and</strong> others (1989) reported <strong>on</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>stall<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

1,300 straw bale check dams after the 1987 South Fork<br />

Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fires, Shasta-Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al Forest <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

California. Most dams were c<strong>on</strong>structed with five<br />

bales. About 13 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the straw bale check dams<br />

failed due to pip<str<strong>on</strong>g>in</str<strong>on</strong>g>g under or between bales or undercutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the central bale. Each dam stored an average<br />

1.1 yard 3 (0.8 m 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment. Miles <strong>and</strong> others<br />

(1989) reported that filter fabric <strong>on</strong> the upside <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

dam <strong>and</strong> a spillway apr<strong>on</strong> would have <str<strong>on</strong>g>in</str<strong>on</strong>g>creased effectiveness.<br />

They c<strong>on</strong>sidered straw bale check dams easy<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>stall <strong>and</strong> highly effective when they did not fail.<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong> Johnst<strong>on</strong> (1995) evaluated the effectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> straw bales <strong>on</strong> sediment retenti<strong>on</strong> after<br />

the Oakl<strong>and</strong> Hills <str<strong>on</strong>g>fire</str<strong>on</strong>g>. About 5,000 bales were <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> 440 straw bale check dams <strong>and</strong> 100 hillslope<br />

barriers. Three m<strong>on</strong>ths after <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong>, 43 to 46<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the check dams were functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g. This<br />

decreased to 37 to 43 percent by 4.5 m<strong>on</strong>ths, at which<br />

time 9 percent were side cut, 22 percent were undercut,<br />

30 percent had moved, 24 percent were filled, 12<br />

percent were unfilled, <strong>and</strong> 3 percent were filled but<br />

cut. Sediment storage amounted to 55 yard 3 (42 m 3 )<br />

beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d all the straw bale check dams <strong>and</strong> another 122<br />

yard 3 (93 m 3 ) <strong>on</strong> an alluvial fan.<br />

Goldman <strong>and</strong> others (1986) recommended that the<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age area for straw bale check dams be kept to less<br />

than 20 acres (8 ha). Bales usually last less than 3<br />

m<strong>on</strong>ths, flow should not be greater than 11feet 3 /sec<br />

(0.3 m 3 /sec), <strong>and</strong> bales should be removed when sediment<br />

depth upstream is <strong>on</strong>e-half <str<strong>on</strong>g>of</str<strong>on</strong>g> bale height. More<br />

damage can result from failed barriers than if no<br />

barrier were <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled (Goldman <strong>and</strong> others 1986).<br />

Log check dams: Log dams can trap sediment by<br />

decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g velocities <strong>and</strong> allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g coarse sediment to<br />

drop out. However, if these structures fail, they<br />

usually aggravate erosi<strong>on</strong> problems. Logs 12 to 18<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ches (300 to 450 mm) diameter were used to build<br />

14 log check dams that reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from 1.5 to 93 yard 3<br />

(mean 29 yard 3 ) (1.1 to 71 m 3 ; mean 22 m 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

after the 1987 South Fork Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fires<br />

<strong>on</strong> the Shasta-Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al Forest <str<strong>on</strong>g>in</str<strong>on</strong>g> California<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 193


(Miles <strong>and</strong> others 1989). While log check dams have<br />

a high effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> 15 to 30 years <str<strong>on</strong>g>of</str<strong>on</strong>g> life<br />

expectancy (Miles <strong>and</strong> others 1989), they are costly to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stall.<br />

Rock dams <strong>and</strong> rock cage gabi<strong>on</strong>s: Heede (1970,<br />

1976) reported that these structures can reduce sediment<br />

yields by 60 percent or more. Although these<br />

cross-channel structures are relatively expensive, they<br />

can be used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with vegetati<strong>on</strong> treatments<br />

to reduce erosi<strong>on</strong> by 80 percent <strong>and</strong> suspended sediment<br />

c<strong>on</strong>centrati<strong>on</strong>s by 95 percent (Heede 1981). While<br />

vegetati<strong>on</strong> treatments, such as grassed <strong>water</strong>ways,<br />

augment rock check dams <strong>and</strong> are less expensive,<br />

their ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance costs are c<strong>on</strong>siderably greater.<br />

On mild gradients, these structures work well.<br />

Some failures occurred <strong>on</strong> steeper slopes when high<br />

velocity flows are greater than 3 feet 3 /sec (1 m 3 /sec).<br />

This is a comm<strong>on</strong> theme for all channel treatments.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the failures occur where treatments are<br />

imposed <strong>on</strong> steep gradient secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ephemeral or<br />

first to sec<strong>on</strong>d order perennial channels. Rock cage<br />

dams <str<strong>on</strong>g>of</str<strong>on</strong>g>ten last l<strong>on</strong>g enough <strong>and</strong> trap enough f<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

sediments to provide microsites for woody riparian<br />

vegetati<strong>on</strong> to get reestablished.<br />

Check dams c<strong>on</strong>structed <str<strong>on</strong>g>in</str<strong>on</strong>g> Taiwan <strong>water</strong>sheds with<br />

annual sediment yields <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 to 30 yard 3 /acre (19 to 57<br />

m 3 /ha) filled with<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 to 3 years. Sediment yield rates<br />

decreased upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the check dams but were <str<strong>on</strong>g>of</str<strong>on</strong>g>fset<br />

by <str<strong>on</strong>g>in</str<strong>on</strong>g>creased scour<str<strong>on</strong>g>in</str<strong>on</strong>g>g downstream (Chiun-M<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1985).<br />

Other channel treatments: No published <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

was found <strong>on</strong> the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> straw wattle<br />

dams, log grade stabilizers, rock grade stabilizers, <str<strong>on</strong>g>in</str<strong>on</strong>g>channel<br />

debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>-channel debris clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

streambank armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or other channel rehabilitati<strong>on</strong><br />

treatments. However, several c<strong>on</strong>siderati<strong>on</strong>s have been<br />

related to the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> these treatments.<br />

Log <strong>and</strong> rock grade stabilizers emphasize channel<br />

stabilizati<strong>on</strong> rather than stor<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment. They<br />

tend to work for low <strong>and</strong> moderate flows, not high<br />

flows.<br />

Channel clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g (remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g logs <strong>and</strong> other organic<br />

debris) was rated “good” 71 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the time because<br />

it prevents logs from be<str<strong>on</strong>g>in</str<strong>on</strong>g>g mobilized <str<strong>on</strong>g>in</str<strong>on</strong>g> debris flow or<br />

floods. N<strong>on</strong>etheless, use <str<strong>on</strong>g>of</str<strong>on</strong>g> this treatment has decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the early 1990s (<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>-channel fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g has<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased) because <str<strong>on</strong>g>in</str<strong>on</strong>g>-stream woody debris has been<br />

clearly l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to improved fish habitat. Despite the<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> effectiveness data for rock cage dams, they do<br />

provide grade stability <strong>and</strong> reduce velocities enough to<br />

drop out coarse sediment. Debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s are designed<br />

to store run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> sediment <strong>and</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to<br />

prevent downstream flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> sedimentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Southwestern United States. They are usually<br />

designed to trap 50 to 70 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the expected flows.<br />

Road <strong>and</strong> Trail Treatments <strong>and</strong><br />

Results ________________________<br />

Road <strong>and</strong> Trail Treatments<br />

Road rehabilitati<strong>on</strong> treatments c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> practices aimed at <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>water</strong> <strong>and</strong> sediment<br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> roads <strong>and</strong> road structures,<br />

such as culverts <strong>and</strong> bridges, <str<strong>on</strong>g>in</str<strong>on</strong>g> order to prevent<br />

large cut-<strong>and</strong>-fill failures <strong>and</strong> the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

downstream. The functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> the road dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age<br />

system is not affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, but the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

stream <strong>and</strong> storm flows <str<strong>on</strong>g>in</str<strong>on</strong>g> a burned-over <strong>water</strong>shed<br />

can exceed the functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> that system. Road<br />

treatments are not designed to reta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> sediment<br />

but rather to manage <strong>water</strong>’s erosive forces <strong>and</strong><br />

avoid damage to the road structures.<br />

Roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g Dips/Waterbars/Cross Dra<str<strong>on</strong>g>in</str<strong>on</strong>g>/Culvert<br />

Overflow/Bypass—These treatments are designed<br />

to provide dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age relief for road secti<strong>on</strong>s or <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>side ditch to the downhill side <str<strong>on</strong>g>of</str<strong>on</strong>g> roads especially<br />

when the exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g culvert is expected to be overwhelmed.<br />

Roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips are easily c<strong>on</strong>structed with<br />

road grader, dozer, or backhoe. Roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips or<br />

<strong>water</strong>bars need to be deep enough to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

expected flow <strong>and</strong> their locati<strong>on</strong> carefully assessed to<br />

prevent damages to other porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the road prism.<br />

Waterbars can be made out <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks or logs, but they<br />

are not as effective as earthen bars placed diag<strong>on</strong>ally<br />

across roads to divert run<str<strong>on</strong>g>of</str<strong>on</strong>g>f away from the road<br />

surface. Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> dip <strong>and</strong> fillslope at the outlet is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten needed to prevent <str<strong>on</strong>g>in</str<strong>on</strong>g>cisi<strong>on</strong> <strong>and</strong> gully<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Culvert Upgrades—Culvert improvements <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

the flow capacity, which may prevent road<br />

damage. Upgraded culverts need to be sized <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled<br />

(approaches, exits, <strong>and</strong> slope) to h<strong>and</strong>le expected<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased flows. Flexible down spouts <strong>and</strong><br />

culvert extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten are needed to keep exit<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>water</strong> from highly erodible slopes.<br />

Culvert Inlet/Outlet Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g/Risers—These<br />

treatments reduce scour<str<strong>on</strong>g>in</str<strong>on</strong>g>g around the culvert entrance<br />

<strong>and</strong> exit. They allow heavy particles to settle<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment-laden <strong>water</strong> <strong>and</strong> reduce the chance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

debris plugg<str<strong>on</strong>g>in</str<strong>on</strong>g>g the culvert. Culvert risers allow for<br />

sediment accumulati<strong>on</strong> while allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> to flow<br />

through the culvert. Sometimes culvert risers can clog<br />

<strong>and</strong> may be difficult to clean.<br />

Culvert Removal—This procedure is a planned<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> undersized culverts that would probably<br />

fail due to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased flows. After culvert removal,<br />

armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g the stream cross<str<strong>on</strong>g>in</str<strong>on</strong>g>g will allow for c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> the road. If the road is not needed, culvert<br />

removal is d<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with road obliterati<strong>on</strong>.<br />

194 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Trash Racks—Trash racks are <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled to prevent<br />

debris from clogg<str<strong>on</strong>g>in</str<strong>on</strong>g>g culverts or down-stream structures.<br />

These structures are generally built out <str<strong>on</strong>g>of</str<strong>on</strong>g> logs<br />

but occasi<strong>on</strong>ally from milled lumber or metal, <strong>and</strong> they<br />

are anchored to the sides <strong>and</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the channel.<br />

Trash racks are sized to h<strong>and</strong>le expected flows <strong>and</strong><br />

protect downstream structures. Most trash rack designs<br />

allow debris to ride up <strong>and</strong> to the side <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage.<br />

Trash racks generally perform better <str<strong>on</strong>g>in</str<strong>on</strong>g> smaller dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages<br />

<strong>and</strong> need to be cleared after each storm to be<br />

effective.<br />

Storm Patrols—Patrols dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g storms provide immediate<br />

resp<strong>on</strong>se for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> flood risk, clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> blocked culvert entrances <strong>and</strong> dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age ditches, <strong>and</strong><br />

clos<str<strong>on</strong>g>in</str<strong>on</strong>g>g areas that are at risk for floods, l<strong>and</strong>slides, <strong>and</strong><br />

so forth. This treatment can <str<strong>on</strong>g>in</str<strong>on</strong>g>clude early warn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

systems, such as radio-activated ra<str<strong>on</strong>g>in</str<strong>on</strong>g> gauges or stream<br />

gauge alarms, that signal potential flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s.<br />

Ditch Clean<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> Ditch Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Clean<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g provides adequate <strong>water</strong> flow capacity<br />

<strong>and</strong> prevents downcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> ditches. Without this<br />

treatment, high <strong>water</strong> levels can overtop roadways<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to gully development <str<strong>on</strong>g>in</str<strong>on</strong>g> roadbeds.<br />

Armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ford Cross<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Armored cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs provide<br />

low-cost access across stream channels that are<br />

generally capable <str<strong>on</strong>g>of</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g large flows that flood<br />

the road surface. Large riprap is placed upstream <strong>and</strong><br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> actual road cross<str<strong>on</strong>g>in</str<strong>on</strong>g>g areas. Armored<br />

cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for gravel roads.<br />

Outslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g—Outslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g prevents c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flow <strong>on</strong> road surfaces that produces rill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, gully<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<strong>and</strong> rutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the few rehabilitati<strong>on</strong><br />

treatments that have both immediate <strong>and</strong> l<strong>on</strong>g-term<br />

facility <strong>and</strong> resource benefits. Given that roads are a<br />

major source <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> forests, road improvements<br />

that reduce erosi<strong>on</strong> from roads are beneficial.<br />

Sometimes after regrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g, compacti<strong>on</strong> does not occur<br />

due to low traffic volume, which may produce some<br />

short-term erosi<strong>on</strong>. Traffic should be curtailed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

wet road c<strong>on</strong>diti<strong>on</strong>s to prevent rutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> road subgrade<br />

damages.<br />

Trail Work—The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatments<br />

<strong>on</strong> trails is to provide adequate dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age <strong>and</strong><br />

stability so trails do not c<strong>on</strong>tribute to c<strong>on</strong>centrated<br />

flows or become sources <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment. This treatment is<br />

labor <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive, as all the work must be d<strong>on</strong>e by h<strong>and</strong><br />

with materials that can be h<strong>and</strong> carried or brought <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>on</strong> ATVs. Water bars need to be <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled correctly at<br />

proper slopes <strong>and</strong> depths to be effective.<br />

Other Treatments—A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> other m<str<strong>on</strong>g>in</str<strong>on</strong>g>or treatments<br />

are available as soluti<strong>on</strong>s to specific problems.<br />

They <str<strong>on</strong>g>in</str<strong>on</strong>g>clude wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents to reduce <strong>water</strong> repellency<br />

<strong>on</strong> high erosi<strong>on</strong> hazard areas, gully plugs to<br />

prevent headcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> meadows, flood sign<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>stallati<strong>on</strong><br />

to warn residents <strong>and</strong> visitors <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g potential,<br />

<strong>and</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> loose rocks above roadways that<br />

were held <str<strong>on</strong>g>in</str<strong>on</strong>g> place by roots, forest debris, <strong>and</strong> duff<br />

c<strong>on</strong>sumed by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Road Treatment Effectiveness<br />

Road treatments are designed to move <strong>water</strong> to<br />

desired locati<strong>on</strong>s <strong>and</strong> prevent washout <str<strong>on</strong>g>of</str<strong>on</strong>g> roads. There<br />

is little quantitative research evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

road treatment effectiveness. A recent computer<br />

model, X-DRAIN, can provide sediment estimates for<br />

various spac<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> cross dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Elliot <strong>and</strong> others<br />

1998), <strong>and</strong> the computer model, WEPP-Road, provides<br />

sedimentati<strong>on</strong> estimates for various road c<strong>on</strong>figurati<strong>on</strong>s<br />

<strong>and</strong> mitigati<strong>on</strong> treatments (Elliot <strong>and</strong> others<br />

1999). Thus, effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> various spac<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

dips, <strong>water</strong>bars, cross dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <strong>and</strong> culvert bypasses<br />

can be compared.<br />

BAER Expert Rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs—Only two road treatments—culvert<br />

upgrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> trash racks—received<br />

more than three effectiveness evaluati<strong>on</strong>s. The resp<strong>on</strong>ses<br />

covered the range from “excellent” to “poor,”<br />

although 73 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the BAER experts rated culvert<br />

upgrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g “excellent” or “good” <str<strong>on</strong>g>in</str<strong>on</strong>g> effectiveness (table<br />

10.2). Evaluati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> trash racks were evenly split as<br />

“excellent,” “fair,” or “poor.”<br />

Research <strong>and</strong> M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Results—Furniss <strong>and</strong><br />

others (1998) developed an excellent analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> factors<br />

c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to road failures at culverted stream<br />

cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. These locati<strong>on</strong>s are important because 80 to<br />

90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> fluvial hillslope erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong>s can<br />

be traced to road fill failures <strong>and</strong> diversi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> roadstream<br />

cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs that are unrelated to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s (Best<br />

<strong>and</strong> others 1995). Because it is impossible to design<br />

<strong>and</strong> build all stream cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs to withst<strong>and</strong> extreme<br />

stormflows, they recommended <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g cross<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

capacity <strong>and</strong> design<str<strong>on</strong>g>in</str<strong>on</strong>g>g to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize the c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> culvert exceedence as the best approaches for forest<br />

road stream cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Comprehensive discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> road-related treatments<br />

<strong>and</strong> their effectiveness can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Packer<br />

<strong>and</strong> Christensen (1977), Goldman <strong>and</strong> others (1986),<br />

<strong>and</strong> Burroughs <strong>and</strong> K<str<strong>on</strong>g>in</str<strong>on</strong>g>g (1989). Recently the USDA<br />

Forest Service’s San Dimas Technology <strong>and</strong> Development<br />

Program developed a Water/Road Interacti<strong>on</strong><br />

Technologies Series (Copstead 1997) that covers design<br />

st<strong>and</strong>ards, improvement techniques, <strong>and</strong> evaluates<br />

some surface dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age treatments for reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

sedimentati<strong>on</strong>.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 195


Summary, C<strong>on</strong>clusi<strong>on</strong>s, <strong>and</strong><br />

Recommendati<strong>on</strong>s ______________<br />

Spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> emergency <strong>water</strong>shed rehabilitati<strong>on</strong><br />

has steadily <str<strong>on</strong>g>in</str<strong>on</strong>g>creased s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce about 1990. An<br />

evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> USDA Forest Service burned area emergency<br />

rehabilitati<strong>on</strong> treatment effectiveness was completed<br />

jo<str<strong>on</strong>g>in</str<strong>on</strong>g>tly by the USDA Forest Service Research<br />

<strong>and</strong> Development <strong>and</strong> Nati<strong>on</strong>al Forest System staffs.<br />

The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g study by Robichaud <strong>and</strong> others (2000)<br />

analyzed BAER treatment attributes <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

that led to success or failure <str<strong>on</strong>g>in</str<strong>on</strong>g> achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER goals<br />

after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental Western United<br />

States. The study found that spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> rehabilitati<strong>on</strong><br />

had risen sharply dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the previous decade<br />

because the perceived threat <str<strong>on</strong>g>of</str<strong>on</strong>g> debris flows <strong>and</strong> floods<br />

had <str<strong>on</strong>g>in</str<strong>on</strong>g>creased where <str<strong>on</strong>g>fire</str<strong>on</strong>g>s were closer to the wildl<strong>and</strong>urban<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface. Exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g literature <strong>on</strong> treatment effectiveness<br />

is limited, thus mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment comparis<strong>on</strong>s<br />

difficult; however, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong><br />

provided by any treatment is limited—especially dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events.<br />

Relatively little m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatments had been c<strong>on</strong>ducted between 1970 <strong>and</strong><br />

2000. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that time there were at least 321 <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

that received BAER treatment, which cost the Forest<br />

Service around $110 milli<strong>on</strong>. Some level <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

occurred <strong>on</strong> about 33 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that received<br />

BAER treatments. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 2000, the number, size, <strong>and</strong><br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Western United States have<br />

dramatically <str<strong>on</strong>g>in</str<strong>on</strong>g>creased, with a c<strong>on</strong>current <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

BAER spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g to about $80 milli<strong>on</strong> annually. However,<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g efforts c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to be short-term <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature, Burned Area<br />

Report forms, <str<strong>on</strong>g>in</str<strong>on</strong>g>terview comments, m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports,<br />

treatment effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> the authors’<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g work <str<strong>on</strong>g>in</str<strong>on</strong>g> the area <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

have led to the c<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> recommendati<strong>on</strong>s<br />

discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Recommendati<strong>on</strong>s: Models <strong>and</strong><br />

Predicti<strong>on</strong>s<br />

• Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity as well as ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall amount<br />

<strong>and</strong> durati<strong>on</strong> affect the success <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatment. Rehabilitati<strong>on</strong> treatments are<br />

least <str<strong>on</strong>g>in</str<strong>on</strong>g>effective <str<strong>on</strong>g>in</str<strong>on</strong>g> short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>storms (that is, c<strong>on</strong>vective thunderstorms),<br />

particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the first 2 years after<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

• Quantitative data are needed to guide future<br />

resp<strong>on</strong>ses to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> <strong>and</strong> to<br />

build, test, <strong>and</strong> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e predictive models for<br />

different burned forest envir<strong>on</strong>ments. Accurate<br />

climate, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> erosi<strong>on</strong> models for<br />

burned forest envir<strong>on</strong>ments is dependent <strong>on</strong><br />

(1) improved mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> burn severity <strong>and</strong><br />

better characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> soil <strong>water</strong><br />

repellency, (2) improved predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

resp<strong>on</strong>ses at different spatial scales, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

short-durati<strong>on</strong> high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity thunderstorms,<br />

(3) quantitative data for the relative<br />

magnitudes <strong>and</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> hillslope<br />

verses channel erosi<strong>on</strong>, <strong>and</strong> (4) ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed sediment<br />

depositi<strong>on</strong> <strong>and</strong> rout<str<strong>on</strong>g>in</str<strong>on</strong>g>g models for various<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages.<br />

Recommendati<strong>on</strong>s: Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> Rehabilitati<strong>on</strong><br />

Treatment<br />

• Rehabilitati<strong>on</strong> should be d<strong>on</strong>e <strong>on</strong>ly if the risk<br />

to life <strong>and</strong> property is high s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce significant<br />

resources have to be <str<strong>on</strong>g>in</str<strong>on</strong>g>vested to ensure improvement<br />

over natural recovery. In most<br />

<strong>water</strong>sheds, it is best not to do any treatments.<br />

If treatments are necessary, then it is more<br />

effective to deta<str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> reduce erosi<strong>on</strong><br />

<strong>on</strong> site (hillslope treatment) than to collect it<br />

downstream (channel treatment).<br />

• Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment may not be needed as <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

as previously thought. Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g has a low probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong> the first wet seas<strong>on</strong><br />

after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> when erosi<strong>on</strong> rates are highest.<br />

Thus, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten necessary to do other treatments<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> critical areas.<br />

• Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be an effective treatment because<br />

it provides immediate protecti<strong>on</strong> from<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop impact <strong>and</strong> overl<strong>and</strong> flow. Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

rates that provide at least 70 percent ground<br />

cover are desirable <str<strong>on</strong>g>in</str<strong>on</strong>g> critical areas.<br />

• C<strong>on</strong>tour-felled log structures have limited<br />

benefit as an effective treatment compared to<br />

other hillslope treatments if: (a) the density<br />

<strong>and</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> the felled logs are matched to the<br />

expected erosi<strong>on</strong>, (b) the logs, bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <strong>and</strong> sills<br />

are properly located, <strong>and</strong> (c) the treated area is<br />

not likely to be subjected to short-durati<strong>on</strong><br />

high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity storms. This is c<strong>on</strong>sidered to be<br />

true for areas where run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> rates<br />

are expected to be high. These treatments<br />

provide storm-by-storm protecti<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

first year post<str<strong>on</strong>g>fire</str<strong>on</strong>g> where run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong><br />

rates are highest. In areas that lack available<br />

trees, straw wattles can provide an alternative.<br />

However, the overall effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> properly<br />

designed <strong>and</strong> c<strong>on</strong>structed c<strong>on</strong>tour-felled<br />

logs <strong>and</strong> straw wattles needs adequate study<br />

<strong>and</strong> documentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the scientific literature.<br />

• Channel treatments, such as straw bale<br />

check-dams, should be viewed as sec<strong>on</strong>dary<br />

mitigati<strong>on</strong> treatments. Sediment has already<br />

been transported from the hillslopes <strong>and</strong><br />

196 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


will eventually be released though the stream<br />

system unless it is physically removed from<br />

the channel. Most channel treatments hold<br />

sediment temporarily so that the release is<br />

desynchr<strong>on</strong>ized from the storm flow event.<br />

• To reduce the threat <str<strong>on</strong>g>of</str<strong>on</strong>g> road failure, road<br />

treatments such as roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips, <strong>water</strong> bars,<br />

<strong>and</strong> relief culverts, properly spaced, provide a<br />

reas<strong>on</strong>able method to move <strong>water</strong> past the<br />

road prism. Storm patrol attempts to keep<br />

culverts clear <strong>and</strong> close areas as needed. This<br />

approach shows promise as a cost effective<br />

technique to reduce road failure due to culvert<br />

blockage.<br />

• The development <strong>and</strong> launch <str<strong>on</strong>g>of</str<strong>on</strong>g> the Web-based<br />

database <str<strong>on</strong>g>of</str<strong>on</strong>g> past <strong>and</strong> current BAER projects<br />

should be expedited so that future decisi<strong>on</strong>s<br />

are based <strong>on</strong> the best data available. This<br />

database will <str<strong>on</strong>g>in</str<strong>on</strong>g>clude treatment design criteria<br />

<strong>and</strong> specificati<strong>on</strong>s, c<strong>on</strong>tract implementati<strong>on</strong><br />

specificati<strong>on</strong>s, example Burned Area Report<br />

calculati<strong>on</strong>s, <strong>and</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques.<br />

This database needs to be kept current as new<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

Recommendati<strong>on</strong>s: Effectiveness<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

• The need for improved effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

has ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed momentum. In April 2003, the<br />

Government Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g Office published a<br />

report entitled <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fires: Better Informati<strong>on</strong><br />

Needed <strong>on</strong> Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> Emergency<br />

Stabilizati<strong>on</strong> <strong>and</strong> Rehabilitati<strong>on</strong> Treatments,<br />

which clearly stated that neither the USDA<br />

Forest Service nor the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Interior’s Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management could<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether emergency stabilizati<strong>on</strong><br />

<strong>and</strong> rehabilitati<strong>on</strong> treatments were achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

their <str<strong>on</strong>g>in</str<strong>on</strong>g>tended results. Although treatment<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g is required, there is no agreed-<strong>on</strong><br />

protocol for how <strong>and</strong> what to collect <strong>and</strong> analyze<br />

for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness. Such protocol<br />

needs to be pursued.<br />

• Effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g needs to be <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated<br />

as quickly as possible after treatments are<br />

applied, as the first storms typically pose the<br />

greatest risk to downstream resources. Effectiveness<br />

m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g should <str<strong>on</strong>g>in</str<strong>on</strong>g>clude quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

reducti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong>, sedimentati<strong>on</strong>, <strong>and</strong>/<br />

or downstream flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It may also <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, soil<br />

productivity, ecosystem recovery, <strong>and</strong> <strong>water</strong><br />

quality parameters. Burned but untreated<br />

areas must be available to provide a c<strong>on</strong>trol, or<br />

basel<str<strong>on</strong>g>in</str<strong>on</strong>g>e, from which to assess both short- <strong>and</strong><br />

l<strong>on</strong>g-term effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments as well<br />

as ecosystem resp<strong>on</strong>se to the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> natural<br />

recovery rates. Recently published techniques<br />

are now available that may aid <str<strong>on</strong>g>in</str<strong>on</strong>g> the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g protocols (Robichaud <strong>and</strong><br />

Brown 2002).<br />

• Fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g for effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g must be<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the BAER treatment fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g request<br />

<strong>and</strong> extend for at least 5 years after the <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

This necessitates a change <str<strong>on</strong>g>in</str<strong>on</strong>g> BAER fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

protocol, which currently is limited to 2 years.<br />

• Policy <strong>and</strong> fund<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms should be<br />

established to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the overlap<br />

between research <strong>and</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g by support<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

activities that can accomplish the goals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both programs. This should <str<strong>on</strong>g>in</str<strong>on</strong>g>clude test<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new rehabilitati<strong>on</strong> technologies as they become<br />

available.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 197


Notes<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

________________________________________________________________<br />

198 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Malcolm J. Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski<br />

Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Chapter 11:<br />

Informati<strong>on</strong> Sources<br />

Introducti<strong>on</strong> ____________________<br />

New research <strong>and</strong> development result <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ually<br />

improved <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong><br />

<strong>water</strong>. Nevertheless, as the wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

recent past po<str<strong>on</strong>g>in</str<strong>on</strong>g>t out, there is need for additi<strong>on</strong>al work<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this area. Also, expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Western United States have placed greater dem<strong>and</strong>s<br />

<strong>on</strong> forested <strong>water</strong>sheds to provide stable supplies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>water</strong> for municipalities. And more physical resources<br />

are now at risk from post<str<strong>on</strong>g>fire</str<strong>on</strong>g> streamflow events.<br />

This volume updates the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available <strong>on</strong><br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong>, to a given po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

time. Barr<str<strong>on</strong>g>in</str<strong>on</strong>g>g more frequent updates <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume<br />

(orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally published <str<strong>on</strong>g>in</str<strong>on</strong>g> 1979; Wells <strong>and</strong> others 1979,<br />

Tiedemann <strong>and</strong> others 1979), future <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> retrieval<br />

must be dynamic <strong>and</strong> current.<br />

This chapter outl<str<strong>on</strong>g>in</str<strong>on</strong>g>es additi<strong>on</strong>al sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>,<br />

particularly those that are likely to be easily<br />

updated <strong>and</strong> accessible. We have attempted to identify<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the more comm<strong>on</strong> places where <str<strong>on</strong>g>fire</str<strong>on</strong>g> pers<strong>on</strong>nel<br />

may search for general <strong>and</strong> specific <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>and</strong><br />

associated <str<strong>on</strong>g>fire</str<strong>on</strong>g> envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. Examples<br />

shown are meant to be illustrative <strong>and</strong> not <str<strong>on</strong>g>in</str<strong>on</strong>g>clusive <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all sources.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 199


Databases ____________________________________<br />

U.S. Fire Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong><br />

The U.S. Fire Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> Federal Fire L<str<strong>on</strong>g>in</str<strong>on</strong>g>ks database is an <strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e,<br />

searchable database c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks to Web sites <str<strong>on</strong>g>in</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> categories that<br />

are related to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> emergency services. Locati<strong>on</strong>:<br />

http://www.usfa.fema.gov/applicati<strong>on</strong>s/ffl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks/<br />

Current <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Informati<strong>on</strong><br />

Up-to-date <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> current wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> situati<strong>on</strong>s, statistics, <strong>and</strong> other<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the Nati<strong>on</strong>al Interagency Fire Center’s Current<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Informati<strong>on</strong> site. It can be found at:<br />

http://www.nifc.gov/<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>.html<br />

Fire Effects Informati<strong>on</strong> System<br />

The Fire Effects Informati<strong>on</strong> System (FEIS) provides up-to-date <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

about <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> plants <strong>and</strong> animals. The FEIS database c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s nearly 900<br />

plant species, 100 animal species, <strong>and</strong> 16 Kuchler plant communities found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

North America. Each synopsis emphasizes <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> how it affects each species.<br />

Synopses are documented with complete bibliographies. Several Federal agencies<br />

provide ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance support <strong>and</strong> updat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the database. It is located at:<br />

http://www.fs.fed.us/database/feis/<br />

Nati<strong>on</strong>al Climatic Data Center<br />

The Nati<strong>on</strong>al Climatic Data Center (NCDC) database c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the largest<br />

active archive <str<strong>on</strong>g>of</str<strong>on</strong>g> weather data. NCDC provides numerous climate publicati<strong>on</strong>s<br />

<strong>and</strong> provides access to data from all NOAA Data Centers through the Nati<strong>on</strong>al<br />

Virtual Data System (NVDS). Its Web site is located at:<br />

PLANTS<br />

http://lwf.ncdc.noaa.gov/oa/ncdc.html<br />

The PLANTS Database is a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle source <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ardized <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> about<br />

vascular plants, mosses, <strong>and</strong> lichens <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States <strong>and</strong> its Territories.<br />

PLANTS <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes names, checklists, identificati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>, distributi<strong>on</strong>al<br />

data, references, <strong>and</strong> so forth. The database will have threatened <strong>and</strong> endangered<br />

plant status for States.Web site is located at:<br />

http://plants.usda.gov/home_page.html<br />

Fire Ecology Database<br />

The E. V. Komarek Fire Ecology Database c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>related<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. Literature <strong>on</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded. Citati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude reference books, chapters <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

books, journal articles, c<strong>on</strong>ference papers, State <strong>and</strong> Federal documents. The<br />

database c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s more than 10,000 citati<strong>on</strong>s <strong>and</strong> is updated <strong>on</strong> a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous<br />

basis, with both current <strong>and</strong> historical <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. The Tall Timbers Fire<br />

Ecology Thesaurus, a guide for do<str<strong>on</strong>g>in</str<strong>on</strong>g>g keyword searches, is also available to be<br />

downloaded. This Web site is located at:<br />

http://www.ttrs.org/fedb<str<strong>on</strong>g>in</str<strong>on</strong>g>tro.htm<br />

200 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Assessment System<br />

The <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Assessment System (WFAS) generates daily nati<strong>on</strong>al maps<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> selected <str<strong>on</strong>g>fire</str<strong>on</strong>g> weather <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> danger comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Fire Danger<br />

Rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g System (NFDRS). It was developed by the USDA Forest Service Fire<br />

Sciences Laboratory <str<strong>on</strong>g>in</str<strong>on</strong>g> Missoula, MT. Maps available <str<strong>on</strong>g>in</str<strong>on</strong>g>clude Fire Danger, Fire<br />

Weather Observati<strong>on</strong>s <strong>and</strong> Next Day Forecasts, Dead Fuel Moisture, Live Fuel<br />

Moisture-Greenness, Drought, Lower Atmosphere Stability Index, <strong>and</strong> Lightn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Igniti<strong>on</strong> Efficiency. Its locati<strong>on</strong> is:<br />

http://www.fs.fed.us/l<strong>and</strong>/wfas/welcome.htm<br />

Nati<strong>on</strong>al FIA Database Systems<br />

The Nati<strong>on</strong>al Forest Inventory <strong>and</strong> Analysis (FIA) Database Retrieval System<br />

produces tables <strong>and</strong> maps for geographic areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest based <strong>on</strong> the nati<strong>on</strong>al<br />

forest <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory c<strong>on</strong>ducted by the USDA Forest Service. The Timber Product<br />

Output (TPO) Database Retrieval System describes for each county the roundwood<br />

products harvested, logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g residues left beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d, <strong>and</strong> wood/bark residues<br />

generated by wood-us<str<strong>on</strong>g>in</str<strong>on</strong>g>g mills. The Web site is:<br />

http://ncrsz.fs.fed.us/4801/fiadb/rpa_tpo/wc_rpa_tpo.asp<br />

Web Sites _____________________________________<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> sites <strong>on</strong> the World Wide Web c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude research, <str<strong>on</strong>g>fire</str<strong>on</strong>g> coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> centers, <strong>and</strong> other related sites.<br />

USDA Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong><br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Research Program, Missoula, M<strong>on</strong>tana<br />

Fire Behavior Research Work Unit RMRS-4401:<br />

http://www.fs.fed.us/rm/ma<str<strong>on</strong>g>in</str<strong>on</strong>g>/labs/miss_<str<strong>on</strong>g>fire</str<strong>on</strong>g>/rmrs4401.html<br />

Fire Effects Research Work Unit RMRS-4403:<br />

http://www.fs.fed.us/rm/ma<str<strong>on</strong>g>in</str<strong>on</strong>g>/labs/miss_<str<strong>on</strong>g>fire</str<strong>on</strong>g>/rmrs4403.html<br />

Fire Chemistry Research Work Unit RMRS-4404:<br />

http://www.fs.fed.us/rm/ma<str<strong>on</strong>g>in</str<strong>on</strong>g>/labs/miss_<str<strong>on</strong>g>fire</str<strong>on</strong>g>/rmrs4404.html<br />

USDA Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong><br />

Watershed, Wildlife, <strong>and</strong> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g>-Urban Interface Fire<br />

Research Program, Flagstaff, Ariz<strong>on</strong>a<br />

Watershed Research Unit RMRS-4302<br />

http://www.rmrs.nau.edu/lab/4302/<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g>-Urban Interface Research Unit RMRS-4156<br />

http://www.rmrs.nau.edu/lab/4156/<br />

Wildlife Research Unit<br />

http://www.rmrs.nau.edu/lab/4251/<br />

USDA Forest Service, Pacific Northwest Research Stati<strong>on</strong><br />

Pacific <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g>s Fire Science Laboratory, Seattle, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong><br />

http://www.fs.fed.us.nw/pwfsl/<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 201


USDA Forest Service, Pacific Southwest Research Stati<strong>on</strong>, Fire<br />

Science Laboratory, Riverside, California<br />

http://www.fs.fed.us/psw/rfl/<br />

Fire <strong>and</strong> Fire Surrogate Program<br />

USDA Forest Service Fire <strong>and</strong> Fire Surrogate Treatments for Ecosystem<br />

Restorati<strong>on</strong>:<br />

http://www.fs.fed.us/ffs/<br />

Nati<strong>on</strong>al Fire Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Centers<br />

Nati<strong>on</strong>al Interagency Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://www.nifc.gov/news/nicc.html<br />

Alaska Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://<str<strong>on</strong>g>fire</str<strong>on</strong>g>.ak.blm.gov<br />

Eastern Area Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://www.fs.fed.us/eacc<br />

Eastern Great Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/egbc/<br />

Northern California Geographic Area Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/<strong>on</strong>cc/<br />

Northern Rockies Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/nrcc/<br />

Northwest Interagency Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://www.nwccweb.us/<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://www.fs.fed.us/r2/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/rmacc.html<br />

Southwest Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/swcc/<br />

Southern Area Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/sacc/<br />

Southern California Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/oscc/<br />

Western Great Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Center:<br />

http://gacc.nifc.gov/wgbc/<br />

USDA Forest Service Fire & Aviati<strong>on</strong> Management Web site:<br />

http://www.fs.fed.us/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/<br />

202 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire <strong>and</strong> Aviati<strong>on</strong>:<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>.blm.gov/<br />

Nati<strong>on</strong>al Park Service Fire Management Program Center:<br />

http:data2.itc.gov/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/<str<strong>on</strong>g>in</str<strong>on</strong>g>dex.cfm<br />

U.S. Fish <strong>and</strong> Wildlife Service Fire Management:<br />

http://<str<strong>on</strong>g>fire</str<strong>on</strong>g>.r9.fws.gov/<br />

Other Web Sites<br />

Jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t Fire Sciences web site:<br />

http://jfsp.nifc.gov<br />

Natural Resources Canada, Forest Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Canada<br />

http://<str<strong>on</strong>g>fire</str<strong>on</strong>g>.cfs.nrcan.gc.ca/<str<strong>on</strong>g>in</str<strong>on</strong>g>dex_e.php<br />

Mexico Incendios Forestales Info<br />

http://www.<str<strong>on</strong>g>in</str<strong>on</strong>g>cendiosforestales.<str<strong>on</strong>g>in</str<strong>on</strong>g>fo/<br />

Federal Emergency Management Agency:<br />

http://www.fema.gov/<br />

Smokey Bear Web site:<br />

http://smokeybear.com/<br />

USDA-ARS-Nati<strong>on</strong>al Sedimentati<strong>on</strong> Laboratory Web site:<br />

http://ars.usda.gov/ma<str<strong>on</strong>g>in</str<strong>on</strong>g>/site_ma<str<strong>on</strong>g>in</str<strong>on</strong>g>.htm?modecode=64_08_05_00<br />

Firewise Communities Web site:<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>wise.org/<br />

U.S. Geological Survey Fire Research Program<br />

http://www.usgs.gov/themes/wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.html<br />

Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Tree-R<str<strong>on</strong>g>in</str<strong>on</strong>g>g Research, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a:<br />

http://www.ltrr.ariz<strong>on</strong>a.edu/<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> News:<br />

http://www.wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>news.com<br />

Smokejumpers:<br />

http://fs.fed.us/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/people/smokejumpers/<br />

http://<str<strong>on</strong>g>fire</str<strong>on</strong>g>.blm.gov/smokejumper/<br />

A-10 Warthog Air Tankers:<br />

http://FireHogs.com<br />

Fire Weather (Nati<strong>on</strong>al Weather Service, Boise):<br />

http://www.boi.noaa.gov/<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 203


Textbooks_____________________________________<br />

The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a list <str<strong>on</strong>g>of</str<strong>on</strong>g> textbooks that are cited <str<strong>on</strong>g>in</str<strong>on</strong>g> various chapters <str<strong>on</strong>g>of</str<strong>on</strong>g> this or<br />

the other volumes <str<strong>on</strong>g>in</str<strong>on</strong>g> this series that deal with <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> vegetati<strong>on</strong>, <strong>soils</strong>, <strong>and</strong><br />

<strong>water</strong>:<br />

1. Biswell, Harold H. 1989. Prescribed Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> California <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g>s<br />

Vegetati<strong>on</strong> Management. University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press. 255 pp.<br />

2. B<strong>on</strong>d, William J., <strong>and</strong> Brian W. vanWilgen. 1996. Fire <strong>and</strong> Plants. Chapman<br />

& Hall, L<strong>on</strong>d<strong>on</strong>. 263 pp.<br />

3. Bradstock, Ross A., Jann E. Williams, <strong>and</strong> A. Malcolm Gill, editors. 2002.<br />

Flammable Australia, the Fire Regimes <strong>and</strong> Biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> a C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ent.<br />

Cambridge University Press. 462 pp.<br />

4. Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Scott L., <strong>and</strong> L<str<strong>on</strong>g>in</str<strong>on</strong>g>da L. Wallace, editors. 1990. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> North<br />

American Tallgrass Prairies. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oklahoma Press. 175 pp.<br />

5. DeBano, Le<strong>on</strong>ard F., Daniel G. Neary, <strong>and</strong> Peter F. Ffolliott. 1998. Fire’s<br />

Effects <strong>on</strong> Ecosystems. John Wiley & S<strong>on</strong>s, New York. 333 pp.<br />

6. Kozlowski, T. T., <strong>and</strong> C. E. Ahlgren, editors. 1974. Fire <strong>and</strong> Ecosystems.<br />

Academic Press, Inc., New York. 542 pp.<br />

7. Pyne, Stephen J. 1982. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> America—A Cultural History <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

<strong>and</strong> Rural Fire. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Press. 654 pp.<br />

8. Pyne, Stephen J. 2001. Fire—A Brief History. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong><br />

Press. 204 pp.<br />

9. Pyne, Stephen J., Patricia L. Andrews, <strong>and</strong> Richard D. Laven. 1996.<br />

Introducti<strong>on</strong> to <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 2 nd Editi<strong>on</strong>. John Wiley & S<strong>on</strong>s, New York.<br />

769 pp.<br />

10. Tere, William C. 1994. Firefighter’s H<strong>and</strong>book <strong>on</strong> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Firefight<str<strong>on</strong>g>in</str<strong>on</strong>g>g—<br />

Strategy, Tactics <strong>and</strong> Safety. Deer Valley Press, Rescue, CA. 313 pp.<br />

11. Whelan, Robert J. 1995. The Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Fire. Cambridge University Press.<br />

346 pp.<br />

12. Wright, Henry A., <strong>and</strong> Arthur W. Bailey. 1982. Fire Ecology, United States<br />

<strong>and</strong> Southern Canada. John Wiley & S<strong>on</strong>s, New York. 501 pp.<br />

Journals <strong>and</strong> Magaz<str<strong>on</strong>g>in</str<strong>on</strong>g>es_________________________<br />

Journals <strong>and</strong> magaz<str<strong>on</strong>g>in</str<strong>on</strong>g>es c<strong>on</strong>stitute another traditi<strong>on</strong>al source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the useful <strong>on</strong>es <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

Fire Management Today (formerly Fire Management Notes). Super<str<strong>on</strong>g>in</str<strong>on</strong>g>tendent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954. Also available at:<br />

http://www.fs.fed.us/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/fmt/<str<strong>on</strong>g>in</str<strong>on</strong>g>dex.htm<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Official publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire, 4025<br />

Fair Ridge Drive, Suite 300, Fairfax, VA 22033-2868. Also available at:<br />

http://www.iawf<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e.org/<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Firefighter. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Firefighter, P.O. Box 130, Brownsville, OR 97327.<br />

Also available at:<br />

http://wildl<strong>and</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g>.com<br />

204 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. CSIRO Publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g, P.O. Box 1139,<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>gwood, Victoria 3066, Australia. Also available at:<br />

http://www.publish.csiro.au/nid/114.htm<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry, Forest Science <strong>and</strong> The Forestry Source. Society <str<strong>on</strong>g>of</str<strong>on</strong>g> American<br />

Foresters, 5400 Grosvenor Lane, Bethesda, MD. 20814-2198. Also <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes<br />

its regi<strong>on</strong>al journals. Also available at:<br />

http://safnet.org/periodicals/<br />

Forest Ecology <strong>and</strong> Management. Elsevier Science, Regi<strong>on</strong>al Sales Office, Customer<br />

Support Department, P.O. Box 945, New York, NY 10159-0945. Also<br />

available at:<br />

http://www.elsevier.com/locate/issn/foreco<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. Society for Range Management, 445 Uni<strong>on</strong> Blvd,<br />

Suite 230, Lakewood, CO 80228. Also available at:<br />

http://uvalde.tamu.edu/jrm/jrmhome.htm<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. NRC Research Press, Nati<strong>on</strong>al Research<br />

Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Ottawa, ON K1A 0R6. Also available at:<br />

http://www.cif-ifc.org/engusu/e-cjfr-spec-sub.shtml<br />

Envir<strong>on</strong>mental Science <strong>and</strong> Technology. American Chemical Society, 1155 16th<br />

St., N.W., Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC 20036. Also available at:<br />

http://pubs.acs.org/journals/esthag/<str<strong>on</strong>g>in</str<strong>on</strong>g>dex.html<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Quality. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy, 677 South<br />

Segoe Road, Madis<strong>on</strong>, WI 53711. Also available at:<br />

http://jeq.scijournals.org/<br />

Ecology <strong>and</strong> Ecological Applicati<strong>on</strong>s. Ecological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, Suite 400,<br />

1707 H Street NW, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC 20006. Also available at the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Web site:<br />

http://www.esapubs.org/publicati<strong>on</strong>s/<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Water Resources Associati<strong>on</strong>. 4 West Federal Street, P.O.<br />

Box 1626, Middleburg VA 20118-1626. Also available at:<br />

http://www.awra.org/publicati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>dex.htm<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management. The Wildlife Society, 5410 Grosvenor Lane,<br />

Bethesda, MD 20814-2197. Also available at:<br />

http://www.wildlife.org/publicati<strong>on</strong>s/<br />

Other Sources _________________________________<br />

Other <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> sources for <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude USDA<br />

Forest Service Research Stati<strong>on</strong> reports, bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>s, notes <strong>and</strong> other publicati<strong>on</strong>s:<br />

North Central Forest Experiment Stati<strong>on</strong>, 1992 Folwell Avenue, St. Paul, MN<br />

55108<br />

http://www.ncrs.fs.fed.us/<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 205


Northeastern Research Stati<strong>on</strong>, 11 Campus Boulevard, Newt<strong>on</strong> Square, PA<br />

19073<br />

http://www.fs.fed.us/ne/<br />

Pacific Northwest Research Stati<strong>on</strong>, P.O. Box 3890, Portl<strong>and</strong>, OR 97208-3890<br />

http://www.fs.fed.us/pnw/<br />

Pacific Southwest Research Stati<strong>on</strong>, P.O. Box 245, Berkeley, CA 94701-0245<br />

http://www.psw.fs.fed.us/psw/<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>, 2150 Centre Avenue, Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO. 80526<br />

http://www.fs.fed.us/rm/<br />

Southern Research Stati<strong>on</strong>, 200 Weaver Boulevard, P.O. Box 2680, Asheville, NC<br />

28802<br />

http://www.srs.fs.fed.us/<br />

Nati<strong>on</strong>al Fire Plan is a cooperative effort <str<strong>on</strong>g>of</str<strong>on</strong>g> the USDA Forest Service,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, <strong>and</strong> the Nati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Foresters for<br />

manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> communities <strong>and</strong> the envir<strong>on</strong>ment. It<br />

publishes annual atta<str<strong>on</strong>g>in</str<strong>on</strong>g>ment <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> reports as well as ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

Web site:<br />

http://www.<str<strong>on</strong>g>fire</str<strong>on</strong>g>plan.gov/<br />

The Nati<strong>on</strong>al Incident Informati<strong>on</strong> Center Morn<str<strong>on</strong>g>in</str<strong>on</strong>g>g Fire Report, issued dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>fire</str<strong>on</strong>g> activity, provides up-to-date <str<strong>on</strong>g>fire</str<strong>on</strong>g> activity <strong>and</strong> ecosystem<br />

impacts <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> at:<br />

http://www.fs.fed.us/news/<str<strong>on</strong>g>fire</str<strong>on</strong>g>/<br />

206 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Daniel G. Neary<br />

Kev<str<strong>on</strong>g>in</str<strong>on</strong>g> C. Ryan<br />

Le<strong>on</strong>ard F. DeBano<br />

Chapter 12:<br />

Summary <strong>and</strong><br />

Research Needs<br />

Volume Objective _______________<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume is to provide an overview<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Our challenge was to provide a mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful summary<br />

for North American <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> these resources<br />

despite enormous variati<strong>on</strong>s produced by climate,<br />

topography, fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes. This volume<br />

is meant to be an <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> guide to assist l<strong>and</strong><br />

managers with <str<strong>on</strong>g>fire</str<strong>on</strong>g> management plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> public<br />

educati<strong>on</strong>, <strong>and</strong> a reference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> processes,<br />

pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent publicati<strong>on</strong>s, <strong>and</strong> other <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> sources.<br />

Although it c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s far more <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>and</strong> detailed<br />

site-specific <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong><br />

than the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al 1979 Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow volumes, it is not<br />

designed to be a comprehensive research-level treatise<br />

or compendium. That challenge is left to several<br />

textbooks (Ch<strong>and</strong>ler <strong>and</strong> others 1991, Agee 1993, Pyne<br />

<strong>and</strong> others 1996, DeBano <strong>and</strong> others 1998).<br />

Soil Physical Properties<br />

Summary ______________________<br />

The physical processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are<br />

complex <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude both heat transfer <strong>and</strong> the associated<br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical characteristics. The<br />

most important soil physical characteristic affected by<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> is soil structure because the organic matter comp<strong>on</strong>ent<br />

can be lost at relatively low temperatures. The<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soil structure <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the bulk density <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil <strong>and</strong> reduces its porosity, thereby reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

productivity <strong>and</strong> mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil more vulnerable to<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>. Although heat is transferred<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the soil by several mechanisms, its movement<br />

by vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong> is the most<br />

important. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil is an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> soil temperature that affects the physical,<br />

chemical, <strong>and</strong> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. When<br />

organic substances are moved downward <str<strong>on</strong>g>in</str<strong>on</strong>g> the soil by<br />

vaporizati<strong>on</strong> <strong>and</strong> c<strong>on</strong>densati<strong>on</strong>, they can cause a <strong>water</strong>-repellent<br />

soil c<strong>on</strong>diti<strong>on</strong> that further accentuates<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 207


post<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> extensive networks <str<strong>on</strong>g>of</str<strong>on</strong>g> surface rill<br />

erosi<strong>on</strong> or erosi<strong>on</strong> by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash. The magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical properties depends <strong>on</strong> the<br />

temperature threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil properties <strong>and</strong> the<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The greatest change <str<strong>on</strong>g>in</str<strong>on</strong>g> soil physical<br />

properties occurs when smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s burn for l<strong>on</strong>g<br />

periods.<br />

Soil Chemistry Summary _________<br />

The most basic soil chemical property affected by<br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is organic matter. Organic<br />

matter not <strong>on</strong>ly plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil, but it also affects the physical properties (see<br />

chapter 2) <strong>and</strong> the biological properties (see chapter 4)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> as well. Soil organic matter plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, cati<strong>on</strong> exchange, <strong>and</strong> <strong>water</strong> retenti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. When organic matter is combusted, the stored<br />

nutrients are either volatilized or are changed <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

highly available forms that can be taken up readily by<br />

microbial organisms <strong>and</strong> vegetati<strong>on</strong>. Those available<br />

nutrients not immobilized are easily lost by leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

or surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong>. Nitrogen is the most<br />

important nutrient affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> it is easily<br />

volatilized <strong>and</strong> lost from the site at relatively low<br />

temperatures. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> organic matter<br />

<strong>and</strong> nitrogen is directly related to the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. High- <strong>and</strong><br />

moderate-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s cause the greatest losses. Nitrogen<br />

loss by volatilizati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s is <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

c<strong>on</strong>cern <strong>on</strong> low-fertility sites because N can <strong>on</strong>ly be<br />

replaced by N-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. Cati<strong>on</strong>s are not easily<br />

volatilized <strong>and</strong> usually rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the site <str<strong>on</strong>g>in</str<strong>on</strong>g> a highly<br />

available form. An abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s can be found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the thick ash layers (or ash-bed) rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the<br />

soil surface follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g high-severity <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Soil Biology Summary ___________<br />

Soil microorganisms are complex. Community members<br />

range <str<strong>on</strong>g>in</str<strong>on</strong>g> activity from those merely try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

survive, to others resp<strong>on</strong>sible for biochemical reacti<strong>on</strong>s<br />

that are am<strong>on</strong>g the most elegant <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tricate<br />

known. How they resp<strong>on</strong>d to <str<strong>on</strong>g>fire</str<strong>on</strong>g> will depend <strong>on</strong> numerous<br />

factors, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> severity,<br />

site characteristics, <strong>and</strong> preburn community compositi<strong>on</strong>.<br />

Some generalities can be made, however. First,<br />

most studies have shown str<strong>on</strong>g resilience by microbial<br />

communities to <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Recol<strong>on</strong>izati<strong>on</strong> to preburn<br />

levels is comm<strong>on</strong>, with the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time required for<br />

recovery generally vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> proporti<strong>on</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity.<br />

Sec<strong>on</strong>d, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> is greatest <str<strong>on</strong>g>in</str<strong>on</strong>g> the forest<br />

floor (litter <strong>and</strong> duff). Prescripti<strong>on</strong>s that c<strong>on</strong>sume<br />

major fuels but protect forest floor, humus layers, <strong>and</strong><br />

soil humus are recommended.<br />

Fire <strong>and</strong> Streamflow Regimes<br />

Summary ______________________<br />

Fires affect <strong>water</strong> cycle processes to a greater or<br />

lesser extent depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> severity. Fires can produce<br />

some substantial <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the streamflow regime <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both small streams <strong>and</strong> rivers, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g annual <strong>and</strong><br />

seas<strong>on</strong>al <strong>water</strong> yield, peakflows <strong>and</strong> floods, baseflows,<br />

<strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> flows. Adequate baseflows are necessary<br />

to support the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued existence <str<strong>on</strong>g>of</str<strong>on</strong>g> many wildlife<br />

populati<strong>on</strong>s. Water yields are important because many<br />

forest, scrubl<strong>and</strong>, <strong>and</strong> grassl<strong>and</strong> <strong>water</strong>sheds functi<strong>on</strong><br />

as municipal <strong>water</strong> supplies. Peakflows <strong>and</strong> floods are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern because <str<strong>on</strong>g>of</str<strong>on</strong>g> their potential impacts <strong>on</strong><br />

human safety <strong>and</strong> property. Next to the physical<br />

destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself, post<str<strong>on</strong>g>fire</str<strong>on</strong>g> floods are the most<br />

damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the wildl<strong>and</strong> envir<strong>on</strong>ment.<br />

It is important that resource specialists <strong>and</strong> managers<br />

become aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

peakflows.<br />

Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, flood peakflows can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

dramatically, severely affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g stream physical c<strong>on</strong>diti<strong>on</strong>s,<br />

aquatic habitat, aquatic biota, cultural resources,<br />

<strong>and</strong> human health <strong>and</strong> safety. Often, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

flood peakflows <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 100 times those<br />

previously recorded, well bey<strong>on</strong>d observed ranges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variability <str<strong>on</strong>g>in</str<strong>on</strong>g> managed <strong>water</strong>sheds, have been measured<br />

after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Potentials exist for peak flood<br />

flows to jump to 2,300 times prewild<str<strong>on</strong>g>fire</str<strong>on</strong>g> levels. Managers<br />

must be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> these potential <strong>water</strong>shed resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> order to adequately <strong>and</strong> safely manage<br />

their l<strong>and</strong>s <strong>and</strong> other resources <str<strong>on</strong>g>in</str<strong>on</strong>g> the postwild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

envir<strong>on</strong>ment.<br />

Water Quality Summary __________<br />

When a wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurs, the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal c<strong>on</strong>cerns<br />

for change <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> quality are: (1) the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment; (2) the potential for <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrates,<br />

especially if the foliage be<str<strong>on</strong>g>in</str<strong>on</strong>g>g burned is <str<strong>on</strong>g>in</str<strong>on</strong>g> an area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chr<strong>on</strong>ic atmospheric depositi<strong>on</strong>; (3) the possible <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals from <strong>soils</strong> <strong>and</strong> geologic sources<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> the burned area; <strong>and</strong> (4) the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

retardant chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g>to streams that can reach levels<br />

toxic to aquatic organisms.<br />

The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality<br />

is primarily driven by <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, <strong>and</strong> not necessarily<br />

by <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. Fire severity is a qualitative term<br />

describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed, while <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is a quantitative measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

release (see chapter 1). In other words, the more severe<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g> the greater the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed <strong>and</strong><br />

nutrients released <strong>and</strong> the more susceptible the site is<br />

to erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to the stream where<br />

it could potentially affect <strong>water</strong> quality. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

usually are more severe than prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. As a<br />

208 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


esult, they are more likely to produce significant<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality. On the other h<strong>and</strong>, prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are designed to be less severe <strong>and</strong> would be<br />

expected to produce less effect <strong>on</strong> <strong>water</strong> quality. Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> allows the manager the opportunity to<br />

c<strong>on</strong>trol the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> to avoid creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

large areas burned at high severity.<br />

The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity is also related to the<br />

vegetati<strong>on</strong> type. For example, <str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong>s the differences<br />

between prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> are probably<br />

small. In forested envir<strong>on</strong>ments, the magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality will probably be<br />

much lower after a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> than after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the larger amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Canopy-c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s would be expected<br />

to be <str<strong>on</strong>g>of</str<strong>on</strong>g> the most c<strong>on</strong>cern to managers because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> canopy coupled with the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

aggregates. These losses present the worst-case scenario<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality. The differences between<br />

wild <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> shrubl<strong>and</strong>s are<br />

probably <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate between those seen <str<strong>on</strong>g>in</str<strong>on</strong>g> grass<br />

<strong>and</strong> forest envir<strong>on</strong>ments.<br />

Another important determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality is slope. Steepness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the slope has a significant <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to stream channels where it can<br />

affect <strong>water</strong> quality. Wright <strong>and</strong> others (1976) found<br />

that as slope <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> a prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>, erosi<strong>on</strong><br />

from slopes is accelerated. If at all possible, the vegetative<br />

canopy <strong>on</strong> steep, erodible slopes needs to be<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, particularly if adequate streamside<br />

buffer strips do not exist to trap the large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediment <strong>and</strong> nutrients that can be transported<br />

quickly <str<strong>on</strong>g>in</str<strong>on</strong>g>to the stream channel. It is important to<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> streamside buffer strips whenever possible,<br />

especially when develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> plans. These<br />

buffer strips will capture much <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>and</strong><br />

nutrients from burned upslope areas.<br />

Nitrogen is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern to <strong>water</strong> quality. If <strong>soils</strong> <strong>on</strong> a<br />

particular site are close to N saturati<strong>on</strong>, it is possible<br />

to exceed maximum c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> NO 3-N<br />

(10 ppm or 10 mg/L) after a severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Such areas<br />

should not have N-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g fertilizer applied after<br />

the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Chapter 3 c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s more discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N. Fire<br />

retardants typically c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> N, <strong>and</strong><br />

they can cause <strong>water</strong> quality problems where drops<br />

are made close to streams.<br />

The propensity for a site to develop <strong>water</strong> repellency<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g> must be c<strong>on</strong>sidered (see chapter 2).<br />

Water-repellent <strong>soils</strong> do not allow precipitati<strong>on</strong> to<br />

penetrate down <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> therefore are c<strong>on</strong>ducive<br />

to erosi<strong>on</strong>. Severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> such sites can put<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <strong>and</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to surface<br />

<strong>water</strong>.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, heavy ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> recently burned l<strong>and</strong> can<br />

seriously degrade <strong>water</strong> quality. Severe erosi<strong>on</strong> <strong>and</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f are not limited to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> sites al<strong>on</strong>e. But if<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> storms deliver large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

or short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls, accelerated<br />

erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f can occur even after a carefully<br />

planned prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. C<strong>on</strong>versely, if below-average<br />

precipitati<strong>on</strong> occurs after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, there may not be<br />

a substantial <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> no<br />

effect <strong>on</strong> <strong>water</strong> quality.<br />

Fire managers can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

<strong>water</strong> quality by careful plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g before prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, avoid<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

steep slopes, <strong>and</strong> limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> potentially <strong>water</strong>-repellent<br />

<strong>soils</strong> will reduce the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality.<br />

Aquatic Biota Summary __________<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fish are mostly <str<strong>on</strong>g>in</str<strong>on</strong>g>direct<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> nature. There are some documented <str<strong>on</strong>g>in</str<strong>on</strong>g>stances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s kill<str<strong>on</strong>g>in</str<strong>on</strong>g>g fish directly. The largest problems arise<br />

from the l<strong>on</strong>ger term impact <strong>on</strong> habitat. This <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> stream temperature due to plant understory<br />

<strong>and</strong> overstory removal, ash-laden slurry flows,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> flood peakflows, <strong>and</strong> sedimentati<strong>on</strong> due to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased l<strong>and</strong>scape erosi<strong>on</strong>. Most <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes has been generated s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce<br />

about 1990. Limited observati<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> exists<br />

<strong>on</strong> the immediate, direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes. Most<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <strong>and</strong> dem<strong>on</strong>strates the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ash flows, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic regimes, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> suspended sediment <strong>on</strong> fishes. These impacts<br />

are marked, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 70 percent to total loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fishes. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants <strong>on</strong> fishes are<br />

observati<strong>on</strong>al <strong>and</strong> not well documented at present.<br />

Further, all <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is from forested biomes as<br />

opposed to grassl<strong>and</strong>s.<br />

Anthropogenic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences, largely l<strong>and</strong> use activities<br />

over the past century, cumulatively <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes. Fire suppressi<strong>on</strong> al<strong>on</strong>e has affected<br />

vegetati<strong>on</strong> densities <strong>on</strong> the l<strong>and</strong>scape <strong>and</strong> the severity<br />

<strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, its <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> fishes. Most all studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes are short term (less than 5 years) <strong>and</strong><br />

local <str<strong>on</strong>g>in</str<strong>on</strong>g> nature. A l<strong>and</strong>scape approach to analyses has<br />

not been made to date. Fish can recover rapidly from<br />

populati<strong>on</strong> reducti<strong>on</strong>s or loss but can be markedly<br />

limited or precluded by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> stream c<strong>on</strong>nectivity<br />

imposed by human-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced barriers. Fisheries management<br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> should be based <strong>on</strong> species <strong>and</strong> fisheries<br />

<strong>and</strong> their management status. Managers should<br />

be vigilant <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunities to restore native fishes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

event <str<strong>on</strong>g>of</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced, n<strong>on</strong>native, translocated<br />

species.<br />

Although the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes appears to be<br />

marked, a larger impact may loom <str<strong>on</strong>g>in</str<strong>on</strong>g> the future. Recent<br />

advances <str<strong>on</strong>g>in</str<strong>on</strong>g> atmospheric, mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <strong>and</strong> terrestrial<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 209


ecosystem science have resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> the correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ocean temperature oscillati<strong>on</strong>s, tree r<str<strong>on</strong>g>in</str<strong>on</strong>g>g data, <strong>and</strong><br />

drought. Based <strong>on</strong> current <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

fishes, comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with that <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, drought,<br />

<strong>and</strong> recent <str<strong>on</strong>g>in</str<strong>on</strong>g>sect <str<strong>on</strong>g>in</str<strong>on</strong>g>festati<strong>on</strong>s, the greatest impacts <strong>on</strong><br />

fish may lie ahead. The <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> new<br />

climate change analyses suggests that the Southeastern<br />

<strong>and</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the Western United States have a high<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> future drought, with<br />

potential impact <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest.<br />

Based <strong>on</strong> some <str<strong>on</strong>g>of</str<strong>on</strong>g> these overarch<str<strong>on</strong>g>in</str<strong>on</strong>g>g global <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators,<br />

the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the story is start<str<strong>on</strong>g>in</str<strong>on</strong>g>g to unfold.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> reptile <strong>and</strong> amphibian populati<strong>on</strong>s<br />

are also covered <str<strong>on</strong>g>in</str<strong>on</strong>g> volume 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> this series (Smith<br />

2000). A review by Russell <strong>and</strong> others (1999) c<strong>on</strong>cluded<br />

that there are few reports <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-caused <str<strong>on</strong>g>in</str<strong>on</strong>g>jury<br />

to herpet<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>in</str<strong>on</strong>g> general much less aquatic <strong>and</strong><br />

wetl<strong>and</strong> species.<br />

Similar to fishes, the recorded <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

aquatic macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates are <str<strong>on</strong>g>in</str<strong>on</strong>g>direct as opposed to<br />

direct. Resp<strong>on</strong>se varies from m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal to no changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

abundance, diversity, or richness, to c<strong>on</strong>siderable <strong>and</strong><br />

significant changes. Abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates<br />

may actually <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-affected streams, but<br />

diversity generally is reduced. These differences are<br />

undoubtedly related to l<strong>and</strong>scape variability, burn<br />

size <strong>and</strong> severity, stream size, nature <strong>and</strong> tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post<str<strong>on</strong>g>fire</str<strong>on</strong>g> flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g events, <strong>and</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> time. Temporally,<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate <str<strong>on</strong>g>in</str<strong>on</strong>g>dices <str<strong>on</strong>g>in</str<strong>on</strong>g> the first<br />

5 years post<str<strong>on</strong>g>fire</str<strong>on</strong>g> can be different from ensu<str<strong>on</strong>g>in</str<strong>on</strong>g>g years,<br />

<strong>and</strong> l<strong>on</strong>g-term (10 to 30 years) <str<strong>on</strong>g>effects</str<strong>on</strong>g> have been<br />

suggested.<br />

The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> bird populati<strong>on</strong>s are covered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

volume 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> this series (Smith 2000). Aquatic areas<br />

<strong>and</strong> wetl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten provide refugia dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

However, wetl<strong>and</strong>s such as cienegas, marshes, cypress<br />

swamps, spruce, <strong>and</strong> larch swamps do burn<br />

under the right c<strong>on</strong>diti<strong>on</strong>s. The impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual birds <strong>and</strong> populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s would<br />

then depend up<strong>on</strong> the seas<strong>on</strong>, uniformity, <strong>and</strong> severity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Smith 2000).<br />

Aquatic <strong>and</strong> wetl<strong>and</strong> dwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g mammals are usually<br />

not adversely impacted by <str<strong>on</strong>g>fire</str<strong>on</strong>g>s due to animal mobility<br />

<strong>and</strong> the lower frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> these areas. Ly<strong>on</strong><br />

<strong>and</strong> others (2000) discuss factors such as <str<strong>on</strong>g>fire</str<strong>on</strong>g> uniformity,<br />

size, durati<strong>on</strong>, <strong>and</strong> severity that affect mammals.<br />

However, most <str<strong>on</strong>g>of</str<strong>on</strong>g> their discussi<strong>on</strong> relates to<br />

terrestrial mammals, not aquatic <strong>and</strong> wetl<strong>and</strong> <strong>on</strong>es.<br />

Aquatic <strong>and</strong> wetl<strong>and</strong> habitats also provide safety z<strong>on</strong>es<br />

for mammals dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Wetl<strong>and</strong>s Summary ______________<br />

While the c<strong>on</strong>necti<strong>on</strong> between wetl<strong>and</strong>s <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

appears <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>gruous, <str<strong>on</strong>g>fire</str<strong>on</strong>g> plays an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the creati<strong>on</strong> <strong>and</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> species <strong>and</strong><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Wetl<strong>and</strong> systems have come under<br />

various classificati<strong>on</strong> systems, reflect<str<strong>on</strong>g>in</str<strong>on</strong>g>g both the<br />

current underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> processes <strong>and</strong> the<br />

missi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual l<strong>and</strong> management agencies.<br />

We exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed some <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>flows <strong>and</strong><br />

outflows that are balanced by the <str<strong>on</strong>g>in</str<strong>on</strong>g>terrelati<strong>on</strong>ships<br />

between biotic <strong>and</strong> abiotic factors. The presence <strong>and</strong><br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant factors c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> with wetl<strong>and</strong> dynamics,<br />

nutrient <strong>and</strong> energy flow, soil chemistry, organic<br />

matter decompositi<strong>on</strong>, <strong>and</strong> plant <strong>and</strong> animal community<br />

compositi<strong>on</strong>.<br />

In wetl<strong>and</strong> <strong>soils</strong>, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> produced by surface <strong>and</strong><br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s are related to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> at either the soil surface or the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> n<strong>on</strong>burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic soil materials.<br />

In general, surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can be characterized as short<br />

durati<strong>on</strong>, variable severity <strong>on</strong>es, while ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

can be characterized as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>ger durati<strong>on</strong> <strong>and</strong><br />

lower severity. However, the latter type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s can<br />

produce pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound physical <strong>and</strong> chemical changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wetl<strong>and</strong>s.<br />

Models Summary _______________<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> older model<str<strong>on</strong>g>in</str<strong>on</strong>g>g technologies are comm<strong>on</strong>ly<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> after<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> (FOFEM, WATSED, WEPP, RUSLE, <strong>and</strong> others).<br />

Newer models <str<strong>on</strong>g>in</str<strong>on</strong>g>clude DELTA-Q <strong>and</strong> FOREST, <strong>and</strong><br />

others are under c<strong>on</strong>structi<strong>on</strong>. These process-based<br />

models provide managers with additi<strong>on</strong>al tools to<br />

estimate the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil <strong>and</strong> <strong>water</strong><br />

produced by l<strong>and</strong> disturbance. FOFEM was developed<br />

to meet the needs <str<strong>on</strong>g>of</str<strong>on</strong>g> resource managers, planners, <strong>and</strong><br />

analysts <str<strong>on</strong>g>in</str<strong>on</strong>g> predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Quantitative predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are needed for<br />

plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that best accomplish resource<br />

needs, for impact assessment, <strong>and</strong> for l<strong>on</strong>grange<br />

plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> policy development. FOFEM was<br />

developed to meet this <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> need. The WATSED<br />

technology was developed for <strong>water</strong>shed analysis. The<br />

RUSLE model was developed for agriculture <strong>and</strong> rangel<strong>and</strong><br />

hillslopes <strong>and</strong> has been extended to forest l<strong>and</strong>s.<br />

The WEPP model was designed as an improvement<br />

over RUSLE that can either be run as a st<strong>and</strong>-al<strong>on</strong>e<br />

computer model by specialists, or accessed through a<br />

special Internet <str<strong>on</strong>g>in</str<strong>on</strong>g>terface designed for forest applicati<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

All <str<strong>on</strong>g>of</str<strong>on</strong>g> these models have limitati<strong>on</strong>s that must be<br />

understood by <str<strong>on</strong>g>fire</str<strong>on</strong>g> managers or <strong>water</strong>shed specialists<br />

before they are applied. The models are <strong>on</strong>ly as good as<br />

the data used to create <strong>and</strong> validate them. Some<br />

processes such as extreme flow <strong>and</strong> erosi<strong>on</strong> events are<br />

not simulated very well because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> good<br />

data or the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes. However, they<br />

do provide useful tools to estimate l<strong>and</strong>scape changes<br />

210 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


to disturbances such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Potential users should<br />

make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensive documentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

models <strong>and</strong> c<strong>on</strong>sult with the developers to ensure the<br />

most appropriate usage <str<strong>on</strong>g>of</str<strong>on</strong>g> the models.<br />

Watershed Rehabilitati<strong>on</strong><br />

Summary ______________________<br />

Spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> emergency <strong>water</strong>shed rehabilitati<strong>on</strong><br />

has steadily <str<strong>on</strong>g>in</str<strong>on</strong>g>creased s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 1990. An evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> USDA Forest Service burned area emergency<br />

rehabilitati<strong>on</strong> treatment effectiveness was completed<br />

jo<str<strong>on</strong>g>in</str<strong>on</strong>g>tly by the USDA Forest Service Research <strong>and</strong><br />

Development <strong>and</strong> Nati<strong>on</strong>al Forest System staffs.<br />

Robichaud <strong>and</strong> others (2000) collected <strong>and</strong> analyzed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> past use <str<strong>on</strong>g>of</str<strong>on</strong>g> BAER treatments <str<strong>on</strong>g>in</str<strong>on</strong>g> order<br />

to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e attributes <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s that led to<br />

treatment success or failure <str<strong>on</strong>g>in</str<strong>on</strong>g> achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g BAER goals<br />

after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental Western United<br />

States. The study found that spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> rehabilitati<strong>on</strong><br />

has risen sharply recently because the perceived<br />

threat <str<strong>on</strong>g>of</str<strong>on</strong>g> debris flows <strong>and</strong> floods has <str<strong>on</strong>g>in</str<strong>on</strong>g>creased where<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s are closer to the wildl<strong>and</strong>-urban <str<strong>on</strong>g>in</str<strong>on</strong>g>terface. Exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

literature <strong>on</strong> treatment effectiveness is limited,<br />

thus mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment comparis<strong>on</strong>s difficult; however,<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> provided by any treatment<br />

is limited—especially dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g short-durati<strong>on</strong>,<br />

high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall events.<br />

Relatively little m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatments has been c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> the last three<br />

decades. In the three decades prior to 2000, there were<br />

at least 321 <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that received BAER treatment,<br />

which cost the Forest Service around $110 milli<strong>on</strong>.<br />

Some level <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g occurred <strong>on</strong> about 33 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these project <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In the early 2000s, the number,<br />

size, <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> Western United States <str<strong>on</strong>g>fire</str<strong>on</strong>g>s dramatically<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased, with a c<strong>on</strong>current <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

BAER spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> about $50 milli<strong>on</strong> annually. M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

efforts c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to be short term <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature, Burned Area Report<br />

forms, <str<strong>on</strong>g>in</str<strong>on</strong>g>terview comments, m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g reports, treatment<br />

effectiveness rat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> the authors’ c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

work <str<strong>on</strong>g>in</str<strong>on</strong>g> the area <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> have led<br />

to the c<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> recommendati<strong>on</strong>s.<br />

Informati<strong>on</strong> Sources<br />

Summary ______________________<br />

This volume updates the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available <strong>on</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>’s impacts <strong>on</strong> <strong>soils</strong> <strong>and</strong> <strong>water</strong>. It is just <strong>on</strong>e source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> prepared to a given po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> time.<br />

Barr<str<strong>on</strong>g>in</str<strong>on</strong>g>g more frequent updates <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume (orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally<br />

published <str<strong>on</strong>g>in</str<strong>on</strong>g> 1979; Wells <strong>and</strong> others 1979,<br />

Tiedemann <strong>and</strong> others 1979), some mechanisms for<br />

future <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> retrieval need to be c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ually<br />

dynamic <strong>and</strong> current. The World Wide Web has<br />

produced a quantum leap <str<strong>on</strong>g>in</str<strong>on</strong>g> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

now at the <str<strong>on</strong>g>fire</str<strong>on</strong>g> manager’s f<str<strong>on</strong>g>in</str<strong>on</strong>g>ger tips, with<br />

past <strong>and</strong> current <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the Web grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

daily. The future problem will be synthesiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> now available. It is hoped<br />

that this volume provides some <str<strong>on</strong>g>of</str<strong>on</strong>g> that synthesis.<br />

Research Needs ________________<br />

This volume po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts out <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> gaps <strong>and</strong> research<br />

needs throughout its chapters. To complicate<br />

matters more, some regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the country are experienc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

larger <strong>and</strong> more severe <str<strong>on</strong>g>fire</str<strong>on</strong>g>s that are produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ecosystem <str<strong>on</strong>g>effects</str<strong>on</strong>g> not studied before. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the key<br />

research needs are:<br />

• Bey<strong>on</strong>d the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial vegetati<strong>on</strong> <strong>and</strong> <strong>water</strong>shed<br />

c<strong>on</strong>diti<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>, suppressi<strong>on</strong> activities can add further<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance to both <strong>soils</strong> <strong>and</strong> <strong>water</strong>.<br />

These disturbances need to be evaluated al<strong>on</strong>g<br />

with those produced by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

• The burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuels (such as<br />

slash, large woody debris) can cause substantial<br />

damage to the soil resource even though<br />

these l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> are limited to <strong>on</strong>ly a<br />

small proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>and</strong>scape where the<br />

fuels are piled. The physical, chemical, <strong>and</strong><br />

biological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuel burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

need to be better understood.<br />

• Improved underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>on</strong> soil chemical properties is needed for manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> all <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>, <strong>and</strong> particularly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-dependent systems.<br />

• Soil microorganisms are complex. Community<br />

members range <str<strong>on</strong>g>in</str<strong>on</strong>g> activity from those merely<br />

try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to survive to others resp<strong>on</strong>sible for<br />

biochemical reacti<strong>on</strong>s am<strong>on</strong>g the most elegant<br />

<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tricate known. How they resp<strong>on</strong>d to <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

will depend <strong>on</strong> numerous factors, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> severity, site characteristics,<br />

<strong>and</strong> preburn community compositi<strong>on</strong>.<br />

Underst<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> these resp<strong>on</strong>ses is needed.<br />

• Peakflows <strong>and</strong> floods are <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> their potential impacts <strong>on</strong> human<br />

safety <strong>and</strong> property. Next to the physical destructi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> itself, post<str<strong>on</strong>g>fire</str<strong>on</strong>g> floods are the<br />

most damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the wildl<strong>and</strong><br />

envir<strong>on</strong>ment. It is important that research<br />

focus <strong>on</strong> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> resource<br />

specialists <strong>and</strong> managers to underst<strong>and</strong> the<br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease peakflows <strong>and</strong> to<br />

improve predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> floods.<br />

• Heavy ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> recently burned l<strong>and</strong> can seriously<br />

degrade <strong>water</strong> quality. Severe erosi<strong>on</strong><br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 211


<strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f are not limited to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> sites<br />

al<strong>on</strong>e. But if post<str<strong>on</strong>g>fire</str<strong>on</strong>g> storms deliver large<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> or short-durati<strong>on</strong>,<br />

high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>falls, accelerated erosi<strong>on</strong><br />

<strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f can occur even after a carefully<br />

planned prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

municipal <strong>water</strong>sheds are not well documented,<br />

<strong>and</strong> the ability to predict magnitude <strong>and</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> quality change is limited.<br />

• Limited observati<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> exists <strong>on</strong><br />

the immediate, direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes.<br />

Most <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>direct <strong>and</strong> dem<strong>on</strong>strates<br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ash flows, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic<br />

regimes, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> suspended sediment<br />

<strong>on</strong> fishes. These impacts are marked, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

from 70 percent to total loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes. Also, the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants <strong>on</strong> fishes is observati<strong>on</strong>al<br />

<strong>and</strong> not well documented. Further, most<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is from forested biomes, so research<br />

needs to be exp<strong>and</strong>ed to grassl<strong>and</strong>s.<br />

• Anthropogenic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences, largely l<strong>and</strong> use<br />

activities over the past century, cumulatively<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes. Fire suppressi<strong>on</strong><br />

al<strong>on</strong>e has affected vegetati<strong>on</strong> densities <strong>on</strong><br />

the l<strong>and</strong>scape <strong>and</strong> the severity <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, its <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> aquatic<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> fishes. Most all studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fishes are short term (less<br />

than 5 years) <strong>and</strong> local <str<strong>on</strong>g>in</str<strong>on</strong>g> nature. A l<strong>and</strong>scape<br />

approach to analyses <strong>and</strong> research needs to be<br />

made.<br />

• Riparian areas are particularly important<br />

because they provide buffer strips that trap<br />

sediment <strong>and</strong> nutrients that are released when<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>sheds are burned. The width<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these buffer strips is critical for m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

sediment <strong>and</strong> nutrient movement <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

streams. But little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> exists <strong>on</strong> effective<br />

buffer strips <strong>and</strong> sizes.<br />

• Although we have several models, all <str<strong>on</strong>g>of</str<strong>on</strong>g> them<br />

have limitati<strong>on</strong>s that must be understood by<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> managers or <strong>water</strong>shed specialists before<br />

they are applied. The models are <strong>on</strong>ly as good<br />

as the data used to create <strong>and</strong> validate them.<br />

Some processes such as extreme flow <strong>and</strong><br />

erosi<strong>on</strong> events are not simulated well because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> good data or the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

processes.<br />

• The need for improved effectiveness m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

has ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed momentum. In April 2003, the<br />

Government Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g Office <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>gress<br />

published a report (GAO 2003) that clearly<br />

stated that neither the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture’s Forest Service nor the Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior’s Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management<br />

could determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether emergency stabilizati<strong>on</strong><br />

<strong>and</strong> rehabilitati<strong>on</strong> treatments were<br />

achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g their <str<strong>on</strong>g>in</str<strong>on</strong>g>tended results. Although<br />

treatment m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g is required, there is no<br />

agreed-<strong>on</strong> protocol for how <strong>and</strong> what to collect<br />

<strong>and</strong> analyze for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness.<br />

• Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity as well as ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall amount<br />

<strong>and</strong> durati<strong>on</strong> affect the success <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong><br />

treatment. Rehabilitati<strong>on</strong> treatments are<br />

least effective <str<strong>on</strong>g>in</str<strong>on</strong>g> short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>storms (that is, c<strong>on</strong>vective thunderstorms),<br />

particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the first 2 years after<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Informati<strong>on</strong> is limited <str<strong>on</strong>g>in</str<strong>on</strong>g> this area.<br />

• Quantitative data are needed to guide future<br />

resp<strong>on</strong>ses to post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> <strong>and</strong> to<br />

build, test, <strong>and</strong> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e predictive models for<br />

different burned forest envir<strong>on</strong>ments. Accurate<br />

climate, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> erosi<strong>on</strong> models for<br />

burned forest envir<strong>on</strong>ments are dependent<br />

<strong>on</strong> (1) improved mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> burn severity <strong>and</strong><br />

better characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> soil <strong>water</strong><br />

repellency; (2) improved predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

resp<strong>on</strong>ses at different spatial scales, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

short-durati<strong>on</strong>, high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity thunderstorms;<br />

(3) quantitative data for the relative<br />

magnitudes <strong>and</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> hillslope<br />

verses channel erosi<strong>on</strong>; <strong>and</strong> (4) ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed sediment<br />

depositi<strong>on</strong> <strong>and</strong> rout<str<strong>on</strong>g>in</str<strong>on</strong>g>g models for various<br />

dra<str<strong>on</strong>g>in</str<strong>on</strong>g>ages.<br />

• C<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil horiz<strong>on</strong>s has <strong>on</strong>ly<br />

been quantified <str<strong>on</strong>g>in</str<strong>on</strong>g> a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

types. Although moisture vs. c<strong>on</strong>sumpti<strong>on</strong><br />

patterns have emerged there is still a<br />

need to quantify c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a wider range <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> types. Likewise<br />

additi<strong>on</strong>al research is needed to further elucidate<br />

the physical mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil<br />

c<strong>on</strong>sumpti<strong>on</strong> such that robust models based<br />

<strong>on</strong> combusti<strong>on</strong> <strong>and</strong> heat transfer relati<strong>on</strong>ships<br />

can eventually replace the empirical studies<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to wider applicati<strong>on</strong>.<br />

• Salvage logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s is becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

more comm<strong>on</strong> occurrence. Research <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

past has exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the soil <strong>and</strong> <strong>water</strong> impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> separately, but rarely<br />

together. There is a large need for research <strong>on</strong><br />

logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> its associated road<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities<br />

at various time <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals post-wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong><br />

for different forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <strong>and</strong> physiographic<br />

regi<strong>on</strong>s.<br />

212 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


References<br />

Acea, M.J.; Carballas, T. 1996. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> physiological groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> soil follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. FEMS Microbiology<br />

Ecology. 20: 33–39.<br />

Acea, M.J.; Carballas, T. 1999. Microbial fluctuati<strong>on</strong>s after soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> organic amendment. Bioresource Technology. 67:<br />

65–71.<br />

Adams, R.; Simm<strong>on</strong>s. 1999. Ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> fight<str<strong>on</strong>g>in</str<strong>on</strong>g>g foams<br />

<strong>and</strong> retardants. In: Lunt, Ian; Green, David G.; Lord, Brian,<br />

(eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Australian bush<str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>ference; 1999<br />

July; Albury, New South Wales, Australia. Available <strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e:<br />

http://life.csu.edu.au/bush<str<strong>on</strong>g>fire</str<strong>on</strong>g>99. [May 13, 2005].<br />

Agee, J.K. 1973. Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> physical <strong>and</strong> hydrologic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed-c<strong>on</strong>ifer forest floor <strong>and</strong> soil. Report 143.<br />

Davis: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Resources Center. 57 p.<br />

Agee, J.K. 1993. Fire ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific Northwest forests.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Isl<strong>and</strong> Press. 493 p.<br />

Ahlgren, I.F. 1974. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil organisms. In:<br />

Kozlowski, T.T.; Ahlgren, C.E., eds. Fire <strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. New<br />

York: Academic Press: 47–72.<br />

Ahlgren, I.F.; Ahlgren, C.E. 1965. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

soil microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> a M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest. Ecology. 46:<br />

304–310.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.P. 1979. Fire <strong>and</strong> stream ecology <str<strong>on</strong>g>in</str<strong>on</strong>g> some Yellowst<strong>on</strong>e<br />

tributaries. California Fish <strong>and</strong> Game. 65: 216–238.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i, F.A. 1975. An attempt (<strong>and</strong> failure) to correlate duff removal<br />

<strong>and</strong> slash <str<strong>on</strong>g>fire</str<strong>on</strong>g> heat. Gen. Tech. Rep. INT-24. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 16 p.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i, F.A. 1976. Estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Gen.<br />

Tech. Rep. INT-30. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 92 p.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i, F.A.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D. 1995. Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g igniti<strong>on</strong> <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> large woody natural fuels. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

Fire. 5(2): 81–91.<br />

Alb<str<strong>on</strong>g>in</str<strong>on</strong>g>i, F.; Ruhul Am<str<strong>on</strong>g>in</str<strong>on</strong>g>, M.; Hungerford, R.D.; Fr<strong>and</strong>sen, W.H.;<br />

Ryan, K.C. 1996. Models for <str<strong>on</strong>g>fire</str<strong>on</strong>g>-driven heat <strong>and</strong> moisture transport<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. Gen. Tech. Rep. INT-GTR-335. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 16 p.<br />

Ald<strong>on</strong>, E.F. 1960. Research <str<strong>on</strong>g>in</str<strong>on</strong>g> the p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e type. In: Progress<br />

report <strong>on</strong> <strong>water</strong>shed management research <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 17–24.<br />

Alex<strong>and</strong>er, M.E. 1982. Calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensities. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 60(4): 349–357.<br />

Allen, L. 1998. Graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management. In: Tellman, B.;<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ch, D.M.; Edm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster, C.; Hamre, R., (eds.). The future <str<strong>on</strong>g>of</str<strong>on</strong>g> arid<br />

grassl<strong>and</strong>s: identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g issues, seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s. Proc. RMRS-P-<br />

3. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 97–100.<br />

Almendros, G.; G<strong>on</strong>zalez-Vila, F.J.; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. 1990. Fire-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil organic matter from an oak forest: an<br />

experimental approach to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> humic substances.<br />

Soil Science. 149: 158–168.<br />

Amaranthus, M.P. 1989. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> fertiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

surface erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> two <str<strong>on</strong>g>in</str<strong>on</strong>g>tensely burned sites <str<strong>on</strong>g>in</str<strong>on</strong>g> southwest<br />

Oreg<strong>on</strong>. In: Berg, N.H., (tech. coord.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium<br />

<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <strong>water</strong>shed management; 1988 October 26–28;<br />

Sacramento, CA. Gen. Tech. Rep. PSW-109. Berkeley, CA: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest<br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 148–149.<br />

Amaranthus, M.P.; Trappe, R.J.; Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>a, R.J. 1989. L<strong>on</strong>g-term<br />

forest productivity <strong>and</strong> the liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. In: Gessel, S.P.; Lacate,<br />

D.S.; Weetman, G.F.; Powers, R.F., (eds.). Susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed productivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong>; proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 7th North American forest <strong>soils</strong> c<strong>on</strong>ference.<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry Publicati<strong>on</strong>s. Vancouver: University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

British Columbia: 36–52.<br />

Andersen, A.N.; Müller, W.J. 2000. Arthopod resp<strong>on</strong>ses to experimental<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> an Australian tropical savannah: ord<str<strong>on</strong>g>in</str<strong>on</strong>g>allevel<br />

analysis. Austral Ecology. 25: 199–209.<br />

Anders<strong>on</strong>, D.C.; Harper, K.T.; Rushforth, S.R. 1982. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cryptogamic soil crusts from graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> Utah w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter ranges.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 35: 355–359.<br />

Anders<strong>on</strong>, E.W. 1987. Riparian area def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>—a viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t.<br />

Rangel<strong>and</strong>s. 9: 70.<br />

Anders<strong>on</strong>, H.E. 1969. Heat transfer <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> spread. Res. Pap.<br />

INT-69. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 20 p.<br />

Anders<strong>on</strong>, H.E. 1982. Aids to determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g fuel models for estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior. Gen. Tech. Rep. INT-122. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 20 p.<br />

Anders<strong>on</strong>, H.W. 1974. Sediment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> resiviors associated<br />

with rual roads, forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, <strong>and</strong> catchment attributes. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

symposium <strong>on</strong> man’s effect <strong>on</strong> erosi<strong>on</strong> <strong>and</strong> sedimentati<strong>on</strong>,<br />

UNESCO [1974 September 9–12; Paris.] Internati<strong>on</strong>al<br />

Associati<strong>on</strong> Hydrological Science Publicati<strong>on</strong>s. 113: 87–95.<br />

Anders<strong>on</strong>, H.W. 1976. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> supply, floods, <strong>and</strong><br />

sedimentati<strong>on</strong>. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology<br />

c<strong>on</strong>ference, Pacific Northwest; 1974 October 16–17; Portl<strong>and</strong>, OR.<br />

Tallahassee, FL: Tall Timbers Research Stati<strong>on</strong>. 15: 249–260.<br />

Anders<strong>on</strong>, H.W.; Coleman, G.B.; Z<str<strong>on</strong>g>in</str<strong>on</strong>g>ke, P.J. 1959. Summer slides<br />

<strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter scour—dry-wet erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Res. Pap. PSW-36. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Southwest Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 12 p.<br />

Anders<strong>on</strong>, H.W.; Hoover, M.D.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hart, K.G. 1976. Forests <strong>and</strong><br />

<strong>water</strong>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest management <strong>on</strong> floods, sedimentati<strong>on</strong>, <strong>and</strong><br />

<strong>water</strong> supply. Gen. Tech. Rep. PSW-18. Berkeley, CA: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest<br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 115 p.<br />

Anders<strong>on</strong>, J.M. 1991. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> decompositi<strong>on</strong><br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g> grassl<strong>and</strong> <strong>and</strong> c<strong>on</strong>iferous forest. Ecological<br />

Applicati<strong>on</strong>s. 1: 326–347.<br />

Andrews, P.L. 1986. BEHAVE: Fire behavior predicti<strong>on</strong> <strong>and</strong> fuel<br />

model<str<strong>on</strong>g>in</str<strong>on</strong>g>g system: BURN subsystem, Part 1. Gen. Tech. Rep. INT-<br />

194. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 130 p.<br />

Ang<str<strong>on</strong>g>in</str<strong>on</strong>g>o, E.E.; Maguns<strong>on</strong>, L.M.; Waugh, T.C. 1974. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

suspended sediment <strong>and</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe, Mn, Ni, Cu, <strong>and</strong> Pb<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong> <strong>and</strong> Fe, Mn, <strong>and</strong> Pb <str<strong>on</strong>g>in</str<strong>on</strong>g> suspended load <str<strong>on</strong>g>of</str<strong>on</strong>g> selected Kansas<br />

streams. Water Resources Research. 10: 1187–1191.<br />

Armentano, T.V.; Menges, E.S. 1986. Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

carb<strong>on</strong> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> organic soil wetl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperate z<strong>on</strong>e.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 74: 755–774.<br />

Arno, S.F. 2000. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> western forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Brown, J.K.;<br />

Smith, J.K., (eds.). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>: 97–120.<br />

Artsybashev, E.S. 1983. Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong> their c<strong>on</strong>trol. [Translated<br />

from Russian] New Delhi: Amer<str<strong>on</strong>g>in</str<strong>on</strong>g>d Publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g Co. 160 p.<br />

Atlas, R.M.; Horowitz, A.; Krichevsky, M.; Bej, A.K. 1991. Resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microbial populati<strong>on</strong>s to envir<strong>on</strong>mental disturbance. Microbial<br />

Ecology. 22: 249–256.<br />

Aubert<str<strong>on</strong>g>in</str<strong>on</strong>g>, G.M.; Patric, J.H. 1974. Water quality <strong>water</strong> after<br />

clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g a small <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> West Virg<str<strong>on</strong>g>in</str<strong>on</strong>g>ia. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>mental Quality. 3: 243–249.<br />

Auclair, A.N.D. 1977. Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g tissue nutrient c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a Carex meadow. Oecologia. 28: 233–246.<br />

Autobee, R. 1993. The Salt River project. Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Reclamati<strong>on</strong><br />

History Program. Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior,<br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Reclamati<strong>on</strong>. 41 p.<br />

Baath, E.; Frostegard, A.; Pennanen, T.; Fritze, H. 1995. Microbial<br />

community structure <strong>and</strong> pH resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to soil organic<br />

matter quality <str<strong>on</strong>g>in</str<strong>on</strong>g> wood-ash fertilized, clear-cut or burned c<strong>on</strong>iferous<br />

forest <strong>soils</strong>. Soil Biology <strong>and</strong> Biochemistry. 27: 229–240.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 213


Bacchus, S.T. 1995. Ground levels are critical to the success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prescribed burns. In: Cerulean, S.I.; Engstrom, R.T., (eds.) Fire <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

wetl<strong>and</strong>s: a management prespective. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall<br />

Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference. Tallahassee, FL: Tall Timbers<br />

Research Stati<strong>on</strong>. 19: 117–133.<br />

Bailey, R.G. 1995. Descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecoregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

Misc. Publ. 1391. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service. 108 p.<br />

Bailey, R.W. 1948. Reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> siltati<strong>on</strong> through forest<br />

<strong>and</strong> range management. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil <strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>.<br />

3: 24–31.<br />

Bailey, R.W.; Copel<strong>and</strong>, O.L. 1961. Vegetati<strong>on</strong> <strong>and</strong> eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

structures <str<strong>on</strong>g>in</str<strong>on</strong>g> flood <strong>and</strong> erosi<strong>on</strong> c<strong>on</strong>trol. Paper 11-1. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

13th C<strong>on</strong>gress; 1961 September; Vienna, Austria. Internati<strong>on</strong>al<br />

Uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research Organizati<strong>on</strong>. 23 p.<br />

Baker, M.B., Jr. 1986. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e treatments <strong>on</strong><br />

<strong>water</strong> yields <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. Water Resources Research. 22: 67–73.<br />

Baker, M.B., Jr. 1990. Hydrologic <strong>and</strong> <strong>water</strong> quality <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

In: Krammes, J.S., (tech. coord.). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

southwestern natural resources. Gen. Tech. Rep. RM-191. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 31–42.<br />

Baker, M.B., Jr., comp. 1999. History <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed management <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the central Ariz<strong>on</strong>a highl<strong>and</strong>s. Gen. Tech. Rep. RMRS-GTR-29.<br />

Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 56 p.<br />

Baker, M.B., Jr.; DeBano, L.F.; Ffolliott, P.F.; Gottfried, G.J. 1998.<br />

Riparian-<strong>water</strong>shed l<str<strong>on</strong>g>in</str<strong>on</strong>g>kages <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest. In: Potts, D.E.,<br />

(ed.). Rangel<strong>and</strong> management <strong>and</strong> <strong>water</strong> resources. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the American Water Resources Associati<strong>on</strong> specialty c<strong>on</strong>ference;<br />

Hend<strong>on</strong>, VA: 347–357.<br />

Barnett, D. 1989. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> Coast Range <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreg<strong>on</strong> <strong>and</strong><br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <strong>and</strong> management implicati<strong>on</strong>s. Soils R-6 Tech. Rep.<br />

Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Pacific Northwest Regi<strong>on</strong>. 89 p.<br />

Barro, S.C.; C<strong>on</strong>ard, S.G. 1987. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> ryegrass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g as an<br />

emergency revegetati<strong>on</strong> measure <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Gen.<br />

Tech. Rep. PSW-102. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Southwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 12 p.<br />

Barro, S.C.; Wohlemuth, P.M.; Campbell, A.G. 1989. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s<br />

between riparian vegetati<strong>on</strong> <strong>and</strong> channel morphology<br />

<strong>and</strong> the implicati<strong>on</strong>s for stream channel rehabilitati<strong>on</strong>. In:<br />

Abell, D.L., (tech. coord.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the California riparian<br />

c<strong>on</strong>ference: Protecti<strong>on</strong>, management, <strong>and</strong> restorati<strong>on</strong> for the<br />

1990s. Gen. Tech. Rep. PSW-100. Berkeley, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>: 51–53.<br />

Bautista, S.; Bellot, J.; Vallejo, V.R. 1996. Mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g treatment for<br />

post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> soil c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a semiarid ecosystem. Arid Soil<br />

Research <strong>and</strong> Rehabilitati<strong>on</strong>. 10: 235–242.<br />

Beasley, R.S. 1979. Intensive site preparati<strong>on</strong> <strong>and</strong> sediment loss <strong>on</strong><br />

steep <strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> the Gulf Coastal Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>. Soil Science Society<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 43: 412–417.<br />

Beasley, R.S.; Granillo, A.B.; Zillmer, V. 1986. Sediment losses from<br />

forest management: mechanical vs. chemical site preparati<strong>on</strong><br />

after cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Quality. 17: 219–225.<br />

Bell, R.L.; B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley, D. 1989. Soil nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <strong>and</strong><br />

immobilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to periodic prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e plantati<strong>on</strong>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry Research.<br />

19: 816–820.<br />

Bellgard, S.E.; Whelan, R.J.; Must<strong>on</strong>, R.M. 1994. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> vesicular-arbucscular mycorrhizal fungi <strong>and</strong> their<br />

potential to <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the re-establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> plant<br />

communities. Mycorrhiza. 4: 139–146.<br />

Belnap, J. 1994. Potential role <str<strong>on</strong>g>of</str<strong>on</strong>g> cryptobiotic soil crust <str<strong>on</strong>g>in</str<strong>on</strong>g> semiarid<br />

rangel<strong>and</strong>s. In: M<strong>on</strong>sen, S.B.; Kitchen, S.G., (eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

ecology <strong>and</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> annual rangel<strong>and</strong>s. Gen. Tech. Rep.<br />

INT-GTR-313. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>:<br />

179–185.<br />

Belnap, J.; Kaltenecker, J.H.; Rosentreter, R.; Williams, J; Le<strong>on</strong>ard, S.;<br />

Eldridge, D. 2001. Biological soil crusts: ecology <strong>and</strong> management.<br />

Report No. BLM/ID/ST-01/001+1730. Denver, CO. U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Nati<strong>on</strong>al Science <strong>and</strong> Technology Center. 110 p.<br />

Benda, L.E.; Cundy, T.W. 1990. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> debris<br />

flows <str<strong>on</strong>g>in</str<strong>on</strong>g> mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> channels. Canadian Geotechnical Journal.<br />

27: 409–417.<br />

Bennett, K.A. 1982. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> surface soil erosi<strong>on</strong><br />

rates <str<strong>on</strong>g>in</str<strong>on</strong>g> the Oreg<strong>on</strong> Coast Range. Corvallis: Oreg<strong>on</strong> State University.<br />

70 p. Thesis.<br />

Berndt, H.W. 1971. Early <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> streamflow characteristics.<br />

Res. Note PNW-148. Portl<strong>and</strong>, OR: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Northwest Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 9 p.<br />

Beschta, R.L. 1980. Turbidity <strong>and</strong> suspended sediment relati<strong>on</strong>ships.<br />

In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs symposium <strong>on</strong> <strong>water</strong>shed management.<br />

St. Anth<strong>on</strong>y, MN: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers: 271–281.<br />

Beschta, R.L. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quantity <strong>and</strong> quality. In:<br />

Walstad, J.D.; Radosevich, S.R.; S<strong>and</strong>berg, D.V. (eds.). Natural<br />

<strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific Northwest forests. Corvallis: Oreg<strong>on</strong><br />

State University Press: 219–231.<br />

Best, D.W.; Kelsey, D.K.; Hagans, D.K.; Alpert, M. 1995. Role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluvial hillslope erosi<strong>on</strong> <strong>and</strong> road c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the sediment<br />

budget <str<strong>on</strong>g>of</str<strong>on</strong>g> Garret Creek, Humboldt County, California. In: Nolan,<br />

K.M.; Kelsey, H.M.; Marr<strong>on</strong>, D.C. (eds.). Geomorphic processes<br />

<strong>and</strong> aquatic habitat <str<strong>on</strong>g>in</str<strong>on</strong>g> the Redwood Creek Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, Northwestern<br />

California. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Paper 1454. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Geological<br />

Survey: M1–M9.<br />

Beyers, J.L.; C<strong>on</strong>ard, S.G.; Wakeman, C.D. 1994. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troduced grass, seeded for erosi<strong>on</strong> c<strong>on</strong>trol, <strong>on</strong> post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> community<br />

compositi<strong>on</strong> <strong>and</strong> species diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California<br />

chaparral. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 12th <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>ference<br />

<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology; 1993 October 26–28; Jekyll Isl<strong>and</strong>,<br />

GA. Bethesda, MD: Society <str<strong>on</strong>g>of</str<strong>on</strong>g> American Foresters: 594–601.<br />

Bhadauria, T.; Ramakrishnan, P.S.; Srivastava, K.N. 2000. Diversity<br />

<strong>and</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> endemic <strong>and</strong> exotic earthworms <str<strong>on</strong>g>in</str<strong>on</strong>g> natural<br />

<strong>and</strong> regenerat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the central Himalayas, India.<br />

Soil Biology <strong>and</strong> Biochemistry. 32: 2045–2054.<br />

Biggio, E.R.; Cann<strong>on</strong>, S.H. 2001. Compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post-wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

data from the Western United States. Open-file Report 2001-474.<br />

U.S. Geological Survey. 24 p.<br />

B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley, D.; Richter, D.; Davis, M.B.; Caldwell, B. 1992. Soil chemistry<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a loblolly/l<strong>on</strong>gleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest with <str<strong>on</strong>g>in</str<strong>on</strong>g>terval burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Ecological Applicat<strong>on</strong>s. 2: 157–164.<br />

Bird, M.I.; Veenendaal, E.M.; Moyo, C.; Lloyd, J.; Frost P. 2000.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> soil texture <strong>on</strong> soil carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sub-humid<br />

savanna, Matopos, Zimbabwe. Geoderma. 9: 71–90.<br />

Bissett, J.; Park<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, D. 1980. L<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

compositi<strong>on</strong> <strong>and</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>of</str<strong>on</strong>g> a subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e,<br />

c<strong>on</strong>iferous forest. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 58: 1704–1721.<br />

Biswell, H.H. 1973. Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> repellency,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>, <strong>and</strong> retenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> mixed c<strong>on</strong>ifer litter. Water Resource<br />

Report. Davis: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California: 25–40.<br />

Biswell, H.H.; Schultz, A.M. 1965. Surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> as<br />

related to prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 55: 372–373.<br />

Black, C.A. 1968. Soil plant relati<strong>on</strong>ships. New York: John Wiley &<br />

S<strong>on</strong>s, Inc. 792 p.<br />

Boerner, R.E.J. 1982. Fire <strong>and</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a temperate<br />

ecosystem. Bioscience. 32: 187–192.<br />

Boerner, R.E.J.; Decker, K.L.M.; Sutherl<strong>and</strong>, E.K. 2000. Prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil enzyme activity <str<strong>on</strong>g>in</str<strong>on</strong>g> a southern Ohio hardwood<br />

forest: a l<strong>and</strong>scape-scale analysis. Soil Biology <strong>and</strong> Biochemistry.<br />

32: 899–908.<br />

Bohn, C. 1986. Biological importance <str<strong>on</strong>g>of</str<strong>on</strong>g> streambank stability.<br />

Rangel<strong>and</strong>s. 8: 55–56.<br />

Bol<str<strong>on</strong>g>in</str<strong>on</strong>g>, S.B.; Ward, T.J. 1987. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a New Mexico dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age<br />

bas<str<strong>on</strong>g>in</str<strong>on</strong>g> from a forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong><br />

forest hydrology <strong>and</strong> <strong>water</strong>shed management. Publ. 167.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrological Sciences:<br />

191–198.<br />

Bollen, W.B. 1974. Soil microbes. In: Cramer, O. (ed.). Envir<strong>on</strong>mental<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest residues management <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific<br />

Northwest. A state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge compendium. Gen. Tech. Rep.<br />

PNW-24. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Northwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>:<br />

B-1-B-30.<br />

B<strong>on</strong>d, W.J.; Van Wilgen, B.W. 1996. Fire <strong>and</strong> plants. L<strong>on</strong>d<strong>on</strong>:<br />

Chapman & Hall. 263 p.<br />

214 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Borchers, J.G.; Perry, D.A. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil<br />

organisms. In: Walstad, J.D.; Radosevich, S.R.; S<strong>and</strong>berg, D.V.<br />

(eds.). Natural <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific Northwest forests.<br />

Corvallis: Oreg<strong>on</strong> State University Press: 143–157.<br />

Bosch, J.M.; Hewlett, J.D. 1982. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> catchment experiments<br />

to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> changes <strong>on</strong> <strong>water</strong> yield <strong>and</strong><br />

evapotranspirati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 55: 3–23.<br />

Bozek, M.A.; Young, M.K. 1994. Fish mortality result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

delayed <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the greater Yellowst<strong>on</strong>e ecosystem. Great<br />

Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> Naturalist. 54(1): 91–95.<br />

Brans<strong>on</strong>, W.J.; Miller, R.F.; McQueen, I.S. 1976. Moisture relati<strong>on</strong>ships<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> twelve northern shrub communities near Gr<strong>and</strong> Juncti<strong>on</strong>,<br />

Colorado. Ecology. 57: 1104–1124.<br />

Bridgham, S.D.; Che<str<strong>on</strong>g>in</str<strong>on</strong>g> Lu, P.; Richards<strong>on</strong>, J.L.; Updegraff, K. 2001.<br />

Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> northern peatl<strong>and</strong>s: histisols <strong>and</strong> gelisols. In: Richards<strong>on</strong>,<br />

J.L.; Vepraskas, M.J. (eds.). Wetl<strong>and</strong> <strong>soils</strong>—genesis, hydrology,<br />

l<strong>and</strong>scapes, <strong>and</strong> classificati<strong>on</strong>. Lewis Publishers: 343–370.<br />

Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; DeBano, L.F. 2003.<br />

Hydrology <strong>and</strong> the management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>sheds. 3 rd Editi<strong>on</strong>.<br />

Ames: Iowa State Press. 704 p.<br />

Brown, A.A.; Davis, K.P. 1973. Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>: c<strong>on</strong>trol <strong>and</strong> use. New<br />

York: McGraw-Hill Book Company. 584 p.<br />

Brown, G.W.; Krygier, J.T. 1970. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> stream<br />

temperature. Water Resources Research. 6(5): 1189–1198.<br />

Brown, G.W. 1980. Forestry <strong>and</strong> <strong>water</strong> quality. Corvallis: Oreg<strong>on</strong><br />

State University Bookstores. 124 p.<br />

Brown, G.W.; Gahler, A.R.; Marst<strong>on</strong>, R.B. 1973. Nutrient losses<br />

after clear-cut logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the Oreg<strong>on</strong> Coast<br />

Range. Water Resources Research. 9: 1450–1453.<br />

Brown, H.E.; Thomps<strong>on</strong>, J.R. 1965. Summer <strong>water</strong> used by aspen,<br />

spruce, <strong>and</strong> grassl<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> western Colorado. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry.<br />

63: 756–760.<br />

Brown, J.K. 1970. Physical fuel properties <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest<br />

floors <strong>and</strong> cheatgrass. Res. Pap. INT-74. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture Forest Service, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 16 p.<br />

Brown, J.K. 1981. Bulk densities <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>uniform surface fuels <strong>and</strong><br />

their applicati<strong>on</strong> to <str<strong>on</strong>g>fire</str<strong>on</strong>g> model<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Forest Science. 27(4): 667–683.<br />

Brown, J.K. 2000. Introducti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes. In: Brown, J.K.;<br />

Smith, J.K. (eds.). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>—<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

flora. Gen. Tech. Rep. GTR-RMRS-42-Vol. 2. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service: 1–8.<br />

Brown, J.K.; Smith, J.K. 2000. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> floral. Gen. Tech. Rep. RMRS-GTR-42-Vol. 2. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 257 p.<br />

Brown, J.K.; Marsden, M.A.; Ryan, K.C.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D. 1985.<br />

Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g duff <strong>and</strong> woody fuel c<strong>on</strong>sumed by prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

northern Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Res. Pap. INT-337. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 23 p.<br />

Brown, T.C.; B<str<strong>on</strong>g>in</str<strong>on</strong>g>ckley, D. 1994. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> management <strong>on</strong> <strong>water</strong><br />

quality <str<strong>on</strong>g>in</str<strong>on</strong>g> North American forests. Gen. Tech. Rep. RM-248. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 27 p.<br />

Bryant, W.L.; Br<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, M.M.; Hook, P.B.; J<strong>on</strong>es, M.N. 1991. Resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a brackish marsh to simulated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> to nitrogen <strong>and</strong> phosphorus enrichment. In: Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>tidal<br />

brackish marsh <str<strong>on</strong>g>in</str<strong>on</strong>g> coastal North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. Open File Report<br />

91-03. Slidell, LA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong><br />

Wildlife Service, Nati<strong>on</strong>al Wetl<strong>and</strong>s Research Center: 283–306.<br />

Bullard, W.E. 1954. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> soil freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g by snow cover, plant<br />

cover, <strong>and</strong> soil c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Northwestern United States. Regi<strong>on</strong><br />

6 Soils Report. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Northwest Regi<strong>on</strong>. 12 p.<br />

Burgan, R.E.; Rothermel, R.C. 1984. BEHAVE: Fire behavior predicti<strong>on</strong><br />

<strong>and</strong> fuel model<str<strong>on</strong>g>in</str<strong>on</strong>g>g system—fuel subsystem. Gen. Tech.<br />

Rep. GTR INT-167. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 126 p.<br />

Burroughs, E.R., Jr.; K<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.G. 1989. Reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest roads. Gen. Tech. Rep. INT-264. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>. 21 p.<br />

Byram, G.M. 1959. Combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest fuels. In: K.P. Davis (ed.).<br />

Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>: c<strong>on</strong>trol <strong>and</strong> use. New York: McGraw-Hill: 61–123.<br />

California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 1998. California forest practices<br />

rules. Sacramento: California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry <strong>and</strong> Fire<br />

Protecti<strong>on</strong>. 257 p.<br />

Callaham, M.A., Jr.; Hendrix, P.F.; Phillips, R.J. 2003. Occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an exotic earthworm (Amynthas agrestis) <str<strong>on</strong>g>in</str<strong>on</strong>g> undisturbed <strong>soils</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the southern Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, USA. Pedobiologia.<br />

47(5/6): 466–470.<br />

Callis<strong>on</strong>, J.; Brothers<strong>on</strong>, J.D.; Brown, J.E. 1985. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>on</strong> the blackbrush (Coleogyne ramosissima) community <str<strong>on</strong>g>of</str<strong>on</strong>g> southwestern<br />

Utah. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 38: 535–538.<br />

Campbell, G.S.; Jungbauer, J.D., Jr.; Bidlake, W.R.; Hungerford,<br />

R.D. 1994. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> soil thermal<br />

c<strong>on</strong>ductivity. Soil Science. 158(5): 307–313.<br />

Campbell, G.S.; Jungbauer, J.D., Jr.; Bristow, K.L.; Hungerford,<br />

R.D. 1995. Soil temperature <strong>and</strong> <strong>water</strong> c<strong>on</strong>tent beneath a surface<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Soil Science. 159(6): 363–374.<br />

Campbell, G.S.; Jungbauer, J.D., Jr.; Bristow, K.L.; Bidlake, W.R.<br />

1992. Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <strong>and</strong> <strong>water</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g> soil under high<br />

temperature (<str<strong>on</strong>g>fire</str<strong>on</strong>g>) c<strong>on</strong>diti<strong>on</strong>s. Pullman: Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State University,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Soils. Unpublished report<br />

to U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Fire<br />

Sciences Laboratory, Missoula, MT.<br />

Campbell, R.E., Baker, M.B., Jr.; Ffolliott, P.F.; Lars<strong>on</strong>, F.R.; Avery,<br />

C.C. 1977. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e ecosystem: an<br />

Ariz<strong>on</strong>a case study. Res. Pap. RM-191. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 12 p.<br />

Cann<strong>on</strong>, S.H. 2001. Debris-flow generati<strong>on</strong> from recently burned<br />

<strong>water</strong>sheds. Envir<strong>on</strong>mental & Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g Geoscience. 7(4):<br />

321–241.<br />

Carballas, M.; Acea, M.J.; Cabaneiro, A.; Trasar, C.; Villar, M.C.;<br />

Diaz-Rav<str<strong>on</strong>g>in</str<strong>on</strong>g>a, M.; Fern<strong>and</strong>ez, I.; Prieto, A.; Saa, A.; Vazquez, F.J.;<br />

Zehner, R.; Carballas, T. 1993. Organic matter, nitrogen, phosphorus<br />

<strong>and</strong> microbial populati<strong>on</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forest humiferous<br />

acid <strong>soils</strong> after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In: Trabaud, L.; Prod<strong>on</strong>, P. (eds.). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Ecosystem Research Report 5. Brussels,<br />

Belgium: Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Countries: 379–385.<br />

Carreira, J.A.; Niell, F.X. 1992. Plant nutrient changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a semiarid<br />

Mediterranean shrubl<strong>and</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong><br />

Science. 3: 457–466.<br />

Carter, C. D. <strong>and</strong> J. N. R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne. In Press. Short-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Picture Fire <strong>on</strong> fishes <strong>and</strong> aquatic habitat. Hydrology <strong>and</strong> Water<br />

Resources <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a <strong>and</strong> the Southwest. 35:<br />

Chambers, D.P.; Attiwill, P.M. 1994. The ash-bed effect <str<strong>on</strong>g>in</str<strong>on</strong>g> Eucalyptus<br />

regnans forest: chemical, physical <strong>and</strong> microbiological changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> soil after heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g or partial sterilizati<strong>on</strong>. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Botany. 42: 739–749.<br />

Ch<strong>and</strong>ler, C.P; Cheney, P.; Thomas, P; Trabaud, L.; Williams, D.<br />

1991. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> forestry - Volume I: Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

New York: John Wiley & S<strong>on</strong>s, Inc. 450 p.<br />

Chiun-M<str<strong>on</strong>g>in</str<strong>on</strong>g>g, L. 1985. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> check dams <strong>on</strong> steep mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

channels <str<strong>on</strong>g>in</str<strong>on</strong>g> northeastern Taiwan. In: El-Swaify, S.A.;<br />

Moldenhauer, W.C.; Lo, A., (eds.). Soil erosi<strong>on</strong> <strong>and</strong> c<strong>on</strong>servati<strong>on</strong>:<br />

540–548.<br />

Christ, J.H. 1934. Reseed<str<strong>on</strong>g>in</str<strong>on</strong>g>g burned-over l<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Idaho.<br />

Ag. Exp. Sta. Bull. 201. Moscow: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Idaho. 27 p.<br />

Christensen, N.L. 1973. Fire <strong>and</strong> the nitrogen cycle <str<strong>on</strong>g>in</str<strong>on</strong>g> California<br />

chaparral. Science. 181: 66–68.<br />

Christensen, N.L. 1981. Fire regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> southeastern <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

In: Mo<strong>on</strong>ey, H.A.; B<strong>on</strong>nicksen, T.M.; Christensen, N.L.; Lotan<br />

J.E.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>ers, R.A. (tech. coords.). Fire Regimes <strong>and</strong> ecosystem<br />

properties: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ference; 1978 December 11–15;<br />

H<strong>on</strong>olulu, HI. Gen. Tech. Rep. WO-26. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service: 112–136.<br />

Christensen, N.L. 1985. Shrubl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <strong>and</strong> their evoluti<strong>on</strong>ary<br />

c<strong>on</strong>sequences. In: Pickett, S.T.A.; White, P.S. (eds.). The<br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> natural disturbances <strong>and</strong> patch dynamics. New York:<br />

Academic Press: 85–100.<br />

Christensen, N.L.; Mueller, C.H. 1975. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> factors<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g plant growth <str<strong>on</strong>g>in</str<strong>on</strong>g> Adenostoma chaparral. Ecological<br />

M<strong>on</strong>ographs. 45: 29–55.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 215


Christensen, N.L.; Wilbur, R.B.; McLean, J. S. 1988. Soil-Vegetati<strong>on</strong><br />

correlati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Croatan Nati<strong>on</strong>al Forest,<br />

North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. Biol. Rep. 88(28). Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong> Wildlife Service. 97 p.<br />

Clark, J.S. 1998. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term <strong>water</strong> balances <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes,<br />

north-western M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 77: 989–1004.<br />

Clary, W.P.; Baker, M.B., Jr.; O’C<strong>on</strong>nell, P.F.; Johnsen, T.N., Jr.;<br />

Campbell, R.E. 1974. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper removal <strong>on</strong> natural<br />

resource products <strong>and</strong> users <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. Res. Pap. RM-128.<br />

Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 28 p.<br />

Clayt<strong>on</strong>, J.L. 1976. Nutrient ga<str<strong>on</strong>g>in</str<strong>on</strong>g>s to adjacent <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>: an evaluati<strong>on</strong>. Forest Science. 22: 162–166.<br />

Clayt<strong>on</strong>, J.L.; Kennedy, D.A. 1985. Nutrient losses from timber<br />

harvest <str<strong>on</strong>g>in</str<strong>on</strong>g> the Idaho batholith. Soil Science Society American<br />

Journal. 49(4): 1041–1049.<br />

Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>e, G.G.; Brooks, W.M. 1979. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> light seed <strong>and</strong> fertilizer<br />

applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> steep l<strong>and</strong>scapes with <str<strong>on</strong>g>in</str<strong>on</strong>g>fertile <strong>soils</strong> after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Northern<br />

Regi<strong>on</strong> Soil, Air, Water Notes. Missoula, MT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Northern Regi<strong>on</strong>: 79–86.<br />

Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>e, R.G.; Haupt, H.F.; Campbell, G.S. 1977. Potential <strong>water</strong> yield<br />

resp<strong>on</strong>se follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g clearcut harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> north <strong>and</strong> south slopes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Northern Idaho. Res. Pap. INT-191. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 16 p.<br />

Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>, B.D.; Vose, J.M.; Swank, W.T. 1996. Shifts <str<strong>on</strong>g>in</str<strong>on</strong>g> aboveground<br />

<strong>and</strong> forest floor carb<strong>on</strong> <strong>and</strong> nitrogen pools after fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern Appalachians. Forest Science. 42:<br />

431–441.<br />

Cohen, A.D.; Casagr<strong>and</strong>e, D.J.; Andrejko, M.J.; Best, G.R. 1984. The<br />

Okefenokee Swamp: Its natural history, geology, <strong>and</strong> geochemistry.<br />

Los Alamos, NM: Wetl<strong>and</strong> Surveys. 709 p.<br />

Coleman, D.C.; Crossley, D.A., Jr. 1996. Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

ecology. New York: Academic Press. 205 p.<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, L.M.; Johnst<strong>on</strong>, C.E. 1995. Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> straw bale dams<br />

for erosi<strong>on</strong> c<strong>on</strong>trol <str<strong>on</strong>g>in</str<strong>on</strong>g> the Oakl<strong>and</strong> Hills follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1991.<br />

In: Keeley, J.E.; Scott, T. (eds.). Brush<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> California wildl<strong>and</strong>s:<br />

ecology <strong>and</strong> resources management. Fairfield, WA: Internati<strong>on</strong>al<br />

Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire: 171–183.<br />

C<strong>on</strong>ard, S. G.; Ivanova, G.A. 1997. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Russian boreal<br />

forests—potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> regime characteristics <strong>on</strong> emissi<strong>on</strong>s<br />

<strong>and</strong> global carb<strong>on</strong> balance estimates. Envir<strong>on</strong>mental Polluti<strong>on</strong>.<br />

98: 305–313.<br />

C<strong>on</strong>rad, C.E.; Poult<strong>on</strong>, C.E. 1966. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> Idaho fescue<br />

<strong>and</strong> bluebunch wheatgrass. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 19:<br />

138–141.<br />

Cope, M.J.; Chal<strong>on</strong>er, W.G. 1985. WildFire: an <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

<strong>and</strong> physical processes. In: Tiffney, B.H. (ed.). Geologic factors<br />

<strong>and</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants. New Haven, CT: Yale University<br />

Press: 257–277<br />

Copel<strong>and</strong>, O.L. 1961. Watershed management <strong>and</strong> reservoir life.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> American Water Works Associati<strong>on</strong>. 53(5): 569–578.<br />

Copel<strong>and</strong>, O.L. 1968. Forest Service Research <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> c<strong>on</strong>trol <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Western United States. Annual meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g, American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural<br />

Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers; 1968 June 18–21; Logan, UT. Paper 68-227. St.<br />

Joseph, MI: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers. 11 p.<br />

Copley, T.L.; Forrest, L.A.; McColl, A.G.; Bell, F.G. 1944. Investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong> c<strong>on</strong>trol <strong>and</strong> reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eroded l<strong>and</strong>s at the<br />

Central Piedm<strong>on</strong>t C<strong>on</strong>servati<strong>on</strong> Stati<strong>on</strong>. Statesville, NC, 1930–<br />

1940. Tech. Bull. 873. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Soil C<strong>on</strong>servati<strong>on</strong> Service. 66 p.<br />

Copstead, R. 1997. The <strong>water</strong>/road <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> technology series: an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong>. No.9777 1805-SDTDC. San Dimas, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, San Dimas Technology<br />

Center. 4 p.<br />

Costales, E.F., Jr.; Costales, A.B. 1984. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>and</strong> evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some emergency measures for the quick rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

newly burned <strong>water</strong>shed areas <str<strong>on</strong>g>in</str<strong>on</strong>g> the p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest. Sylvtrop Philipp<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

Forestry Research. 9: 33–53.<br />

Coults, J.R.H. 1945. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> veld burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the base exchange<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil. South Africa Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science. 41: 218–224.<br />

Countryman, C.M. 1975. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> heat—Its role <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>—Part 1. Unnumbered Publicati<strong>on</strong>. Berkeley, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 8 p.<br />

Countryman, C.M. 1976a. Radiati<strong>on</strong>. Heat—Its role <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>—Part 4. Unnumbered Publicati<strong>on</strong>. Berkeley, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 8 p.<br />

Countryman, C.M. 1976b. Radiati<strong>on</strong>. Heat—Its role <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>—Part 5. Unnumbered Publicati<strong>on</strong>. Berkeley, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 12 p.<br />

Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, W.W.; Moore, M.M. 1992. Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> presettlement<br />

tree densities <strong>and</strong> natural <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g> Ecology Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 73(2 suppl): 142–148.<br />

Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, W.W.; Sackett, S.S. 1986. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

soil nitrogen c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Soil Science<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 50: 452–457.<br />

Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, W.W.; Sackett, S.S. 1992. Soil m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral changes follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Forest Ecology <strong>and</strong> Management.<br />

54: 175–191.<br />

Cov<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, W.W.; Everette, R.L.; Steele, R.; Irw<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.L.; Daer, T.A.;<br />

Auclaire, A.N.D. 1994. Historical <strong>and</strong> anticipated changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able Forestry. 2: 13–63.<br />

Coward<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. 1979. Classificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s <strong>and</strong> deep<strong>water</strong> habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

Pub. FWS/OBS-79/31. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Interior, Fish <strong>and</strong> Wildlife Service. 103 p.<br />

Craft, C.B. 1999. Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong> <strong>soils</strong>. In: Richards<strong>on</strong>, J.L.;<br />

Vepraskas, M.J (eds.). Wetl<strong>and</strong> <strong>soils</strong>-genesis, hydrology, l<strong>and</strong>scapes,<br />

<strong>and</strong> classificati<strong>on</strong>. Lewis Publishers: 107–135.<br />

Cr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, A.R.; M<strong>on</strong>n<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, L.V. 1953. Evapotranspirati<strong>on</strong> <strong>and</strong> other<br />

<strong>water</strong> losses <strong>on</strong> some aspen forest types <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to <strong>water</strong><br />

available for stream flow. Transacti<strong>on</strong>s, American Geophysical<br />

Uni<strong>on</strong>. 34: 563–574.<br />

Cr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, A.R.; Marst<strong>on</strong>, R.B. 1950. Summer ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northern Utah. Transacti<strong>on</strong>s, American Geophysical Uni<strong>on</strong>. 31(1):<br />

83–95.<br />

Crouse, R. P. 1961. First-year <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> treatment <strong>on</strong> dryseas<strong>on</strong><br />

streamflow after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California. Res. Note<br />

191. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Southwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>.<br />

4 p.<br />

Crow, T. R.; Baker, M.E.; Burt<strong>on</strong>, V. Barnes. 2000. Chapter 3:<br />

Diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> riparian l<strong>and</strong>scapes. In: Verry, E.S.; Hornbeck,<br />

J.W.; Doll<str<strong>on</strong>g>of</str<strong>on</strong>g>f, C.A. (eds.). Riparian management <str<strong>on</strong>g>in</str<strong>on</strong>g> forests <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental eastern United States. New York: Lewis Publishers:<br />

43–66.<br />

Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>s, K.R. 1978. Ecology <strong>and</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic <str<strong>on</strong>g>in</str<strong>on</strong>g>sects.<br />

In: Merritt, R.W.; Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>s, K.W. (eds.). An <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to the<br />

aquatic <str<strong>on</strong>g>in</str<strong>on</strong>g>sects <str<strong>on</strong>g>of</str<strong>on</strong>g> North America. Dubuque, IA: Kendall-Hunt:<br />

29–31.<br />

Curtis, J.T. 1959. The vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g>—An ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant communities. Madis<strong>on</strong>: The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> Press.<br />

657 p.<br />

Daniel, C.C., III. 1981. NAME OF ARTICLE?? In: Richards<strong>on</strong>, C.J.,<br />

Matthews, M.L.; Anders<strong>on</strong>, S.A. (eds.) Pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s: An<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal pla<str<strong>on</strong>g>in</str<strong>on</strong>g> fresh<strong>water</strong> bogs <str<strong>on</strong>g>in</str<strong>on</strong>g> North<br />

Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. Stroudsburg, PA: Hutch<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> Ross Publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g Company;<br />

New York, NY: Academic Press: 69–108.<br />

Daniel, H.A.; Elwell, H.M.; Cox, M.B. 1943. Investigati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> erosi<strong>on</strong><br />

c<strong>on</strong>trol <strong>and</strong> the reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eroded l<strong>and</strong> at the Red Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

C<strong>on</strong>servati<strong>on</strong> Experiment Stati<strong>on</strong>, Guthrie, OK, 1930–1940. Tech.<br />

Bull. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Soil C<strong>on</strong>servati<strong>on</strong> Service.<br />

837 p.<br />

Davis, A.M., 1979. Wetl<strong>and</strong> successi<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> the pollen record: a<br />

midwestern example. The American Midl<strong>and</strong> Naturalist. 102(1)<br />

86–102.<br />

Davis, E.A. 1984. C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a chaparral <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <strong>water</strong><br />

yield <strong>and</strong> nitrate loss. Water Resources Research. 20: 1643–1649.<br />

Davis, E.A. 1987. Chaparral c<strong>on</strong>versi<strong>on</strong> <strong>and</strong> streamflow: Nitrate<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease is balanced ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> bicarb<strong>on</strong>ate. Water<br />

Resources Research. 23: 215–224.<br />

Davis, J.B. 1984. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g another empire. Fire Management Notes.<br />

45(4): 12–17.<br />

Davis, J.D. 1977. Southern California reservoir sedimentati<strong>on</strong>.<br />

Prepr<str<strong>on</strong>g>in</str<strong>on</strong>g>t. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers Fall C<strong>on</strong>venti<strong>on</strong><br />

<strong>and</strong> Exhibit; San Francisco, CA.<br />

216 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


De Las Haras, J.; Herranz, J.M.; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>ez, J.J. 1993. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bryophyte pi<strong>on</strong>eer communities <strong>on</strong> edaphic changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> damaged by <str<strong>on</strong>g>fire</str<strong>on</strong>g> (SE Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>). In:<br />

Trabaud, L.; Prod<strong>on</strong>, P. (eds.). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Ecosystem Res. Rep. 5. Brussels, Belgium: Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

European Countries: 387–393.<br />

Dean, AE. 2001. Evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed c<strong>on</strong>servati<strong>on</strong><br />

treatments applied after the Cerro Gr<strong>and</strong>e Fire, Los Alamos,<br />

New Mexico. Tucs<strong>on</strong>: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a. 116 p. Thesis.<br />

DeBano, L.F. 1969. Observati<strong>on</strong>s <strong>on</strong> <strong>water</strong>-repellent <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Western<br />

United States. In: DeBano, L.F.; Letey, J. (eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium <strong>on</strong> <strong>water</strong> repellent <strong>soils</strong>. 1968 May 6–10; Riverside,<br />

CA Davis: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California: 17–29.<br />

DeBano, L.F. 1974. Chaparral <strong>soils</strong>. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium <strong>on</strong><br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the chaparral. San Francisco, CA: Sierra Club: 19–26.<br />

DeBano, L.F. 1981. Water repellent <strong>soils</strong>: a state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art. Gen.<br />

Tech. Rep. PSW-46. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Southwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 21 p.<br />

DeBano, L.F. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil resource <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a<br />

chaparral. In: Krammes, J.S. (tech. coord.). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> southwestern natural resources. Gen. Tech. Rep. RM-<br />

191. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>:<br />

65–77.<br />

DeBano, L.F. 1991. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil. In: Harvey. A. E.;<br />

Neuenschw<strong>and</strong>er, L.F.(eds.). Management <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

western-m<strong>on</strong>tane forest <strong>soils</strong>. Gen. Tech. Rep. INT-280. Ogden,<br />

UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 32–50.<br />

DeBano, L.F. 2000a. Water repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>: a historical overview.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 231-232: 4–32.<br />

DeBano, L.F. 2000b. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>water</strong><br />

repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> envir<strong>on</strong>ments: a review. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology.<br />

231-232: 195–206.<br />

DeBano, L.F.; C<strong>on</strong>rad, C.E. 1976. Nutrients lost <str<strong>on</strong>g>in</str<strong>on</strong>g> debris <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>water</strong> from a burned chaparral <strong>water</strong>shed. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

third Federal <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency sedimentati<strong>on</strong> c<strong>on</strong>ference;1976 March;<br />

Denver, CO. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Water Resources Council: 3: 13–27<br />

DeBano, L.F.; C<strong>on</strong>rad, C.E. 1978. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

chaparral ecosystem. Ecology. 59: 489–497.<br />

DeBano, L.F.; Klopatek, J.M. 1988. Phosphorus dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper<br />

<strong>soils</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g simulated burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Soil Science Society<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> American Journal. 52: 271–277.<br />

DeBano, L.F.; Krammes, J.S. 1966. Water repellent <strong>soils</strong> <strong>and</strong> their<br />

relati<strong>on</strong> to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> temperatures. Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al<br />

Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Hydrology. 11(2): 14–19.<br />

DeBano, L. F.; Neary, D.G. 1996. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> riparian systems.<br />

In: Ffolliott, P. F.; DeBano, L.F.; Baker, M.B., Jr., Gottfried, G.J.;<br />

Solis-Garza, G.; Edm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster, C.B.; Neary, D.G.; Allen, L.S.; Hamre,<br />

R.H. (tech. coords.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> Madrean Prov<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>:<br />

a symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Gen. Tech. Rep. RM-GTR-289.<br />

Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 69–76.<br />

DeBano, L.F.; Eberle<str<strong>on</strong>g>in</str<strong>on</strong>g>, G.E.; Dunn, P.H. 1979. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

chaparral <strong>soils</strong>: I. Soil nitrogen. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> American<br />

Journal. 43: 504–509.<br />

DeBano, L.F.; Ffolliott, P.F.; Baker, M.B., Jr. 1996. Fire severity<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> resources. In: Ffolliott, P.F.; DeBano, L.F.;<br />

Baker, M.B., Jr.; Gottfried, G.J.; Solis-Garza, G.; Edm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster,<br />

C.B.; Neary, D.G.; Allen, L.S.; Hamre, R.H. (tech. coords.). Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> Madrean Prov<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: a symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Gen. Tech. Rep. RM-GTR-289. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>: 77–84.<br />

DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. 1998. Fire’s <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. New York: John Wiley & S<strong>on</strong>s, Inc. 333 p.<br />

DeBano, L.F.; Rice, R.M.; C<strong>on</strong>rad, C.E. 1979. Soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil properties, plant nutrients, erosi<strong>on</strong> <strong>and</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Res. Pap. PSW-145. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Southwest Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 21 p.<br />

DeBano, L.F.; Savage, S.M.; Hamilt<strong>on</strong>, D.A. 1976. The transfer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heat <strong>and</strong> hydrophobic substances dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Soil Science<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 40: 779–782.<br />

DeBell, D.S.; Ralst<strong>on</strong>, C.W. 1970. Release <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

light forest fuels. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. 34:<br />

936–938.<br />

DeByle, N.V. 1970a. Do c<strong>on</strong>tour trenches reduce wet-mantle flood<br />

peaks? Res. Note INT-108. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 8 p.<br />

DeByle, N.V. 1970b. Infiltrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tour trenches <str<strong>on</strong>g>in</str<strong>on</strong>g> the Sierra<br />

Nevada. Res. Note INT-115. Ogden, UT: U.S.Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 5 p.<br />

DeByle, N.V. 1981. Clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the larch/Douglas-fir<br />

forests <str<strong>on</strong>g>of</str<strong>on</strong>g> western M<strong>on</strong>tana—a multifaceted research summary.<br />

Gen. Tech. Rep. INT-99. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 73 p.<br />

DeByle, N.V.; Packer, P.E. 1972. Plant nutrient <strong>and</strong> soil losses <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

overl<strong>and</strong> flow from burned forest clearcuts. In: Watersheds <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

transiti<strong>on</strong> symposium; 1972 June; Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO American<br />

Water Resources Associati<strong>on</strong> Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Series. 14: 296–307.<br />

Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.E.; Burgan, R.E.; Cohen, J.D. 1977. The nati<strong>on</strong>al <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

danger rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g system, 1978. Gen. Tech. Rep. INT-39. Ogden, UT:<br />

U.S.Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 63 p.<br />

DeGraff, J.V. 1982. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> felled trees as a sediment<br />

reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g measure, Rock Creek Fire, K<str<strong>on</strong>g>in</str<strong>on</strong>g>gs RD, Sierra Nati<strong>on</strong>al<br />

Forest, Fresno, CA: Special Report. Fresno, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Sierra Nati<strong>on</strong>al Forest. 15 p.<br />

Deka, H.K.; Mishra, R.R. 1983. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Plant <strong>and</strong> Soil. 73: 167–175.<br />

Deka, H.K.; Mishra, R.R.; Sharma, G.D. 1990. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> VA mycorrhizal fungi <strong>and</strong> their <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

early plant col<strong>on</strong>iz<str<strong>on</strong>g>in</str<strong>on</strong>g>g species. Acta Botanica Indica. 18: 184–189.<br />

Diaz-Rav<str<strong>on</strong>g>in</str<strong>on</strong>g>a, M.; Prieto, A.; Baath, E. 1996. Bacterial activity <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

forest soil after soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> organic amendments measured<br />

by the thymid<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>and</strong> leuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> techniques. Soil<br />

Biology <strong>and</strong> Biochemistry. 28: 419–426.<br />

Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, M.B.; Johns<strong>on</strong>, E.A. 2001. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> trees. In:<br />

Johns<strong>on</strong>, E.A.; Miyanishi, K. (eds.). Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, behavior <strong>and</strong><br />

ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g>. San Francisco, CA: Academic Press: 477–525.<br />

Dimitrakopoulos, A.P.; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.E.; Papamichos, N.T. 1994. A<br />

simulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In: Sala,<br />

M.; Rubio, J.L. (eds.). Soil erosi<strong>on</strong> as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Logr<strong>on</strong>o, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>orma Edici<strong>on</strong>es: 207–216.<br />

Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. 2000. Soil <strong>water</strong> repellency:<br />

its causes, characteristics <strong>and</strong> hydro-geomorphological<br />

signifigance. Earth Science Reviews. 51(1-4): 33–65.<br />

Dortignac, E.J. 1956. Wateshed resources <strong>and</strong> problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

upper Rio Gr<strong>and</strong>e Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>. Special Stati<strong>on</strong> Paper. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 107 p.<br />

Doty, R.D. 1970. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> snow accumulati<strong>on</strong>.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil <strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>. 25(3): 102–104.<br />

Doty, R.D. 1971. C<strong>on</strong>tour trench<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> streamflow from a<br />

Utah <strong>water</strong>shed. Res. Pap. INT-95. Ogden, UT: U.S.Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 19 p.<br />

Doty, R.D. 1972. Soil <strong>water</strong> distributi<strong>on</strong> <strong>on</strong> a c<strong>on</strong>tour-trenched area.<br />

Res. Note INT-163. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 6 p.<br />

Douglass, J.E.; Godw<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.C. 1980. Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> soil erosi<strong>on</strong> from site<br />

preparati<strong>on</strong> practices. In: U.S. forestry <strong>and</strong> <strong>water</strong> quality: what<br />

course <str<strong>on</strong>g>in</str<strong>on</strong>g> the 80’s. Richm<strong>on</strong>d, VA. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Water Polluti<strong>on</strong><br />

C<strong>on</strong>trol Federati<strong>on</strong>: 51–73.<br />

Douglass, J.E.; Van Lear, D.H. 1983. Prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <strong>water</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> ephemeral streams <str<strong>on</strong>g>in</str<strong>on</strong>g> the Piedm<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a.<br />

Forest Science. 29(1): 181–189.<br />

Duchesne, L.C.; Hawkes, B.C. 2000. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> northern <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

In: Brown, J.K.; Smith, J.K. (eds.). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>—<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2.<br />

Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 35–52.<br />

Dum<strong>on</strong>tet, S.; D<str<strong>on</strong>g>in</str<strong>on</strong>g>el, H.; Scopa, A.; Mazzatura, A.; Sarac<str<strong>on</strong>g>in</str<strong>on</strong>g>o, A. 1996.<br />

Post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> soil microbial biomass <strong>and</strong> nutrient c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 217


forest soil from a dunal Mediterranean envir<strong>on</strong>ment. Soil Biology<br />

<strong>and</strong> Biochemistry. 28: 1467–1475.<br />

Dunn, P.F.; DeBano, L.F. 1977. Fire’s effect <strong>on</strong> biological <strong>and</strong><br />

chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> chaparral <strong>soils</strong>. In: Mo<strong>on</strong>ey, H.A.; C<strong>on</strong>rad;<br />

C.E. (tech. coords.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong> the envir<strong>on</strong>mental<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> fuel management <str<strong>on</strong>g>in</str<strong>on</strong>g> Mediterranean<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Gen. Tech. Rep. WO-3: Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service: 75–84.<br />

Dunn, P.H.; Barro, S.C.; Poth, M. 1985. Soil moisture affects<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> heated chaparral soil. Soil Biology<br />

<strong>and</strong> Biochemistry. 17: 143–148.<br />

Dunn, P.H.; Barro, S.C.; Wells, W.G., III.; Poth, A.; Wohlgemuth,<br />

P.M.; Colver, C.G. 1988. The San Dimas Experimental Forest: 50<br />

years <str<strong>on</strong>g>of</str<strong>on</strong>g> research. Gen. Tech. Rep. PSW-104. Berkeley, CA: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest<br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 49 p.<br />

Dunn, P.H.; DeBano, L.F.; Eberle<str<strong>on</strong>g>in</str<strong>on</strong>g>, G.E. 1979. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

chaparral <strong>soils</strong>: II. Soil microbes <strong>and</strong> nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>.<br />

Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 43: 509–514.<br />

Dunne, T.; Leopold, L.B. 1978. Water <str<strong>on</strong>g>in</str<strong>on</strong>g> envir<strong>on</strong>mental plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

San Francisco, CA: W.H. Freeman <strong>and</strong> Company. 818 p.<br />

Dyrness, C.T.; Norum, R.A. 1983. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental <str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

<strong>on</strong> black spruce forest floors <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 13: 879–893.<br />

Dyrness, C.T.; Van Cleve, K.; Levis<strong>on</strong>, J.D. 1989. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil chemistry <str<strong>on</strong>g>in</str<strong>on</strong>g> four forest types <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska.<br />

Canadan Jounal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 19: 1389–1396.<br />

Edwards, L.; Burney, J.; DeHaan, R. 1995. Research<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> cool-period soil erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ce Edward Isl<strong>and</strong>.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil <strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>. 50: 184–187.<br />

Eivazi, F.; Bayan, M.R. 1996. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> select soil enzymes <str<strong>on</strong>g>in</str<strong>on</strong>g> an oak-hickory forest.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 26: 1799–1804.<br />

Elliot, W.J.; Hall, D.E. 1997. Water Erosi<strong>on</strong> Predicti<strong>on</strong> Project<br />

(WEPP) forest applicati<strong>on</strong>s. Gen. Tech. Rep. INT-GTR-365. Ogden,<br />

UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>. 11 p.<br />

Elliot, W.J.; Graves, S.M.; Hall, D.E.; Moll, J.E. 1998. The X-DRAIN<br />

cross dra<str<strong>on</strong>g>in</str<strong>on</strong>g> spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> sediment yields. No.9877 1801-SDTDC.<br />

San Dimas, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

San Dimas Technology Center. 24 p.<br />

Elliot, W.J.; Hall, D.E.; Scheele, D.L. 1999. WEPP-Road: WEPP<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface for predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest road run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, erosi<strong>on</strong> <strong>and</strong> sediment<br />

delivery. [Onl<str<strong>on</strong>g>in</str<strong>on</strong>g>e] Available: http://forest.moscowfsl.wsu.edu/<br />

fswep/docs/wepproaddoc.html.<br />

Elliot, W.J.; Scheele, D.L.; Hall, D.E. 2000. The Forest Service<br />

WEPP <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers<br />

Summer Meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 2000. Paper No. 005021. St. Joseph, MI:<br />

American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers. 9 p.<br />

Espl<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.H.; Shackleford, J.R. 1978. Cachuma burn reseed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

evaluati<strong>on</strong>: coated vs. uncoated seed, first grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g seas<strong>on</strong>. Unpublished<br />

report. Goleta, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Los Padres Nati<strong>on</strong>al Forest. 24 p.<br />

Espl<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.H.; Shackleford, J.R. 1980. Cachuma burn revisited.<br />

Unpublished report <strong>on</strong> file at: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Los Padres Nati<strong>on</strong>al Forest, San Diego, CA 5 p.<br />

Evans, R.D.; Johansen, J.R. 1999. Microbiotic crusts <strong>and</strong> ecosystem<br />

processes. Critical Reviews <str<strong>on</strong>g>in</str<strong>on</strong>g> Plant Sciences. 18: 183–225.<br />

Everett, R.L.; Java-Sharpe, B.J.; Scherer, G.R.; Wilt, F.M.; Ottmar,<br />

R.D. 1995. Co-occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobicity <strong>and</strong> allelopathy <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

s<strong>and</strong> pits under burned slash. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America<br />

Journal. 59: 1176–1183.<br />

Ewel, K.C. 1990. Swamps. In: Myers, R.L.; Ewel, J.J. (eds.). Ecosystems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Florida. Orl<strong>and</strong>o: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Florida Press:<br />

281–323.<br />

Farmer, E.E.; Fletcher, J.E. 1972. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>tra-storm characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall burst. In: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> mount<str<strong>on</strong>g>in</str<strong>on</strong>g>ous areas; proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Geilo Symposium, Norway;<br />

1972 July 31–August 5. Geneva, Switzerl<strong>and</strong>: World Meteorological<br />

Organizati<strong>on</strong>. 2: 525–531.<br />

Faulkner, S.P.; de la Cruz, A.A. 1982. Nutrient mobilizati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> an irregularly flooded marsh. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>mental Quality. 11: 129–133<br />

Faust, R. 1998. Less<strong>on</strong> plan: Fork <str<strong>on</strong>g>fire</str<strong>on</strong>g> soil loss validati<strong>on</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Unit VIII, L<strong>on</strong>g-term recovery <strong>and</strong> m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In: Burned<br />

area emergency rehabilitati<strong>on</strong> (BAER) techniques. San Francisco:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific<br />

Southwest Regi<strong>on</strong>.<br />

Feller, M.C. 1998. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity, not <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,<br />

<strong>on</strong> understory vegetati<strong>on</strong> biomass <str<strong>on</strong>g>in</str<strong>on</strong>g> British Columbia. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

13 th c<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology; 1996<br />

October 27–31; Lorne, Australia. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

Fire: 335-348.<br />

Feller, M.C.; Kimm<str<strong>on</strong>g>in</str<strong>on</strong>g>s, J.P. 1984. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slash<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> stream<strong>water</strong> chemistry <strong>and</strong> <strong>water</strong>shed nutrient budgets<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> southwestern British Columbia. Water Resources Research.<br />

20: 29–40.<br />

Fergus<strong>on</strong>, E.R. 1957. Prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> shortleaf-loblolly<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong> roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g upl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> east Texas. Fire C<strong>on</strong>trol Notes 18.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service:130-132.<br />

Fern<strong>and</strong>ez, I.; Cabaneiro, A.; Carballas, T. 1997. Organic matter<br />

changes immediately after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> an Atlantic forest soil <strong>and</strong><br />

comparis<strong>on</strong> with laboratory soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Soil Biology <strong>and</strong> Biochemistry.<br />

29: 1–11.<br />

Ferrell, W.R. 1959. Report <strong>on</strong> debris reducti<strong>on</strong> studies for mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>water</strong>sheds. Los Angeles, CA: Los Angeles County Flood C<strong>on</strong>trol<br />

District, Dams <strong>and</strong> C<strong>on</strong>servati<strong>on</strong> Branch. 164 p.<br />

Ffolliott, P.F.; Baker, M.B. Jr. 2000. Snowpack hydrology <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

southwestern United States: c<strong>on</strong>tributi<strong>on</strong>s to <strong>water</strong>shed management.<br />

In: Ffolliott, P.F., M.B. Baker, Jr., C.B. Edm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster;<br />

Dilli<strong>on</strong>, M.C.; Mora, K.L. (tech. coords.). L<strong>and</strong> stewardship <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

21 st century: the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>shed management. Proc.<br />

RMRS-P-13. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 274–276.<br />

Ffolliott, P.F.; Brooks, M.B., Jr. 1996. Process studies <str<strong>on</strong>g>in</str<strong>on</strong>g> forestry<br />

hydrology: a worldwide review. In: V.P. S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh; Kumer, B. (eds.).<br />

Surface-<strong>water</strong> hydrology. The Netherl<strong>and</strong>s: Kluwer Academic<br />

Publishers: 1–18.<br />

Ffolliott, P.F.; Neary, D.G. 2003. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> a historical wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

hydrologic processes: a case study <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

American Water Resources Associati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>gress<br />

<strong>on</strong> <strong>water</strong>shed management for <strong>water</strong> supply systems; 2003 June<br />

29–July 2. New York, NY. Middleburg, VA: American Water<br />

Resources Associati<strong>on</strong>. 10 p.<br />

Ffolliott, P.F.; Thorud, D.B. 1977. Water yield improvement by<br />

vegetati<strong>on</strong> management. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 13: 563–571.<br />

Ffolliott, P.F.; Arriaga, L.; Mercado Guido, C. 1996. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

future: benefits, c<strong>on</strong>cerns, c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. In: Ffolliott, P.F.; DeBano,<br />

L.F.; Baker, M.B., Jr.; Gottfried, G.J.; Solis-Garza, G.; Edm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster,<br />

C.B.; Neary, D.G.; Allen, L.S.; Hamre, R.H. (tech. coords.). Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> Madrean Providence <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: a symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Gen. Tech. Rep. RM-GTR-289. Fort Colll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 217–222.<br />

Ffolliott, P.F.; Gottfried, G.J.; Baker, M.B., Jr. 1989. Water yield<br />

from forest snowpack management: Research f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a<br />

<strong>and</strong> New Mexico. Water Resources Research 25: 1999–2007.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ney, M.A. 1998. FARSITE: Fire area simulator—model development<br />

<strong>and</strong> evaluati<strong>on</strong>. Res. Pap. RMRS-RP-4. Ogden UT: US<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>. 47p.<br />

Fisher, S.G.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>ckley, W.L. 1978. Chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

desert stream <str<strong>on</strong>g>in</str<strong>on</strong>g> flash flood. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Arid Envir<strong>on</strong>ments. 1:<br />

25–33.<br />

Flanagan, D.C.; Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>gst<strong>on</strong>, S.J (eds.). 1995. WEPP user summary.<br />

NSERL Report No. 11, W. Lafayette, IN: Natural Resources<br />

C<strong>on</strong>servati<strong>on</strong> Service, Nati<strong>on</strong>al Soil Erosi<strong>on</strong> Research Laboratory.<br />

131 p.<br />

Flanagan, D.C.; Whittemore, D.A.; Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>gst<strong>on</strong>, S.J.; Ascough, J.C.,<br />

II; Savabi, M. 1994. Interface for the <strong>water</strong> erosi<strong>on</strong> predicti<strong>on</strong><br />

project model. Symposium, American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural<br />

Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers; 1994 June 20–23; Kansas City, MO; St. Joseph, MI:<br />

American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers. 16 p.<br />

Fl<str<strong>on</strong>g>in</str<strong>on</strong>g>n, M.A.; We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W. 1977. Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> underground plant organs<br />

<strong>and</strong> theoretical survival dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany.<br />

55: 2550–2554.<br />

218 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Foster D.R. 1983. The history <strong>and</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal<br />

forest <str<strong>on</strong>g>of</str<strong>on</strong>g> southeastern Labrador. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany.<br />

61: 2459–2471.<br />

Fowler, W.B.; Helvey, J.D. 1978. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the thermal regimes<br />

after prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> selected tree removal (Grass Camp<br />

1975). Res. Pap. PNW-235. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Northwest Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 17 p.<br />

Fox, T.R.; Burger, J.A.; Kreh, R.E. 1983. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> site preparati<strong>on</strong><br />

<strong>on</strong> nutrient dynamics <strong>and</strong> stream <strong>water</strong> quality <strong>on</strong> a Piedm<strong>on</strong>t<br />

site. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy Abstracts. 207 p.<br />

Fr<strong>and</strong>sen, W.H. 1987. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture <strong>and</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil <strong>on</strong><br />

the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest duff. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Research. 17: 1540–1544.<br />

Fr<strong>and</strong>sen, W.H. 1991a. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat. Northwest<br />

Science. 64(4): 166–172.<br />

Fr<strong>and</strong>sen, W.H. 1991b. Heat evolved from smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g peat. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 1: 197–204.<br />

Fr<strong>and</strong>sen, W.H. 1997. Igniti<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong>. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Restorati<strong>on</strong>. 27: 1471–1477.<br />

Fr<strong>and</strong>sen, W.H.; Ryan, K.C. 1986. Soil moisture reduces belowground<br />

heat flux <strong>and</strong> soil temperature under a burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuel pile. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 16: 244–248.<br />

Fredriksen, R.L. 1971. Comparative chemical <strong>water</strong> quality—natural<br />

<strong>and</strong> disturbed streams follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium <strong>on</strong> forest l<strong>and</strong> uses <strong>and</strong> stream<br />

envir<strong>on</strong>ment; 1970 October 19–21; Corvalis, OR, Corvalis: Oreg<strong>on</strong><br />

State University, C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g Educti<strong>on</strong> Publicati<strong>on</strong>s: 125–137.<br />

Fredricksen, R.L.; Moore, D.G.; Norris, L.A. 1975. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> timber<br />

harvest, fertilizati<strong>on</strong>, <strong>and</strong> herbicide treatment <strong>on</strong> stream <strong>water</strong><br />

quality <str<strong>on</strong>g>in</str<strong>on</strong>g> the Douglas-fir regi<strong>on</strong>s. In: Bernier, B.; W<str<strong>on</strong>g>in</str<strong>on</strong>g>get, C.H.<br />

(eds.). Forest <strong>soils</strong> <strong>and</strong> forest l<strong>and</strong> management. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 4th North American forest <strong>soils</strong> c<strong>on</strong>ference, Laval University,<br />

Quebec City, Canada: 283–313.<br />

Fritze, H.; Pennanen, T.; Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en, J. 1993. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

microbial biomass <strong>and</strong> activity from prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 23: 1286–1290.<br />

Fritze, H.; Smol<strong>and</strong>er, A.; Levula, T.; Kitunene, V.; Malk<strong>on</strong>en, E.<br />

1994. Wood-ash fertilizati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> treatments <str<strong>on</strong>g>in</str<strong>on</strong>g> a scots p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

forest st<strong>and</strong>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the organic layer, microbial biomass, <strong>and</strong><br />

microbial activity. Biology <strong>and</strong> Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils. 17: 57–63.<br />

Fritze, H; Pennanen, T.; Kitunen, V. 1998. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dissolved organic carb<strong>on</strong> from burned humus <strong>and</strong> its <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

microbial activity <strong>and</strong> community structure. Soil Biology <strong>and</strong><br />

Biochemistry. 30: 687–693.<br />

Frost, C. 1995. Presettlement <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> southeastern marshes,<br />

peatl<strong>and</strong>s <strong>and</strong> swamps. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology<br />

c<strong>on</strong>ference; 1993 November 3-6. Tallahassee, FL: Tall Timbers<br />

Research Stati<strong>on</strong>. 19: 39–60.<br />

Frost, C.C. 1998. Presettlement <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> the United<br />

States: a first approximati<strong>on</strong>. In: Pruden, T.L.; Brennan, L.(eds.).<br />

Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> ecosystem management: shift<str<strong>on</strong>g>in</str<strong>on</strong>g>g paradigm from suppressi<strong>on</strong><br />

to prescripti<strong>on</strong>. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference;<br />

1996 May 7–10. Tallahassee, FL: Tall Timbers Research<br />

Stati<strong>on</strong>: 20:70–81.<br />

Fuhrer, E. 1981. Intercepti<strong>on</strong> measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> beech st<strong>and</strong>s.<br />

Ereszeti Kutatasek. 74: 125–137.<br />

Furniss, M.J.; Ledwith, T.S.; Love, M.A.; McFad<str<strong>on</strong>g>in</str<strong>on</strong>g>, B.C.; Flanagan,<br />

S.A. 1998. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> road-stream cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs to large flood events<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, Oreg<strong>on</strong>, <strong>and</strong> Northern California. 9877 1806-<br />

SDTDC. San Dimas, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, San Dimas Technology Development Center. 14 p.<br />

Fyles, J.W.; Fyles, I.H.; Beese, W.J.; Feller, M.C. 1991. Forest floor<br />

characteristics <strong>and</strong> soil nitrogen availability <strong>on</strong> slash-burned<br />

sites <str<strong>on</strong>g>in</str<strong>on</strong>g> coastal British Columbia. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest<br />

Research. 21: 1516–1522.<br />

Gartner, J.E.; Bigio, E.R.; Cann<strong>on</strong>, S.H. 2004. Compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f-event data from the Western United States. Open-<br />

File Report 04-1085. Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior,<br />

U.S. Geological Survey. 22 p.<br />

General Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g Office. 2003. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s: better <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

needed <strong>on</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency stabilizati<strong>on</strong> <strong>and</strong> rehabilitati<strong>on</strong><br />

treatments. GAO-03-430. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: United States<br />

General Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g Office. 55 p. plus appendices.<br />

Georgia Forestry Associati<strong>on</strong>. 1995. Best management practices for<br />

forested wetl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Georgia. Atlanta: Georgia Forestry Associati<strong>on</strong><br />

Wetl<strong>and</strong>s Committee. 26 p.<br />

Giard<str<strong>on</strong>g>in</str<strong>on</strong>g>a, C.P.; Sanford, R.L.; Dockersmith, I.C. 2000. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

soil phosphorus <strong>and</strong> nitrogen dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash-<strong>and</strong>-burn clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

dry tropical forest. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 64:<br />

399–405.<br />

Gimenez, A.; Pastor, E.; Zarate, L.; Planas, E.; Arnaldos, J. 2004.<br />

L<strong>on</strong>g-term forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> quality, effectiveness,<br />

applicati<strong>on</strong> <strong>and</strong> envir<strong>on</strong>mental c<strong>on</strong>siderati<strong>on</strong>s. Intenati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 13(1): 1–15.<br />

Gibb<strong>on</strong>s, D.R.; Salo, E.O. 1973. An annotated bibliography <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> fish <str<strong>on</strong>g>of</str<strong>on</strong>g> the Western United States <strong>and</strong><br />

Canada. Portl<strong>and</strong>, OR: U.S. Departement <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Northwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>.<br />

145 p.<br />

Gifford, G.F.; Busby, F.E. 1973. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate organic materials<br />

from semiarid <strong>water</strong>sheds as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme hydrologic<br />

events. Water Resources Research. 9: 1443–1449.<br />

Gifford, G.F.; Buckhouse, J.C.; Busby, F.E. 1976. Hydrologic impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a cha<str<strong>on</strong>g>in</str<strong>on</strong>g>ed p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>-juniper site <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

southeastern Utah. Publ. PRJNR 012-1. Ogden: Utah Water<br />

Resources Laboratory. 22 p.<br />

Gill<strong>on</strong>, D.; Gomendy, V.; Houssard, C.; Marechal, J.; Valette, J.C.<br />

1995. Combusti<strong>on</strong> <strong>and</strong> nutrient losses dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g laboratory burns.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 5: 1–12.<br />

Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i, G.; Lucchesi, S. 1983. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> hydrophobic<br />

<strong>and</strong> cement<str<strong>on</strong>g>in</str<strong>on</strong>g>g substances <str<strong>on</strong>g>of</str<strong>on</strong>g> soil aggregates. Soil Science. 136:<br />

231–236.<br />

Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i, G.; Lucchesi, S.; Cervelli, S. 1983. Water-repellent<br />

substances <strong>and</strong> aggregate stability <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrophobic soil. Soil<br />

Science. 135: 110–113.<br />

Giovann<str<strong>on</strong>g>in</str<strong>on</strong>g>i, G., Lucchesi, S., Giachetti, M. 1987. The naural evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a burned soil: a three year <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>. Soil Science. 143:<br />

220–226.<br />

Glaser, P.H.; Wheeler, G.A.; Gorham E.; Wright, H.E. 1981. The<br />

patterned mires <str<strong>on</strong>g>of</str<strong>on</strong>g> the Red Lake peatl<strong>and</strong>, Northern M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota:<br />

vegetati<strong>on</strong>, <strong>water</strong> chemistry <strong>and</strong> l<strong>and</strong>forms. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology.<br />

69: 575–599.<br />

Gleas<strong>on</strong>, C.H. 1947. Guide for mustard sow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> burned <strong>water</strong>sheds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> southern California. San Francisco, CA: U.S.Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, California Regi<strong>on</strong>. 46 p.<br />

Glenden<str<strong>on</strong>g>in</str<strong>on</strong>g>g, G.E.; Pase, C.P.; Ingebo, P. 1961. Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary hydrologic<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 5th annual<br />

Ariz<strong>on</strong>a Watershed Symposium; 1961 September 21; Phoenix,<br />

AZ. Tucs<strong>on</strong>: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a: 12–15.<br />

Goldman, S.J.; Jacks<strong>on</strong>, K.; Bursztynsky, T.A. 1986. Erosi<strong>on</strong> <strong>and</strong><br />

sediment c<strong>on</strong>trol h<strong>and</strong>book. San Francisco, CA: McGraw-Hill.<br />

360 p.<br />

Gosz, J.R.; White, C.S.; Ffolliott, P.F. 1980. Nutrient <strong>and</strong> heavy<br />

metal transport capacities <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> the southwestern United<br />

States. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 16: 927–933.<br />

Gottfried, G.J. 1991. Moderate timber harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <strong>water</strong><br />

yields from an Ariz<strong>on</strong>a mixed c<strong>on</strong>ifer <strong>water</strong>shed. Water Resources<br />

Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 27: 537–547.<br />

Gottfried, G.J.; DeBano, L.F. 1990. Streamflow <strong>and</strong> <strong>water</strong> quality<br />

resp<strong>on</strong>ses to preharvest prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> an undisturbed<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>water</strong>shed. In: Krammes, J.S. (tech. cord.). Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> southwestern natural resources. Gen.<br />

Tech. Rep. RM-191. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 222–228.<br />

Gottfried, G.J.; Neary, D.G.; Baker, M.B., Jr.; Ffolliott, P.F. 2003.<br />

Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> hydrologic processes <str<strong>on</strong>g>in</str<strong>on</strong>g> forested <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>:<br />

two case studies. In: Renard, K.G.; McElroy, S.A.; Gburek,<br />

W.J.; Canfield, H.E.; Scott, R.L. (eds.). First <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency c<strong>on</strong>ference<br />

<strong>on</strong> research <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>water</strong>sheds; 2003 October 27–30. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Agricultural Research<br />

Service: 668–673.<br />

Graham, R.T.; Harvey, A.E.; Jurgensen, M.F.; Ja<str<strong>on</strong>g>in</str<strong>on</strong>g>, T.B.; T<strong>on</strong>n,<br />

J.R.; Page-Dumroese, D.S. 1994. Manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g coarse woody debris<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> forests <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Res. Pap. INT-RP-477. Ogden,<br />

UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 12 p.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 219


Greene, R.S.B.; Chartres, C.J.; Hodgk<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, K.C. 1990. The <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil <str<strong>on</strong>g>in</str<strong>on</strong>g> a degraded semi-arid woodl<strong>and</strong>: I. Cryptogam<br />

cover <strong>and</strong> physical <strong>and</strong> micromorphological properties. Australian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Research. 28: 755–777.<br />

Gresswell, R.E. 1999. Fire <strong>and</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> forested<br />

biomes <str<strong>on</strong>g>of</str<strong>on</strong>g> Northern America. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Fisheries<br />

Society. 128: 193–221.<br />

Grier, C.C. 1975. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> nutrient distributi<strong>on</strong> <strong>and</strong><br />

leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a c<strong>on</strong>iferous ecosystem. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry<br />

Research.5: 599–607.<br />

Griffith, R.W. 1989. Memo, silt fence m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Stanislaus Nati<strong>on</strong>al<br />

Forest. Unpublished report <strong>on</strong> file at: U.S.Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Stanislaus Nati<strong>on</strong>al Forest,<br />

Placerville, CA. 4 p.<br />

Groeschl, D.A.; Johns<strong>on</strong>, J.E.; Smith, D.W. 1990. Forest soil characteristics<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Shen<strong>and</strong>oah Nati<strong>on</strong>al Park,<br />

Virg<str<strong>on</strong>g>in</str<strong>on</strong>g>ia. In: Nodv<str<strong>on</strong>g>in</str<strong>on</strong>g>, Stephen C.; Waldrop, Thomas A. (eds.). Fire<br />

<strong>and</strong> the envir<strong>on</strong>ment: ecological <strong>and</strong> cultural perspective: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al symposium; 1990 Marcy 20–24;<br />

Knoxville, TN. Gen. Tech. Rep. SE-69. Asheville, NC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service.Southeastern Forest<br />

Experiment Stati<strong>on</strong>: 129–137.<br />

Groeschl, D.A.; Johns<strong>on</strong>, J.E.; Smith D.W. 1992. Early vegetative<br />

resp<strong>on</strong>se to wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a table mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>-pitch p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 2: 177–184.<br />

Groeschl, D.A.; Johns<strong>on</strong>, J.E.; Smith, D.W. 1993. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

forest floor <strong>and</strong> surface soil <str<strong>on</strong>g>in</str<strong>on</strong>g> a table mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-pitch p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

forest. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 3: 149–154.<br />

Grove, T.S.; O’C<strong>on</strong>nell, A.M.; Dimmock, G.M. 1986. Nutrient changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> surface <strong>soils</strong> after an <str<strong>on</strong>g>in</str<strong>on</strong>g>tense <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> jarrah (Eucalyptus<br />

marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ata D<strong>on</strong>n ex Sm.) forest. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology.<br />

11: 303–317.<br />

Hall, J.D.; Brown, G.W.; Lantz, R.L. 1987. The Alsea <strong>water</strong>shed<br />

study: a retrospective. In: Salo, E.O.; Cundy, T.W. (eds.). Streamside<br />

management: Forestry <strong>and</strong> fishery <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. C<strong>on</strong>tr. No.<br />

57. Seattle: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. 399–416.<br />

Hardy, C.C.; Menakis, J.P.; L<strong>on</strong>g, D.G.; Brown, J.K. 1998. Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

historic <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes for the Western United States: Integrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> biophysical data. In: Greer, J.D. (ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 7th Forest Service Remote Sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g Applicati<strong>on</strong>s<br />

C<strong>on</strong>ference; 1998 April 6-10;. Nassau Bay, TX. Bethesda, MD:<br />

American Society for Photogrammetry <strong>and</strong> Remote Sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

288–300.<br />

Hardy, C.C.; Schmidt, K.M.; Menakis, J.P.; Samps<strong>on</strong>, R.N. 2001.<br />

Spatial data for nati<strong>on</strong>al <str<strong>on</strong>g>fire</str<strong>on</strong>g> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> fuel management.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 10(3 <strong>and</strong> 4): 353–372.<br />

Hare, R.C. 1961. Heat <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants. Occasi<strong>on</strong>al Paper 183.<br />

New Orleans, LA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Southern Forest Experiment Stati<strong>on</strong>. 32 p.<br />

Harr, R.D. 1976. Forest practices <strong>and</strong> streamflow <str<strong>on</strong>g>in</str<strong>on</strong>g> western Oreg<strong>on</strong>.<br />

Gen. Tech. Rep. PNW-49. Portl<strong>and</strong>, OR: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Northwest Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 18 p.<br />

Hartford, R.A. 1989. Smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> limits <str<strong>on</strong>g>in</str<strong>on</strong>g> peat as<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by moisture, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral c<strong>on</strong>tent, <strong>and</strong> organic bulk density.<br />

In: MacIver, D.C.; Auld, H.; Whitewood, R. (eds.).<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,10th c<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology; 1989<br />

April 17–21; Ottawa, Ontario. Chalk River, Ontario: Forestry<br />

Canada, Petawawa Nati<strong>on</strong>al Forestry Institute: 282–286.<br />

Hartford, R.A.; Fr<strong>and</strong>sen, W.H. 1992. When it’s hot, it’s hot … or<br />

maybe it’s not (surface flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g may not portend extensive soil<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g). Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 2: 139–144.<br />

Harvey, A.E. 1994. Integrated roles for <str<strong>on</strong>g>in</str<strong>on</strong>g>sects, diseases <strong>and</strong> decomposers<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated forests <str<strong>on</strong>g>of</str<strong>on</strong>g> the Inl<strong>and</strong> Western United<br />

States: past, present <strong>and</strong> future forest health. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able<br />

Forestry. 2: 211–220.<br />

Harvey, A.E.; Jurgensen, M.F.; Graham, R.T. 1989. Fire-soil<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g site productivity <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern Rocky<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. In: Baumgartner, D.M.; Bruer, D.W.; Zamora, B.A.;<br />

Neuenschw<strong>and</strong>er, L.F.; Wak<str<strong>on</strong>g>in</str<strong>on</strong>g>oto, R.H. (comps. <strong>and</strong> eds.). Prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> regi<strong>on</strong>: forest site preparati<strong>on</strong><br />

<strong>and</strong> range improvements. Symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Pullman:<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State University, Cooperative Extensi<strong>on</strong> Service:<br />

9-18.<br />

Harvey, A.E.; Jurgensen, M.F.; Larsen, M.J. 1980a. Clearcut harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>and</strong> ectomycorrhizae: survival <str<strong>on</strong>g>of</str<strong>on</strong>g> activity <strong>on</strong> residual<br />

roots <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> a border<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest st<strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> western<br />

M<strong>on</strong>tana. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 10: 300–303.<br />

Harvey, A.E.; Jurgensen, M.F.; Larsen, M.J. 1981. Organic reserves:<br />

importance to ectomycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> western<br />

M<strong>on</strong>tana. Forest Science. 27: 442–445.<br />

Harvey, A.E.; Larsen, M.J.; Jurgensen, M.F. 1976. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ectomycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g> a mature Douglas-fir/larch forest soil <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

western M<strong>on</strong>tana. Forest Science. 22: 393–398.<br />

Harvey, A.E.; Larsen, M.J.; Jurgensen, M.F. 1980b. Partial cut<br />

harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> ectomycorrhizae: early <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Douglas-firlarch<br />

forests <str<strong>on</strong>g>of</str<strong>on</strong>g> western M<strong>on</strong>tana. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest<br />

Research. 10: 436–440.<br />

Hatch, A.B. 1960. Ash-bed <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> western Australian forest <strong>soils</strong>.<br />

Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g> 64. Forestry Department Western Australia: 1–19.<br />

Hauer, F.R.; Spencer, C.N. 1998. Phosphorus <strong>and</strong> nitrogen dynamics<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> streams associated with wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>: a study <str<strong>on</strong>g>of</str<strong>on</strong>g> immediate <strong>and</strong><br />

l<strong>on</strong>gterm <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 8(4):<br />

183–198.<br />

Hauser <strong>and</strong> Spence 1998 [CHAPTER 6 Table 6.2] not <str<strong>on</strong>g>in</str<strong>on</strong>g> reference<br />

list. Probably Hauer <strong>and</strong> Spencer 1998???<br />

Haworth, K.; McPhers<strong>on</strong>, G.R. 1991. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Quercus emporyi <strong>on</strong><br />

precipitati<strong>on</strong> distributi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ariz<strong>on</strong>a-Nevada Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Science; thirty-fifth annual meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g; 1991 April 20; Flagstaff,<br />

AZ. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Supplement. 26: 21.<br />

Haynes, R.J. 1986. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, distributi<strong>on</strong>, <strong>and</strong> cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terrestrial <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Hayes, R.J. (ed.). M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <str<strong>on</strong>g>in</str<strong>on</strong>g> the plant<strong>soils</strong><br />

systems. New York: Academic Press: 1–51.<br />

Heede, B.H. 1960. A study <str<strong>on</strong>g>of</str<strong>on</strong>g> early gully-c<strong>on</strong>trol structures <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Colorado Fr<strong>on</strong>t Range. Stati<strong>on</strong> Paper 55. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 42 p.<br />

Heede, B.H. 1970. Design, c<strong>on</strong>structi<strong>on</strong> <strong>and</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> rock check dams.<br />

Res. Pap. RM-20. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 24 p.<br />

Heede, B.H. 1976. Gully development <strong>and</strong> c<strong>on</strong>trol: the status <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

knowledge. Res. Pap. RM-169. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 42 p.<br />

Heede, B.H. 1981. Rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbed <strong>water</strong>shed through<br />

vegetati<strong>on</strong> treatment <strong>and</strong> physical structures. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

Interior West <strong>water</strong>shed management symposium; 1980 April;<br />

Spokane, WA. Pullman: Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State University, Cooperative<br />

Extensi<strong>on</strong>: 257–268.<br />

Heede, B.H.; Harvey, M.D.; Laird, J.G. 1988. Sediment delivery<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>kages <str<strong>on</strong>g>in</str<strong>on</strong>g> a chaparrel <strong>water</strong>shed follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Envir<strong>on</strong>mental<br />

Management. 12: 349–358.<br />

Heilman, P.E.; Gessel, S.P. 1963. Nitrogen requirements <strong>and</strong> the<br />

biological cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> Douglas-fir st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen fertilizati<strong>on</strong>. Plant <strong>and</strong> Soil. 18: 386–402.<br />

He<str<strong>on</strong>g>in</str<strong>on</strong>g>selman, M.L. 1978. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> wilderness <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Hendee,<br />

J.C.; Stankey, G.H.; Lucas, R.C. Wilderness management. Misc.<br />

Pub. No. 1365. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service: 249–278.<br />

He<str<strong>on</strong>g>in</str<strong>on</strong>g>selman, M.L. 1981. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> frequency as factors <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the distributi<strong>on</strong> <strong>and</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> northern <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Mo<strong>on</strong>ey,<br />

H.A., et al. (coords.). Fire regimes <strong>and</strong> ecosystem properties. Gen.<br />

Tech. Rep. WO-26. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service: 7–57.<br />

He<str<strong>on</strong>g>in</str<strong>on</strong>g>selman, M.L. 1983. Fire <strong>and</strong> successi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>ifer forests <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

northern North America. In: West, D.C.; Shugart, H.H.; Botk<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

D.B. (eds.). Forest successi<strong>on</strong>, c<strong>on</strong>cepts <strong>and</strong> applicati<strong>on</strong>. New<br />

York: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger Verlag: 374–405.<br />

Helvey, J.D. 1971. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> by certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>ifers <str<strong>on</strong>g>of</str<strong>on</strong>g> North America. In; M<strong>on</strong>ike, E.J. (ed.) Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the third <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al sem<str<strong>on</strong>g>in</str<strong>on</strong>g>ar for hydrology pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors: Biological<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrological cycle. West Lafayette, IN: Purdue<br />

University: 103–113.<br />

Helvey, J.D. 1973. Watershed behavior after forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>.<br />

In: Agriculture <strong>and</strong> urban c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> irrigati<strong>on</strong><br />

<strong>and</strong> dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age;. proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the irrigati<strong>on</strong> <strong>and</strong> dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age specialty<br />

c<strong>on</strong>ference. New York: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers:<br />

403–422.<br />

220 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Helvey, J.D. 1980. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a north-central Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> sediment producti<strong>on</strong>. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 16:<br />

627–634.<br />

Helvey, J.D.; Patric, J.H. 1965. Canopy <strong>and</strong> litter <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> by<br />

hardwoods <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern United States. Water Resource Research. 1:<br />

193–206.<br />

Helvey, J.D.; Tiedemann, A.R.; Anders<strong>on</strong>, T.D. 1985. Nutrient loss<br />

by soil erosi<strong>on</strong> <strong>and</strong> mass movement after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil<br />

<strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>. 40: 168–173.<br />

Helvey, J.D.; Tiedemann, A.R.; Fowler, W.B. 1976. Some climatic<br />

<strong>and</strong> hydrologic <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall Timber <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference. Tallahassee, FL:<br />

Tall Timbers Research Stati<strong>on</strong>: 15: 201–222.<br />

Hendricks, B.A.; Johns<strong>on</strong>, J.M. 1944. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> steep mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

slopes <str<strong>on</strong>g>in</str<strong>on</strong>g> central Ariz<strong>on</strong>a. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 42: 568–571.<br />

Hendricks<strong>on</strong>, D. A.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>kley, W.L. 1984. Cienegas—vanish<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

climax communities <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Southwest. Desert Plants. 6:<br />

131–175.<br />

Hermann, S.M.; Phernett<strong>on</strong>, R.A.; Carter, A.; Gooch, T. 1991. Fire<br />

<strong>and</strong> vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> peatbased marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> the coastal pla<str<strong>on</strong>g>in</str<strong>on</strong>g>: examples<br />

from the Okefenokee <strong>and</strong> Great dismal Swamps. In: High<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong>s: management challenges <strong>and</strong> opti<strong>on</strong>s;<br />

proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference. Tallahassee,<br />

FL: Tall Timbers Research Stati<strong>on</strong>: 217–234.<br />

Hern<strong>and</strong>ez, T.; Garcia, C.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, I. 1997. Short-term effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the chemical, biochemical, <strong>and</strong> microbiological properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <strong>soils</strong>. Biology <strong>and</strong> Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Soils. 25: 109–116.<br />

Herr, D.G.; Duchesne, L.C.; Tellier, R.; McAlp<str<strong>on</strong>g>in</str<strong>on</strong>g>e, R.S.; Peters<strong>on</strong>,<br />

R.L. 1994. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the ectomycorrhizal<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a forest soil. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire.<br />

4: 95–102.<br />

Hewlett, J.D. 1982. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipals <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrology. Athens: University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Georgia Press. 183 p.<br />

Hewlett, J.D.; Hibbert, A.R. 1967. Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

small <strong>water</strong>sheds to precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> humid areas. In: Sopper,<br />

W.E.; Lull, H.W. (eds.). Internati<strong>on</strong>al symposium <strong>on</strong> forest hydrology.<br />

Oxford, Engl<strong>and</strong>: Pergam<strong>on</strong> Press: 275–290.<br />

Hewlett, J.D.; Helvey, J.D. 1970. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> clear-fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the<br />

storm hydrograph. Water Resources Research. 6: 768–782.<br />

Hewlett, J.D.; Troendle, C.A. 1975. N<strong>on</strong>-po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>and</strong> diffused <strong>water</strong><br />

sources: a variable source area problem. In: Watershed management<br />

symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs; 1975 August 11–13; Logan, UT,.<br />

New York: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers: 21–46.<br />

Hibbert, A.R. 1971. Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow after c<strong>on</strong>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g chaparral<br />

to grass. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 7: 71–80.<br />

Hibbert, A.R. 1984. Stormflows after <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chaparral.<br />

In: Dell, B. (ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4th <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>ference<br />

<strong>on</strong> Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>; 1984 August 13–17; Perth,<br />

Australia. Nedl<strong>and</strong>s, Australia: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia,<br />

Botany Department: 71–72.<br />

Hibbert, A.R.; Davis, E.A.; Knipe, O.D. 1982. Water yield changes<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a chaparral. Gen. Tech. Rep.<br />

PSW-58. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Southwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>:<br />

382–389.<br />

Hibbert, A.R; Davis, E.A.; Scholl, D.G. 1974. Chaparral c<strong>on</strong>versi<strong>on</strong><br />

potential <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. Part I: Water yield resp<strong>on</strong>se <strong>and</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

other resources. Res. Pap. RM-126. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 36 p.<br />

Hobbs, N.T.; Schimel, D.S. 1984. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<strong>and</strong> fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> shrub <strong>and</strong> grassl<strong>and</strong> communities.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 37: 402–404.<br />

H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, R.J.; Ferreira, R.F. 1976. A rec<strong>on</strong>naissance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> K<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Cany<strong>on</strong> Nati<strong>on</strong>al Park,<br />

California. Open File Report 76–497. M<strong>on</strong>lo Park, CA: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Geological Survey. 17 p.<br />

Hoover, M.D.; Leaf, C.F. 1967. Process <strong>and</strong> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Colorado subalp<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests. In: Sopper, W.E.; Lull, H.W.<br />

(eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al symposium <strong>on</strong> forest<br />

hydrology. New York: Pergam<strong>on</strong> Press: 212–222.<br />

Hornbeck, J.W. 1973. Stormflow from hardwood forested <strong>and</strong> cleared<br />

<strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> New Hamshire. Water Resources Research. 9(2):<br />

346–354.<br />

Hornbeck, J.W.; Adams, M.B.; Corbett, E.S.; Verry, E.S.; Lynch,<br />

J.A. 1993. L<strong>on</strong>g-term impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> forest treatments <strong>on</strong> <strong>water</strong><br />

yields: a summary for northeastern USA. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology.<br />

150: 323–344.<br />

Hornbeck, J.W.; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, C.W.; Pierce, R.S.; Bormann, F.H.; Likens,<br />

G.E.; Eat<strong>on</strong>, J.S. 1987. The northern hardwood forest ecosystem:<br />

10 years <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery from clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Res. Pap. NE-596. Broomall,<br />

PA. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Northeastern<br />

Forest Experiment Stati<strong>on</strong>. 30 p.<br />

Horwath, W.R.; Paul, E.A. 1994. Microbial biomass. In: Weaver,<br />

R.W. (ed.). Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> soil analysis: Part 2, Microbiological <strong>and</strong><br />

biochemical properties. Madis<strong>on</strong>, WI: Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

America: 753–773.<br />

Hosk<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.S. 1938. The igniti<strong>on</strong> at low temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic<br />

matter <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Science. 28: 393–400.<br />

Hoyt, W.G.; Troxell, H.C. 1934. Forests <strong>and</strong> stream flow. Paper No.<br />

1858. Transaci<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers.<br />

111 p.<br />

Huds<strong>on</strong>, Norman. 1981. Soil c<strong>on</strong>servati<strong>on</strong>. 2d ed. Ithaca, NY: Cornell<br />

University Press. 324 p.<br />

Hulbert, L.C. 1969. Fire <strong>and</strong> litter <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> undisturbed bluestem<br />

prairie <str<strong>on</strong>g>in</str<strong>on</strong>g> Kansas. Ecology. 50(5): 874–877.<br />

Humphreys, F.R.; Lambert, M.J. 1965. An exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a forest<br />

site which has exhibited the ash-bed effect. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Soil Research. 3: 81–94.<br />

Hungerford, R.D. 1990. [SHOULD THIS BE HUNGERFORD<br />

1990a?] Describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g downward heat flow for predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g>: prescribed <strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Problem analysis, Problem<br />

No. 1, Addendum 7/9/90. Missoula, MT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>,<br />

Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Fires Sciences Laboratory. 100 p.<br />

Hungerford, R.D. 1990 [SHOULD THIS BE HUNGERFORD<br />

1990b?]. Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g the downward heat pulse from <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> <strong>and</strong><br />

plant tissue. In: MacIver, D.C.; Auld, H.; Whitewood, R., (eds.).<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 th c<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology;<br />

Ottawa, Canada: 148–154.<br />

Hungerford, R.D.; Ryan, K.C. 1996. Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> southern forested wetl<strong>and</strong>s. In: Flynn, K.M., (ed.).,<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the southern forest wetl<strong>and</strong> ecology <strong>and</strong> management<br />

c<strong>on</strong>ference. Clems<strong>on</strong> University, Clems<strong>on</strong>, South<br />

Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a: 87-92.<br />

Hungerford, R.D. Unpublished Data, Forestry Sciences Laboratory,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>, Missoula, MT.<br />

Hungerford, R.D.; Fr<strong>and</strong>sen W.H.; Ryan, K.C. 1995a. Heat transfer<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the duff <strong>and</strong> organic soil. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al Project Report. Agreement<br />

No. 14-48-009-92-962. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong><br />

Wildlife Service. 48 p.<br />

Hungerford, R.D.; Fr<strong>and</strong>sen, W.H.; Ryan, K.C. 1995b. Igniti<strong>on</strong> <strong>and</strong><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <strong>soils</strong>. In: Cerulean, S.I.;<br />

Engstrom, R.T. (eds.). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s: a management perspective.<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall Timbers Fire Egology C<strong>on</strong>ference.<br />

Tallahassee, FL: Tall Timbers Research Stati<strong>on</strong>: 19: 78–91.<br />

Hungerford, R.D.; Harr<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, M.G.; Fr<strong>and</strong>sen, W.H.; Ryan, K.C.;<br />

Nieh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, G.J. 1991. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> factors that affect site<br />

productivity. In: Harvey, A.C.; Nuenschw<strong>and</strong>er, L.F. (comps.).<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Management <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> western m<strong>on</strong>tane<br />

forest <strong>soils</strong>. Gen. Tech. Rep. INT-280. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>: 32–50.<br />

Hungerford, R.D.; Reard<strong>on</strong>, J. Unpublished Data, Forestry Sciences<br />

Laboratory, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>, Missoula, MT.<br />

Hungerford, R.D.; Reard<strong>on</strong>, J.; Ryan, K.C. unpublished data. [Name<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paper <strong>and</strong> where <strong>on</strong> file?]<br />

Hungerford, R.D.; Ryan, K.C.; Reard<strong>on</strong>, J. 1994. Duff c<strong>on</strong>sumpti<strong>on</strong>:<br />

new <str<strong>on</strong>g>in</str<strong>on</strong>g>sights from laboratory burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 12th<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology; 1993<br />

October 26–28; Jekyll Isl<strong>and</strong>, GA. Bethesda, MD: Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

American Foresters: 594–601.<br />

Ice, G.G. 1985. Catalog <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong>slide <str<strong>on</strong>g>in</str<strong>on</strong>g>ventories for the Northwest.<br />

Tech. Bull. No. 456. Corvallis, OR: Nati<strong>on</strong>al Council <str<strong>on</strong>g>of</str<strong>on</strong>g> the Paper<br />

Industry for Air <strong>and</strong> Stream Improvement. 78 p.<br />

Ice, G.G. 1996. Forest management opti<strong>on</strong>s to c<strong>on</strong>trol excess nutrients<br />

for the Tualat<str<strong>on</strong>g>in</str<strong>on</strong>g> River, Oreg<strong>on</strong>. Special Report 96-04. Raleigh,<br />

NC: Nati<strong>on</strong>al Council <str<strong>on</strong>g>of</str<strong>on</strong>g> the Paper Industry for Air <strong>and</strong><br />

Stream Improvement. 16 p.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 221


Ice, G.G.; Light, J.; Reiter, M. [In Press]. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural temperature<br />

patterns to identify achievable stream temperature criteria for<br />

forest streams. Western Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Forestry.<br />

Iglesias, T.; Cala, V.; G<strong>on</strong>zalez, J. 1997. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical <strong>and</strong> chemical<br />

modificati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> affected by forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Mediterranean<br />

area. The Science <str<strong>on</strong>g>of</str<strong>on</strong>g> the Total Envir<strong>on</strong>ment. 204: 89–96.<br />

Ilhardt, B.L.; Verry, E.S.; Palik, G.J. 2000. Chapter 2: Def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

riparian areas. In: Verry, E.S.; Hornbeck, J.W.; Doll<str<strong>on</strong>g>of</str<strong>on</strong>g>f, C.A.<br />

(eds.). Riparian management <str<strong>on</strong>g>in</str<strong>on</strong>g> forests <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental eastern<br />

United States. New York: Lewis Publishers: 43–66.<br />

Isichei, A.O. 1990. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> algae <strong>and</strong> cyanobacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> arid l<strong>and</strong>s:<br />

a review. Arid Soil Research <strong>and</strong> Rehabilitati<strong>on</strong>. 4: 1–17.<br />

James, S.W. 1982. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> soil type <strong>on</strong> earthworm<br />

populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a tallgrass prairie. Pedobiologia. 24: 140–147.<br />

Janicki, A. 1989. Emergency revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Stanislaus Complex<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Unpublished report <strong>on</strong> file at:. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, California Regi<strong>on</strong>, Stanislaus Nati<strong>on</strong>al<br />

Forest, Placerville, CA. 17 p.<br />

Jasieniuk, M.A.; Johns<strong>on</strong>, E.A. 1982. Peatl<strong>and</strong> vegetati<strong>on</strong> organizati<strong>on</strong><br />

<strong>and</strong> dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> the western subarctic, Northwest Territories,<br />

Canada. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 60: 2581–2593.<br />

Jeffries, D.L.; L<str<strong>on</strong>g>in</str<strong>on</strong>g>k, S.O.; Klopatek, J.M. 1993. CO 2 fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crytogamic crusts: I. Resp<strong>on</strong>se to restorati<strong>on</strong>. The New Psychologist.<br />

125: 163–173.<br />

Jenny, H. 1941. Factors <str<strong>on</strong>g>of</str<strong>on</strong>g> soil formati<strong>on</strong>. New York: McGraw-Hill<br />

Book Company, Inc. 281 p.<br />

Johansen, J.R. 1993. Cryptogamic crusts <str<strong>on</strong>g>of</str<strong>on</strong>g> semiarid <strong>and</strong> arid l<strong>and</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> North America. Journal Phycology. 29: 140–147.<br />

Johansen, J.R.; Ashley, J.; Rayburn, W.R. 1993. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> range<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil algal crusts <str<strong>on</strong>g>in</str<strong>on</strong>g> semiarid shrub-steppe <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lower<br />

Columbia Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> their subsequent recovery. Great Bas<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Naturalist. 53: 73–88.<br />

Johansen, J.R.; St. Clair, L.L.; Nebeker, G.T. 1984. Recovery patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cryptogamic soil crusts <str<strong>on</strong>g>in</str<strong>on</strong>g> desert rangel<strong>and</strong>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g fie<br />

disturbance. Bryologist. 87: 238–243.<br />

Johns<strong>on</strong>, D.W. 1992. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> forest management <strong>on</strong> soil carb<strong>on</strong><br />

storage. Water, Air, Soil Polluti<strong>on</strong>. 64: 83–120.<br />

Johns<strong>on</strong>, D.W.; Cole, D.W. 1977. Ani<strong>on</strong> mobility <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong>: Relevance<br />

to nutrient transport from terrestrial to aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Ecological Research Series, EPA-600/3-77-068. Corvallis, OR:<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency. 27 p.<br />

Johns<strong>on</strong>, D.W.; Curtis, P.S. 2001. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> forest management <strong>on</strong><br />

soil C <strong>and</strong> N storage: meta analysis. Forest Ecology Management.<br />

140: 227–238.<br />

Johns<strong>on</strong>, E.A. 1992. Fire <strong>and</strong> vegetati<strong>on</strong> dynamics: studies from the<br />

North American boreal forest. New York: Cambridge University<br />

Press. 129 p.<br />

Johns<strong>on</strong>, E.A.; Miyanishi, K. 2001. Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s, behavior, <strong>and</strong><br />

ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g>. San Francisco, CA: Academic Press. 594 p.<br />

Johns<strong>on</strong>, M.G. 1978. Infiltrati<strong>on</strong> capacities <strong>and</strong> surface erodiblility<br />

associated with forest harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities <str<strong>on</strong>g>in</str<strong>on</strong>g> the Oreg<strong>on</strong> Cascades.<br />

Corvallis: Oreg<strong>on</strong> State University. 172 p. Thesis.<br />

Johns<strong>on</strong>, M.G.; Beschta, R.L. 1980. Logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity,<br />

<strong>and</strong> surface readability <str<strong>on</strong>g>in</str<strong>on</strong>g> western Oreg<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry.<br />

78: 334–337.<br />

Johns<strong>on</strong>, R.S. 1970. Evaporati<strong>on</strong> from bare, herbaceous, <strong>and</strong> aspen<br />

plots: a check <strong>on</strong> a former study. Water Resources Research. 6:<br />

324–327.<br />

Johns<strong>on</strong>, W. [Pers<strong>on</strong>al communicati<strong>on</strong>]. Bend, OR: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Deschutes Nati<strong>on</strong>al Forest.<br />

Johns<strong>on</strong>, W.W.; S<strong>and</strong>ers, H.O. 1977. Chemical forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants:<br />

acute toxicity to five fresh<strong>water</strong> fishes <strong>and</strong> a scud. Tech.<br />

Pap. 91, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish<br />

<strong>and</strong> Wildlife Service. 7 p.<br />

Johnst<strong>on</strong>, M.; Elliott, J. 1998. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>on</strong> ash, <strong>and</strong><br />

plant <strong>and</strong> soil nutrient levels follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g experimental burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a boreal mixedwood st<strong>and</strong>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science. 78:<br />

35–44.<br />

J<strong>on</strong>es, A.T.; Ryan, K.C. (tech. cords.). In preparati<strong>on</strong>. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> cultural resources <strong>and</strong> archeology.<br />

Gen. Tech. Rep. RMRS-GTR-42, Volume 3. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>.<br />

J<strong>on</strong>es, R.D., <strong>and</strong> six coauthors. 1989. Fishery <strong>and</strong> aquatic management<br />

program <str<strong>on</strong>g>in</str<strong>on</strong>g> Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park. U.S. Fish <strong>and</strong><br />

Wildlife Service, Technical Report for 1988, Yellowst<strong>on</strong>e Nati<strong>on</strong>al<br />

Park, Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

J<strong>on</strong>es, R.D.; Botlz, G.; Carty, D.G.; Kead<str<strong>on</strong>g>in</str<strong>on</strong>g>g, L.R.; Mah<strong>on</strong>y, D.L.;<br />

Olliff, S.T. 1993. Fishery <strong>and</strong> aquatic management program <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park. Technical Report for 1988. Yellowst<strong>on</strong>e<br />

Nati<strong>on</strong>al Park, WY: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong><br />

Wildlife Service. 171 p.<br />

Jorgensen, J.R.; Wells, C.G. 1971. Apparent nitrogen fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. 35: 806–810.<br />

Jorgensen, J.R.; Hodges, C.S., Jr. 1970. Microbial characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a forest soil after twenty years <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Mycologia.<br />

62: 721–726.<br />

Jurgensen, M.F.; Arno, S.F.; Harvey, A.E.; Larsen, M.J.; Pfister,<br />

R.D. 1979. Symbiotic <strong>and</strong> n<strong>on</strong>symbiotic nitrogen fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northern Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Gord<strong>on</strong>, J.C.;<br />

Wheeler, C.R.; Perry, D.A., (eds.). Symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>on</strong><br />

symbiotic nitrogen fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the management <str<strong>on</strong>g>of</str<strong>on</strong>g> temperate<br />

forests. Corvallis: Oreg<strong>on</strong> State University: 294–308.<br />

Jurgensen, M.F.; Graham R.T.; Larsen, M.J.; Harvey, A.E. 1992.<br />

Clear-cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g, woody residue removal, <strong>and</strong> n<strong>on</strong>symbiotic nitrogen<br />

fixati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> Pacific Northwest.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 22: 1172–1178.<br />

Jurgensen, M.F.; Harvey, A.E.; Ja<str<strong>on</strong>g>in</str<strong>on</strong>g>, T.B. 1997. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> timber<br />

harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil organic matter, nitrogen, productivity, <strong>and</strong><br />

health <str<strong>on</strong>g>of</str<strong>on</strong>g> Inl<strong>and</strong> Northwest forests. Forest Science. 43: 234–251.<br />

Jurgensen, M.F.; Harvey, A.E.; Larsen, M.J. 1981. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil nitrogen levels <str<strong>on</strong>g>in</str<strong>on</strong>g> a cutover Douglas-fir/<br />

western larch forest. Res. Pap. INT-275. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 6 p.<br />

Juste, C.; Dureau, P. 1967. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia nitrogen by<br />

thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids with a clay-loam soil.<br />

Series D 265C.R. Paris, France: Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science: 1167–1169.<br />

Kakabokidis, K.D. 2000. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> supressi<strong>on</strong> chemicals <strong>on</strong><br />

people <strong>and</strong> the envir<strong>on</strong>ment—a review. Global Nest: The Internati<strong>on</strong>al<br />

Journal. 2(2): 129–137.<br />

Kasischke, E.S.; Stocks, B.J. 2000. Fire, climate change, <strong>and</strong> carb<strong>on</strong><br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal forest. New York: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag. 461 p.<br />

Kauffman, J.B.; Sanford, R.L., Jr.; Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, D.L.; Salcedo, I.H.;<br />

Sampaia, E.V.S.B. 1993. Biomass <strong>and</strong> nutrient dynamics associated<br />

with slash <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> neotropical dry forests. Ecology. 74:<br />

140–151.<br />

Kauffman, J.B.; Steele, M.D.; Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, D.; Jaramillo, V.J. 2003.<br />

Biomass dynamics associated with deforestati<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g>, <strong>and</strong> c<strong>on</strong>versi<strong>on</strong><br />

to cattle pasture <str<strong>on</strong>g>in</str<strong>on</strong>g> a Mexican tropical dry forest. Forest<br />

Ecology <strong>and</strong> Management. 176(1-3): 1–12.<br />

Kay, B.L. 1983. Straw as an erosi<strong>on</strong> c<strong>on</strong>trol mulch. Agr<strong>on</strong>omy<br />

Progress Report No.140. Davis: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Agricultural<br />

Experiment Stati<strong>on</strong>. 11 p.<br />

Key, C.H.; Bens<strong>on</strong>, N.C. 2004. Ground measure <str<strong>on</strong>g>of</str<strong>on</strong>g> severity, the<br />

Composite Burn Index; <strong>and</strong> remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> severity, the<br />

Normalized Burn Ratio, FIREMON l<strong>and</strong>scape assessment documents.<br />

Nati<strong>on</strong>al Park Service <strong>and</strong> U.S. Geological Survey Nati<strong>on</strong>al<br />

Burn Severity Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g Project: http://<br />

burnseverity.cr.usgs.gov/methodology.asp U.S. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Nati<strong>on</strong>al Park Service <strong>and</strong> U.S.<br />

Geological Survey.<br />

Kilgore, B.M. 1981. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ecosystem distributi<strong>on</strong> <strong>and</strong> structure: Western forests <strong>and</strong> scrubl<strong>and</strong>s.<br />

Gen. Tech. Rep. WO-26, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service: 58–89.<br />

Kilmaskossu, M.S.E. 1988. Fire as a management tool to improve<br />

the renewable natural resources <str<strong>on</strong>g>of</str<strong>on</strong>g> Ind<strong>on</strong>esia. Tucs<strong>on</strong>: University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a. 65 p. Thesis.<br />

K<str<strong>on</strong>g>in</str<strong>on</strong>g>g, N.K.; Packham, D.R.; V<str<strong>on</strong>g>in</str<strong>on</strong>g>es, R.G. 1977. On the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> selenium<br />

<strong>and</strong> other elements from burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest litter. Australian<br />

Forestry Research. 7: 265–268.<br />

Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>er, E.F.; Harper, K.T. 1977. Soil properties <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to<br />

cryptogamic ground cover <str<strong>on</strong>g>in</str<strong>on</strong>g> Cany<strong>on</strong>l<strong>and</strong>s Nati<strong>on</strong>al Park. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 30: 202–205.<br />

Klemmeds<strong>on</strong>, J.O. 1994. New Mexico locust <strong>and</strong> parent material:<br />

Influence <strong>on</strong> macr<strong>on</strong>utrients <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor <strong>and</strong> soil. Soil Science<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 58: 974–980.<br />

222 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Klock, G.O.; Helvey, J.D. 1976. Soil-<strong>water</strong> trends follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>on</strong> the Entiat Experimental Forest. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall<br />

Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference, Pacific Northwest; 1974 October<br />

16–17; Portl<strong>and</strong>, OR. Tallahassee, FL: Tall Timbers Research<br />

Stati<strong>on</strong>. 15: 193–200.<br />

Klock, G.O.; Tiedemann, A.R.; Lopush<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, W. 1975. Seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

recommendati<strong>on</strong>s for disturbed mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> slopes <str<strong>on</strong>g>in</str<strong>on</strong>g> north central<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. Res. Note PNW-244. Portl<strong>and</strong>, OR: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Northwest Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 8 p.<br />

Klopatek, C.C.; DeBano, L.F.; Klopatek, J.M. 1988. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simulated <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> vesicular-arbuscular mycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g> p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>juniper<br />

woodl<strong>and</strong> soil. Plant <strong>and</strong> Soil. 109: 245–249.<br />

Klopatek, J.M.; Klopatek, C.C.; DeBano, L.F. 1991. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

nutrient pools <str<strong>on</strong>g>of</str<strong>on</strong>g> woodl<strong>and</strong> floor materials <strong>and</strong> <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong>juniper<br />

ecosystem. In: Fire <strong>and</strong> the envir<strong>on</strong>ment: ecological <strong>and</strong><br />

cultural perspectives: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al symposium.<br />

Gen. Tech. Rep. SE-69. Asheville, NC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Southeastern Forest Experiment<br />

Stati<strong>on</strong>: 154–159.<br />

Knight, H. 1966. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen from the forest floor by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Forestry Chr<strong>on</strong>icle. 42: 149–152.<br />

Knight<strong>on</strong>, M.D. 1977. Hydrologic resp<strong>on</strong>se <strong>and</strong> nutrient c<strong>on</strong>centrati<strong>on</strong>s<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g burns <str<strong>on</strong>g>in</str<strong>on</strong>g> an oak-hickory forest. Soil Science<br />

Society American Journal. 41: 627–632.<br />

Knoepp, J.D.; Swank, W.T. 1993a. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the southern Appalachians <strong>on</strong> soil nitrogen. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Research. 23: 2263–2270.<br />

Knoepp, J.D.; Swank, W.T. 1993b. Site preparati<strong>on</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

improve southern Appalachian p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-hardwood st<strong>and</strong>s: Nitrogen<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g> soil, soil <strong>water</strong>, <strong>and</strong> streams. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Research. 23: 2263–2270.<br />

Knoepp, J.D.; Swank, W.T. 1994. L<strong>on</strong>g-term soil chemistry changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> aggrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America<br />

Journal. 58: 325–331.<br />

Knoepp, J.D.; Swank, W.T. 1995. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> available soil<br />

nitrogen assays <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trol <strong>and</strong> burned forested sites. Soil Science<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal 59: 1750–1754.<br />

Knoepp, J.D.; Swank, W.T. 1998. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

across an elevati<strong>on</strong> <strong>and</strong> vegetati<strong>on</strong> gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern<br />

Appalachians. Plant <strong>and</strong> Soil. 204: 235–241.<br />

Koell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, M.; Kucera, C.L. 1965. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> central Missouri prairie. America Midl<strong>and</strong> Naturalist.<br />

72: 142–147.<br />

Kologiski, R.L. 1977. The phytosociology <str<strong>on</strong>g>of</str<strong>on</strong>g> the green swamp, North<br />

Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. Tech. Bull. No. 250. North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Agricultural Experiment<br />

Stati<strong>on</strong>.<br />

Kovacic, D.A.; Swift, D.M.; Ellis, J.E.; Hak<strong>on</strong>s<strong>on</strong>, T.E. 1986. Immediate<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico. Soil Science. 141: 71–76.<br />

Kovacic, D.A.; Swift, D.M.; Ellis, J.E.; Hak<strong>on</strong>s<strong>on</strong>, T.E. 1986. Immediate<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico. Soil Science. 141(1): 71–76.<br />

Krabbenh<str<strong>on</strong>g>of</str<strong>on</strong>g>t, D.P.; F<str<strong>on</strong>g>in</str<strong>on</strong>g>k, L.E.; Ols<strong>on</strong>, M.L.; Rawlik, P.S., II. 2001.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dry down <strong>and</strong> natural <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> mercury methylati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the Florida Everglades. In: Nriagu, Jerome, (ed.). The Everglades;<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 11th annual <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>ference<br />

<strong>on</strong> heavy metals <str<strong>on</strong>g>in</str<strong>on</strong>g> The envir<strong>on</strong>ment; 2000 August 6–8; Ann<br />

Arbor: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Health. 14 p.<br />

Kraemer, J.F.; Hermann, R.K. 1979. Broadcast burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: 25-year<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> forest <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the western flanks <str<strong>on</strong>g>of</str<strong>on</strong>g> the Cascade<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Forest Science. 25: 427–439.<br />

Krammes, J.S. 1960. Erosi<strong>on</strong> from mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> side slopes after <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

southern California. Res. Note PSW-171. Berkeley, CA: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest<br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 8 p.<br />

Krammes, J.S.; Rice, R.M. 1963. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the San Dimas<br />

Experimental Forest. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 7 th annual meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g, Ariz<strong>on</strong>a<br />

<strong>water</strong>shed symposium; 1963 September 18; Phoenix, AZ:<br />

31–34.<br />

Kuhry, P. 1994. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> sphagnumdom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

peatl<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> western boreal forests. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 82: 899–910.<br />

Kuhry, P.; Vitt, D.H. 1996. Fossil carb<strong>on</strong>/nitrogen ratios as a<br />

measure <str<strong>on</strong>g>of</str<strong>on</strong>g> peat decompositi<strong>on</strong>. Ecology. 77(1): 271–275.<br />

Kutiel, P.; Naveh, Z. 1987. Soil properties beneath P<str<strong>on</strong>g>in</str<strong>on</strong>g>us halepensis<br />

<strong>and</strong> Quercus callipr<str<strong>on</strong>g>in</str<strong>on</strong>g>os trees <strong>on</strong> burned <strong>and</strong> unburned mixed<br />

forest <strong>on</strong> Mt. Carmel, Israel. Forest Ecology <strong>and</strong> Management.<br />

20: 11–24.<br />

Kutiel, P.; Shaviv, A. 1992. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> soil type, plant compositi<strong>on</strong><br />

<strong>and</strong> leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil nutrients follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a simulated forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Forest Ecology <strong>and</strong> Management. 53: 329–343.<br />

La Po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, T.W.; Price, F.T.; Little E.E. 1996. Envir<strong>on</strong>mental toxicology<br />

<strong>and</strong> risk assessment, 4 th Editi<strong>on</strong>. Special Pubicati<strong>on</strong> No.<br />

1262. West C<strong>on</strong>shohocken, PA: American Society for Test<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Materials. 280 p.<br />

Labat Anders<strong>on</strong> Inc. 1994. Human health risks assessment: chemicals<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> suppressi<strong>on</strong>. C<strong>on</strong>tract 53-3187-9-30.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Fire <strong>and</strong> Aviati<strong>on</strong> Management.<br />

Laderman, A.D. 1989. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic white cedar wetl<strong>and</strong>s:<br />

a community pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Biol. Rep. 85. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong> Wildlife Service. 114 p.<br />

L<strong>and</strong>sberg, J.D.; Tiedemann, A.R. 2000. Fire management. In:<br />

Dissmeyer, G.E. (ed.). Dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> from forests <strong>and</strong> grassl<strong>and</strong>s.<br />

Gen. Tech. Rep. SRS-39. Asheville, NC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Southern Forest Experiment Stati<strong>on</strong>:<br />

124–138.<br />

L<strong>and</strong>sberg, J.L.; Lavorel, S.; Stol, J. 1999. Graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g resp<strong>on</strong>se groups<br />

am<strong>on</strong>g understorey plants <str<strong>on</strong>g>in</str<strong>on</strong>g> arid rangl<strong>and</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegitati<strong>on</strong><br />

Science. 10: 683–696.<br />

Lap<str<strong>on</strong>g>in</str<strong>on</strong>g>, M.; Barnes, B.V. 1995. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the l<strong>and</strong>scape ecosystem<br />

approach to assess species <strong>and</strong> ecosystem diversity. C<strong>on</strong>servati<strong>on</strong><br />

Biology. 9: 1148–1158.<br />

Lars<strong>on</strong>, W.E.; Pierce, F.J.; Dowdy, R.H. 1983. The threat <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

erosi<strong>on</strong> to l<strong>on</strong>g-term crop producti<strong>on</strong>. Science. 219: 458–465.<br />

Lathrop, R.G., Jr. 1994. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1988 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> the <strong>water</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Yellowst<strong>on</strong>e <strong>and</strong> Lewis Lakes, Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 4(3): 169–175.<br />

Lavabre, J.D.; Gaweda, D.S.; H.A. Froehlich, H.A. 1993. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the hydrological resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a small Mediterranean bas<str<strong>on</strong>g>in</str<strong>on</strong>g> a year<br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 142: 273–299.<br />

Lavelle, P. 1988. Earthworm activities <strong>and</strong> the soil system. Biology<br />

<strong>and</strong> Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils. 6: 237–251.<br />

Laverty, L.; Williams, J. 2000. Protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g people <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

resources <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-adapted <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: a cohesive strategy. The<br />

Forest Service management resp<strong>on</strong>se to the General Account<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Office Report GAO/RCED-99-65. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service. 85 p.<br />

Lawrence, D.E.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W. 1994. Short- <strong>and</strong> l<strong>on</strong>g-term changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> riparian z<strong>on</strong>e vegetati<strong>on</strong> <strong>and</strong> stream macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate community<br />

structure. In: Despa<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.G. (ed.). Plants <strong>and</strong> their envir<strong>on</strong>ments:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the first biennial scientific c<strong>on</strong>ference<br />

<strong>on</strong> the greater Yellowst<strong>on</strong>e ecosystem. Tech. Rep. NPS/NRYELL/<br />

NRTR-93/XX. Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Park<br />

Service, Natural Resources Publicati<strong>on</strong> Office: 171–184.<br />

Lefevre, R. 2004. [Pers<strong>on</strong>al communicati<strong>on</strong>]. Tucs<strong>on</strong>, AZ: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Cor<strong>on</strong>ado Nati<strong>on</strong>al<br />

Forest.<br />

Levno, A.; Rothacher, J. 1969. Increases <str<strong>on</strong>g>in</str<strong>on</strong>g> maximum stream<br />

temperatures after slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a small experimental <strong>water</strong>shed.<br />

Res. Note PNW-110. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Northwest Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 7 p.<br />

Lewis, W.M. 1974. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nutrient movement <str<strong>on</strong>g>in</str<strong>on</strong>g> a South<br />

Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest. Ecology. 55: 1120–1127.<br />

Lide, D.R. (ed.). 2001. CRC h<strong>and</strong>book <str<strong>on</strong>g>of</str<strong>on</strong>g> chemistry <strong>and</strong> physics. 82 nd<br />

Editi<strong>on</strong>. New York: CRC Press: 4–81.<br />

Little, E.E.; Calfee, R.D. 2002. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-retardant chemical<br />

products <strong>on</strong> fathead m<str<strong>on</strong>g>in</str<strong>on</strong>g>nows <str<strong>on</strong>g>in</str<strong>on</strong>g> experimental streams. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

report to USDA Forest Service, <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire Chemical Systems,<br />

Missoula Technology <strong>and</strong> Development Center, Missoula, MT.<br />

Columbia, MO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, U.S. Geological<br />

Survey, Columbia Envir<strong>on</strong>mental Research Center.<br />

Little, S. 1946. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> the st<strong>and</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> New<br />

Jersey’s p<str<strong>on</strong>g>in</str<strong>on</strong>g>e regi<strong>on</strong>. Forest Management Paper No. 2. Upper<br />

Darby, PA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Northeastern Expirement Stati<strong>on</strong>. 43 p.<br />

L<str<strong>on</strong>g>of</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g>, S.; Fletcher, R.; Luehr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, P. 1998. Disturbed area rehabilitati<strong>on</strong><br />

review report. Unpublished report <strong>on</strong> file at: U.S. Department<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 223


<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Southwestern Regi<strong>on</strong>, Albuquerque,<br />

NM. 17 p.<br />

L<str<strong>on</strong>g>of</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g>, S.R.; White, C.S. 1996. Potential nitrogen c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil cryptograms to post-disturbance forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

B<strong>and</strong>elier Nati<strong>on</strong>al M<strong>on</strong>ument, NM. In: Allen, C.D. (tech. ed.).<br />

Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> southwestern forests: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2 nd La Mesa<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> symposium. Gen. Tech. Rep. RM-GTR-286. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 140–148.<br />

L<strong>on</strong>gstreth, D.J.; Patten, D.T. 1975. C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chaparral to<br />

grass <str<strong>on</strong>g>in</str<strong>on</strong>g> central Ariz<strong>on</strong>a: Effects <strong>on</strong> selected i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>shed<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The American Midl<strong>and</strong> Naturalist. 93: 25–34.<br />

Lotspeich, F.B.; Mueller, E.W.; Frey, P.J. 1970. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> large scale<br />

forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> <strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska. Alaska Water Lab,<br />

Collage, AK: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Federal Water<br />

Polluti<strong>on</strong> C<strong>on</strong>trol Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>. 115 p.<br />

Lucarotti, C.J.; Kelsey, C.T.; Auclair, A.N.D. 1978. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ungal<br />

variati<strong>on</strong>s relative to post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil envir<strong>on</strong>ment.<br />

Oecologia. 37: 1–12.<br />

Luce, C.H. 1995. Chapter 8: Forests <strong>and</strong> wetl<strong>and</strong>s. In: Ward, A.D.;<br />

Elliot, W.J. (eds.). Envir<strong>on</strong>mental hydrology. Boaca Rat<strong>on</strong>, FL:<br />

Lewis Publishers: 263–284.<br />

Lugo, A.E. 1995. Fire <strong>and</strong> wetl<strong>and</strong> management. In: Cerulean, S.I.;<br />

Engstrom, R.T. (eds.). Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s: a management perspective.<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference.<br />

Tallahassee, FL: Tall Timbers Research Stati<strong>on</strong>. 19: 1–9.<br />

Lynch, J.A.; Corbett, E.S. 1990. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> best management<br />

practices for c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g n<strong>on</strong>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t polluti<strong>on</strong> from silvicultural<br />

operati<strong>on</strong>s. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 26(1): 41–52.<br />

Lynch, J.M.; Bragg, F. 1985. Microorganisms <strong>and</strong> soil aggregati<strong>on</strong><br />

stability. Advances <str<strong>on</strong>g>in</str<strong>on</strong>g> Soil Science. 2: 133–71.<br />

Lynham, J.T.; Wickware, G.M.; Mas<strong>on</strong>, J.A. 1998. Soil chemical<br />

changes <strong>and</strong> plant successi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g experimental burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> immature jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science. 78:<br />

93–104.<br />

Ly<strong>on</strong>, L.J.; Crawford, H.S.; Czuhai, E.; Fredriksen, R.L.; Harlow,<br />

R.F.; Metz, L.J.; Pears<strong>on</strong>, H.A. 1978. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fauna. Gen.<br />

Tech. Rep. WO-6. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service. 22 p.<br />

Ly<strong>on</strong>, L.J.; Huff, M.H.; Telfer, E.S.; Schre<str<strong>on</strong>g>in</str<strong>on</strong>g>der, D.S.; Smith, J.K.<br />

2000b. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> animal populati<strong>on</strong>s: Chapter 4. In: Smith,<br />

J.L. (ed.). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fauna.<br />

Gen. Tech. Rep. RMRS-GTR-42-Volume 1. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 25–34.<br />

Ly<strong>on</strong>, L.J.; Telfer, E.S.; Schre<str<strong>on</strong>g>in</str<strong>on</strong>g>er, D.S. 2000a. Direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> animals resp<strong>on</strong>ses: Chapter 3. In: Smith, J.K. (ed.) <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fauna. Gen. Tech. Rep. RMRS-<br />

GTR-42-Volume 1. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 17–24.<br />

Maars, R.H.; Roberts, R.D.; Skeff<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>, R.A.; Bradshaw, A.D. 1983.<br />

Nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Lee, J.A.; McNeill,<br />

S.; Roris<strong>on</strong>, I.H., (eds.). Nitrogen as an ecological factor. Oxford,<br />

Engl<strong>and</strong>: Blackwell Science Publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g: 131–137.<br />

Macadam, A.M. 1987. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> broadcast slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> fuels<br />

<strong>and</strong> soil chemical properties <str<strong>on</strong>g>in</str<strong>on</strong>g> sub-boreal spruce z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> central<br />

British Columbia. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 17:<br />

1577–1584.<br />

Mari<strong>on</strong>, G.M.; Moreno, J.M.; Oechel, W.C. 1991. Fire severity, ash<br />

depositi<strong>on</strong>, <strong>and</strong> clipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> chaparral. Soil<br />

Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 55: 235–240.<br />

Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.A.; Moody, J.A. 2001. The flux <strong>and</strong> particle-size distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sedment collected <str<strong>on</strong>g>in</str<strong>on</strong>g> the hillslope traps after a Colorado<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. In: Procceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 7 th Federal <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency sedimentati<strong>on</strong><br />

c<strong>on</strong>ference; 2001 March 25–29; Reno, NV. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: Federal Energy Regulatory Commissi<strong>on</strong>: III: 3–47.<br />

Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.E.; Miller, R.L.; Cushwa, C.T. 1975. Germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> legume seeds subjected to moist <strong>and</strong> dry heat. Ecology.<br />

56: 1441–1445.<br />

Mats<strong>on</strong>, P.A.; Vitousek, P.M.; Ewel, J.J.; Mazzar<str<strong>on</strong>g>in</str<strong>on</strong>g>o, M.J.; Roberts<strong>on</strong>,<br />

G.P. 1987. Nitrogen transformati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g tropical forest<br />

fell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a volcanic soil. Ecology. 68: 491–502.<br />

Mausbach, M.J.; Parker, W.B. 2001. Background <strong>and</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric <strong>soils</strong>. In: Richards<strong>on</strong>, J.L.; Vepraskas, M.J.<br />

(eds.). Wetl<strong>and</strong> <strong>soils</strong>—genesis, hydrology, l<strong>and</strong>scapes, <strong>and</strong> classificati<strong>on</strong>.<br />

Lewis Publishers: 19–33.<br />

Maxwell, J.R.; Neary, D.G. 1991. Vegetati<strong>on</strong> management <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

sediment yields. In: Shou-Shou, T.; Yung-Huang, K. (eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 5 th <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency sediment c<strong>on</strong>ference. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: Federal Energy Regulatory Commissi<strong>on</strong>. 2: 12–63.<br />

McArthur, A.G.; Cheney, N.P. 1966. The characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relati<strong>on</strong> to ecological studies. Australian Forest Research. 2(3):<br />

36–45.<br />

McCamm<strong>on</strong>, B.P.; Hughes, D. 1980. Fire rehab <str<strong>on</strong>g>in</str<strong>on</strong>g> the Bend Municipal<br />

Watershed. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1980 <strong>water</strong>shed management<br />

symposium; 1980 July 21–23; Boise, ID. New York: American<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers: 252–259.<br />

McClure, N.R. 1956. Grass <strong>and</strong> legume seed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>on</strong> burned-over<br />

forest l<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Idaho <strong>and</strong> adjacent Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. Moscow,<br />

ID: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Idaho. 25 p. Thesis.<br />

McColl, J.G.; Grigal, D.F. 1975. Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> phosphorus<br />

movement to lakes. Science. 185: 1109–1111.<br />

McColl, J.G.; Cole, D.W. 1968. A mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong> transport <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a forest soil. North Science. 42: 135–140.<br />

McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer,<br />

L.D. 1987. Revised slope steepness factor for the universal soil<br />

loss equati<strong>on</strong>. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural<br />

Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers 30(5): 1387–1395.<br />

McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. 1989.<br />

Revised slope length factor for the Universal Soil Loss Equati<strong>on</strong>.<br />

Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers<br />

32(5): 1571–1576.<br />

McD<strong>on</strong>ald, S.F.; Hamilt<strong>on</strong>, S.J.; Buhl, K.J.; Heis<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, J.F. 1996.<br />

Acute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> c<strong>on</strong>trol chemicals to Daphnia magna (Straus)<br />

<strong>and</strong> Selenastrul capricornutum (P<str<strong>on</strong>g>in</str<strong>on</strong>g>tz). Ecotoxicology <strong>and</strong> Envir<strong>on</strong>mental<br />

Safety. 33: 62–72.<br />

McKee, W.H., Jr. 1982. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil fertility follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> coastal pla<str<strong>on</strong>g>in</str<strong>on</strong>g> sites. Res. Pap. SE-234. Asheville, NC:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Southeastern<br />

Forest Experiment Stati<strong>on</strong>. 28 p.<br />

McMah<strong>on</strong>, T.E.; de Calesta, D.S. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fish <strong>and</strong><br />

wildlife: In: Walstad, J.D.; Radosevich, S.R.; S<strong>and</strong>berg, D.V.<br />

(eds.) Natural <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific Northwest forests.<br />

Corvallis: Oreg<strong>on</strong> State University Press: 233–250.<br />

McNabb, D.H.; Cromack, K. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

nutrients <strong>and</strong> soil productivity. In: Walstad, J.D.; Radosevich,<br />

S.R.; S<strong>and</strong>berg, D.V. (eds.). Natural <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> pacific<br />

northwest forests. Corvallis: Oreg<strong>on</strong> State University Press:<br />

125–142.<br />

McNabb, D.H., Gaweda, F.; Froehlich, H.A. 1989. Infiltrati<strong>on</strong>, <strong>water</strong><br />

repellency, <strong>and</strong> soil moisture c<strong>on</strong>tent after broadcast burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

forest site Southwest Oreg<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil <strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>.<br />

44: 87–90.<br />

Meeuwig, R.O. 1971. Infiltrati<strong>on</strong> <strong>and</strong> <strong>water</strong> repellency <str<strong>on</strong>g>in</str<strong>on</strong>g> granitic<br />

<strong>soils</strong>. Res. Pap. PSW-33. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Southwest Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>. 20 p.<br />

Megahan, W.F. 1984. Road <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>and</strong> impacts—<strong>water</strong>shed. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, forest transportati<strong>on</strong> symposium; 1984 December<br />

11–13; Casper, WY. Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Regi<strong>on</strong>, Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g Staff Unit:<br />

57–97.<br />

Megahan, W.F.; Molitor, D.C. 1975. Erosi<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Idaho. In: Watershed management symposium; 1975<br />

August; Logan, UT. New York: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers<br />

Irrigati<strong>on</strong> <strong>and</strong> Dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age Divisi<strong>on</strong>: 423–444.<br />

Meg<str<strong>on</strong>g>in</str<strong>on</strong>g>nis, H.G. 1935. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cover <strong>on</strong> surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the loessial upl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mississippi. Circular 347. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Soil C<strong>on</strong>servati<strong>on</strong> Service.<br />

15 p.<br />

Mihuc, T.B.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, C.T. 1996. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

benthicmacro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Cache Creek,<br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park, to the 1988 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In: Greenlee, J.<br />

(ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2 nd biennial c<strong>on</strong>ference <strong>on</strong> the greater<br />

Yellowst<strong>on</strong>e ecosystem: The ecological implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

greater Yellowst<strong>on</strong>e. Fairfield, WA: Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire: 83–94.<br />

Miles, S.R.; Hask<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D.M.; Ranken, D.W. 1989. Emergency burn<br />

rehabilitati<strong>on</strong>: cost, risk, <strong>and</strong> effectiveness. In: Berg, N.H.<br />

224 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


(tech.coord.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <strong>water</strong>shed<br />

management; 1988 October 26-28; Sacramento, CA. Gen.<br />

Tech. Rep. PSW-109. Berkeley, CA: U.S.Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Southwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 97–102.<br />

Miller, D.H. 1966. Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted snow from trees dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

snow storms. Res. Pap. PSW-33. Berkeley, CA: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific Southwest Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 30 p.<br />

Miller, E.L.; Beasley, R.S.; Laws<strong>on</strong>, E.R. 1988. Forest harvest <strong>and</strong><br />

site preparati<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> erosi<strong>on</strong> <strong>and</strong> sedimentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Ouachita Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Quality. 17:<br />

219–225.<br />

Miller, M. 1977. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> blue huckleberry to prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a western M<strong>on</strong>tana larch-fir forest. Res. Pap. INT-188. Ogden,<br />

UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 33 p.<br />

Miller, M. 2000. Fire autecology. In: Brown, J.K.; Smith, J.K. (eds.).<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora. Gen. Tech.<br />

Rep. RMRS-GTR-42-Volume 2. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>: 9–34.<br />

Miller, S.L.; McClean, T.M.; Stant<strong>on</strong>, N.L.; Williams, S.E. 1998.<br />

Mycorrhizati<strong>on</strong>, physiognomy, <strong>and</strong> first-year survivability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>ifer seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g natural <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Gr<strong>and</strong> Tet<strong>on</strong> Nati<strong>on</strong>al<br />

Park. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 28: 115–122.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Brock, J.T. 1991. Observed <strong>and</strong> anticipated <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> Yellowst<strong>on</strong>e stream <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Leiter, R.B.;<br />

Boyce, M.S. (eds.). The greater Yellowst<strong>on</strong>e ecosystem: redef<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

American’s wilderness heritage. New Haven, CT: Yale University<br />

Press: 123–135.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W; Brock, J.T.; Varley, J.D. 1989a. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>and</strong><br />

Yellowst<strong>on</strong>e’s stream <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: A temporal perspective shows<br />

that aquatic recovery parallel forest successi<strong>on</strong>. BioScience<br />

39(10):707-715.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Jensen, S.E.; Platt, W.S. 1989b The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stream <strong>and</strong> riparian habits <str<strong>on</strong>g>of</str<strong>on</strong>g> the Great Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> Regi<strong>on</strong>: a community<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Biol. Rep. 85(7.24). Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Interior, Fish <strong>and</strong> Wildlife Service. 142 p.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, C.T.; Lawrence, D.E. 1997. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> lotic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park,<br />

USA. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <strong>and</strong> Aquatic Sciences. 54:<br />

2509–2525.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, C.T.; Royer, T.V.; Rushforth, S.R. 1995.<br />

Benthiccommunity structure <str<strong>on</strong>g>in</str<strong>on</strong>g> two adjacent streams <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park five years after the 1988 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Great Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> Naturalist. 55: 193–200.<br />

Mitsch, W.J.; Gossel<str<strong>on</strong>g>in</str<strong>on</strong>g>k, J.G. 1993. Wetl<strong>and</strong>s. New York: Van<br />

Nostr<strong>and</strong> Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hold. 722 p.<br />

Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>a, R.; O’Dell, T.; Dunham, S.; Pilz, D. 1999. Biological diversity<br />

<strong>and</strong> ecosystem functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> forest soil fungi: management implicati<strong>on</strong>s.<br />

In: Meurisse, R. T.;Ypsilantis, W. G.; Seybold, C. (tech.<br />

eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Pacific Northwest forest <strong>and</strong> rangel<strong>and</strong> soil<br />

organism symposium. Gen. Tech. Rep. PNW-GTR-461. Portl<strong>and</strong>,<br />

OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific<br />

Northwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 45–58.<br />

M<strong>on</strong>le<strong>on</strong>, V.J.; Cromack, K., Jr. 1996. L<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

underburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> litter decompositi<strong>on</strong> <strong>and</strong> nutrient release<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> central Oreg<strong>on</strong>. Forest Ecology<br />

<strong>and</strong> Management. 81: 143–152.<br />

M<strong>on</strong>le<strong>on</strong>, V.J.; Cromack, K., Jr.; L<strong>and</strong>sberg, J.D. 1997. Short <strong>and</strong><br />

l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed underburn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> nitrogen availability<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> central Oreg<strong>on</strong>. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 27: 369–378.<br />

Moreno, J.M.; Oechel, W.C. 1989. A simple method for estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity after a burn <str<strong>on</strong>g>in</str<strong>on</strong>g> California chaparral. Ecologia<br />

Plantarum. 10(1): 57–68.<br />

Morgan, P.; Neuenschw<strong>and</strong>er, L.F. 1988. Shrub resp<strong>on</strong>se to high<br />

<strong>and</strong> low severity burns follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g clear-cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Idaho.<br />

Western Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Forestry. 3: 5–9.<br />

Mor<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.R.; Lantz, R.L. 1975. Alsea <strong>water</strong>shed study: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the aquatic resources <str<strong>on</strong>g>of</str<strong>on</strong>g> three head<strong>water</strong> streams <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Alsea River, Oreg<strong>on</strong>. In: Federal aid to fish restorati<strong>on</strong>,<br />

Project AFS-58, f<str<strong>on</strong>g>in</str<strong>on</strong>g>al report. Fishery Report No. 9. Corvallis, OR:<br />

Oreg<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish <strong>and</strong> Wildlife, Research Secti<strong>on</strong>. 56 p.<br />

Morris<strong>on</strong>, P.H.; Swans<strong>on</strong>, F.J. 1990. Fire history <strong>and</strong> pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

Cascade Range l<strong>and</strong>scape. Gen. Tech. Rep. PNW-254. Portl<strong>and</strong>,<br />

OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific<br />

Northwest Research Stati<strong>on</strong>. 77 p.<br />

Mort<strong>on</strong>, F.I. 1990. Studies <str<strong>on</strong>g>in</str<strong>on</strong>g> evaporati<strong>on</strong> <strong>and</strong> their less<strong>on</strong>s for the<br />

envir<strong>on</strong>mental sciences. Canadian Water Resources Journal. 15:<br />

261–286.<br />

Mroz, G.D.; Jurgensen, M.F.; Harvey, A.E.; Larsen, M.J. 1980.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> forest floor horiz<strong>on</strong>s. Soil Science<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 44: 395–400.<br />

Musil, C.F.; Midgley, G.F. 1990. The relative impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vasive<br />

Australian acacias, <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> seas<strong>on</strong> <strong>on</strong> the soil chemical status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a s<strong>and</strong> pla<str<strong>on</strong>g>in</str<strong>on</strong>g> lowl<strong>and</strong> fynbos community. South African Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Botany. 56: 419–427.<br />

Myers. R. L. 2000. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> tropical <strong>and</strong> subtropical <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In:<br />

Brown, J. K.; Smith, J. K. (eds.). <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>:<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora. Gen. Tech. Rep. RMRS-GTR-42-vol 2.<br />

Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 161–174.<br />

Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science. 2002.Riparian areas: Functi<strong>on</strong>s <strong>and</strong><br />

strategies for management. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Nati<strong>on</strong>al Academy<br />

Press. 428 p.<br />

Neary, D.G. 1995. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong>shed resource resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Southwest. Hydrology <strong>and</strong> Water Resources <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a <strong>and</strong><br />

the Southwest. 26: 39–44.<br />

Neary, D.G. 2002. Chapter 6: Envir<strong>on</strong>mental susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

energy producti<strong>on</strong>, 6.3 hydrologic values. In: Richards<strong>on</strong>, J.,;<br />

Smith, T,; Hakkila, P. Bioenergy from susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able forestry:<br />

guid<str<strong>on</strong>g>in</str<strong>on</strong>g>g pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <strong>and</strong> practices. Amsterdam: Elsevier:. 36–67.<br />

Neary, D.G.; Gottfried, G.J. 2002. Fires <strong>and</strong> floods: post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>water</strong>shed<br />

resp<strong>on</strong>ses. In: Viegas, D.X. (ed.). Forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> research <strong>and</strong><br />

wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> safety. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4 th <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al forest<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> research c<strong>on</strong>ference; 2002 November 18–22; Luso, Portugal.<br />

Rotterdam, The Netherl<strong>and</strong>s: Mill Press: 203–208.<br />

Neary, D.G.; Hornbeck, J.W. 1994. Chapter 4: Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

practices <strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f-site envir<strong>on</strong>mental quality. In: Dyck, W.J.; Cole,<br />

D.W.; Comerford, N.B., (eds.). Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> l<strong>on</strong>g-term<br />

site productivity. L<strong>on</strong>d<strong>on</strong>: Chapman <strong>and</strong> Hall: 81–118.<br />

Neary, D.G.; Michael, J.L. 1996. Herbicides—protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>g-term<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <strong>and</strong> <strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. New Zeal<strong>and</strong><br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry Science. 26: 241–264.<br />

Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. 1999. Fire<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> belowground susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability: a review <strong>and</strong> synthesis.<br />

Forest Ecology <strong>and</strong> Management. 122: 51–71.<br />

Neary, D.G.; Overby, S.T.; Haase, S.M. 2003. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval<br />

restorati<strong>on</strong> <strong>on</strong> carb<strong>on</strong> <strong>and</strong> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary- <strong>and</strong> volcanicderived<br />

<strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mogoll<strong>on</strong> Rim, Ariz<strong>on</strong>a. In: Omi, P.N.; Joyce,<br />

L.A. (tech. eds.). Fire, fuel treatments, <strong>and</strong> ecological restorati<strong>on</strong>:<br />

c<strong>on</strong>ference proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs; 2002 April 16–18; Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO. Proc.<br />

RMRS-P-29. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 105–115.<br />

Neary, D.G.; Ryan, K.C.; DeBano, L.F. (eds.). [In press]. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil <strong>and</strong> <strong>water</strong>. Gen. Tech.<br />

Rep. RMRS-GTR-42, Volume 4. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research<br />

Stati<strong>on</strong>.<br />

Newl<strong>and</strong>, J.A.; DeLuca, T.H. 2000. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> native<br />

nitrogen-fixed plants <strong>and</strong> soil nitrogen status <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e—<br />

Douglas-fir forests <str<strong>on</strong>g>in</str<strong>on</strong>g> western M<strong>on</strong>tana. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Research. 30: 274–282.<br />

Nieh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, G.J. 1985. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>and</strong> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface layer <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

<strong>soils</strong>. Moscow: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Idaho. 43 p. Thesis.<br />

Noble, E.L. 1965. Sediment reducti<strong>on</strong> through <strong>water</strong>shed rehabilitati<strong>on</strong>.<br />

In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the federal <str<strong>on</strong>g>in</str<strong>on</strong>g>ter-agency sedimentati<strong>on</strong><br />

c<strong>on</strong>ference, 1963. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Misc. Pub. 1970: 114-123.<br />

Noble, E.L.; Lundeen, L. 1971. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatment<br />

alternatives for sediment envir<strong>on</strong>ment. In: Symposium <strong>on</strong> forest<br />

l<strong>and</strong> uses <strong>and</strong> stream envir<strong>on</strong>ment: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. 1971 October<br />

19–21. Corvallis: Oreg<strong>on</strong> State University, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry <strong>and</strong><br />

Departement <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <strong>and</strong> Wildlife: 86–96.<br />

Norris, L.A. 1990. An overview <strong>and</strong> synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

natural <strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific Northwest forest. In:<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 225


Walstad, J.D.; Radosevich, S.R.; S<strong>and</strong>berg, D.V. (eds.). Natural<br />

<strong>and</strong> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific Northwest forests. Corvallis: Oreg<strong>on</strong><br />

State University Press: 7–22.<br />

Norris, L.A.; Webb, W.L. 1989. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> retardant <strong>on</strong> <strong>water</strong><br />

quality. In: Berg, N.H. (tech. coord.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium<br />

<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <strong>water</strong>shed management; 1988 October 26–28. Gen.<br />

Tech. Rep. PSW-109, Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Southwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 79–86.<br />

Novak, M.A.; White, R.G. 1989. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> floods <strong>on</strong> the<br />

trout populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Beaver Creek, Upper Missouri Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, M<strong>on</strong>tana.<br />

In: Richards<strong>on</strong>, F.; Hamre, R.H. (eds.). Wild trout IV,<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium; 1989 September 18–19;. Mammoth,<br />

WY: 120–126.<br />

Ojima, D.S.; Schimel, D.S.; Part<strong>on</strong>, W.J.; Owensby, C.E. 1994. L<strong>on</strong>g<strong>and</strong><br />

short-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nitrogen cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> tallgrass<br />

prairie. Biogeochemistry. 24: 67–84.<br />

O’Loughl<str<strong>on</strong>g>in</str<strong>on</strong>g>, C.L.; Rowe, L.K.; Pearce, A.J. 1980. Sediment yield <strong>and</strong><br />

<strong>water</strong> quality rep<strong>on</strong>ses to clearfell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> evergreen mixed forests<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> western New Zeal<strong>and</strong>. In: The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> man <strong>on</strong> the hydrological<br />

regime with a special reference to representative bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Publicati<strong>on</strong> 130. Gentbrugge, Belgium: Internati<strong>on</strong>al Associati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrological Science: 285–292.<br />

Opitz, W. 2003. Spermatophores <strong>and</strong> spermatophore produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal organs <str<strong>on</strong>g>of</str<strong>on</strong>g> Clerida (Coleoptera: Cler<str<strong>on</strong>g>in</str<strong>on</strong>g>ae): their biological<br />

<strong>and</strong> phylogenetic implicati<strong>on</strong>s. Coleopterists Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 57:<br />

167–190.<br />

Packer, P.E.; Christensen, G.F. 1977. Guides for c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment<br />

from sec<strong>on</strong>dary logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g roads. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>; <strong>and</strong> Missoula, MT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Northern Regi<strong>on</strong>. 42 p.<br />

Packham, D.; Pompe, A. 1971. The radiati<strong>on</strong> temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Australian Forest Research. 5(3): 1–8.<br />

Page-Dumroese, D.S.; Harvey, A.E.; Jurgensen, M.F.; Graham, R.T.<br />

1991. Organic matter functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> northwest soil<br />

system. In: Harvey, A. E.; Neuenschw<strong>and</strong>er, L.F. (comps.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs:<br />

management <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> western m<strong>on</strong>tane<br />

forest <strong>soils</strong>. Gen. Tech. Rep. INT-280. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>: 95–100.<br />

Palmborg, C.; Nordgren, A. 1993. Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial activity <strong>and</strong><br />

biomass <str<strong>on</strong>g>in</str<strong>on</strong>g> forest soil with substrate quality measured us<str<strong>on</strong>g>in</str<strong>on</strong>g>g near<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>frared reflectance spectroscopy. Soil Biology <strong>and</strong> Biochemistry.<br />

25: 1713–1718.<br />

Pannkuk, C.D.; Robichaud, P.R. 2003. Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> needle cast<br />

at reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong> after forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Water Resources Research.<br />

39(12): 1333–1341.<br />

Pannkuk, C.D.; Robichaud, P.R.; Brown, R.S. 2000. Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

needle cast from burnt c<strong>on</strong>ifer trees <strong>on</strong> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g erosi<strong>on</strong>. ASAE<br />

Paper 00-5018. Milwaukee, WI: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural<br />

Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers Annual Meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g. 15 p.<br />

Parke, J.L.; L<str<strong>on</strong>g>in</str<strong>on</strong>g>derman, R.G.; Trappe, J.M. 1984. Inoculum potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ectomycorrhizal fungi <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> southwest Oreg<strong>on</strong><br />

<strong>and</strong> northern California. Forest Science. 30: 300–304.<br />

Pase, P.C.; L<str<strong>on</strong>g>in</str<strong>on</strong>g>denmuth, A.W., Jr. 1971. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

vegetati<strong>on</strong> <strong>and</strong> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> oak-mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> mahogany chaparral.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 69: 800–805.<br />

Pase, P.C.; Ingebo, P.A. 1965. Burned chaparral to grass: early<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> <strong>and</strong> sediment yields from two granitic soil<br />

<strong>water</strong>sheds <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 9th annual Ariz<strong>on</strong>a<br />

<strong>water</strong>shed symposium; Tempe, AZ: 8–11.<br />

Patric, J.H. 1976. Soil erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern forests. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry.<br />

74: 671–676.<br />

Patrick, W.H., Jr. 1982. Nitrogen transformati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> submerged<br />

<strong>soils</strong>. In: Nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> agricultural <strong>soils</strong>. Agr<strong>on</strong>omy M<strong>on</strong>ograph 22,<br />

Madis<strong>on</strong>, WI: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy, Inc.: 449–465.<br />

Paul, E.A.; Clark, F.E. 1989. Soil microbiology <strong>and</strong> biochemistry.<br />

San Diego, CA: Academic Press. 177 p.<br />

Paysen, T.E.; Ansley, R.J.; Brown, J.K.; Gottfried, G.J.; Haase,<br />

S.M.; Harr<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, M.G.; Narog, M.G.; Sackett, S.S.; Wils<strong>on</strong>, R.C.<br />

2000. Chapter 6: Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Western shrubl<strong>and</strong>, woodl<strong>and</strong>, <strong>and</strong><br />

grassl<strong>and</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Brown, J.K.; Smith, J.K. (eds.). Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora. Gen. Tech. Rep. RMRS-<br />

GTR-42-vol. 2. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 121–157.<br />

Perala, D.A.; Alban, D.H. 1982. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> forest floor decompositi<strong>on</strong><br />

<strong>and</strong> nutrient turnover <str<strong>on</strong>g>in</str<strong>on</strong>g> aspen, p<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <strong>and</strong> spruce st<strong>and</strong>s <strong>on</strong> two<br />

<strong>soils</strong>. Gen. Tech. Rep. GTR-NC-227. St. Paul, MN: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, North Central Forest Experiment<br />

Stati<strong>on</strong>. 5p.<br />

Pérez B.; Moreno, J.M. 1998. Methods for quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g shrubl<strong>and</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

from an ecological perspective. Plant Ecology. 139(1998b):<br />

91–101.<br />

Peter, S. 1992. Heat transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>soils</strong> beneath a spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Frederict<strong>on</strong>, New Brunswick, Canada: University <str<strong>on</strong>g>of</str<strong>on</strong>g> New<br />

Brunswick. 479 p. Dissertati<strong>on</strong>.<br />

Piers<strong>on</strong>, F.B.; Robichaud, PR; Spaeth, K. 2001a. Spatial <strong>and</strong> temporal<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> a steep rangel<strong>and</strong><br />

<strong>water</strong>shed. Hydrological Processes. 15: 2905–2916.<br />

Piers<strong>on</strong>, F.B.; Spaeth, K.E.; Carls<strong>on</strong>, D.H. 2001b. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

sediment <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>in</str<strong>on</strong>g> steep rangel<strong>and</strong> <strong>water</strong>sheds. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 7 th federal <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency sedimentati<strong>on</strong> c<strong>on</strong>ference;<br />

2001 March 25–29; Reno, NV. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Federal Energy<br />

Regulatory Commissi<strong>on</strong>. 2: X-10 to X-40.<br />

Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en, J.; Fritze, H. 1993. Microbial biomass <strong>and</strong> activity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the humus layer follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: short-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

different <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 23: 1275–<br />

1285.<br />

Pietika<str<strong>on</strong>g>in</str<strong>on</strong>g>en, J.; Hiukka, R.; Fritze, H. 2000. Does short-term heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forest humus change its properties as a substrate for<br />

microbes? Soil Biology <strong>and</strong> Biochemistry. 32: 277–288.<br />

Prietro-Fern<strong>and</strong>ez, A.; Acea, M.J.; Carballas, T. 1998. Soil microbial<br />

<strong>and</strong> extractable C <strong>and</strong> N after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Biology <strong>and</strong> Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Soils. 27: 132–142.<br />

Pillsbury, A.F.; Osborn, J.O.; Naud, P.E. 1963. Residual soil moisture<br />

below the root z<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California <strong>water</strong>sheds.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research. 68: 1089–1091.<br />

Pilz, D.P.; Perry, D.A. 1984. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slash<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> ectomycorrhizal associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Douglas-fir seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 14: 94–100.<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>g, C.L.; Moore, J.P.; Clark, M.H. 1992. Wetl<strong>and</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

permafrost <strong>soils</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska. In: Kimble, J.M. (ed.). Characterizati<strong>on</strong>,<br />

classificati<strong>on</strong>, <strong>and</strong> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wet <strong>soils</strong>. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 8th<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al soil correlati<strong>on</strong> meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g (VIII ISCOM). L<str<strong>on</strong>g>in</str<strong>on</strong>g>coln,<br />

NE: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Soil C<strong>on</strong>servati<strong>on</strong> Service,<br />

Nati<strong>on</strong>al Soil Survey Center: 198–205.<br />

Pope, J.B.; Archer, J.C.; Johns<strong>on</strong>, P.R. 1946. Investigati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

erosi<strong>on</strong> c<strong>on</strong>trol <strong>and</strong> reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eroded s<strong>and</strong>y clay l<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Texas, Arkansas, <strong>and</strong> Louisiana at the C<strong>on</strong>servati<strong>on</strong> Experiment<br />

Stati<strong>on</strong>, Tyler, Texas, 1931–1940. Tech. Bull. 916. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Soil C<strong>on</strong>servati<strong>on</strong> Service.<br />

76 p.<br />

Potter, L.; Kidd, D.; St<strong>and</strong>iford, D. 1975. Mercury levels <str<strong>on</strong>g>in</str<strong>on</strong>g> Lake<br />

Powell: bioamplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury <str<strong>on</strong>g>in</str<strong>on</strong>g> man-made desert reservoir.<br />

Envir<strong>on</strong>mental Science <strong>and</strong> Technology. 9: 41–46.<br />

Precht, J.; Chrisphersen, J.; Hensel, H.; Larcher, W. 1973. Temperature<br />

<strong>and</strong> life. New York: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag. 779 p.<br />

Prevost, M. 1994. Scalp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Kalmia Angustifolia<br />

(Ericaceae) litter: Effects <strong>on</strong> Picea mariana establishment <strong>and</strong><br />

i<strong>on</strong> leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a greenhouse experiment. Forest Ecology <strong>and</strong><br />

Management. 63: 199–218.<br />

Propst, D.L.; Stefferud, J.A.; Turner, P.R. 1992. C<strong>on</strong>servati<strong>on</strong> <strong>and</strong><br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> Gila trout, Oncorhynchus gilae. Southwestern Naturalist.<br />

37(2): 117–125.<br />

Pryor, L.D. 1963. Ash-bed growth resp<strong>on</strong>se as a key to plantati<strong>on</strong><br />

establishment <strong>on</strong> poor sites. Australian Forestry. 27: 48–51.<br />

Puppi, G.; Tartagl<str<strong>on</strong>g>in</str<strong>on</strong>g>i, N. 1991. Mycorrhizal types <str<strong>on</strong>g>in</str<strong>on</strong>g> three Mediterranean<br />

communities affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g> to different extents. Acta<br />

Oecologica. 12: 295–304.<br />

Pyne, S.J. 1982. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> America: a cultural history <str<strong>on</strong>g>of</str<strong>on</strong>g> wildl<strong>and</strong> <strong>and</strong><br />

rural <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Seattle: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Press. 654 p.<br />

Pyne, S.J.; Andrews, P.L.; Laven, R.D. 1996. Introducti<strong>on</strong> to wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. New York: John Wiley & S<strong>on</strong>s, Inc. 769 p.<br />

Rab, M.A. 1996. Soil physical <strong>and</strong> hydrological properties follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the Eucalyptus regnans forest<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> southeastern Australia. Forest Ecology Management. 70:<br />

215–229.<br />

226 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Radek, K.J. 1996. Soil erosi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> the Okanogan<br />

Nati<strong>on</strong>al Forest—<str<strong>on</strong>g>in</str<strong>on</strong>g>itial m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g results. In: Erosi<strong>on</strong> c<strong>on</strong>trol<br />

technology—br<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g it home: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ference XXVII;<br />

1996 February 27–March 1; Seattle, WA. Steamboat Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

CO: Internati<strong>on</strong>al Erosi<strong>on</strong> C<strong>on</strong>trol Associati<strong>on</strong>: 499–504.<br />

Rais<strong>on</strong>, R.J. 1979. Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil envir<strong>on</strong>ment by vegetati<strong>on</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s, with particular reference to nitrogen transformati<strong>on</strong>s:<br />

a review. Plant <strong>and</strong> Soil. 51: 73–108.<br />

Rais<strong>on</strong>, R.J.; McGarity, J.W. 1980. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> ash, heat, <strong>and</strong> the ashheat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <strong>on</strong> biological activities <str<strong>on</strong>g>in</str<strong>on</strong>g> two c<strong>on</strong>trast<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>soils</strong>. Plant <strong>and</strong> Soil. 55: 363–376.<br />

Rais<strong>on</strong>, R.J.; Keith, H.; Khanna, P.K. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

nutrient supply<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <strong>soils</strong>. In: Dyck, W.J.; Meeg,<br />

C.A. (eds.). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> forest site productivity.<br />

Bull. No. 159. Rotorua, New Zeal<strong>and</strong>: Forest Research<br />

Institute: 39–54.<br />

Rais<strong>on</strong>, R.J.; Khanna, P.K.; Woods, P.V. 1985a. Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

element transfer to the atmosphere dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g vegetati<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 15: 132–140.<br />

Rais<strong>on</strong>, R.J.; Khanna, P.K.; Woods, P.V. 1985b. Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> elements<br />

to the atmosphere dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g low-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

three Australian sub-alp<str<strong>on</strong>g>in</str<strong>on</strong>g>e eucalypt forests. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 15: 657–664.<br />

Rais<strong>on</strong>, R.J.; O’C<strong>on</strong>nell, A.M.; Khanna, P.K.; Keith, H. 1993. Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> repeated <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> nitrogen <strong>and</strong> phosphorus budgets <strong>and</strong> cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Trabaud, L.; Prod<strong>on</strong>, P. (eds.).<br />

Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Ecosystem Res. Rep. 5. Brussels,<br />

Belgium: Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Countries: 347–363.<br />

Rais<strong>on</strong>, R.J.; Woods, P.V.; Jakobsen, B.F.; Bary, G.A.V. 1986a. Soil<br />

temperatures dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g low-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a eucalyptus pauciflora forest. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil<br />

Research. 24: 33–47.<br />

Rais<strong>on</strong>, R.J.; Woods, P.V.; Khanna, P.K. 1986b. Decompositi<strong>on</strong> <strong>and</strong><br />

accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> litter after <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sub-alp<str<strong>on</strong>g>in</str<strong>on</strong>g>e eucalypt forests.<br />

Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 11:9–19.<br />

Rashid, G.H. 1987. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil carb<strong>on</strong> <strong>and</strong> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

Mediterranean oak forest <str<strong>on</strong>g>of</str<strong>on</strong>g> Algeria. Plant Soil. 103: 89–93.<br />

Ratliff, R.D.; McD<strong>on</strong>ald, P.M. 1987. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> grass <strong>and</strong> legume<br />

seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g: what to seed <strong>and</strong> potential impacts <strong>on</strong> reforestati<strong>on</strong>. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 9th annual forest vegetati<strong>on</strong> management c<strong>on</strong>ference;<br />

1987 November 3–5. Redd<str<strong>on</strong>g>in</str<strong>on</strong>g>g, CA: Forest Vegetati<strong>on</strong> Management<br />

C<strong>on</strong>ference: 111–123.<br />

Read, D.J. 1991. Mycorrhizae <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Experiential. 47:<br />

376–391.<br />

Reddell, P.; Malajczuk, N. 1984. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae by jarrah<br />

(Eucalyptus marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ata Dom ex Smith) <str<strong>on</strong>g>in</str<strong>on</strong>g> litter <strong>and</strong> soil. Australian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 32: 511–520.<br />

Reed, C.C. 1997. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> prairie <str<strong>on</strong>g>in</str<strong>on</strong>g>sects <strong>and</strong> other arthropods<br />

to prescripti<strong>on</strong> burns. Natural Areas Journal. 17: 380–385.<br />

Reid, L.M. 1993.Research <strong>and</strong> cumulative <strong>water</strong>shed <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Gen.<br />

Tech. Rep. PSW-GTR-141. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Pacific Southwest Research Stati<strong>on</strong>.<br />

118 p.<br />

Reiman, B. E.; Clayt<strong>on</strong>, J. 1997. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> native fish: issues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest health <strong>and</strong> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitive species. Fisheries.<br />

22(11): 6–15.<br />

Reiman, B.E.; Lee, D.; Ch<strong>and</strong>ler, G.; Myers, D. 1997. Does wildlife<br />

threaten ext<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> for salm<strong>on</strong>ids: resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> redb<strong>and</strong> trout <strong>and</strong><br />

bull trout follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g recent large <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> the Boise Nati<strong>on</strong>al<br />

Forest. In: Greenlee, J. (ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> threatened <strong>and</strong> endangered species <strong>and</strong> habitats.<br />

Fairfield, WA: Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire: 47–57.<br />

Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D. 2003. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g FOFEM 5.0 to estimate tree mortality,<br />

fuel c<strong>on</strong>sumpti<strong>on</strong>, smoke producti<strong>on</strong>, <strong>and</strong> soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. 2nd imternati<strong>on</strong>al wildl<strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management<br />

c<strong>on</strong>gress; 2003 November 16-20; Orl<strong>and</strong>o, FL. Bost<strong>on</strong>,<br />

MA: American Meteorological Society. 6 p.<br />

Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D.; Keane, R.E.; Brown, J.K. 1997. First Order Fire<br />

Effects Model: FOFEM 4.0, User’s Guide. Gen. Tech. Rep. INT-<br />

344. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 65 p.<br />

Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D.; Keane, R.E.; Brown, J.K. 2001. Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 10: 373–380.<br />

Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hart, K.G.; Eschner, A.R.; Trimble, G.R. 1963. Effects <strong>on</strong><br />

streamflow <str<strong>on</strong>g>of</str<strong>on</strong>g> four forest practices <str<strong>on</strong>g>in</str<strong>on</strong>g> the mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> West<br />

Virg<str<strong>on</strong>g>in</str<strong>on</strong>g>ia. Res. Pap. NE-1. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Northeastern Forest Experiment Stati<strong>on</strong>. 79 p.<br />

Renard, K.G.; Simant<strong>on</strong>, J.R. 1990. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RUSLE to rangel<strong>and</strong>s.<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong> <strong>water</strong>shed plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

analysis <str<strong>on</strong>g>in</str<strong>on</strong>g> acti<strong>on</strong>; 1990 July 9–11; Durango, CO. New York:<br />

American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers: 164–173.<br />

Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder,<br />

D.C. (coords). 1997. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil erosi<strong>on</strong> by <strong>water</strong>: a guide to<br />

c<strong>on</strong>servati<strong>on</strong> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the revised universal soil loss equati<strong>on</strong><br />

(RUSLE). Agric. H<strong>and</strong>b. No. 703. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Natural Resources C<strong>on</strong>servati<strong>on</strong><br />

Service. 404 p.<br />

Renbuss, M.A.; Chilvers, G.A.; Pryor, L.D. 1973. Microbiology <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

ashbed. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the L<str<strong>on</strong>g>in</str<strong>on</strong>g>naean Society <str<strong>on</strong>g>of</str<strong>on</strong>g> New South Wales<br />

97:302-310.<br />

Rice, R.M. 1974. The hydrology if chaparral <strong>water</strong>sheds. In:<br />

Rosenthal, M. (ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> symposium <strong>on</strong> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the<br />

chaparral. Riverside, CA: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California: 27–34.<br />

Rice, R.M.; Crouse, R.P.; Corbett, E.S. 1965. Emergency measures<br />

to c<strong>on</strong>trol erosi<strong>on</strong> after a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the San Dimas Experimental<br />

Forest. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal <str<strong>on</strong>g>in</str<strong>on</strong>g>ter-agency sedimentati<strong>on</strong><br />

c<strong>on</strong>ference; 1963. Misc. Pub. 970. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture: 123–130.<br />

Rich, L.R. 1962. Erosi<strong>on</strong> <strong>and</strong> sediment movement follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest <str<strong>on</strong>g>of</str<strong>on</strong>g> central Ariz<strong>on</strong>a. Res. Note<br />

76. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Stati<strong>on</strong>. 12 p.<br />

Richards, C.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W. 1992. Spatial <strong>and</strong> temporal trends <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

stream macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrate communities: the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> catchment<br />

disturbance. Hydrobiologia. 241: 173–184.<br />

Richards<strong>on</strong>, J.L.; Vepraskas, M.J. 2001. Wetl<strong>and</strong> <strong>soils</strong>: genesis,<br />

hydrology, l<strong>and</strong>scapes, <strong>and</strong> classificati<strong>on</strong>. Boca Rat<strong>on</strong>, FL: Lewis<br />

Publishers. 417 p.<br />

Richards<strong>on</strong>, J.L.; Arndt, J.L.; M<strong>on</strong>tgomery, J.A. 2001. Hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wetl<strong>and</strong> <strong>and</strong> related <strong>soils</strong>. In: Richards<strong>on</strong>, J.L.; Vepraskas, M.J.<br />

(eds.). Wetl<strong>and</strong> <strong>soils</strong>: genesis, hydrology, l<strong>and</strong>scapes, <strong>and</strong> classificati<strong>on</strong>.<br />

Boca Rat<strong>on</strong>, FL: Lewis Publishers: 35–84.<br />

Richter, D.D.; Rals<strong>on</strong>, C.W.; Harms, W.R. 1982. Prescibed <str<strong>on</strong>g>fire</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> quality <strong>and</strong> forest nutrient recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Science.<br />

215: 661–663.<br />

Riekerk, H. 1983. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> silviculture <strong>on</strong> flatwoods run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

<strong>water</strong> quality, <strong>and</strong> nutrient budgets. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

19: 73–79.<br />

Riggan, P.J.; Lockwood, R.N.; Jacks, P.M. 1994. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

severity <strong>on</strong> nitrate mobilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong>sheds subject to chr<strong>on</strong>ic<br />

atmospheric depositi<strong>on</strong>. Envir<strong>on</strong>mental Science <strong>and</strong> Technology.<br />

28: 369–375.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N. 1988. Graz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> stream habitat <strong>and</strong> fishes:<br />

research design c<strong>on</strong>siderati<strong>on</strong>s. North American Journal Fish<br />

Management. 8: 240–247.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N. 1994. Decl<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Southwestern aquatic habitats <strong>and</strong><br />

fishes: are they susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able? Gen. Tech. Rep. RM-247. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 256–265.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N. 1996. Shortterm <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> fishes <strong>and</strong> aquatic<br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern United States. North<br />

American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Management. 16: 653–658.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J. N. 2003a. Flows, fishes, foreigners, <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s: Relative<br />

impacts <strong>on</strong> southwestern native fishes. Hydrology <strong>and</strong> Water<br />

Resources <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwest. 33: 79-84.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J. N. 2003b. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the southwestern United States:<br />

Effects <strong>on</strong> fishes <strong>and</strong> their habitats. 2 nd Internati<strong>on</strong>al Fire Ecology<br />

C<strong>on</strong>ference Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, American Meteorological Society,<br />

Orl<strong>and</strong>o, FL, 17-20 November 2003. CD ROM publicati<strong>on</strong> Paper<br />

66000, 5 p. http://ams.c<strong>on</strong>fex.com/ams/FIRE2003/techprogram/<br />

paper_66000.htm<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne J. N. 2004. Forest, Fires <strong>and</strong> fishes: Less<strong>on</strong>s <strong>and</strong> management<br />

implicati<strong>on</strong>s from the southwestern USA. Pp 151-156. In, G. J.<br />

Scrimgeour, G. Eisler, B. McCullock, U. Sil<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <strong>and</strong> M. Morita<br />

(editors). Forest L<strong>and</strong>s – Fish II, Ecosystem stewardship through<br />

collaborati<strong>on</strong>. C<strong>on</strong>ference. Edm<strong>on</strong>t<strong>on</strong>, Alberta, April 26-28, 2004<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 227


R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N. <strong>and</strong> B. Calamusso. In Press. Southwestern trouts.<br />

Distributi<strong>on</strong> with reference to physiography, hydrology, distributi<strong>on</strong><br />

<strong>and</strong> threats. In: Symposium <strong>on</strong> Inl<strong>and</strong> trouts. Western<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Fisheries Society, Feb 28-Mar 2, 2004, Salt<br />

Lake City Utah.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J. N. <strong>and</strong> C. D. Carter. In Press. Short-Term Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> Fishes <str<strong>on</strong>g>in</str<strong>on</strong>g> streams <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southwestern United<br />

States, 2002: Management Implicati<strong>on</strong>s. In: Narog, M.G., technical<br />

coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ator. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2002 Fire C<strong>on</strong>ference <strong>on</strong><br />

Manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> fuels <str<strong>on</strong>g>in</str<strong>on</strong>g> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g wildl<strong>and</strong>s <strong>and</strong> open<br />

spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the southwestern United States. December 2-5, 2002,<br />

San Diego, CA. Gen. Tech. Rep. PSW-189, Albany, CA: Pacific<br />

Southwest Research Stati<strong>on</strong>, Forest Service, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture:<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N.; Neary, D.G. 1996. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> aquatic habitats <strong>and</strong><br />

biota <str<strong>on</strong>g>in</str<strong>on</strong>g> Madrean-type <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>—Southwestern USA. Gen.<br />

Tech. Rep. RM-289. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 135–145.<br />

Roberts, W.B. 1965. Soil temperatures under a pile <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g logs.<br />

Australian Forest Research. 1(3): 21–25.<br />

Robichaud, PR. 2000. Fire <strong>and</strong> erosi<strong>on</strong>: evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatment, c<strong>on</strong>tour-felled logs. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>water</strong>shed management <strong>and</strong> operati<strong>on</strong>s management<br />

c<strong>on</strong>ference; 2000 June 20–24; Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO. Rest<strong>on</strong>, VA:<br />

American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers. 11 p.<br />

Robichaud, P.R. 2002. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> erosi<strong>on</strong>: when to expect the<br />

unexpected. Symposium <strong>on</strong> the geomorphic impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Paper 143-10. Boulder, CO: Geolological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 1 p.<br />

Robichaud, P.R.; Brown, R.E. 1999. What happened after the smoke<br />

cleared: <strong>on</strong>site erosi<strong>on</strong> rates after a wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Oreg<strong>on</strong>. In:<br />

Olsen, D.S.; Poty<strong>on</strong>dy, J.P. (eds.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, wildl<strong>and</strong> hydrology<br />

c<strong>on</strong>ference; 1999 June; Bozeman, MT. Hern<strong>on</strong>, VA: American<br />

Water Resource Associati<strong>on</strong>: 419–426.<br />

Robichaud, P.R.; Brown, R.E. 2002. Silt fences: an ec<strong>on</strong>omical<br />

technique for measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g hillslope soil erosi<strong>on</strong>. Gen. Tech. Rep.<br />

RMRS-GTR-94. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 24 p.<br />

Robichaud, P.R.; Hungerford, R. 2000. Water repellency by laboratory<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> four northern Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong>. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 231–232: 207–219.<br />

Robichaud, P.R.; Beyers, J.L.; Neary. D.G. 2000. Evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong> treatments. Gen. Tech.<br />

Rep. RMRS-GTR-63. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 85 p.<br />

Robichaud, P.R.; MacD<strong>on</strong>ald, L.; Freeouf, J.; Neary, D.; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.;<br />

Ashmun, L. 2003. Post<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong>. In: Graham, R.T., (tech.<br />

ed.). Hayman Fire case study. Gen. Tech. Rep. RMRS-GTR-114.<br />

Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 293–313.<br />

Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, C.T.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>shall, G.W.; Rushforth, S.R. 1994. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 1988 wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> diatom assemblages <str<strong>on</strong>g>in</str<strong>on</strong>g> streams <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park. In: Despa<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.G. (ed.). Plants <strong>and</strong><br />

their envir<strong>on</strong>ments: proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the first biennial scientific<br />

c<strong>on</strong>ference <strong>on</strong> the Greater Yellowst<strong>on</strong>e Ecosystem. Tech. Rep.<br />

NPS/NRYELL/NRTR-93/XX. Denver, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Interior, Nati<strong>on</strong>al Park Service, Natural Resources Publicati<strong>on</strong><br />

Office: 247–257.<br />

Roby, K.B. 1989. Watershed resp<strong>on</strong>se <strong>and</strong> recovery from the Will<br />

Fire: ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>. Gen. Tech. Rep. PSW-109. Berkeley,<br />

CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Pacific<br />

Southwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 131–136.<br />

Roby, K.B.; Azuma, D.L. 1995. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a reach <str<strong>on</strong>g>of</str<strong>on</strong>g> a northern<br />

California stream follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Envir<strong>on</strong>mental Management.<br />

19: 591–600.<br />

Romanya, J.; Khanna, P.; Rais<strong>on</strong>, R.J. 1994. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil phosphorus fracti<strong>on</strong>s <strong>and</strong> sorpti<strong>on</strong> <strong>and</strong> desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphorus. Forest Ecology <strong>and</strong> Management. 65: 89–103.<br />

Roscoe, R.; Buurman, P.; Velthorst, E.J.; Pereira, J.A.A. 2000.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> a “cerrado sensu-stiricto”<br />

from southeast Brazil as revealed by changes <str<strong>on</strong>g>in</str<strong>on</strong>g> 13 C. Geoderma<br />

95: 141–161.<br />

Rosen, K. 1996. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> clear-cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> stream<strong>water</strong> quality <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

forest catchments <str<strong>on</strong>g>in</str<strong>on</strong>g> central Sweden. Forest Ecology <strong>and</strong> Management.<br />

83: 237–244.<br />

Rosentreter, R. 1986. Compositi<strong>on</strong>al patterns with<str<strong>on</strong>g>in</str<strong>on</strong>g> a rabbitbrush<br />

(Chrysothamnus) community <str<strong>on</strong>g>of</str<strong>on</strong>g> the Idaho Snake River Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>. In:<br />

McArthur, E.D.; Welch, B.L. (comps.). Symposium proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<strong>on</strong> the biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Artemisia <strong>and</strong> Chrysothamnus. Gen. Tech. Rep.<br />

INT-200. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>.<br />

273–277.<br />

Rosgen, D.L. 1994. A classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural rivers. Catena. 22:<br />

169–199.<br />

Rosgen, D.L. 1996. Applied river morphology. Pagosa Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, CO:<br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Hydrology. 364 p.<br />

Ross, D.J.; Speir, T.W.; Tate, K.; Feltham, C.W. 1997. Burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

New Zeal<strong>and</strong> snow-tussock grassl<strong>and</strong>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> soil microbial<br />

biomass <strong>and</strong> nitrogen <strong>and</strong> phosphorus availability. New Zeal<strong>and</strong><br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 21: 63–71.<br />

Roth, F.A., Chang, M. 1981.Throughfall <str<strong>on</strong>g>in</str<strong>on</strong>g> planted st<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

southern p<str<strong>on</strong>g>in</str<strong>on</strong>g>e species <str<strong>on</strong>g>in</str<strong>on</strong>g> east Texas. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

17: 880–885.<br />

Rothacher, J. 1963. Net precipitati<strong>on</strong> under a Douglas-fir forest.<br />

Forest Science. 9: 423–429.<br />

Rothermel, R.C. 1972. A mathematical model predicti<strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g> spread<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> wildl<strong>and</strong> fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong><br />

Range Experiment Stati<strong>on</strong>. 40 p.<br />

Rothermel, R.C. 1991. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g behavior <strong>and</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the Northern Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Res. Pap. INT-438. Ogden, UT:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 46 p.<br />

Rothermel, R.C.; Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.E. 1980. Measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior for correlati<strong>on</strong> with <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. Gen. Tech. Rep. INT-<br />

93. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 4 p.<br />

Rowe, J.S. 1983. C<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> plant <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals <strong>and</strong><br />

species. In: We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W.; MacLean, D.A. (eds.). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northern circumpolar <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Scope 18. New York: John<br />

Wiley & S<strong>on</strong>s: 135–154.<br />

Rowe, J.S.; Bergstienss<strong>on</strong>, J.L.; Padbury, G.A.; Hermesh, R. 1974.<br />

Fire studies <str<strong>on</strong>g>in</str<strong>on</strong>g> the MacKenzie Valley. ALUR Rep 73. Canadian<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian <strong>and</strong> Northern Development: 71–84.<br />

Ruby, E. 1997. Observati<strong>on</strong>s <strong>on</strong> the Dome Fire emergency rehabilitati<strong>on</strong><br />

seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Unpublished report <strong>on</strong> file at: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service. T<strong>on</strong>to Nati<strong>on</strong>al Forest, Phoenix, AZ.<br />

3 p.<br />

Rundel, P.W. 1977. Water balance <str<strong>on</strong>g>in</str<strong>on</strong>g> Mediterranean sclerophyll<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. In: Mo<strong>on</strong>ey, H.A.; C<strong>on</strong>rad, C.E. (tech. coords.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <strong>on</strong> the envir<strong>on</strong>mental c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> fuel management <str<strong>on</strong>g>in</str<strong>on</strong>g> Mediterranean <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Gen.<br />

Tch. Rep. WO-3. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service: 95–106.<br />

Russell, K.R.; Van Lear, D.H.; Guynn, D.C., Jr. 1999. Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> herpet<str<strong>on</strong>g>of</str<strong>on</strong>g>auna: review <strong>and</strong> management implicati<strong>on</strong>s.<br />

Wildlife Society Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 27(2): 374–384.<br />

Russell, J.D.; Fraser, A.R; Wats<strong>on</strong>, J.R.; Pars<strong>on</strong>s, J.W. 1974. Thermal<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> soil organic matter. Geoderma.<br />

11: 63–66.<br />

Ryan, K.C. 2002. Dynamic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between forest structure <strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <str<strong>on</strong>g>in</str<strong>on</strong>g> boreal <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Silva Fennica. (36(1): 13–39.<br />

Ryan, K.C.; Noste, N.V. 1985. Evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In:<br />

Lotan, J.E.; Kilgore, B.M.; Fischer, W.C.; Mutch, R.W. (eds.).<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs—symposium <strong>and</strong> workshop <strong>on</strong> wilderness <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Gen.<br />

Tech. Rep. INT-182. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 230–238.<br />

Ryan, K.C.; Fr<strong>and</strong>sen, W.H. 1991. Basal <str<strong>on</strong>g>in</str<strong>on</strong>g>jury from smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> mature P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa laws. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 1: 107–118.<br />

Ryan, P.W.; McMah<strong>on</strong>, C.K. 1976. Some chemical <strong>and</strong> physical<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s from forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 69th annual meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the Air Polluti<strong>on</strong> C<strong>on</strong>trol Associati<strong>on</strong>.<br />

Paper Number 76-2.3. Portl<strong>and</strong>, OR. 15 p.<br />

Saa, A.; Trasar-Cepeda, M.C.; Carballas, T. 1998. Soil phosphorus<br />

status <strong>and</strong> phosphom<strong>on</strong>oesterase activity <str<strong>on</strong>g>of</str<strong>on</strong>g> recently burnt <strong>and</strong><br />

unburnt soil follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g laboratory <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>. Soil Biology <strong>and</strong><br />

Biochemistry. 30: 419–428.<br />

228 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Saa, A.; Trasar-Cepeda, M.C.; Gil-Sotres, F.; Carballas, T. 1993.<br />

Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil phosphorus <strong>and</strong> acid phosphatase activity immediately<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Soil Biology Biochemistry. 25: 1223–<br />

1230.<br />

Sackett, S.S. 1980: Reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g natural p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>: two case studies. Rese. Pap. RM-392. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>. 6 p.<br />

Sackett, S.S.; Haase, S.M. 1992. Measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil <strong>and</strong> tree temperatures<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>s with thermocouple probes. Gen.<br />

Tech. Rep. PSW-131. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Southwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>.<br />

15 p.<br />

Sackett, S.S.; Haase, S.M.; Harr<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, M.G. 1996. Less<strong>on</strong>s learned<br />

from <str<strong>on</strong>g>fire</str<strong>on</strong>g> use restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g Southwestern p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

Gen. Tech. Rep. RM-278. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>: 54–61.<br />

San Dimas Technology Development Center (SDTDC). 2003. Helicopter<br />

straw mulch<str<strong>on</strong>g>in</str<strong>on</strong>g>g: plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> implementati<strong>on</strong>. [Onl<str<strong>on</strong>g>in</str<strong>on</strong>g>e]<br />

Available: http://fsweb.sdtdc.wo.fs.fed.us/programs/wsa/<br />

helimulch_etip/<br />

S<strong>and</strong>berg, D.V.; Ottmar, R.D.; Peters<strong>on</strong>, J.L.; Core, J. 2002. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> air. Gen. Tech. Rep.<br />

RMRS-GTR-42-vol. 5. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 79 p.<br />

S<strong>and</strong>berg, D.V.; Pierovich, J.M.; Fox, D.G.; Ross, E.W. 1979. Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> air: a State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge review. Gen. Tech. Rep. WO-<br />

9. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, D.C.: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service. 40 p.<br />

S<strong>and</strong>s, R. 1983. Physical changes to s<strong>and</strong>y <strong>soils</strong> planted to radiata<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. In: Ballard, R; Gessel, S.P. (eds.). IUFRO symposium <strong>on</strong><br />

forest site <strong>and</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous productivity. Gen. Tech. Rep. PNW-<br />

163. Berkeley, CA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Pacific Southwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>:<br />

146–152.<br />

Sartz, R.S. 1953. Soil erosi<strong>on</strong> <strong>on</strong> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>-denuded forest area <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Douglas-fir regi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil <strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>. 8(6):<br />

279–281.<br />

Satterlund, D.R.; Adams, P.W. 1992. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <strong>water</strong>shed management.<br />

New York: John Wiley & S<strong>on</strong>s, Inc. 436 p.<br />

Satterlund, D.R.; Haupt, H.F. 1970. The dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> snow caught<br />

by c<strong>on</strong>ifer crowns. Water Resources Research. 6(2): 649–652.<br />

Scatena, F.N. 2000. Chapter 2: Dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> quality. In: Dissmeyer,<br />

G.E. (ed.). Dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> from forests <strong>and</strong> grassl<strong>and</strong>s: a synthesis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific literature. Gen. Tech. Rep. SRS-39. Asheville,<br />

NC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Southern<br />

Research Stati<strong>on</strong>: 7–25.<br />

Schimmel, J.; Granström, A. 1996. Fire severity <strong>and</strong> vegetati<strong>on</strong><br />

resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the boreal Swedish forest. Ecology. 77(5): 1436–1450.<br />

Schles<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, W.H. 1991. Biogeochemistry—an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

change. San Diego: Academic Press. 443 p.<br />

Schmalzer, P.A.; H<str<strong>on</strong>g>in</str<strong>on</strong>g>kle, C.R. 1992. Soil dynamics follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Juncus <strong>and</strong> Spart<str<strong>on</strong>g>in</str<strong>on</strong>g>a marshes. Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Wetl<strong>and</strong>s Scientists.<br />

Wetl<strong>and</strong>s. 12(1): 8–21.<br />

Schmidt, L. 2004. [Pers<strong>on</strong>al communicati<strong>on</strong>]. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service (retired). Stream<br />

Systems Technology Center.<br />

Schmidt, K.M.; Menakis, J.P.; Hardy, C.C.; Hann, W.J.; Bunnell,<br />

D.L. 2002. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse-scale spatial data for wildl<strong>and</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> fuel management. Gen. Tech. Rep. RMRS-87. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 41 p.<br />

Schnitzer, M.; H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, I. 1964. Pyrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> soil organic matter.<br />

Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. 28: 520–525.<br />

Schoch, P.; B<str<strong>on</strong>g>in</str<strong>on</strong>g>kley, D. 1986. Prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased nitrogen<br />

availability <str<strong>on</strong>g>in</str<strong>on</strong>g> a mature loblolly p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>. Forest Ecology <strong>and</strong><br />

Management. 14: 13–22.<br />

Schoeneberger, M.M.; Perry, D.A. 1982. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil disturbance<br />

<strong>on</strong> growth <strong>and</strong> ectomycorrhizae <str<strong>on</strong>g>of</str<strong>on</strong>g> Douglas-fir <strong>and</strong> western<br />

hemlock seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs: a greenhouse bioassay. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forest Research. 12: 343–353.<br />

Schumm, S.A.; Harvey, M.D. 1982. Natural erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the USA. In:<br />

Schmidt, B.L. (ed.). Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> soil loss tolerance. Special<br />

Publ. 45. Madis<strong>on</strong>, WI: American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy: 23–39.<br />

Scott, D.F. 1993. The hydrological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> South African<br />

mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> catchments. Journal Hydrology. 150: 409–432.<br />

Scott, D.F.; Van Wyk, D.B. 1990. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil<br />

wettability <strong>and</strong> hydrologic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an afforested catchment.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 121: 239–256.<br />

Scott, J.H. 1998. Sensitivity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a method for assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> hazard <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, USA. Internati<strong>on</strong>al<br />

c<strong>on</strong>ference <strong>on</strong> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> research, 14th c<strong>on</strong>ference <strong>on</strong><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> forest meteorology. Vol. II: 2517–2532.<br />

Scott, J.H. 2001. Quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface fuel characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

plant communities at the Dare County Bomb<str<strong>on</strong>g>in</str<strong>on</strong>g>g Range. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

Report RJVA INT-96093. Unpublished report <strong>on</strong> file at: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>, Fire Sciences Laboratory, Missoula, MT. 18 p.<br />

Scott, J.H.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt, E.D. 2001. Assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> potential by<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g models <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <strong>and</strong> crown <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior. Res. Pap.<br />

RMRS-29. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>. 59 p.<br />

Service, R.F. 2004. As the West goes dry. Science. 303: 1124–1127.<br />

Severs<strong>on</strong>, K.E.; R<str<strong>on</strong>g>in</str<strong>on</strong>g>ne, J.N. 1988. Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g habitat diversity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Southwestern forests <strong>and</strong> woodl<strong>and</strong>s via prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In:<br />

Krammes, J.S. (tech. coord.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium: <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management <strong>on</strong> Southwestern natural resources; 1988<br />

November 15–17. Tucs<strong>on</strong>, AZ. Gen. Tech. Rep. RM-191. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 95–104.<br />

Sgardelis, S.P.; Pantis, J.D.; Argyropoulou, M.D.; Stamou, G.P.<br />

1995. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates <str<strong>on</strong>g>in</str<strong>on</strong>g> a Mediterranean<br />

Phryganic ecosystem. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g><br />

Fire. 5: 113–121.<br />

Sharitz, R.R.; Gibb<strong>on</strong>s, J.W. 1982. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> southeastern<br />

shrub bogs (pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>s) <strong>and</strong> Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a bays: a community pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

Tech. Rep.FWS/OBS-82/04. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Fish <strong>and</strong> Wildlife Service. 93 p.<br />

Shea, R.W. 1993. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> silvicultural activities<br />

<strong>on</strong> fuel mass <strong>and</strong> nitrogen redistributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> central Oreg<strong>on</strong>. Corvallis: Oreg<strong>on</strong> State University,<br />

163 p. Thesis,<br />

Sidle, R.C. 1985. Factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> slopes. In:<br />

Swanst<strong>on</strong>, D. (ed.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the workshop <strong>on</strong> slope stability:<br />

problems <strong>and</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> forest management. Gen. Tech.<br />

Rep. PNW-180. Portl<strong>and</strong>, OR: U. S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Pacific Northwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 17–25.<br />

Sidle, R.C.; Drlica, D.M. 1981. Soil compacti<strong>on</strong> from logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g with a<br />

low-ground pressure skidder <strong>on</strong> the Oreg<strong>on</strong> coast ranges. Soil<br />

Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 45: 1219–1224.<br />

Simard, A.J. 1991. Fire severity, chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g scales, <strong>and</strong> how th<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

hang together. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 1: 23–34.<br />

Sims, B.D.; Lehman, G.S.; Ffolliott, P.F. 1981. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trolled burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> surface <strong>water</strong> quality. Hydrology <strong>and</strong><br />

Water Resources <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a <strong>and</strong> the Southwest. 11: 87–89.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>clair, J.D.; Hamilt<strong>on</strong>, E.L. 1955. Streamflow reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g>damaged<br />

<strong>water</strong>shed. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil<br />

Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers, Hydaulics Divisi<strong>on</strong>. 81(629): 1–17.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, M.J.; Munns, D.N. 1996. Soils: an <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong>. 3rd editi<strong>on</strong>.<br />

Upper Saddle River, NJ: Prentice Hall. 480 p.<br />

Skau, C.M. 1964a. Intercepti<strong>on</strong>, throughfall, <strong>and</strong> stemflow <str<strong>on</strong>g>in</str<strong>on</strong>g> Utah<br />

<strong>and</strong> alligator juniper cover types <str<strong>on</strong>g>of</str<strong>on</strong>g> northern Ariz<strong>on</strong>a. Forest<br />

Science. 10: 283–287.<br />

Skau, C.M. 1964b. Soil <strong>water</strong> storage under natural <strong>and</strong> cleared<br />

st<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> alligator <strong>and</strong> Utah juniper <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Ariz<strong>on</strong>a. Res.<br />

Note RM-24. Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 3 p.<br />

Smith, J. K. (ed.). 2000. <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>on</strong> fauna. Gen. Tech. Rep. RMRS-GTR-42-Vol. 1, Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 83 p.<br />

Smith, J.K.; Fischer, W.C. 1997. Fire ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest habitat<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> northern Idaho. Gen. Tech. Rep. INT-363. Ogden, UT:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Research Stati<strong>on</strong>. 142 p.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 229


Smith, R. D.; Sidle, R.C.; Porter, P.E.; Noel, J.R. 1993. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental removal <str<strong>on</strong>g>of</str<strong>on</strong>g> woody debris <strong>on</strong> the channel morphology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a forest, gravel-bed stream. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 152: 153–178.<br />

Snyder, G.G.; Haupt, H.F.; Belt, G.H., Jr. 1975. Clearcutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong><br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g slash alter quality <str<strong>on</strong>g>of</str<strong>on</strong>g> stream <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Idaho.<br />

Res. Pap. INT-168. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 34 p.<br />

Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 1997. Glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> soil science terms.<br />

Madis<strong>on</strong>, WI: Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 134 p.<br />

Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 2001. Glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> soil science terms.<br />

Madis<strong>on</strong>, WI: Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America. 140 p.<br />

Soto, B.; Diaz-Fierros, F. 1993. Interacti<strong>on</strong>s between plant ash<br />

leachates <strong>and</strong> soil. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 3(4):<br />

207–216.<br />

Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gett, J.A. 1976. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil<br />

fauna <strong>and</strong> <strong>on</strong> litter decompositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> western Australia forests.<br />

Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 1: 77–82.<br />

St. Clair, L.L.; Webb, B.L.; Johansen, J.R.; Nebecker, G.T. 1984.<br />

Cryptogamic soil crusts: enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g establishment<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> disturbed <strong>and</strong> undisturbed areas. Reclamati<strong>on</strong> Revegetati<strong>on</strong><br />

Research. 3: 129–136.<br />

St. John, T.V.; Rundel, P.W. 1976. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> as a m<str<strong>on</strong>g>in</str<strong>on</strong>g>eraliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

agent <str<strong>on</strong>g>in</str<strong>on</strong>g> the Sierran c<strong>on</strong>iferous forest. Oecologia. 25: 35–45.<br />

Stadd<strong>on</strong>, W.J.; Duchesne, L.C.; Trevors, J.T. 1998. Acid phosphatase,<br />

alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e phosphatase <strong>and</strong> arylsulfatase activities <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>soils</strong> from a jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e (P<str<strong>on</strong>g>in</str<strong>on</strong>g>us banksiana Lamb.) ecosystem after<br />

clear-cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g, prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> scarificati<strong>on</strong>. Biology <strong>and</strong><br />

Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils. 27: 1–4.<br />

Stefan, D.C. 1977. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> up<strong>on</strong> the benthic community<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> stream <str<strong>on</strong>g>in</str<strong>on</strong>g> northeast Idaho. Missoula: University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>tana, 205 p. Thesis.<br />

Stevens<strong>on</strong>, F.J. 1986. Cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> soil—carb<strong>on</strong>, nitrogen, phosphorus,<br />

sulfur, <strong>and</strong> micr<strong>on</strong>utrients. New York, NY: John Wiley & S<strong>on</strong>s,<br />

Inc. 427 p.<br />

Stevens<strong>on</strong>, F. J.; Cole, M. A. 1999. Cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> soil: carb<strong>on</strong>, nitrogen,<br />

phosphorus, sulfur, micr<strong>on</strong>utirents. 2d ed. New York: John Wiley<br />

& S<strong>on</strong>s. 427 p.<br />

Stocks, B.D.; Laws<strong>on</strong>, M.E.; Alex<strong>and</strong>er, C.E.; Van Wagner, R.S.;<br />

McAlp<str<strong>on</strong>g>in</str<strong>on</strong>g>e, T.J.; Lynham,; Dube, D.E. 1989. The Canadian forest<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> danger rat<str<strong>on</strong>g>in</str<strong>on</strong>g>g system: an overview. The Forestry Chr<strong>on</strong>icle.<br />

65: 258–265.<br />

Stocks, B.J. 1991. The extent <strong>and</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> northern<br />

circumpolar countries. In: Lev<str<strong>on</strong>g>in</str<strong>on</strong>g>e, J.S. (ed.). Global biomass<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: atmospheric climate <strong>and</strong> biospheric implicati<strong>on</strong>s Cambridge:<br />

Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Press: 197–202.<br />

Sutherl<strong>and</strong>, D.R.; Haupt, D.R. 1970. The depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> snow caught<br />

by c<strong>on</strong>ifer crowns. Water Resources Research. 6: 649–652.<br />

Swank, W.T.; Crossley, D.A., Jr. 1988. Forest hydrology <strong>and</strong> ecology<br />

at Coweeta. New York: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag. 469 p.<br />

Swank, W.T.; M<str<strong>on</strong>g>in</str<strong>on</strong>g>er, N.H. 1968. C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hardwood-covered<br />

<strong>water</strong>sheds to white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e reduces <strong>water</strong> yield. Water Resources<br />

Research. 4: 947–954.<br />

Swans<strong>on</strong>, F.J. 1981. Fire <strong>and</strong> geomorphic processes. In: Mo<strong>on</strong>ey,<br />

H.A.; B<strong>on</strong>nicksen, T.M.; Christensen, N.L.; Lotan, J.E.; Re<str<strong>on</strong>g>in</str<strong>on</strong>g>ers,<br />

W.A., (tech.coords.). Fire regimes <strong>and</strong> ecosystem properties; proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs;<br />

1979 December 11–5; H<strong>on</strong>olulu, HI. Gen. Tech. Rep.<br />

WO-26.Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S.Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service: 410–420.<br />

Swift, L.W., Jr. 1984. Gravel <strong>and</strong> grass surfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g reduces soil loss<br />

from mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> roads. Forest Science. 30: 657–670. [Should this<br />

be Swift 1984a?]<br />

Swift, L.W., Jr. 1984. Soil losses from roadbeds <strong>and</strong> cut <strong>and</strong> fill<br />

slopes <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Southern Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Forestry. 8: 209–213. [Should this be Swift 1984b?]<br />

Swift, L.W.; Messner, J.B. 1971. Forest cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>gs raise temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small streams <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern Appalachians. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil<br />

<strong>and</strong> Water C<strong>on</strong>servati<strong>on</strong>. 26: 111–116.<br />

Tarapchak, S.J.; Wright, R.F. 1977. Three oligotrophic lakes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northern M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota. In: Seyb, L.; R<strong>and</strong>olph, K. (eds.). North<br />

American project—a study <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. <strong>water</strong> bodies. Corvallis, OR:<br />

Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency: 64–90.<br />

Tate, R.L., III. 1987. Soil organic matter: Biological <strong>and</strong> ecological<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>. New York, NY: John Wiley & S<strong>on</strong>s, Inc. 304 p.<br />

Taylor, M.J.; Shay, J.M.; Haml<str<strong>on</strong>g>in</str<strong>on</strong>g>, S.N. 1993. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>water</strong><br />

quality c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Lex<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Reservoir, Santa Clara County,<br />

California, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a large <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1985 <strong>and</strong> flood <str<strong>on</strong>g>in</str<strong>on</strong>g> 1986. Water<br />

Resources Investigati<strong>on</strong>s Report, Geological Survey, U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Denver, Colorado. 23 p.<br />

Tecle, A. 2004. [Pers<strong>on</strong>al communicati<strong>on</strong>]. Flagstaff: Northern Ariz<strong>on</strong>a<br />

University.<br />

Tennys<strong>on</strong>, L.C.; Ffolliott, P.F.; Thorud, D.B. 1974. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> time-lapse<br />

photography to assess potential <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a p<strong>on</strong>derosa<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Water Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 10: 1246–1254.<br />

Terry, J.P.; Shakesby, R.A. 1993. Soil hydrophobicity <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

splash: simulated ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall <strong>and</strong> photographic evidence. Earth<br />

Surface Processes <strong>and</strong> L<strong>and</strong>forms. 18: 519–525.<br />

Theodorou, C.; Bowen, G.D. 1982. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a bush<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the<br />

microbiology <str<strong>on</strong>g>of</str<strong>on</strong>g> a South Australian low open (dry sclerophyll)<br />

forest soil. Australian Forestry Research. 12: 317–327.<br />

Tiedemann, A.R. 1973. Stream chemistry follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a forest <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

<strong>and</strong> urea fertilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> north-central Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. Res. Note<br />

PNW-203. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Northwest Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>. 20 p.<br />

Tiedemann, A.R. 1987. Combusti<strong>on</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur <strong>and</strong> forest<br />

foliage <strong>and</strong> litter. Forest Science. 33: 216–223.<br />

Tiedemann, A.R.; Klock, G.O. 1976. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

after <str<strong>on</strong>g>fire</str<strong>on</strong>g>, reseed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> fertilizati<strong>on</strong> <strong>on</strong> the Entiat Experimental<br />

Forest. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference,<br />

Pacific Northwest; 1974 October 16-17; Portl<strong>and</strong>, OR. Tallahassee,<br />

FL: Tall Timbers Research Stati<strong>on</strong>. 15: 171–192.<br />

Tiedemann, A.R.; C<strong>on</strong>rad, C.E.; Dieterich, J.H.; Hornbeck, J.W.;<br />

Megahan, W.F.; Viereck, L.A.; Wade, D.D. 1979. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong><br />

<strong>water</strong>: a state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-knowledge review. Nati<strong>on</strong>al <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> workshop.<br />

Gen. Tech. Rep. WO-10. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service. 28 p.<br />

Tiedemann, A.R.; Helvey, J.D.; Anders<strong>on</strong>, T.D. 1978. Stream chemistry<br />

<strong>and</strong> <strong>water</strong>shed nutrient ec<strong>on</strong>omy follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong><br />

fertilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> eastern Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental<br />

Quality. 7: 580–588.<br />

Tiedemann, A.R.; Klemmeds<strong>on</strong>, J.O.; Bull, E.L. 2000. Soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest health problems with prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>: are forest productivity<br />

<strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> at risk? Forest Ecology <strong>and</strong> Management. 127: 1–18.<br />

Tiedemann, A.R.; Quigley, T.M.; Anders<strong>on</strong>, T.D. 1988. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

timber <strong>on</strong> stream chemistry <strong>and</strong> dissolved nutrient losses <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northeast Oreg<strong>on</strong>. Forest Science. 34: 344–358.<br />

Tomk<str<strong>on</strong>g>in</str<strong>on</strong>g>s, I.B.; Kellas, J.D.; Tolhurst, K.G.; Osw<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.A. 1991.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>on</strong> soil chemistry <str<strong>on</strong>g>in</str<strong>on</strong>g> a eucalypt forest.<br />

Australian Journal Soil Research. 29: 25–47.<br />

T<strong>on</strong>gway, D.J.; Hodgk<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, K.C. 1992. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a degraded semi-arid woodl<strong>and</strong>. III. Nutrient pool sizes, biological<br />

activity <strong>and</strong> herbage resp<strong>on</strong>se. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil<br />

Research. 30: 17–26.<br />

Torsvik, V.; Goksoyr, J.; Daae, F.L. 1990. High diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil bacteria. Applied Envir<strong>on</strong>mental Microbiology. 56: 782–787.<br />

Trappe, J.M.; Bollen, W.B. 1979. Forest soil biology. In: Heilman,<br />

P.E.; Anders<strong>on</strong>, H.A; Baumgartner, D.M., (comps). Forest <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Douglas-fir regi<strong>on</strong>. Pullman: Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State University,<br />

Cooperative Extensi<strong>on</strong> Service: 145–151.<br />

Trett<str<strong>on</strong>g>in</str<strong>on</strong>g>, C.C.; S<strong>on</strong>g, B.; Jurgensen, M.F.; Li, C. 2001. Exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

carb<strong>on</strong> models do not apply to forested wetl<strong>and</strong>s. Gen. Tech. Rep.<br />

GTR SRS-46. Asheville, NC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Southern Forest Experiment Stati<strong>on</strong>. 16 p.<br />

Trett<str<strong>on</strong>g>in</str<strong>on</strong>g>, C.C.; Davidian, M.; Jurgensen M.F.; Lea, R. 1996. Organic<br />

matter decompositi<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> site preparati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a forested wetl<strong>and</strong>. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 60:<br />

1994–2003.<br />

Troendle, C.A. 1983. The potential for <strong>water</strong> yield augmentati<strong>on</strong><br />

from forest management <str<strong>on</strong>g>in</str<strong>on</strong>g> the Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> regi<strong>on</strong>. Water<br />

Resources Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g>. 19: 359–373.<br />

Troendle, C.A.; Meiman, J.R. 1984. Opti<strong>on</strong>s for harvest<str<strong>on</strong>g>in</str<strong>on</strong>g>g timber to<br />

c<strong>on</strong>trol snowpack accumulati<strong>on</strong>s. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the annual<br />

Western Snow C<strong>on</strong>ference. 52: 86–97.<br />

Troendle, C.A.; K<str<strong>on</strong>g>in</str<strong>on</strong>g>g, R.M. 1985. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> timber harvest <strong>on</strong> the<br />

Fool Creek <strong>water</strong>shed: 30 years later. Water Resources Research.<br />

21: 1915–1922.<br />

230 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Tromble, J.M. 1983. Intercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall by creosotebush (Larrea<br />

tridentata). In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> XIV <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al grassl<strong>and</strong> c<strong>on</strong>gress;<br />

Lex<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, KY: 373–375.<br />

Tunstall, B.R.; Walker, J.; Gill, A.M. 1976. Temperature distributi<strong>on</strong><br />

around synthetic trees dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g grass <str<strong>on</strong>g>fire</str<strong>on</strong>g>s. Forest Science.<br />

22(3): 269–276.<br />

Turetsky, M. R.; Wieder, R.K. 2001. A direct approach to quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

organic matter lost as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> peatl<strong>and</strong> wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 31: 363–366.<br />

Turner, M.G.; Romme, W.H.; Gardner, R.H.; Hargrove, W.W. 1994.<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> patch size <strong>and</strong> shape <strong>on</strong> post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> successi<strong>on</strong> <strong>on</strong> the<br />

Yellowst<strong>on</strong>e Plateau. Bullet<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ecological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America.<br />

75(Part 2): 255.<br />

Tyrrel, R.R. 1981. Memo, Panorama burn rehabilitati<strong>on</strong>. Unpublished<br />

report <strong>on</strong> file at: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Southwest Regi<strong>on</strong>, San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al<br />

Forest, San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o, CA. 16 p.<br />

Ursic, S.J. 1970. Hydrologic <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong><br />

deaden<str<strong>on</strong>g>in</str<strong>on</strong>g>g upl<strong>and</strong> hardwoods <str<strong>on</strong>g>in</str<strong>on</strong>g> northern Mississippi. Res. Pap.<br />

SO-54. New Orleans, LA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Southern Forest Experiment Stati<strong>on</strong>. 15 p.<br />

USDA Forest Service. 1989a. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al envir<strong>on</strong>mental impact statement,<br />

vegetati<strong>on</strong> management <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coastal Pla<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>and</strong> Piedm<strong>on</strong>t.<br />

Mgmt. Bull. R8MB23. Atlanta, GA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Southern Regi<strong>on</strong>. 1248 p.<br />

USDA Forest Service. 1989b. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al envir<strong>on</strong>mental impact statement,<br />

vegetati<strong>on</strong> management <str<strong>on</strong>g>in</str<strong>on</strong>g> the Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Mgmt. Bull. R8MB38. Atlanta, GA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Southern Regi<strong>on</strong>. 1638 p.<br />

USDA Forest Service. 1990a. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al envir<strong>on</strong>mental impact statement,<br />

vegetati<strong>on</strong> management <str<strong>on</strong>g>in</str<strong>on</strong>g> the Ozark-Ouachita Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Mgmt. Bull. R8MB45. Atlanta, GA: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Southern Regi<strong>on</strong>. 1787 p.<br />

USDA Forest Service. 1990b. R1-WATSED: Regi<strong>on</strong> 1 <strong>water</strong> <strong>and</strong><br />

sediment model. Missoula, MT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, M<strong>on</strong>tana Regi<strong>on</strong>.<br />

USDA Forest Service. 1995. Burned area emergency rehabilitati<strong>on</strong><br />

h<strong>and</strong>book. FSH 2509. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service. 13 p.<br />

USDA Forest Service. 1988. Vegetati<strong>on</strong> management F<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

Envir<strong>on</strong>mental Impact Statement for Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, Oreg<strong>on</strong>,<br />

California. USDA Forest Service, Pacific Northwest Regi<strong>on</strong>,<br />

General Water Quality Best Management Practices, November<br />

1988. 86 p.<br />

USDA Natural Resources C<strong>on</strong>servati<strong>on</strong> Service. 1998. Keys to soil<br />

tax<strong>on</strong>omy. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Natural Resources C<strong>on</strong>servati<strong>on</strong> Service, Soil Survey Staff.<br />

326 p.<br />

USDA 2000 Download for WEPP W<str<strong>on</strong>g>in</str<strong>on</strong>g>dows. http://topsoil.nserl.<br />

perdue.edu/weppma<str<strong>on</strong>g>in</str<strong>on</strong>g>/wepp.html<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency. 1993. Chapter 3: Management<br />

measures for forestry. In: Guidance specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

management measures for sources <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t polluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> coastal<br />

<strong>water</strong>s. Publ. EPA-840-B-92-002. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency: 3-1 to 3-121.<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency. 1999. Nati<strong>on</strong>al primary<br />

dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> regulati<strong>on</strong>s. Primary dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong> st<strong>and</strong>ards.<br />

[Available at http://www.epa.gov.OGWDW/wet /appa.html].<br />

U.S. Geological Survey. 2002. NWIS webdata for the nati<strong>on</strong>. Water<br />

data, surface <strong>water</strong>, <strong>water</strong> quality. http://<strong>water</strong>data.usgs.gov/<br />

nwis/qwdata. U.S. Rest<strong>on</strong>, VA: U.S. Deparment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior,<br />

U.S. Geological Survey.<br />

Van Cleve, K.; Viereck, L.A. 1983. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> successi<strong>on</strong>al<br />

sequences follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> permafrost-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <strong>and</strong> permafrost-free<br />

sites <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska. In: Permafrost: fourth <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al<br />

c<strong>on</strong>ference proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Nati<strong>on</strong>al Academy<br />

Press: 1286–1290.<br />

Van Cleve, K.; Powers, R.F. 1995. Soil carb<strong>on</strong>, soil formati<strong>on</strong>, <strong>and</strong><br />

ecosystem development. In: McFee, W.W.; Kelly, J.M. (eds.).<br />

Carb<strong>on</strong> forms <strong>and</strong> functi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <strong>soils</strong>. Madis<strong>on</strong>, WI: Soil<br />

Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America: 155–200.<br />

Van Cleve, K.; Viereck, L.A.; Schlentner, R.L. 1971. Accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> alder (Alnus) <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> near Fairbanks, Alaska.<br />

Arctic <strong>and</strong> Alp<str<strong>on</strong>g>in</str<strong>on</strong>g>e Research. 3: 101–114.<br />

Van Lear, D.H.; Douglass, J.E.; Fox, S.K.; Ausberger, M.K. 1985.<br />

Sediments <strong>and</strong> nutrient export <str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from burned <strong>and</strong> harvested<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>water</strong>sheds n the South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Piedm<strong>on</strong>t. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Quality. 14: 169–174.<br />

Van Meter, W.P.; Hardy, C.E. 1975. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> fish <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

retardants <str<strong>on</strong>g>in</str<strong>on</strong>g> streams. Res. Pap. INT-166. Ogden, UT: U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest<br />

<strong>and</strong> Range Experiment Stati<strong>on</strong>. 16 p.<br />

van Reenen, C.A.; Visser, G.J.; Loos, M.A. 1992. Soil microorganisms<br />

<strong>and</strong> activities <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to seas<strong>on</strong>, soil factors <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. In:<br />

Van Wilgen, B.W.; <strong>and</strong> others (eds.), Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> South Africa mounta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

fynbos: Ecosystem, community <strong>and</strong> species resp<strong>on</strong>se at<br />

Swartbosklo<str<strong>on</strong>g>of</str<strong>on</strong>g>. Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag. 93: 258–272.<br />

van Veen, J.A.; Kuikman, P.J. 1990. Soil structural aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter by mico-organisms. Biogeochemistry.<br />

11: 213–233.<br />

van Wagner, C.E. 1973. Height <str<strong>on</strong>g>of</str<strong>on</strong>g> crown scorch <str<strong>on</strong>g>in</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 3: 373–378.<br />

van Wagner, C.E. 1977. C<strong>on</strong>diti<strong>on</strong>s for the start <strong>and</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> crown<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 7(1): 23–34.<br />

van Wagner, C.E. 1983. Fire behavior <str<strong>on</strong>g>in</str<strong>on</strong>g> northern c<strong>on</strong>ifer forests<br />

<strong>and</strong> shrubl<strong>and</strong>s. In: We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W.; MacLean, D.A. (eds.). The role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern circumpolar <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Scope 18. New York:<br />

John Wiley & S<strong>on</strong>s, Inc.: 65–80.<br />

Varnes, D.J. 1978. Slope movement types <strong>and</strong> processes. In: Schuster,<br />

R.L.; Krizek, R.J. (eds.). L<strong>and</strong>slides analysis <strong>and</strong> c<strong>on</strong>trol. Special<br />

Report 176. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science: 11–<br />

33.<br />

Vas<strong>and</strong>er, H.; L<str<strong>on</strong>g>in</str<strong>on</strong>g>dholm, T. 1985. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities <strong>and</strong> surface temperatures<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Silva Fennica. 19(1): 1–15.<br />

Vazquez, F.J.; Acea, M.J.; Carballas, T. 1993. Soil microbial populati<strong>on</strong>s<br />

after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. Microbial Ecology. 13: 93–104.<br />

Vepraskas, M.J.; Faulkner, S.P. 2001. Redox chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> hydric<br />

<strong>soils</strong>. In: Richards<strong>on</strong>, J.L.; M.J. Vepraskas, M.J. (eds.). Wetl<strong>and</strong><br />

<strong>soils</strong>. Boca Rat<strong>on</strong>, FL: CRC Press. 85–105.<br />

Verhoef, H.A.; Bussard, L. 1990. Decompositi<strong>on</strong> <strong>and</strong> nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> natural <strong>and</strong> agro<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil animals. Biogeochemistry 11: 175–211.<br />

Viereck, L.A. 1973. Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the taiga <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska. Quaternary<br />

Research. 3: 465–495.<br />

Viereck, L.A. 1982. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <strong>on</strong> active<br />

layer thickness <strong>and</strong> soil temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior Alaska. In: The<br />

Rodger Brown Memorial Volume. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> th 4th Canadian<br />

permafrost c<strong>on</strong>ference. Ottawa Canada: Natural Resource Council:<br />

123–135.<br />

Viereck, L.A. 1983. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> black spruce <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Alaska <strong>and</strong> Northern Canada. In: We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W.; Maclean, D.A.<br />

(eds.). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> northern circumpolar <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Scientific<br />

committee <strong>on</strong> problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment. Scope 18. New<br />

York: John Wiley & S<strong>on</strong>s, Inc.: 201–220.<br />

Viereck, L.A.; Dyrness, C.T. 1979. Ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Wickersham Dome <str<strong>on</strong>g>fire</str<strong>on</strong>g> near Fairbanks, Alaska. Gen. Tech. Rep.<br />

PNW-90. Portl<strong>and</strong>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service, Pacific Northwest Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>.<br />

71 p.<br />

Viereck, L.A.; Sch<strong>and</strong>elmeier, L.A. 1980. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Alaska<br />

<strong>and</strong> adjacent Canada: literature review. Tech. Rep. No. 6. Alaska:<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Management.<br />

124 p.<br />

Vilar<str<strong>on</strong>g>in</str<strong>on</strong>g>o, A.; Ar<str<strong>on</strong>g>in</str<strong>on</strong>g>es, J. 1991. Numbers <strong>and</strong> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> vesiculararbuscular<br />

fungal propagules <str<strong>on</strong>g>in</str<strong>on</strong>g> field soil samples after wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Soil Biology <strong>and</strong> Biochemistry. 23: 1083–1087.<br />

Visser, S. 1995. Ectomycorrhizal fungal successi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

st<strong>and</strong>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>. New Phytologist. 129: 389–401.<br />

Vitousek, P.M.; Melillo, J.M. 1979. Nitrate losses from disturbed<br />

forests: Patterns <strong>and</strong> mechanisms. Forest Science. 25: 605–619.<br />

Vlamis, J.; Biswell, H.H.; Schultz; A.M. 1955. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil fertility <str<strong>on</strong>g>in</str<strong>on</strong>g> sec<strong>on</strong>d growth p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 53: 905–909.<br />

Vose, J.M. 2000. Perspectives <strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> to achieve<br />

desired ecosystem c<strong>on</strong>diti<strong>on</strong>s. In: Moser, W.K.; Moser, C.F. (eds.).<br />

Fire <strong>and</strong> forest ecology: <str<strong>on</strong>g>in</str<strong>on</strong>g>novative silviculture <strong>and</strong> vegetati<strong>on</strong><br />

management. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, Tall Timbers <str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology c<strong>on</strong>ference.<br />

Tallahassee, Fl: Tall Timbers Research Stati<strong>on</strong>. 21: 12–17.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 231


Vose, J.M.; Swank, W.T. 1993. Site preparati<strong>on</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g to improve<br />

southern Appalachian p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-hardwood st<strong>and</strong>s: aboveground biomass,<br />

forest floor mass, <strong>and</strong> nitrogen <strong>and</strong> carb<strong>on</strong> pools. Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 23: 2255–2262.<br />

Vose, J.M.; Swank, W.T.; Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>, B.D.; Knoepp, J.D.; Swift, L.W.<br />

1999. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g st<strong>and</strong> replacement <str<strong>on</strong>g>fire</str<strong>on</strong>g>s to restore southern Appalachian<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>e-hardwood <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> mass, carb<strong>on</strong>, <strong>and</strong><br />

nutrient pools. Forest Ecology <strong>and</strong> Management. 114: 215–226.<br />

Wade, D.D.; Ward, D.E. 1973. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the Air Force Bomb<br />

Range Fire. Special Report. Asheville, N.C: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Southeastern Forest Experiment<br />

Stati<strong>on</strong>. 38 p.<br />

Wade, D.D.; Brock, B.L.; Brose, P.H.; Grace, J.B.; Hoch, G.A.;<br />

Patters<strong>on</strong>, W.A., III. 2000. In: Brown, J.K.; Smith, J.K. (eds.).<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> flora. Gen. Tech. Rep.<br />

RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong>: 53–96.<br />

Wade, D.D.; Ewel, J.; H<str<strong>on</strong>g>of</str<strong>on</strong>g>stetter, R. 1980. Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> south Florida<br />

<str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Gen. Tech. Rep. SE-17. Asheville, NC: U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, Southeastern Forest<br />

Expirement Stati<strong>on</strong>. 125 p.<br />

Wagenbrenner, J.W. 2003. Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> burned area emergency<br />

rehabilitati<strong>on</strong> treatments <str<strong>on</strong>g>in</str<strong>on</strong>g> the Colorado Fr<strong>on</strong>t Range. Fort<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s: Colorado State University. 193 p. Thesis.<br />

Wallwork, J.A. 1970. Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> soil animals. Maidenhead, Berkshire,<br />

Engl<strong>and</strong>: McGraw-Hill. 283 p.<br />

Walsh, R.P.D.; Boakes, D.; Coelho, C.O.A.; G<strong>on</strong>calves, A.J.B.;<br />

Shakesby, R.A.; Thomas, A.D. 1994. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced hydrophobicity<br />

<strong>and</strong> post-<str<strong>on</strong>g>fire</str<strong>on</strong>g> forest litter <strong>on</strong> overl<strong>and</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g> northern<br />

<strong>and</strong> central Portugal. In: Viegas, D.X. (ed.).Volume II. 2nd<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> research; 1994 November<br />

21-24; Coimbra, Portugal: 1149–1190.<br />

Walstad, J. D.; Radosevich, S.R.; S<strong>and</strong>berg, D.V. (eds.). Natural <strong>and</strong><br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific Northwest forests. Corvallis: Oreg<strong>on</strong><br />

State University Press. 317 p.<br />

Warcup, H.H. 1981. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <strong>and</strong> other<br />

n<strong>on</strong>-vascular plants. In: Gill, A.M.; Groves, B.H.; Noble, I.R.<br />

(eds.). Fire <strong>and</strong> the Australian biota. Canberra, Australia: Australian<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science: 203–214.<br />

Warners, D.P. 1997. Plant diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> sedge meadows: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ground<strong>water</strong> <strong>and</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Ann Arbor: University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan. 231 p.<br />

Dissertati<strong>on</strong>.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Forest Practices Board. 1997. St<strong>and</strong>ard methodology<br />

for c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>water</strong>shed analysis. Olympia, WA. 95 p.<br />

We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W. 1983. Fire behavior <strong>and</strong> ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g>. In: We<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.W.; Maclean, D.A. (eds.). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

northern circumpolar <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Scientific committee <strong>on</strong> problems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment. Scope 18. New York: John Wiley & S<strong>on</strong>s,<br />

Inc.: 81–96.<br />

Wells, C.G., Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Fredricks<strong>on</strong>,<br />

R.L.; Frankl<str<strong>on</strong>g>in</str<strong>on</strong>g>, E.C.; Froelich, R.C.; Dunn, P.H. 1979. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil: a state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-knowledge review. Gen. Tech. Rep. WO-<br />

7. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service. 34 p.<br />

Wells, W.G., II. 1981. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> brush<str<strong>on</strong>g>fire</str<strong>on</strong>g>s <strong>on</strong> erosi<strong>on</strong> processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> coastal southern California. In: Davies, T.R.R. (ed.) Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs,<br />

erosi<strong>on</strong> <strong>and</strong> sediment transport <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific rim steepl<strong>and</strong>s;<br />

1981 January 25–31; Christchurch, New Zeal<strong>and</strong>. Publ. No.132.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Hydrology:<br />

305–342.<br />

Wells, W.G., II. 1987. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> debris<br />

flows <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California. Reviews <str<strong>on</strong>g>in</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g Geology. 7:<br />

105–114.<br />

West, N.E.; Skuj<str<strong>on</strong>g>in</str<strong>on</strong>g>s, J. 1977. The nitrogen cycle <str<strong>on</strong>g>in</str<strong>on</strong>g> North America<br />

cold-w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter semidesert <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Oecologia Plant.12: 45–53.<br />

Wetzel, R.G. 1983. Attached algae-substrate <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s: fact or<br />

myth, <strong>and</strong> when <strong>and</strong> how? In: R.G. Wetzel (ed.). Peripyt<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

fresh<strong>water</strong> <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>. Junk. The Hague, Netherl<strong>and</strong>s: 207–215.<br />

Whelan, R.J. 1995. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Cambridge Engl<strong>and</strong>: Cambridge<br />

University Press. 346 p.<br />

Whisenant, S.G. 1990. Chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequencies <strong>on</strong> Idaho’s Snake<br />

River Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s: ecological <strong>and</strong> management implicati<strong>on</strong>s. In:<br />

McArthur, E.D.; Romney, E.M.; Smith, S.D.; Tueller, P.T. (eds.).<br />

Symposium <strong>on</strong> cheatgrass <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong>, shrub die-<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> other<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub biology <strong>and</strong> management. Gen. Tech. Rep. INT-<br />

276. Ogden, UT: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service,<br />

Intermounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment Stati<strong>on</strong>: 4–10.<br />

White, C.S. 1986. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong><br />

<strong>and</strong> nitrogen m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e ecosystem.<br />

Biology <strong>and</strong> Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil. 2: 87–95.<br />

White, C.S. 1991. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>oterpenes <str<strong>on</strong>g>in</str<strong>on</strong>g> soil nitrogen cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Biogeochemistry. 12: 43–68.<br />

White, C.S. 1996. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nitrogen cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> B<strong>and</strong>elier Nati<strong>on</strong>al M<strong>on</strong>ument, NM. In: Allen, C.D. (tech.<br />

ed.) Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Southwestern forests: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2nd<br />

La Mesa <str<strong>on</strong>g>fire</str<strong>on</strong>g> symposium, Los Alamos, New Mexico. Gen. Tech.<br />

Rep. RM-GTR-286: Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range Experiment<br />

Stati<strong>on</strong>: 123–139.<br />

White, E.M.; Thomps<strong>on</strong>, W.W.; Gartner, F.R. 1973. Heat <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

nutrient release from <strong>soils</strong> under p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Range Management. 26: 22–24.<br />

White, J.D.; Ryan, K.C.; Key, C.C.; Runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, S.W. 1996. Remote<br />

sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity <strong>and</strong> vegetati<strong>on</strong> recovery. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Wildl<strong>and</strong></str<strong>on</strong>g> Fire. 6(3): 125–136.<br />

White, P. S.; Pickett, S.T.A. 1985. Chapter 1. Natural disturbance<br />

<strong>and</strong> patch dynamics: an <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong>. In: Pickett, S.T.A.; White,<br />

P.S. (eds.). The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> natural disturbance <strong>and</strong> patch dynamics.<br />

San Francisco, CA: Academic Press. 472 p.<br />

Whitehead, P.G.; Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, M. 1993. Experimental <strong>water</strong>shed<br />

studies—an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al <strong>and</strong> historical perspective for forest<br />

impacts. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology. 145: 217–230.<br />

Widden, P.; Park<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, D. 1975. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> soil<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ungi. Soil Biology <strong>and</strong> Biochemistry. 7: 125–138.<br />

Wikars, L.O.; Schimmel, J. 2001. Immediate <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity<br />

<strong>on</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates <str<strong>on</strong>g>in</str<strong>on</strong>g> cut <strong>and</strong> uncut p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests. Forest Ecology<br />

<strong>and</strong> Management. 141(3): 189–200.<br />

Wilbur, R.B. 1985. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nitrogen <strong>and</strong> phosphorus<br />

availability <str<strong>on</strong>g>in</str<strong>on</strong>g> a North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a coastal pla<str<strong>on</strong>g>in</str<strong>on</strong>g> pocos<str<strong>on</strong>g>in</str<strong>on</strong>g>. Chapel<br />

Hill, NC: Duke University. 143 p. Dissertati<strong>on</strong>.<br />

Wilbur, R.B.; Christensen, N.L. 1983. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> nutrient<br />

availability <str<strong>on</strong>g>in</str<strong>on</strong>g> a North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a coastal pla<str<strong>on</strong>g>in</str<strong>on</strong>g> pocas<str<strong>on</strong>g>in</str<strong>on</strong>g>. American<br />

Midl<strong>and</strong> Naturalist. 119: 54–61.<br />

Willard, E.E.; Wakimoto, R.H.; Ryan, K.C. 1995. Vegetati<strong>on</strong> recovery<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> sedge meadow communities with<str<strong>on</strong>g>in</str<strong>on</strong>g> the Red Bench Fire,<br />

Glacier Nati<strong>on</strong>al Park. In: Cerulean, S.I.; Engstrom, R.T. (eds.).<br />

Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> wetl<strong>and</strong>s: a management perspective. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Tall Timbers Fire Ecology C<strong>on</strong>ference. Tallahassee, FL: Tall<br />

Timbers Research Stati<strong>on</strong>: 19: 102–110.<br />

Wischmeier, W.H.; Smith, D.D. 1978. Predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall erosi<strong>on</strong><br />

losses: a guide to c<strong>on</strong>servati<strong>on</strong> plann<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Agric. H<strong>and</strong>b. No. 282.<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Soil C<strong>on</strong>servati<strong>on</strong><br />

Service. 58 p.<br />

Wohlgemuth, P.M. 2001. Prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> as a sediment management<br />

tool <str<strong>on</strong>g>in</str<strong>on</strong>g> southern California chaparral <strong>water</strong>sheds. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 7th Federal <str<strong>on</strong>g>in</str<strong>on</strong>g>teragency sedimentati<strong>on</strong> c<strong>on</strong>ference;2001<br />

March 25–29; Reno, NV. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: Federal Energy Regulatory<br />

Commissi<strong>on</strong>. 2: X-49 to X-56.<br />

Wohlgemuth, P.M.; Beyers, J.L.; Wakeman, C.D.; C<strong>on</strong>ard, S.G.<br />

1998. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> grass seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> soil erosi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> southern<br />

California chaparral. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 19th annual forest vegetati<strong>on</strong><br />

management c<strong>on</strong>ference: wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> rehabilitati<strong>on</strong>; 1998 January<br />

20-22. Redd<str<strong>on</strong>g>in</str<strong>on</strong>g>g, CA: Forest Vegetati<strong>on</strong> Management C<strong>on</strong>ference:<br />

41–51.<br />

Wolman, M.G. 1977. Chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g needs <strong>and</strong> opportunities <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

sediment field. Water Resources Research. 13: 59–54.<br />

Wright, H.A.; Bailey, A.W. 1982. Fire ecology—United States <strong>and</strong><br />

Southern Canada. New York: John Wiley & S<strong>on</strong>s, Inc. 501 p.<br />

Wright, H.A.; Churchill, F.M.; Stevens, W.C. 1976. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> sediment, <strong>water</strong> yield, <strong>and</strong> <strong>water</strong> quality from<br />

juniper l<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> central Texas. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management.<br />

29: 294–298.<br />

Wright, H.A.; Churchill, F.M.; Stevens, W.C. 1982. Soil loss <strong>and</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong> seeded vs. n<strong>on</strong>-seeded <strong>water</strong>sheds follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management 35: 382-385.<br />

Wright, H.E., Jr. 1981. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>and</strong>/<strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. In:<br />

Mo<strong>on</strong>ey, H.A.; B<strong>on</strong>nicksen, T.M.; Christensen, N.L.; Lotan, J.E.;<br />

Re<str<strong>on</strong>g>in</str<strong>on</strong>g>ers, W.A. (tech. cords.). Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ference: <str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes<br />

<strong>and</strong> ecosystem properties. Gen. Tech. Rep. WO-26. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,<br />

DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service: 421–444.<br />

232 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Wright, H.E., Jr.; Bailey, A.W. 1982. Fire ecology <strong>and</strong> prescribed<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the Great Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s: a research review. Gen. Tech. Rep.<br />

WO-26. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest<br />

Service. 61 p.<br />

Wright, R.J.; Hart, S.C. 1997. Nitrogen <strong>and</strong> phosphorus status <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forest after 20 years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Ecoscience.<br />

4: 526–533.<br />

Wu, X.B.; Redeker, E.J.; Thurow, T.L. 2001. Vegetati<strong>on</strong> <strong>and</strong> <strong>water</strong><br />

yield dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> an Edwards Plateau <strong>water</strong>shed. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Range Management. 54: 98–105.<br />

Yokels<strong>on</strong>, R.J.; Susott, R.; Ward, D.E.; Reard<strong>on</strong>, J.; Griffith, D.W.T.<br />

1997. Emissi<strong>on</strong>s from smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass measured<br />

by open-path Fourier transform <str<strong>on</strong>g>in</str<strong>on</strong>g>frared spectroscopy.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Restorati<strong>on</strong>. 102(D15): 18,865–18,877.<br />

Young, M.K. 1994. Movement <strong>and</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> stream-borne<br />

coarse woody debris <str<strong>on</strong>g>in</str<strong>on</strong>g> adjacent burned <strong>and</strong> undisturbed <strong>water</strong>sheds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 24:<br />

1933–1938.<br />

Zasada, J.C.; Norum, R.A.; van Veldhuizen, R.M.; Teutsch, C.E.<br />

1983. Artificial regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees <strong>and</strong> tall shrubs <str<strong>on</strong>g>in</str<strong>on</strong>g> experimentally<br />

burned upl<strong>and</strong> black spruce/feather moss st<strong>and</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Alaska. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research. 13(5): 903–913.<br />

Zhang, Q.L.; Hendrix, P.F. 1995. Earthworm (Lumbricus rubellus<br />

<strong>and</strong> Aporrectodea calig<str<strong>on</strong>g>in</str<strong>on</strong>g>osa) <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> carb<strong>on</strong> flux <str<strong>on</strong>g>in</str<strong>on</strong>g> soil. Soil<br />

Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal. 59: 816–823.<br />

Zhang, Y.Q. 1997. Biogeochemical cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> selenium <str<strong>on</strong>g>in</str<strong>on</strong>g> Bent<strong>on</strong><br />

Lake, MT. Missoula: University <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>tana, 222 p. Thesis.<br />

Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski, M.J. 1990. Fire <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> vegetati<strong>on</strong> <strong>and</strong> successi<strong>on</strong>. In:<br />

Krammes, M.J. (tech. coord.). 1990. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> Southwestern Natural Resources.<br />

Gen. Tech. Rep. RM-191: Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture, Forest Service, Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Forest <strong>and</strong> Range<br />

Experiment Stati<strong>on</strong>: 18–24.<br />

Zwol<str<strong>on</strong>g>in</str<strong>on</strong>g>ski, M.J. 1971. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> rates <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong>. Hydrology <strong>and</strong> Water Resources <str<strong>on</strong>g>in</str<strong>on</strong>g> Ariz<strong>on</strong>a<br />

<strong>and</strong> the Southwest.1: 107–113.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 233


234 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Appendix A: Glossary _____________________________________________<br />

aerial fuels: Fuels more than 6.5 feet (2 m) above the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface.<br />

amm<strong>on</strong>ificati<strong>on</strong>: Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen (N) compounds, such as prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

amm<strong>on</strong>ia (NH 4). Amm<strong>on</strong>ificati<strong>on</strong> is a process <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N that is affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

ashbed effect: The accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> ashy residue <strong>on</strong> the soil surface after <str<strong>on</strong>g>fire</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuels such as deep litter layers, piled slash, <strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>drows.<br />

available fuel: Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular <str<strong>on</strong>g>fire</str<strong>on</strong>g>, a value vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g widely <str<strong>on</strong>g>in</str<strong>on</strong>g> magnitude with<br />

the envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a site.<br />

average run<str<strong>on</strong>g>of</str<strong>on</strong>g>f efficiencies: The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f to precipitati<strong>on</strong>.<br />

back <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire set aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st an advanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> to c<strong>on</strong>sume fuels <strong>and</strong> (as a c<strong>on</strong>sequence) prevent further <str<strong>on</strong>g>fire</str<strong>on</strong>g>. PAH<br />

formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce gaseous fuels have l<strong>on</strong>ger residence times <str<strong>on</strong>g>in</str<strong>on</strong>g> these types <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s.<br />

back<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>: A <str<strong>on</strong>g>fire</str<strong>on</strong>g> that is burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the slope or w<str<strong>on</strong>g>in</str<strong>on</strong>g>d, i.e., back<str<strong>on</strong>g>in</str<strong>on</strong>g>g down slope (this type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> typically<br />

has the lowest <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity but <str<strong>on</strong>g>of</str<strong>on</strong>g>ten l<strong>on</strong>ger flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g durati<strong>on</strong>s), or burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to the w<str<strong>on</strong>g>in</str<strong>on</strong>g>d (the lee side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>, but aga<str<strong>on</strong>g>in</str<strong>on</strong>g> with the lowest <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>on</strong> the perimeter).<br />

baseflow: Streamflow susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by subsurface flow <strong>and</strong> ground<strong>water</strong> flow between precipitati<strong>on</strong> events.<br />

basidiomycetes: The phylum basidiomycota c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi that produce spores that are formed outside a<br />

pedestal-like structure, the basidium. The members <str<strong>on</strong>g>of</str<strong>on</strong>g> this phylum, known as basidiomycetes, <str<strong>on</strong>g>in</str<strong>on</strong>g>clude all the<br />

fungi with gills or pores, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the familiar mushrooms <strong>and</strong> bracket fungi.<br />

benefits: Favorable <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-caused changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the ecosystem.<br />

biomass: All <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetative materials available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>.<br />

buffer strips: Vegetated b<strong>and</strong>s al<strong>on</strong>g streams or around <strong>water</strong>.<br />

burn area: The area over which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> has spread.<br />

burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Refers to be<str<strong>on</strong>g>in</str<strong>on</strong>g>g set <strong>on</strong> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Byram’s <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: The product <str<strong>on</strong>g>of</str<strong>on</strong>g> the available heat <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> ground surface <strong>and</strong> the rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It is also referred to as <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity.<br />

cellulose: L<strong>on</strong>g-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> polysaccharides such as glucose, mannose, galactose, <strong>and</strong> xylose sugar derivatives with<br />

high oxidati<strong>on</strong> levels that are found <str<strong>on</strong>g>in</str<strong>on</strong>g> both cell walls, but primarily <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>dary wall c<strong>on</strong>stitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

largest group <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates <str<strong>on</strong>g>in</str<strong>on</strong>g> wood (40 to 50 percent).<br />

channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>: Intercepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> that falls directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to a stream channel that c<strong>on</strong>tributes to<br />

streamflow.<br />

char: A carb<strong>on</strong>aceous residue left <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels by pyrolysis that is neither <str<strong>on</strong>g>in</str<strong>on</strong>g>tact organic compound nor<br />

pure carb<strong>on</strong>.<br />

char-height: The height <str<strong>on</strong>g>of</str<strong>on</strong>g> stem charr<str<strong>on</strong>g>in</str<strong>on</strong>g>g as a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total tree height. Also is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> post<str<strong>on</strong>g>fire</str<strong>on</strong>g> tree<br />

mortality <str<strong>on</strong>g>in</str<strong>on</strong>g> some species.<br />

chemical energy: Solar energy fixed by plants <str<strong>on</strong>g>in</str<strong>on</strong>g> the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> organic molecules <strong>and</strong> compounds.<br />

chemical properties: Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels that affect the heat c<strong>on</strong>tent <strong>and</strong> the types <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants emanat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

a <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

coarse woody debris: Made up <str<strong>on</strong>g>of</str<strong>on</strong>g> tree limbs, boles, <strong>and</strong> roots <str<strong>on</strong>g>in</str<strong>on</strong>g> various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decay, <strong>and</strong> that are greater<br />

than 3 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches (7.5) cm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter.<br />

combusti<strong>on</strong>: Is a rapid physical-chemical process, comm<strong>on</strong>ly called <str<strong>on</strong>g>fire</str<strong>on</strong>g>, that releases the solar energy stored <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a chemical form <str<strong>on</strong>g>in</str<strong>on</strong>g> various fuels as heat <strong>and</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous <strong>and</strong> particulate by-products.<br />

combusti<strong>on</strong> rate: The mass <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel c<strong>on</strong>sumed by the combusti<strong>on</strong> process (e.g. t<strong>on</strong>s/m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute, kg/sec,etc.) or the<br />

average speed (ha/m<str<strong>on</strong>g>in</str<strong>on</strong>g> or acres/m<str<strong>on</strong>g>in</str<strong>on</strong>g>) at which fuels are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g burned.<br />

c<strong>on</strong>densati<strong>on</strong>: Is the process whereby <strong>water</strong> changes from a gas to a liquid <strong>and</strong> releases heat.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 235


c<strong>on</strong>trolled burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Also called prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, is the c<strong>on</strong>trolled applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> to fuel buildups, <str<strong>on</strong>g>in</str<strong>on</strong>g> either<br />

their natural or modified state, <str<strong>on</strong>g>in</str<strong>on</strong>g> specified envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s that allow the <str<strong>on</strong>g>fire</str<strong>on</strong>g> to be c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to a<br />

predeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed area <strong>and</strong>, at the same time, to produce the <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread required to<br />

atta<str<strong>on</strong>g>in</str<strong>on</strong>g> the planned management objectives.<br />

c<strong>on</strong>vecti<strong>on</strong>: Process whereby heat is transferred from <strong>on</strong>e po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to another by the mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid<br />

with another fluid.<br />

c<strong>on</strong>versi<strong>on</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: One vegetative community <strong>on</strong> a site is replaced by another because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire that advances from top-to-top <str<strong>on</strong>g>of</str<strong>on</strong>g> trees or shrubs more or less <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

crown fuels: Tree <strong>and</strong> shrub crowns.<br />

cryptogamic crusts: Communities <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens, blue-green bacteria (cyanobacteria), fungi, mosses, <strong>and</strong> algae that<br />

are found <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks <strong>and</strong> soil <str<strong>on</strong>g>in</str<strong>on</strong>g> dryl<strong>and</strong> regi<strong>on</strong>s throughout the world.<br />

damages: Unfavorable <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>-caused changes <str<strong>on</strong>g>in</str<strong>on</strong>g> a resource system.<br />

dead fuels: Grouped by size class as 1, 10, 100, or 1,000 hour timelag classes; size classes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

sound or rotten.<br />

decompositi<strong>on</strong>: The breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter, results <str<strong>on</strong>g>in</str<strong>on</strong>g> catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g>to smaller organic<br />

materials.<br />

denitrificati<strong>on</strong>: Process <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrate (NO 3–N) to nitrogen gas (N 2) <strong>and</strong> nitrous oxide (N 2O) by biological<br />

means.<br />

dependent crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> the crowns that moves <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> spurts <strong>and</strong> is dependent <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

the surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>, which generally causes the most severe impact <strong>on</strong> a natural ecosystem,<br />

occurs mostly <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>iferous forests <strong>and</strong> woodl<strong>and</strong>s, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> shrubl<strong>and</strong>s comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> waxy-leaved species.<br />

downstream <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>: Occur when hydrologic processes are altered for a l<strong>on</strong>g enough time that the changes<br />

can accumulate through time, when resp<strong>on</strong>ses from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> sites are transported to the same site, or<br />

when a transported resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with an <strong>on</strong>-site change at another site.<br />

duff: The F <strong>and</strong> H layers <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. Therefore, the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the duff is where leaves, needles, <strong>and</strong> other cast<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

vegetati<strong>on</strong> have begun to decompose, while the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the duff is where decomposed organic matter is<br />

mixed with m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil.<br />

ecto-mycorrhizae: One <str<strong>on</strong>g>of</str<strong>on</strong>g> the two types <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae found <str<strong>on</strong>g>in</str<strong>on</strong>g> soil.<br />

ecot<strong>on</strong>es: Abrupt edges between adjacent vegetative types.<br />

efficient burns: Flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> with high <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g most, if not all, <str<strong>on</strong>g>of</str<strong>on</strong>g> the available fuels. With<br />

low-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s fuel c<strong>on</strong>sumpri<strong>on</strong> is <strong>on</strong>ly about 50%.<br />

endo-mycorrhizae: (arbuscular) One <str<strong>on</strong>g>of</str<strong>on</strong>g> the two types <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizae found <str<strong>on</strong>g>in</str<strong>on</strong>g> soil.<br />

endothermic: Heat-absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong>s that pyrolysis <strong>and</strong> combusti<strong>on</strong> start with.<br />

evapotranspirati<strong>on</strong> (ET): Evaporati<strong>on</strong> from <strong>soils</strong>, plant surfaces, <strong>and</strong> <strong>water</strong> bodies, together with the <strong>water</strong><br />

losses from transpir<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants.<br />

excess <strong>water</strong>: Porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total precipitati<strong>on</strong> that flows <str<strong>on</strong>g>of</str<strong>on</strong>g>f the l<strong>and</strong> surface plus that which dra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from the soil<br />

<strong>and</strong>, therefore, is neither c<strong>on</strong>sumed by ET nor leaked <str<strong>on</strong>g>in</str<strong>on</strong>g>to deep ground<strong>water</strong> aquifers.<br />

exothermic: Heat-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong> that pyrolysis <strong>and</strong> combusti<strong>on</strong> progress to.<br />

ext<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong>: The fifth <strong>and</strong> last phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> where combusti<strong>on</strong> ceases.<br />

F layer: Fermentati<strong>on</strong> layer, the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead organic plant matter above m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> partly<br />

decomposed matter.<br />

favorable <str<strong>on</strong>g>effects</str<strong>on</strong>g>: Effects that c<strong>on</strong>tribute to the atta<str<strong>on</strong>g>in</str<strong>on</strong>g>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management objectives.<br />

field capacity: The maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> that a soil mantle reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the force <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity.<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels: Fast-dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g dead fuels, characterized by a high surface area-to-volume ratio, less than 1 cm <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

diameter; these fuels (grasses, leaves, needles, <strong>and</strong> so forth) ignite readily <strong>and</strong> are c<strong>on</strong>sumed rapidly.<br />

236 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


<str<strong>on</strong>g>fire</str<strong>on</strong>g>: A manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong>s that result <str<strong>on</strong>g>in</str<strong>on</strong>g> the rapid release <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat energy stored <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

(liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> dead) plants by photosynthesis.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior: Manner <str<strong>on</strong>g>in</str<strong>on</strong>g> which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> reacts to its envir<strong>on</strong>ment—to the fuels available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, climate, local<br />

weather c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> topography. Fire behavior changes <str<strong>on</strong>g>in</str<strong>on</strong>g> time, space, or both <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

these envir<strong>on</strong>mental comp<strong>on</strong>ents. Comm<strong>on</strong> terms used to describe <str<strong>on</strong>g>fire</str<strong>on</strong>g> behavior <str<strong>on</strong>g>in</str<strong>on</strong>g>clude smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

creep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, spott<str<strong>on</strong>g>in</str<strong>on</strong>g>g, torch<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> climax: A plant community ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by periodic <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> cycle: Also called the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-return <str<strong>on</strong>g>in</str<strong>on</strong>g>terval, is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time necessary for an area equal to the entire area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to burn—the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the area should be specified.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>-dependent <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: Those <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> where <str<strong>on</strong>g>fire</str<strong>on</strong>g> plays a vital role <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the compositi<strong>on</strong>,<br />

structure, <strong>and</strong> l<strong>and</strong>scape patterns.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> ecology: The study <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>ships am<strong>on</strong>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>, the envir<strong>on</strong>ment, <strong>and</strong> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>: The physical, chemical, <strong>and</strong> biological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the envir<strong>on</strong>ment <strong>and</strong> ecosystem resources.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency: Also referred to as <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurrence, is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a specified time <strong>and</strong> area.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: Describes the rate at which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> produces thermal energy. When it is based <strong>on</strong> a l<str<strong>on</strong>g>in</str<strong>on</strong>g>e (<str<strong>on</strong>g>of</str<strong>on</strong>g> implied<br />

depth, D) it is Byram’s <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <strong>and</strong> when it is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as a heat per unit area it is Rothermel’s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval: Also referred to as <str<strong>on</strong>g>fire</str<strong>on</strong>g>-free <str<strong>on</strong>g>in</str<strong>on</strong>g>terval, is the time between two successive <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a designated area—<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the area should be clearly specified.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: The product <str<strong>on</strong>g>of</str<strong>on</strong>g> the available heat <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> ground surface <strong>and</strong> the rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. It is also referred to as Byram’s <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> occurrence: Also referred to as <str<strong>on</strong>g>fire</str<strong>on</strong>g> frequency, this is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a specified time <strong>and</strong> area.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regime: Largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three factors: how <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <str<strong>on</strong>g>fire</str<strong>on</strong>g> occurs (frequency), when it<br />

occurs (seas<strong>on</strong>), <strong>and</strong> how fiercely it burns (<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity).<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> resistance: The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> to survive the passage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>-return <str<strong>on</strong>g>in</str<strong>on</strong>g>terval: Also called the <str<strong>on</strong>g>fire</str<strong>on</strong>g> cycle, is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time necessary for an area equal to the entire area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to burn—the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the area should be specified.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: Describes <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> resp<strong>on</strong>ses to <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> can be used to describe the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the soil <strong>and</strong><br />

<strong>water</strong> system, ecosystem flora <strong>and</strong> fauna, the atmosphere, <strong>and</strong> society. It reflects the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (heat)<br />

that is released by a <str<strong>on</strong>g>fire</str<strong>on</strong>g> which affects resource resp<strong>on</strong>ses. Fire severity, loosely, is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<strong>and</strong> residence time <strong>and</strong> is generally c<strong>on</strong>sidered to be light, moderate, or high.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> triangle: Fuels available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, al<strong>on</strong>g with heat <strong>and</strong> oxygen, represent the comp<strong>on</strong>ents needed for <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

to occur.<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> type: Type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> that comm<strong>on</strong>ly follows a <str<strong>on</strong>g>fire</str<strong>on</strong>g>, or otherwise is dependent up<strong>on</strong> the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

flame: A gas-phase phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g: The sec<strong>on</strong>d phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which pyrolysis c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues.<br />

flammability: The relative ease with which a substance ignites <strong>and</strong> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>s combusti<strong>on</strong>.<br />

forage: Grass <strong>and</strong> grasslike plants, forbs, <strong>and</strong> half-shrubs available to, <strong>and</strong> eaten by, livestock or other herbivores.<br />

forced c<strong>on</strong>vecti<strong>on</strong>: Occurs when external mechanical forces alter the fluid flow from its natural “free” directi<strong>on</strong><br />

<strong>and</strong> velocity.<br />

free c<strong>on</strong>vecti<strong>on</strong>: Occurs when the fluid moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gases is dependent up<strong>on</strong> the differences <str<strong>on</strong>g>in</str<strong>on</strong>g> densities<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from temperature differences.<br />

free radicals: Molecules that do not have a balanced charge due to excess electr<strong>on</strong>s.<br />

fuel: Term used <str<strong>on</strong>g>in</str<strong>on</strong>g>terchangeably with fuel available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g when referr<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the biomass that decomposes<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong>.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 237


fuel available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Term used <str<strong>on</strong>g>in</str<strong>on</strong>g>terchangeably with fuel when referr<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the biomass that decomposes<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong> <strong>and</strong> combusti<strong>on</strong>.<br />

fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Total dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area, a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential energy that might be<br />

released by a <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

fuel reducti<strong>on</strong> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Removes fuel buildups to reduce the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong> or lessen potential damage<br />

<strong>and</strong> the resistance to c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> when it occurs <strong>on</strong> a site.<br />

fuel state: The moisture c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel that largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g at<br />

any given time <strong>and</strong> <strong>on</strong> which fuel classificati<strong>on</strong>s can also be based.<br />

glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g: The fourth phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which pyrolysis virtually ceases.<br />

good c<strong>on</strong>diti<strong>on</strong> <strong>water</strong>shed: Precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> does not c<strong>on</strong>tribute excessively to erosi<strong>on</strong>,<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the resultant overl<strong>and</strong> flow (when a pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> flow <strong>on</strong> the <strong>water</strong>shed) does not dislodge <strong>and</strong> move soil<br />

particles. Streamflow resp<strong>on</strong>se to precipitati<strong>on</strong> is relatively slow <strong>and</strong> baseflow (when a pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> flow) is<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed between storms.<br />

greenhouse gas: Gas that has potential to impact the global climate by warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g Earth’s atmosphere.<br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire that burns the organic material <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper soil layer <strong>and</strong>, at times, the surface litter <strong>and</strong> lowgrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

plants.<br />

ground fuels: Fuels generally def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g below the litter (L or O i) layer (i.e.,fermentati<strong>on</strong> (For O e) <strong>and</strong><br />

humus (H or O a) layers, logs with their center axis below the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the F-layer, peat <strong>and</strong> muck <strong>soils</strong>.<br />

H layer: Humus layer (O a layer), the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead organic plant matter above the m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals soil c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> well-decomposed organic matter.<br />

healthy riparian ecosystem: Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a dynamic equilibrium between the streamflow forces act<str<strong>on</strong>g>in</str<strong>on</strong>g>g to produce<br />

change <strong>and</strong> the resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative, geomorphic, <strong>and</strong> structural features.<br />

heat tolerance: The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant tissue to withst<strong>and</strong> high temperatures.<br />

heavy fuels: Snags, logs, large branches, peat <str<strong>on</strong>g>of</str<strong>on</strong>g> larger diameter (>3.1 <str<strong>on</strong>g>in</str<strong>on</strong>g>ches or 8 cm) that ignite <strong>and</strong> burn more<br />

slowly than f<str<strong>on</strong>g>in</str<strong>on</strong>g>e fuels.<br />

heterotrophs: Organisms that are able to derive C <strong>and</strong> energy for growth <strong>and</strong> cell synthesis by utiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic<br />

compounds.<br />

high <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: High soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or deep ground char occurs, where the duff is completely c<strong>on</strong>sumed <strong>and</strong> the<br />

top <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is visibly reddish or orange <strong>on</strong> severely burned sites. Less than 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees<br />

exhibit no visible damage, with the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged, largely by root-kill; less than 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged trees survive.<br />

high severity burn: All <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic material is removed from the soil surface <strong>and</strong> organic material below the<br />

surface is c<strong>on</strong>sumed or charred. More than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the area has spots that are burned at high severity,<br />

more than 80 percent moderately severe or severely burned, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der is burned at a low severity.<br />

human-caused <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire caused directly or <str<strong>on</strong>g>in</str<strong>on</strong>g>directly by a pers<strong>on</strong> or people.<br />

hydrograph: A graphical relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow discharge (ft 3 /sec or m 3 /sec) (m 3 /sec) to time.<br />

hydrologic functi<strong>on</strong>: Relates to the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed to receive <strong>and</strong> process precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to streamflow<br />

without ecosystem deteriorati<strong>on</strong>.<br />

igniti<strong>on</strong>: The <str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g pyrolysis <strong>and</strong> flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong>, marks the transiti<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t between<br />

the ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly endothermic preigniti<strong>on</strong> <strong>and</strong> exothermic flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g phases.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong>: The process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> capacity: Maximum rate at which <strong>water</strong> can enter the soil.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stream flow: The streamflow regime required to satisfy the c<strong>on</strong>junctive dem<strong>and</strong>s be<str<strong>on</strong>g>in</str<strong>on</strong>g>g placed <strong>on</strong> <strong>water</strong> while<br />

the <strong>water</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the stream channel.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>: The process <str<strong>on</strong>g>in</str<strong>on</strong>g> which vegetative canopies, litter accumulati<strong>on</strong>s, <strong>and</strong> other decomposed organic<br />

matter <strong>on</strong> the soil surface <str<strong>on</strong>g>in</str<strong>on</strong>g>terrupt the fall <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> (ra<str<strong>on</strong>g>in</str<strong>on</strong>g> or snow) to the soil surface. It plays a<br />

hydrologic role <str<strong>on</strong>g>of</str<strong>on</strong>g> protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soil surface from the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> fall<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops.<br />

238 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


<str<strong>on</strong>g>in</str<strong>on</strong>g>terflow: Also called subsurface flow, it is that part <str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put that <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong><br />

then flows to a stream channel <str<strong>on</strong>g>in</str<strong>on</strong>g> a time short enough to be part <str<strong>on</strong>g>of</str<strong>on</strong>g> the stormflow.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>termittent stream: A stream that flows periodically, fed by channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, overl<strong>and</strong> flow or surface<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> subsurface flow.<br />

L layer: Litter layer (O i layer), the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead organic plant matter above the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unaltered leaves, needles, branches, <strong>and</strong> bark.<br />

ladder fuels: Fuels c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous between ground fuels <strong>and</strong> crown fuels, form<str<strong>on</strong>g>in</str<strong>on</strong>g>g a ladder by which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> can spread<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to tree or shrub crowns.<br />

latent heat <str<strong>on</strong>g>of</str<strong>on</strong>g> vaporizati<strong>on</strong>: The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <strong>and</strong> energy <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the change <str<strong>on</strong>g>in</str<strong>on</strong>g> physical state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>.<br />

The latent heat vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> is 560 cal/g, <strong>and</strong> this same amount is released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>densati<strong>on</strong>.<br />

light severity burn: A <str<strong>on</strong>g>fire</str<strong>on</strong>g> that leaves the soil covered with partially charred organic material.<br />

live fuels: Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants grouped by category as woody or herbaceous fuels.<br />

low <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: Low soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or light ground char, occurs where litter is scorched, charred, or c<strong>on</strong>sumed.<br />

The duff is left largely <str<strong>on</strong>g>in</str<strong>on</strong>g>tact, although it can be charred <strong>on</strong> the surface. Woody debris accumulati<strong>on</strong>s are<br />

partially c<strong>on</strong>sumed or charred. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil is not changed. At least 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees exhibit no visible<br />

damage, with the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged by scorched crowns, shoot-kill (top kill but sprout<str<strong>on</strong>g>in</str<strong>on</strong>g>g), or root-kill<br />

(top kill <strong>and</strong> no sprout<str<strong>on</strong>g>in</str<strong>on</strong>g>g); over 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged trees survive.<br />

low severity burn: Less than 2 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the area is severely burned, less than 15 percent moderately burned,<br />

<strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>of</str<strong>on</strong>g> the area burned at a low severity or unburned.<br />

macro-nutrients: Nutrients that are needed <str<strong>on</strong>g>in</str<strong>on</strong>g> the largest c<strong>on</strong>centrati<strong>on</strong>s required for plant growth such as<br />

phosphorus, nitrogen, su;fur, ir<strong>on</strong>, calcium, potassium, <strong>and</strong> magnesium.<br />

mass transport <str<strong>on</strong>g>of</str<strong>on</strong>g> heat: Occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s by air-borne spott<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>and</strong> downslope roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

methane: The third most abundant greenhouse gas c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to global warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

micro-nutrients: Nutrients needed <str<strong>on</strong>g>in</str<strong>on</strong>g> trace amounts for plant growth such as z<str<strong>on</strong>g>in</str<strong>on</strong>g>c, manganese, cobalt,<br />

molybdenum, <strong>and</strong> nickel.<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong>: This is c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an element from an organic form to an <str<strong>on</strong>g>in</str<strong>on</strong>g>organic state as the result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microbial activity. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic N compounds (such as prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>and</strong><br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids) <str<strong>on</strong>g>in</str<strong>on</strong>g>to amm<strong>on</strong>ia (amm<strong>on</strong>ificati<strong>on</strong>) <strong>and</strong>, subsequently, <str<strong>on</strong>g>in</str<strong>on</strong>g>to nitrite <strong>and</strong> nitrate (nitrificati<strong>on</strong>); <strong>and</strong><br />

the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic C <str<strong>on</strong>g>in</str<strong>on</strong>g>to carb<strong>on</strong> dioxide.<br />

moderate <str<strong>on</strong>g>fire</str<strong>on</strong>g> severity: Moderate soil heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or moderate ground char, occurs where the litter <strong>on</strong> forest sites<br />

is c<strong>on</strong>sumed <strong>and</strong> the duff is deeply charred or c<strong>on</strong>sumed, but the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil surface is not visibly<br />

altered. Some 20 to 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees exhibit no visible damage, with the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged; 40<br />

to 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g>-damaged trees survive.<br />

moderate severity burn: Less than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the area is severely burned, but over 15 percent is burned<br />

moderately severe, <strong>and</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der is burned at low severity or unburned.<br />

mycorrhizae: The plant root z<strong>on</strong>e c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s these fungi that enhance nutrient uptake by plants <strong>and</strong> c<strong>on</strong>tribute<br />

directly to the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the terrestrial ecosystem.<br />

natural <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> natural orig<str<strong>on</strong>g>in</str<strong>on</strong>g>—lightn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, sp<strong>on</strong>taneous combusti<strong>on</strong>, or volcanic activity.<br />

natural fuels: Result from natural processes <strong>and</strong>, therefore, are not generated by management practices.<br />

net precipitati<strong>on</strong>: Precipitati<strong>on</strong> that reaches the soil surface, moves <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil, forms puddles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <strong>on</strong> the<br />

soil surface, or flows over the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil.<br />

nitrificati<strong>on</strong>: Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic N compounds <str<strong>on</strong>g>in</str<strong>on</strong>g>to nitrite (NO 2) <strong>and</strong> nitrate (NO 3). Nitrificati<strong>on</strong> is a<br />

process <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N that is affected by <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

Nitrobacter: Resp<strong>on</strong>sible for the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrite to nitrate is almost exclusively <str<strong>on</strong>g>in</str<strong>on</strong>g> natural systems.<br />

Nitrosolobus: Genera <str<strong>on</strong>g>of</str<strong>on</strong>g> autotrophic bacteria are able to oxidize amm<strong>on</strong>ium nitrogen (NH 4-N) to nitrite.<br />

Nitrosom<strong>on</strong>as: Genera <str<strong>on</strong>g>of</str<strong>on</strong>g> autotrophic bacteria are able to oxidize NH 4-N to nitrite.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 239


Nitrospira: Genera <str<strong>on</strong>g>of</str<strong>on</strong>g> autotrophic bacteria are able to oxidize NH 4-N to nitrite.<br />

O horiz<strong>on</strong>: Organic matter overly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil made up <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh litter (O i horiz<strong>on</strong>), partially decomposed litter<br />

(O e horiz<strong>on</strong>), <strong>and</strong> completely decomposed litter (O a horiz<strong>on</strong>).<br />

old-field successi<strong>on</strong>s: Successi<strong>on</strong>al sequences <strong>on</strong> ab<strong>and</strong><strong>on</strong>ed agricultural fields.<br />

<strong>on</strong>-site <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>: Include impacts <strong>on</strong> vegetati<strong>on</strong>, soil, <strong>and</strong> nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

overl<strong>and</strong> flow: Also called surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, this is <strong>water</strong>flow that has not <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrated <str<strong>on</strong>g>in</str<strong>on</strong>g>to the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil <strong>and</strong> flows<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f the surface to a stream channel.<br />

pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratio: The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fuel bed volume actually occupied by fuel. The tighter fuels are packed<br />

together, the higher the pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratio, <strong>and</strong> the lower the combusti<strong>on</strong> efficiency because air supply to <str<strong>on</strong>g>fire</str<strong>on</strong>g> is<br />

restricted by the fuel density.<br />

perennial stream: Stream that flows c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously throughout the year. It is fed by ground<strong>water</strong> or baseflow,<br />

that susta<str<strong>on</strong>g>in</str<strong>on</strong>g>s flow between precipitati<strong>on</strong> events.<br />

physical properties: Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels that affect the manner <str<strong>on</strong>g>in</str<strong>on</strong>g> which a <str<strong>on</strong>g>fire</str<strong>on</strong>g> burns <strong>and</strong>, ultimately, the<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>and</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air pollutants by the <str<strong>on</strong>g>fire</str<strong>on</strong>g>. Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to a <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

manager generally <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the quantity (fuel load<str<strong>on</strong>g>in</str<strong>on</strong>g>g), size <strong>and</strong> shape, compactness, <strong>and</strong> arrangement.<br />

phytobiomass: Aboveground vegetative material available for burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> natural <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>—<str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>sidered<br />

to be the total fuel available to burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

polymer: Organic compound formed <str<strong>on</strong>g>of</str<strong>on</strong>g> repeat<str<strong>on</strong>g>in</str<strong>on</strong>g>g structural units such as simple sugars.<br />

poor c<strong>on</strong>diti<strong>on</strong> <strong>water</strong>shed: Precipitati<strong>on</strong> flows <strong>on</strong> the soil surface <strong>and</strong> excessive erosi<strong>on</strong> occurs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

precipitati<strong>on</strong> events. Streamflow resp<strong>on</strong>se to precipitati<strong>on</strong> is rapid <strong>and</strong> there is little or no baseflow between<br />

storms.<br />

potential fuel: Material that might burn dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g an <str<strong>on</strong>g>in</str<strong>on</strong>g>tense <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>and</strong> is generally less than the total fuel.<br />

preigniti<strong>on</strong>: The first phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuel heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that results <str<strong>on</strong>g>in</str<strong>on</strong>g> dehydrati<strong>on</strong> <strong>and</strong> pyrolysis.<br />

prescribed burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Also called c<strong>on</strong>trolled burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g, is the c<strong>on</strong>trolled applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> to fuel buildups, <str<strong>on</strong>g>in</str<strong>on</strong>g> either<br />

their natural or modified state, <str<strong>on</strong>g>in</str<strong>on</strong>g> specified envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s that allow the <str<strong>on</strong>g>fire</str<strong>on</strong>g> to be c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to a<br />

predeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed area <strong>and</strong>, at the same time, to produce the <str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread required to<br />

atta<str<strong>on</strong>g>in</str<strong>on</strong>g> the planned management objectives.<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g with prescripti<strong>on</strong>, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from planned igniti<strong>on</strong> that meets management<br />

objectives.<br />

prescribed natural <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire <str<strong>on</strong>g>of</str<strong>on</strong>g> natural orig<str<strong>on</strong>g>in</str<strong>on</strong>g> that is allowed to burn as l<strong>on</strong>g as it is accomplish<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e or more<br />

management objectives.<br />

prescripti<strong>on</strong>: A statement specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the management objectives to be atta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <strong>and</strong> the air temperature,<br />

humidity, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d directi<strong>on</strong> <strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d speed, fuel moisture c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> soil moisture c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> which a<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> will be allowed to burn.<br />

primary successi<strong>on</strong>: Progressi<strong>on</strong> to a climax plant community that is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated <strong>on</strong> lava flow, s<strong>and</strong> dunes,<br />

alluvial deposits, <strong>and</strong> other newly exposed sites.<br />

protective cover: Cover important to wildlife when escape from predators becomes necessary.<br />

pyrolysis: A chemical decompositi<strong>on</strong> process brought about by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g by which the fuel is c<strong>on</strong>verted to gases.<br />

An endothermic reacti<strong>on</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g>f by thermal radiati<strong>on</strong> or c<strong>on</strong>vecti<strong>on</strong> from an advanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g> fr<strong>on</strong>t that drives<br />

<strong>water</strong> from the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a fuel, elevates fuel temperatures, <strong>and</strong> then decomposes l<strong>on</strong>g-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> organic<br />

molecules <str<strong>on</strong>g>in</str<strong>on</strong>g> plant cells <str<strong>on</strong>g>in</str<strong>on</strong>g>to shorter <strong>on</strong>es.<br />

radiant <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal radiati<strong>on</strong> emissi<strong>on</strong> that is <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepted at (or near) the ground surface, or at<br />

some specified distance ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame fr<strong>on</strong>t.<br />

radiati<strong>on</strong>: Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> heat from <strong>on</strong>e body to another not <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with it by electromagnetic wave moti<strong>on</strong>. All<br />

bodies at temperatures above 0 o K produce radiant energy.<br />

240 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


eacti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: Total heat release per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> fuelbed divided by the burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g time. It is the timeaveraged<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release <str<strong>on</strong>g>of</str<strong>on</strong>g> the active <str<strong>on</strong>g>fire</str<strong>on</strong>g> fr<strong>on</strong>t that is calculated <str<strong>on</strong>g>in</str<strong>on</strong>g> the field by estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fuels burned per sec<strong>on</strong>d <strong>and</strong> assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat yields for the fuels.<br />

rhizosphere: The root envir<strong>on</strong>ment, provides a favorable envir<strong>on</strong>ment for soil microorganisms <strong>and</strong> is an<br />

important site <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial activity.<br />

riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>: Areas that are situated <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces between terrestrial <strong>and</strong> aquatic <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> that<br />

can be found al<strong>on</strong>g open bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, such as the banks <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers <strong>and</strong> ephemeral, <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent, <strong>and</strong><br />

perennial streams, <strong>and</strong> around lakes, p<strong>on</strong>ds, spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, bogs, <strong>and</strong> meadows.<br />

runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire <str<strong>on</strong>g>in</str<strong>on</strong>g> the crowns that races ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> <strong>on</strong> the surface <str<strong>on</strong>g>in</str<strong>on</strong>g> what is called a runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

sec<strong>on</strong>dary successi<strong>on</strong>: Progressi<strong>on</strong> to a climax plant community that follows disturbance such as <str<strong>on</strong>g>fire</str<strong>on</strong>g>.<br />

sediment: Eroded soil that is transported from <strong>water</strong>shed surfaces to stream channels by overl<strong>and</strong> flow, <strong>and</strong> then<br />

through stream systems <str<strong>on</strong>g>in</str<strong>on</strong>g> streamflow <strong>and</strong> therefore, is the product <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong>.<br />

sedimentati<strong>on</strong>: The process <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>in</str<strong>on</strong>g> stream channels or downstream reservoirs.<br />

sediment yield: The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment outflow from a <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> a stream.<br />

slash: C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> downed fuels result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from either natural events (w<str<strong>on</strong>g>in</str<strong>on</strong>g>d, <str<strong>on</strong>g>fire</str<strong>on</strong>g>, snow breakage, <strong>and</strong> so<br />

forth) or management activities (logg<str<strong>on</strong>g>in</str<strong>on</strong>g>g, road c<strong>on</strong>structi<strong>on</strong>, <strong>and</strong> so forth).<br />

slash disposal: Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> slash (by burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g or otherwise) to reduce the <str<strong>on</strong>g>fire</str<strong>on</strong>g> hazard or meet other purposes.<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g: The third phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fire</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which pyrolysis be<str<strong>on</strong>g>in</str<strong>on</strong>g>gs to dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ish.<br />

snags: Cavities result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from wood decay, or holes created by other species <str<strong>on</strong>g>in</str<strong>on</strong>g> deteriorat<str<strong>on</strong>g>in</str<strong>on</strong>g>g or dead trees used<br />

by numerous species <str<strong>on</strong>g>of</str<strong>on</strong>g> mammals, reptiles, amphibians, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates.<br />

soil erosi<strong>on</strong>: The dislodgement <strong>and</strong> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> soil particles <strong>and</strong> small aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> soil by the acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong><br />

<strong>and</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d.<br />

soil mass movement: The process where cohesive masses <str<strong>on</strong>g>of</str<strong>on</strong>g> soil are displaced by downslope movement driven<br />

by the force <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil, rock, <strong>and</strong> debris masses. This movement might be rapid (l<strong>and</strong>slides) or relatively<br />

slow (creep).<br />

soil productivity: Reflects the capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed for support<str<strong>on</strong>g>in</str<strong>on</strong>g>g susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed plant growth <strong>and</strong> plant<br />

communities, or the natural sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> plant communities.<br />

soil wood: C<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> buried or partially buried woody debris.<br />

spott<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Involves the physical removal <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g material by thermal updrafts from flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g fuels <strong>and</strong> their<br />

subsequent depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unignited fuels some meters or kilometers away. This is a predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> spread <str<strong>on</strong>g>in</str<strong>on</strong>g> fast mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g unc<strong>on</strong>trollable <str<strong>on</strong>g>fire</str<strong>on</strong>g>s.<br />

st<strong>and</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire that kills all or most <str<strong>on</strong>g>of</str<strong>on</strong>g> the overstory trees <str<strong>on</strong>g>in</str<strong>on</strong>g> a forest <strong>and</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> do<str<strong>on</strong>g>in</str<strong>on</strong>g>g so, <str<strong>on</strong>g>in</str<strong>on</strong>g>itiates<br />

sec<strong>on</strong>dary successi<strong>on</strong> or regrowth.<br />

stormflow: The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong>, surface flow, <strong>and</strong> subsurface flow dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a precipitati<strong>on</strong> or snowmelt<br />

event.<br />

subsurface flow: Also called <str<strong>on</strong>g>in</str<strong>on</strong>g>terflow, is that part <str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>put that <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the soil <strong>and</strong> then<br />

flows to a stream channel <str<strong>on</strong>g>in</str<strong>on</strong>g> a time short enough to be part <str<strong>on</strong>g>of</str<strong>on</strong>g> the stormflow.<br />

surface erosi<strong>on</strong>: Caused by the acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fall<str<strong>on</strong>g>in</str<strong>on</strong>g>g ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drops, th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the soil surface,<br />

c<strong>on</strong>centrated overl<strong>and</strong> flow, or the erosive power <str<strong>on</strong>g>of</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d.<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire that c<strong>on</strong>sumes <strong>on</strong>ly surface fuels such as litter, low-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants, <strong>and</strong> dead herbaceous plants<br />

accumulated <strong>on</strong> the surface. Surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> can ignite snags (dead st<strong>and</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g trees), can c<strong>on</strong>sume shrubs <strong>and</strong> tree<br />

seedl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>and</strong> can “torch out” an occasi<strong>on</strong>al densely crowned mature tree. It rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s a surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> so l<strong>on</strong>g<br />

as its rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread depends <strong>on</strong> surface fuels.<br />

surface fuels: Fuels below the aerial fuels (< 6.5 feet or 2m) <strong>and</strong> above the ground fuels.<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f: Also called overl<strong>and</strong> flow, this is <strong>water</strong>flow that has not <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrated <str<strong>on</strong>g>in</str<strong>on</strong>g>to the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral soil <strong>and</strong> flows<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f the surface to a stream channel.<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 241


thermal c<strong>on</strong>ductivity: Expresses the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transferred per unit length per unit time per degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature gradient <strong>and</strong> is expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> SI units as W/m/ o K.<br />

thermal cover: Cover critical to wildlife for the ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> body heat.<br />

thermal energy: Energy that results from changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the molecular activity or structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance.<br />

timelag: Measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate at which a fuel approaches its equilibrium moisture c<strong>on</strong>tent after experienc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

envir<strong>on</strong>mental changes.<br />

tolerance: Applies to light, soil nutrients, or other physiological requirements a species can tolerate.<br />

total <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity: Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat output <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fire</str<strong>on</strong>g> as a whole, which is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> area burned, fuel<br />

load<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>and</strong> estimated heat yield.<br />

total fuel: The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass that could potentially burn.<br />

turbidity: A measure <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended f<str<strong>on</strong>g>in</str<strong>on</strong>g>e m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral or organic matter that reduces sunlight penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong>, <strong>and</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluences photosynthesis rates <strong>and</strong> <strong>water</strong> quality.<br />

unfavorable <str<strong>on</strong>g>effects</str<strong>on</strong>g>: Effects that make atta<str<strong>on</strong>g>in</str<strong>on</strong>g>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fire</str<strong>on</strong>g> management more difficult.<br />

urban-rural <str<strong>on</strong>g>in</str<strong>on</strong>g>terface: The l<str<strong>on</strong>g>in</str<strong>on</strong>g>e, area, or z<strong>on</strong>e where structures <strong>and</strong> other human developments meet, or<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>term<str<strong>on</strong>g>in</str<strong>on</strong>g>gle with, undeveloped wildl<strong>and</strong> areas.<br />

vaporizati<strong>on</strong>: Is the process <str<strong>on</strong>g>of</str<strong>on</strong>g> add<str<strong>on</strong>g>in</str<strong>on</strong>g>g heat to <strong>water</strong> until it changes phase from a liquid to a gas.<br />

vegetati<strong>on</strong>-replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>: Kills all or most <str<strong>on</strong>g>of</str<strong>on</strong>g> the liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g trees, shrubs, <strong>and</strong> herbaceous plants)<br />

<strong>on</strong> a site <strong>and</strong>, as a result, <str<strong>on</strong>g>in</str<strong>on</strong>g>itiates sec<strong>on</strong>dary successi<strong>on</strong> or regrowth.<br />

vegetative resources: Plant communities <str<strong>on</strong>g>of</str<strong>on</strong>g> value to people <strong>and</strong> when dem<strong>and</strong>ed, are available through the<br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prescribed management practices.<br />

<strong>water</strong>shed c<strong>on</strong>diti<strong>on</strong>: A subjective term to <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate the health (status) <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>water</strong>shed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> its hydrologic<br />

functi<strong>on</strong> <strong>and</strong> soil productivity.<br />

<strong>water</strong> quality: Refers to the physical, chemical, <strong>and</strong> biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>water</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> reference to a particular<br />

use.<br />

wetl<strong>and</strong>s: Areas that are saturated by surface <strong>water</strong>, ground<strong>water</strong>, or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both at a frequency <strong>and</strong><br />

durati<strong>on</strong> sufficient to support a prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> adapted to saturated soil c<strong>on</strong>diti<strong>on</strong>s.<br />

wettability: Property that can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil.<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g>: Fire that is not meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g management objectives <strong>and</strong>, therefore, requires a suppressi<strong>on</strong> resp<strong>on</strong>se.<br />

242 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Index<br />

A<br />

A-horiz<strong>on</strong> 23, 55<br />

act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes 76<br />

Africa 58, 68<br />

Agropyr<strong>on</strong> spicatum 89<br />

Alaska 7, 111, 150, 156, 158, 162<br />

Alnus 79<br />

Alsea Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> 136<br />

amm<strong>on</strong>ificati<strong>on</strong> 79, 88<br />

Apache-Sitgreaves Nati<strong>on</strong>al Forest<br />

7, 108, 115, 131, 137, 179<br />

Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s 62<br />

Southern 62, 71<br />

aquatic biota 135<br />

Arctostaphylos spp. 85<br />

Ariz<strong>on</strong>a<br />

2, 7, 56, 60, 68, 89, 109, 110, 115, 116, 127, 131,<br />

136, 137, 138, 141, 166, 168, 179<br />

Apache-Sitgreaves Nati<strong>on</strong>al Forest 7<br />

Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest<br />

Rattlesnake Fire 45, 46, 47<br />

Flagstaff 59<br />

Heber 115<br />

Mogoll<strong>on</strong> Rim 59<br />

White Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Apache Nati<strong>on</strong> 43<br />

White Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Fire 43<br />

armored cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 195<br />

Artemisia spp. 191<br />

ash-bed effect 69<br />

Aspen Fire 138<br />

Australia 58, 62, 68, 85, 86<br />

Australian eucalypt 68<br />

B<br />

B-horiz<strong>on</strong> 23<br />

bacteria 74<br />

BAER 2, 42, 117, 131, 147, 180, 182<br />

baseflow 102<br />

Bent<strong>on</strong> Lakes Nati<strong>on</strong>al Wildlife Refuge 165<br />

Best Management Practices 50, 117, 132, 133<br />

bicarb<strong>on</strong>ate 128<br />

biogeochemical cycles 165<br />

biological crusts 76, 85<br />

bitterbrush See Purshia tridentata<br />

Bitterroot Valley 115<br />

Black River 166<br />

blackbrush See Coleogyne ramosissima<br />

Bobcat Fire 189<br />

Borrego Fire 138<br />

Bradyrhizobium spp. 76<br />

Brazil 59<br />

Bridge Creek Fire 190<br />

broadcast seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 185, 189<br />

brown trout 138<br />

buffer capacity 62<br />

buffer power 53<br />

buffer strips 168<br />

bulk density 31<br />

bull trout 139<br />

Burned Area Emergency Rehabilitati<strong>on</strong> 2, 42, 117, 180.<br />

See BAER<br />

treatments 182<br />

Burned Area Report 183<br />

BURNUP Model 8<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 243<br />

C<br />

C-horiz<strong>on</strong> 23<br />

California<br />

35, 37, 63, 99, 102, 109, 116, 126, 127, 128, 129, 142,<br />

189, 190, 193<br />

San Dimas Experimental Forest 102<br />

California chaparral 77<br />

Canada 150, 164<br />

Canadian Northwest Territories 9<br />

carb<strong>on</strong> 53, 55, 162, 164<br />

Carex spp. 163<br />

Carex stricta 154, 162, 163<br />

Cascade Range 109<br />

Cascades Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s 48<br />

cati<strong>on</strong> exchange capacity 53, 59, 62<br />

cati<strong>on</strong>s 53, 62, 162<br />

Ceanothus velut<str<strong>on</strong>g>in</str<strong>on</strong>g>us 89<br />

Cercocarpus spp. 79<br />

Cerro Gr<strong>and</strong>e Fire 186, 189<br />

channel armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g 192<br />

channel clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g 192<br />

channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> 102<br />

channel stability 45<br />

channel treatments 191, 193<br />

channel armor<str<strong>on</strong>g>in</str<strong>on</strong>g>g 192<br />

channel clear<str<strong>on</strong>g>in</str<strong>on</strong>g>g 192<br />

check dams 191<br />

debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s 192<br />

log check dams 193<br />

log grade stabilizers 192<br />

rock cage dams 194<br />

rock fence check dams 191<br />

straw bale check dams 193<br />

straw bales 191<br />

chaparral 37, 44, 88<br />

Ariz<strong>on</strong>a 89<br />

California 77<br />

check dams 191<br />

chemical changes 57<br />

chemical characteristics 53<br />

chemical c<strong>on</strong>stituents, dissolved 124<br />

chloride 128<br />

Clean Water Act 132<br />

coarse woody debris 55, 56, 80, 89, 168<br />

Coc<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al Forest 107<br />

Code <str<strong>on</strong>g>of</str<strong>on</strong>g> Federal Regulati<strong>on</strong>s 132<br />

Coleogyne ramosissima 85<br />

Collembola 78


Colorado Fr<strong>on</strong>t Range 189, 190<br />

combusti<strong>on</strong> 24<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25, 157, 162<br />

general 24<br />

glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25, 157, 162<br />

Composite Burn Index (CBI) 15<br />

c<strong>on</strong>ceptual model 15<br />

c<strong>on</strong>densati<strong>on</strong> 25, 31<br />

c<strong>on</strong>ducti<strong>on</strong> 25, 31<br />

c<strong>on</strong>tour structures 190<br />

c<strong>on</strong>tour trenches 187, 190<br />

c<strong>on</strong>tour-felled logs 186<br />

c<strong>on</strong>vecti<strong>on</strong> 25, 31<br />

Co<strong>on</strong> Creek Fire 115<br />

Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest 45, 46<br />

Costa Rica 89<br />

crown <str<strong>on</strong>g>fire</str<strong>on</strong>g>s 37<br />

cryptogamic crusts 77, 85<br />

culvert improvements 194<br />

D<br />

debris avalanches 43<br />

debris bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s 192<br />

debris dam failures 115<br />

decompositi<strong>on</strong> 65, 79, 88<br />

rates 57<br />

DELTA-Q model 176<br />

denitrificati<strong>on</strong> 80<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> burn 9, 14, 159, 161<br />

Deschutes Nati<strong>on</strong>al Forest 190<br />

Disturbed WEPP 174<br />

Divide Fire 136<br />

Douglas-fir 68, 89<br />

dry ravel 42<br />

Dude Fire 115, 136, 138, 141<br />

duff 22, 32, 33<br />

duff burnout model 34<br />

E<br />

earthworms 78<br />

ecosystem productivity 64<br />

ectomycorrhizae 76<br />

endomycorrhizae 76<br />

Entiat Fires 124<br />

erosi<strong>on</strong> 41, 183<br />

dry ravel 42<br />

gully 42<br />

rates 174<br />

rill 42<br />

sheet 42<br />

eucalypt forests 69<br />

eucalyptus 35<br />

evapotranspirati<strong>on</strong> 99<br />

evergreen bays 159<br />

excess <strong>water</strong> 102<br />

F<br />

F-layer 22, 55, 87<br />

field capacity 100<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>and</strong> 84<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> 9<br />

frequency 58<br />

ground 157<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity 7, 14, 24<br />

retardants 129<br />

severity 5, 7, 13, 24, 58, 67, 161<br />

classificati<strong>on</strong> 13<br />

high severity burn 15<br />

low severity burn 15<br />

matrix 13, 14<br />

moderate severity burn 15<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g 9<br />

surface 157<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

amphibians 140<br />

aquatics 135, 137<br />

birds 140<br />

first order 172<br />

flash floods 116<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates 140<br />

mammals 140<br />

moisture 80<br />

oxygen 80<br />

reptiles 140<br />

riparian 167<br />

species c<strong>on</strong>siderati<strong>on</strong>s 137, 139<br />

Bull trout 139<br />

Gila trout 139<br />

redb<strong>and</strong> trout 139<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> models 171<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> regimes 4, 107<br />

mixed 4, 6<br />

n<strong>on</strong><str<strong>on</strong>g>fire</str<strong>on</strong>g> 5<br />

st<strong>and</strong> replacement 4<br />

understory 4, 5<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> retardants 129<br />

lethal levels<br />

aquatic organisms 130<br />

lethal levels, aquatic 130<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity 8<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g>s<br />

Apache-Sitgreaves Nati<strong>on</strong>al Forest 115<br />

Aspen 138<br />

Bobcat 189<br />

Borrego 138<br />

Bridge Creek 190<br />

Cerro Gr<strong>and</strong>e 186, 189<br />

Co<strong>on</strong> Creek 115<br />

Divide 136<br />

Dude 115, 136, 138, 141<br />

Entiat 124<br />

Hayman 181, 182, 186<br />

Oakl<strong>and</strong> Hills 193<br />

Picture 138<br />

P<strong>on</strong>il Complex 136<br />

Rattlesnake 45, 46, 47<br />

Rodeo-Chediski 108, 115, 116, 131, 132, 137,<br />

179, 186<br />

South Fork Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River 190<br />

South Fork Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fires 193<br />

Tillamook Burn 116<br />

244 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River 189<br />

White Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 43<br />

Yellowst<strong>on</strong>e 135, 139, 141, 142<br />

first order <str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> 172<br />

First Order Fire Effects Model 8, 171. See FOFEM<br />

applicati<strong>on</strong>s 172<br />

descripti<strong>on</strong> 172<br />

Flagstaff 59<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25<br />

flam<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> 157<br />

flash floods 116<br />

Florida 147, 154, 166<br />

Florida Everglades 166<br />

FOFEM 8, 171<br />

forest floor 32, 56, 58<br />

FOREST model 176<br />

France 110<br />

Frankia spp. See act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 68<br />

fuel compactness 157<br />

Fungi 74<br />

G<br />

Gelisols 152, 157<br />

Georgia 150<br />

geotextiles 188<br />

Gila chub 138<br />

Gila <str<strong>on</strong>g>in</str<strong>on</strong>g>termedia 138<br />

Gila River 166<br />

Gila trout 139<br />

glow<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> 25<br />

Gord<strong>on</strong>ia lasianthus 159<br />

grass <str<strong>on</strong>g>fire</str<strong>on</strong>g>s 37<br />

grassl<strong>and</strong>s 55<br />

Great Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s 68<br />

Green Swamp 159<br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g>s 157<br />

H<br />

H-layer 22, 55<br />

Hayman Fire 181, 182, 186<br />

Healthy Forest Restorati<strong>on</strong> Act 5<br />

heat transfer 25, 26, 31, 173<br />

c<strong>on</strong>densati<strong>on</strong> 25<br />

c<strong>on</strong>ducti<strong>on</strong> 25<br />

c<strong>on</strong>vecti<strong>on</strong> 25<br />

models 32<br />

pathways 32<br />

duff 32<br />

forest floor 32<br />

litter 32<br />

radiati<strong>on</strong> 25<br />

vaporizati<strong>on</strong> 25<br />

heavy metals 128<br />

Heber, Ariz<strong>on</strong>a 115<br />

hillslope treatments 185, 188, 193<br />

broadcast seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 185, 189<br />

c<strong>on</strong>tour structures 190<br />

c<strong>on</strong>tour trenches 187, 190<br />

c<strong>on</strong>tour-felled logs 186<br />

geotextiles 188<br />

mulch 186, 189<br />

needle cast 188<br />

ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g 187<br />

scarificati<strong>on</strong> 187<br />

silt fences 188<br />

slash spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g 188<br />

straw wattles 187<br />

temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g 188<br />

Histisols 152, 157<br />

HR 1904. See Healthy Forest Restorati<strong>on</strong> Act<br />

humus 22<br />

hydric soil<br />

classificati<strong>on</strong> 151<br />

hydric <strong>soils</strong><br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s 153<br />

hydrodynamics 153<br />

hydrologic cycle 95, 118<br />

baseflow 102<br />

evapotranspirati<strong>on</strong> 99<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> 98<br />

hydrophobic <strong>soils</strong> 99<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terflow 98<br />

overl<strong>and</strong> flow 98<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f 98<br />

wettability 99<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> 97<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terflow 98<br />

overl<strong>and</strong> flow 98<br />

snowpack 97<br />

stemflow 97<br />

streamflow 104<br />

subsurface flow 102<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f 101<br />

throughfall 97<br />

precipitati<strong>on</strong> 95<br />

hydroperiod 153<br />

hydrophobic <strong>soils</strong> 99<br />

Quercus turb<str<strong>on</strong>g>in</str<strong>on</strong>g>ella 99<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 245<br />

I<br />

Idaho 89, 138, 168<br />

Salm<strong>on</strong> River 49<br />

igniti<strong>on</strong> 25<br />

Ilex glabra 159<br />

Ind<strong>on</strong>esia 32<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> 98<br />

Inl<strong>and</strong> Northwest 56<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sects 78<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> 97<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terflow 98<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates 140<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>fire</str<strong>on</strong>g> 141<br />

J<br />

jack p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 85. See P<str<strong>on</strong>g>in</str<strong>on</strong>g>us banksiana<br />

Juncus 165<br />

Juniperus spp. 30<br />

K<br />

Kalmia spp. 66


L<br />

L-layer 22, 55, 87<br />

Lake Roosevelt 131<br />

large woody debris 22<br />

litter 22, 32<br />

log check dams 193<br />

log grade stabilizers 192<br />

l<strong>on</strong>gleaf p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. See P<str<strong>on</strong>g>in</str<strong>on</strong>g>us palustris<br />

Low-severity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> 83<br />

Ly<strong>on</strong>ia lucida 159<br />

M<br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna 78, 86<br />

earthworms 78<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sects 78<br />

macro<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates 86, 141<br />

macropore 31<br />

manzanita 85. See Arctostaphylos spp.<br />

mass failures 43<br />

debris avalanches 43<br />

slope creep 43<br />

slump-earthflows 43<br />

mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna 78, 86<br />

Collembola 78<br />

mites 78<br />

Nematoda 78<br />

Rotifera 78<br />

Michigan 158, 162, 163<br />

Seney Nati<strong>on</strong>al Wildlife Refuge 33<br />

microorganisms 74, 80, 89<br />

low-severity prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g> 83<br />

moisture <strong>and</strong> oxygen 80<br />

slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 83<br />

substrate availability 81<br />

temperature 80<br />

wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 82<br />

micropores 31<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> 79, 88<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota 150, 156<br />

Mississippi Gulf Coast 165<br />

mites 78<br />

model<br />

BURNUP 8<br />

c<strong>on</strong>ceptual 15<br />

DELTA-Q 176<br />

duff burnout 34<br />

First Order Fire Effects Model 8, 171<br />

FOREST 176<br />

RUSLE 173<br />

Universal Soil Loss Equati<strong>on</strong> 183<br />

USLE 173<br />

WATSED 173<br />

WEPP 173, 183<br />

Mogoll<strong>on</strong> Rim 59, 131<br />

moisture 80<br />

M<strong>on</strong>tana 85, 89, 115, 138, 165, 168<br />

mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> mahogany. See Cercocarpus spp.<br />

mulch 186, 189<br />

mycorrhizal fungi 75, 84<br />

246 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005<br />

N<br />

N-fixati<strong>on</strong> 89<br />

Nantahala Nati<strong>on</strong>al Forest 62<br />

Nati<strong>on</strong>al Climatic Data Center 200<br />

Nati<strong>on</strong>al Fire Effects Workshop, 1978 3<br />

Nati<strong>on</strong>al Forest Management Act 132<br />

Nati<strong>on</strong>al Forests<br />

Apache-Sitgreaves Nati<strong>on</strong>al Forest<br />

7, 108, 131, 137, 179<br />

Coc<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al Forest 107<br />

Cor<strong>on</strong>ado Nati<strong>on</strong>al Forest 45, 46<br />

Deschutes Nati<strong>on</strong>al Forest 190<br />

Nantahala Nati<strong>on</strong>al Forest 62<br />

Pike-San Isabel Nati<strong>on</strong>al Forest 182<br />

San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al Forest 129<br />

Shasta-Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al Forest 189, 190, 193<br />

T<strong>on</strong>to Nati<strong>on</strong>al Forest 109, 115, 138<br />

Nati<strong>on</strong>al Interagency Fire Center 200<br />

Nati<strong>on</strong>al Parks<br />

Shen<strong>and</strong>oah Nati<strong>on</strong>al Park 68<br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park 128, 142<br />

Nature C<strong>on</strong>servancy 159<br />

needle cast 188<br />

Nematoda 78<br />

New Mexico 88, 116, 136, 138, 166, 189<br />

nitrificati<strong>on</strong> 79, 88<br />

Nitrobacter 79, 88<br />

nitrogen 53, 63, 66, 119, 125, 131, 162, 163, 164<br />

nitrogen losses 63, 64<br />

nitrogen-fixati<strong>on</strong> 79<br />

symbiotic 79<br />

nitrogen-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria 75<br />

Nitrosom<strong>on</strong>as 79, 88<br />

North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a 7, 154, 158, 159, 162, 163<br />

nutrient<br />

availability 66<br />

cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g 65<br />

losses 65<br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g 78, 164<br />

nutrients 24, 128<br />

O<br />

O-horiz<strong>on</strong> 23<br />

Oakl<strong>and</strong> Hills Fire 193<br />

Okefenokee Swamp 150<br />

Oreg<strong>on</strong> 49, 116, 136, 189, 190<br />

Oreg<strong>on</strong> Cascades 48, 49<br />

Oreg<strong>on</strong> Coast Range 43<br />

organic matter 22, 24, 32, 55, 79, 151<br />

accumulati<strong>on</strong> 56<br />

forest floor 56<br />

organic <strong>soils</strong> 151, 152<br />

outslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g 195<br />

overl<strong>and</strong> flow 98, 101<br />

oxygen 80<br />

oxygen, dissolved 123<br />

P<br />

Pacific Northwest 64, 80, 123, 139<br />

pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratio 157


pathways<br />

channel <str<strong>on</strong>g>in</str<strong>on</strong>g>tercepti<strong>on</strong> 102<br />

subsurface flow 102<br />

peakflow mechanisms<br />

debris dam failures 115<br />

peakflows 111, 114<br />

peatl<strong>and</strong> <strong>soils</strong> 32<br />

Persia borb<strong>on</strong>ia 159<br />

pH 53, 62, 124<br />

Philipp<str<strong>on</strong>g>in</str<strong>on</strong>g>es 191<br />

phosphorus 53, 64, 68, 119, 127, 131, 163, 164<br />

Picea 7<br />

Picture Fire 138<br />

Pike-San Isabel Nati<strong>on</strong>al Forest 182<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us banksiana 9, 84<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us edulis 85<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us palustris 7<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa 2, 7, 70, 88, 89, 107, 109, 110<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us rigida 70<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us serot<str<strong>on</strong>g>in</str<strong>on</strong>g>a 159<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us strobus 85<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>us sylvestris 86<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>y<strong>on</strong> p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. See also P<str<strong>on</strong>g>in</str<strong>on</strong>g>us edulis<br />

plant roots 87<br />

pocos<str<strong>on</strong>g>in</str<strong>on</strong>g> 153, 154, 157, 159, 164<br />

p<strong>on</strong>d p<str<strong>on</strong>g>in</str<strong>on</strong>g>e 159<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. See P<str<strong>on</strong>g>in</str<strong>on</strong>g>us p<strong>on</strong>derosa<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e forests 88<br />

p<strong>on</strong>derosa p<str<strong>on</strong>g>in</str<strong>on</strong>g>e st<strong>and</strong> 55<br />

P<strong>on</strong>il Complex 136<br />

porosity 31<br />

precipitati<strong>on</strong> 95<br />

preigniti<strong>on</strong> 25<br />

prescribed <str<strong>on</strong>g>fire</str<strong>on</strong>g><br />

low-severity 83<br />

<strong>water</strong> yield 111, 112, 113<br />

primary st<strong>and</strong>ards 105<br />

Purshia tridentata 79<br />

Q<br />

Quercus spp. 30<br />

Quercus turb<str<strong>on</strong>g>in</str<strong>on</strong>g>ella 99<br />

R<br />

radiati<strong>on</strong> 25, 31<br />

Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Series 1, 147<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash 39<br />

Rattlesnake Fire 45, 46, 47<br />

redb<strong>and</strong> trout 139<br />

research needs 211<br />

Rhizobium 76, 79<br />

rhizosphere 75<br />

rill formati<strong>on</strong> 39<br />

riparian<br />

classificati<strong>on</strong> 167<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> 167<br />

riparian area 166, 167<br />

riparian <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g> 149, 166<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> 167<br />

hydrology 167<br />

management c<strong>on</strong>siderati<strong>on</strong>s 168<br />

buffer strips 168<br />

ripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g 187<br />

road treatments 193, 194<br />

armored cross<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 195<br />

culvert improvements 194<br />

outslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g 195<br />

roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips 194<br />

rock cage dams 194<br />

rock fence check dams 191<br />

Rodeo-Chediski Fire 108, 115, 116, 131, 132, 137,<br />

179, 186<br />

roll<str<strong>on</strong>g>in</str<strong>on</strong>g>g dips 194<br />

roots 87<br />

Rotifera 78<br />

round worms. See Nematoda<br />

RUSLE 173, 174<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 247<br />

S<br />

Salmo trutta 138<br />

Salm<strong>on</strong> River 49<br />

Salt River 131<br />

San Bernard<str<strong>on</strong>g>in</str<strong>on</strong>g>o Nati<strong>on</strong>al Forest 129<br />

San Dimas Experimental Forest 102<br />

San Dimas Technology <strong>and</strong> Development Program 196<br />

San Dimas Technology Development Center 186<br />

savannas 55, 58, 86<br />

scarificati<strong>on</strong> 187<br />

sec<strong>on</strong>dary st<strong>and</strong>ards 105<br />

sediment 121<br />

losses 47–50<br />

size classes 41<br />

suspended 121<br />

yield 44, 46, 123, 183<br />

sedimentati<strong>on</strong> 120<br />

seed banks 87<br />

Seney Nati<strong>on</strong>al Wildlife Refuge 33<br />

Shasta-Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity Nati<strong>on</strong>al Forest 189, 190, 193<br />

Shen<strong>and</strong>oah Nati<strong>on</strong>al Park 68<br />

Shen<strong>and</strong>oah Valley 58<br />

silt fences 188<br />

site productivity 64<br />

slash burn<str<strong>on</strong>g>in</str<strong>on</strong>g>g 83<br />

slash spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g 188<br />

slope creep 43<br />

slump-earthflows 43<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25, 157, 158, 162<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g combusti<strong>on</strong> 157<br />

smolder<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>fire</str<strong>on</strong>g>s 37<br />

snow accumulati<strong>on</strong> 101<br />

snowbrush. See Ceanothus velut<str<strong>on</strong>g>in</str<strong>on</strong>g>us<br />

snowmelt 101<br />

snowpack 97<br />

soil 2, 21, 29<br />

aggregati<strong>on</strong> 31<br />

biology 73<br />

buffer capacity 62<br />

chemistry 53<br />

erosi<strong>on</strong> 120, 183<br />

fauna 73<br />

flora 73<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g 25, 160<br />

nitrogen losses 63, 64


heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathways 33<br />

duff 33<br />

horiz<strong>on</strong>s 22<br />

A-horiz<strong>on</strong> 23, 55<br />

B-horiz<strong>on</strong> 23<br />

C-horiz<strong>on</strong> 23<br />

F-layer 22, 55, 87<br />

H-layer 22, 55<br />

L-layer 22, 55, 87<br />

O-horiz<strong>on</strong> 23<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vertebrates 86<br />

microorganisms 24<br />

bacteria 74<br />

fungi 74<br />

moisture 81<br />

nutrients 162<br />

organic 151<br />

organic matter 59<br />

pH 62<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile 22, 26<br />

properties 22<br />

structure 30<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles 34<br />

temperatures 161<br />

texture 29<br />

wetl<strong>and</strong><br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g 164<br />

soil erosi<strong>on</strong> models 171, 173<br />

RUSLE 173, 174<br />

WATSED 173, 174<br />

WEPP 173, 174<br />

soil <strong>water</strong> storage 100, 108<br />

field capacity 100<br />

South Africa 68, 110, 111<br />

South Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a 59<br />

South Fork Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fires 190, 193<br />

Southern Appalachian Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s 58, 62, 71<br />

Spa<str<strong>on</strong>g>in</str<strong>on</strong>g> 57, 83, 189<br />

Spart<str<strong>on</strong>g>in</str<strong>on</strong>g>a spp. 165<br />

spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gtails. See Collembola<br />

spruce. See also Picea<br />

stemflow 97<br />

Stermer Ridge <strong>water</strong>sheds 131<br />

Stipa comata 89<br />

straw bale check dams 193<br />

straw bales 191<br />

straw wattles 187<br />

streamflow discharge 104<br />

streamflow regimes 107, 109<br />

substrate availability 81<br />

subsurface flow 102<br />

sulfur 53, 64, 128<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g>s 37<br />

surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f 98, 101<br />

Sweden 86<br />

symbiotic N-fixati<strong>on</strong> 79<br />

T<br />

Taiwan 194<br />

tallgrass prairie 87<br />

temperature 80<br />

temperature thresholds 26, 30, 54, 82<br />

temporary fenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g 188<br />

Texas 109, 111, 121<br />

Three Bar chaparral <strong>water</strong>sheds 109<br />

throughfall 97<br />

Tillamook Burn 116<br />

“t<str<strong>on</strong>g>in</str<strong>on</strong>g> ro<str<strong>on</strong>g>of</str<strong>on</strong>g>” effect 37<br />

T<strong>on</strong>to Nati<strong>on</strong>al Forest 109, 115, 138<br />

total dissolved solids (TDS) 128<br />

Trichoderma 82<br />

Tr<str<strong>on</strong>g>in</str<strong>on</strong>g>ity River Fire 189<br />

trout<br />

bull 139<br />

Gila 139<br />

redb<strong>and</strong> 139<br />

tundra 55<br />

turbidity 121<br />

248 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005<br />

U<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency 120, 123<br />

U.S. Fish <strong>and</strong> Wildlife Service 151<br />

Universal Soil Loss Equati<strong>on</strong> 183. See also USLE<br />

USLE 173<br />

USLE, revised 173<br />

Utah 191<br />

V<br />

vaporizati<strong>on</strong> 25, 31<br />

Variable Source Area C<strong>on</strong>cept 103<br />

Verde River 166<br />

volatilizati<strong>on</strong> 63<br />

W<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> 102, 109, 124, 127<br />

<strong>water</strong><br />

chemical characteristics 124, 126<br />

bicarb<strong>on</strong>ate 128<br />

chloride 128<br />

nitrogen 125<br />

phosphorus 127<br />

sulfur 128<br />

physical characteristics 121<br />

sediment 121<br />

temperature 123<br />

turbidity 121, 122<br />

Water Erosi<strong>on</strong> Predicti<strong>on</strong> Project 183. See also WEPP<br />

<strong>water</strong> quality 105, 119<br />

nitrogen 119<br />

pH 124, 125<br />

phosphorus 119<br />

primary st<strong>and</strong>ards 105<br />

sec<strong>on</strong>dary st<strong>and</strong>ards 105<br />

st<strong>and</strong>ards 105, 119<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong><br />

Agency 120, 123, 124, 128<br />

<strong>water</strong> repellency 37<br />

ra<str<strong>on</strong>g>in</str<strong>on</strong>g>drop splash 39<br />

rill formati<strong>on</strong> 39<br />

“t<str<strong>on</strong>g>in</str<strong>on</strong>g> ro<str<strong>on</strong>g>of</str<strong>on</strong>g>” effect 37<br />

<strong>water</strong> temperature 123<br />

<strong>water</strong>shed


c<strong>on</strong>diti<strong>on</strong> 103<br />

rehabilitati<strong>on</strong> 179<br />

<strong>water</strong>sheds<br />

chemical c<strong>on</strong>stituents, dissolved 124<br />

<str<strong>on</strong>g>fire</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

flash floods 116<br />

sediment yield 123, 183<br />

Stermer Ridge 131<br />

Three Bar 109<br />

Whitespar 109<br />

WATSED 173, 174<br />

WEPP 173, 174, 175<br />

wetl<strong>and</strong> hydrology 153<br />

wetl<strong>and</strong> soil 152<br />

nutrients 164<br />

carb<strong>on</strong> 164<br />

nitrogen 164<br />

phosphorous 164<br />

wetl<strong>and</strong>s 149<br />

classificati<strong>on</strong> 151, 152<br />

ground <str<strong>on</strong>g>fire</str<strong>on</strong>g> 157<br />

hydrology 153<br />

management c<strong>on</strong>siderati<strong>on</strong>s 166<br />

soil<br />

nutrient cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g 164<br />

surface <str<strong>on</strong>g>fire</str<strong>on</strong>g> 157<br />

wettability 99<br />

White Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Apache Nati<strong>on</strong> 43, 131<br />

white p<str<strong>on</strong>g>in</str<strong>on</strong>g>e. See P<str<strong>on</strong>g>in</str<strong>on</strong>g>us strobus<br />

White Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs Fire 43<br />

Whitespar Watersheds 109<br />

Wild<str<strong>on</strong>g>fire</str<strong>on</strong>g> 82<br />

Wyom<str<strong>on</strong>g>in</str<strong>on</strong>g>g 138<br />

USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005 249<br />

Y<br />

Yellowst<strong>on</strong>e Fires 135, 139, 141, 142<br />

Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park 128, 142


Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s Service Center<br />

Teleph<strong>on</strong>e (970) 498-1392<br />

FAX (970) 498-1396<br />

E-mail rschneider@fs.fed.us<br />

Web site http://www.fs.fed.us/rm<br />

Mail<str<strong>on</strong>g>in</str<strong>on</strong>g>g Address Publicati<strong>on</strong>s Distributi<strong>on</strong><br />

Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong><br />

240 W. Prospect Road<br />

Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO 80526-2098<br />

250 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. 2005


RMRS<br />

ROCKY MOUNTAIN RESEARCH STATION<br />

The Rocky Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> Research Stati<strong>on</strong> develops scientific <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

<strong>and</strong> technology to improve management, protecti<strong>on</strong>, <strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the forests <strong>and</strong> rangel<strong>and</strong>s. Research is designed to meet the needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Forest managers, Federal <strong>and</strong> State agencies, public <strong>and</strong><br />

private organizati<strong>on</strong>s, academic <str<strong>on</strong>g>in</str<strong>on</strong>g>stituti<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, <strong>and</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals.<br />

Studies accelerate soluti<strong>on</strong>s to problems <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>ecosystems</str<strong>on</strong>g>,<br />

range, forests, <strong>water</strong>, recreati<strong>on</strong>, <str<strong>on</strong>g>fire</str<strong>on</strong>g>, resource <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory, l<strong>and</strong> reclamati<strong>on</strong>,<br />

community susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability, forest eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g technology,<br />

multiple use ec<strong>on</strong>omics, wildlife <strong>and</strong> fish habitat, <strong>and</strong> forest <str<strong>on</strong>g>in</str<strong>on</strong>g>sects<br />

<strong>and</strong> diseases. Studies are c<strong>on</strong>ducted cooperatively, <strong>and</strong> applicati<strong>on</strong>s<br />

may be found worldwide.<br />

Research Locati<strong>on</strong>s<br />

Flagstaff, Ariz<strong>on</strong>a Reno, Nevada<br />

Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Colorado* Albuquerque, New Mexico<br />

Boise, Idaho Rapid City, South Dakota<br />

Moscow, Idaho Logan, Utah<br />

Bozeman, M<strong>on</strong>tana Ogden, Utah<br />

Missoula, M<strong>on</strong>tana Provo, Utah<br />

*Stati<strong>on</strong> Headquarters, Natural Resources Research Center,<br />

2150 Centre Avenue, Build<str<strong>on</strong>g>in</str<strong>on</strong>g>g A, Fort Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s, CO 80526<br />

The U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture (USDA) prohibits discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> all its<br />

programs <strong>and</strong> activities <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> race, color, nati<strong>on</strong>al orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, age, disability,<br />

<strong>and</strong> where applicable, sex, marital status, familial status, parental status, religi<strong>on</strong>,<br />

sexual orientati<strong>on</strong>, genetic <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>, political beliefs, reprisal, or because all or<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual’s <str<strong>on</strong>g>in</str<strong>on</strong>g>come is derived from any public assistance program. (Not<br />

all prohibited bases apply to all programs.) Pers<strong>on</strong>s with disabilities who require<br />

alternative means for communicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> program <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> (Braille, large pr<str<strong>on</strong>g>in</str<strong>on</strong>g>t,<br />

audiotape, etc.) should c<strong>on</strong>tact USDA’s TARGET Center at (202) 720-2600 (voice<br />

<strong>and</strong> TDD).<br />

To file a compla<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, write to USDA, Director, Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil<br />

Rights, 1400 Independence Avenue, S.W., Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC 20250-9410, or call<br />

(800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity<br />

provider <strong>and</strong> employer.<br />

Federal Recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g Program Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ted <strong>on</strong> Recycled Paper

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!