24.10.2013 Views

Slides - Indico - Cern

Slides - Indico - Cern

Slides - Indico - Cern

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Particle Detectors<br />

History of Instrumentation ↔ History of Particle Physics<br />

The ‘Real’ World of Particles<br />

Interaction of Particles with Matter, Tracking detectors<br />

Photon Detection, Calorimeters, Particle Identification<br />

Detector Systems<br />

Summer Student Lectures 2007<br />

Werner Riegler, CERN, werner.riegler@cern.ch<br />

W. Riegler/CERN 1


Detectors based on Ionization<br />

Gas Detectors:<br />

• Transport of Electrons and Ions in Gases<br />

• Wire Chambers<br />

• Drift Chambers<br />

• Time Projection Chambers<br />

Solid State Detectors<br />

• Transport of Electrons and Holes in Solids<br />

• Si- Detectors<br />

• Diamond Detectors<br />

W. Riegler/CERN Gas Detectors<br />

2


Gas Detectors with internal Electron Multiplication<br />

• Principle: At sufficiently high electric fields (100kV/cm) the electrons gain<br />

energy in excess of the ionization energy secondary ionzation etc. etc.<br />

• Elektron Multiplication:<br />

– dN = N α dx α…’first Townsend Coefficient’<br />

– N(x) = N 0 exp (αx) α= α(E), N/ N 0 = A (Amplification, Gas Gain)<br />

– N(x)=N 0 exp ( (E)dE )<br />

– In addition the gas atoms are excited emmission of UV photons can ionize<br />

themselves photoelectrons<br />

– NAγ photoeletrons → NA 2 γ electrons → NA 2 γ 2 photoelectrons → NA 3 γ 2 electrons<br />

– For finite gas gain: γ < A -1 , γ … ‘second Townsend coefficient’<br />

W. Riegler/CERN Gas Detectors<br />

3


Wire Chamber: Electron Avalanche<br />

Wire with radius (10-25m) in a tube of radius b (1-3cm):<br />

Electric field close to a thin wire (100-300kV/cm). E.g.<br />

V 0=1000V, a=10m, b=10mm, E(a)=150kV/cm<br />

Electric field is sufficient to accelerate electrons to energies which are<br />

sufficient to produce secondary ionization electron avalanche signal.<br />

b<br />

a<br />

b<br />

Wire<br />

W. Riegler/CERN Gas Detectors<br />

4


From L. Ropelewski<br />

Gas Detectors with internal Electron Multiplication<br />

W. Riegler/CERN 5


Wire Chamber: Electron Avalanches on the Wire<br />

Proportional region: A10 3 -10 4<br />

Semi proportional region: A10 4 -10 5<br />

(space charge effect)<br />

Saturation region: A >10 6<br />

Independent from the number of primary<br />

electrons.<br />

Streamer region: A >10 7<br />

Avalanche along the particle track.<br />

Limited Geiger region:<br />

Avalanche propagated by UV photons.<br />

Geiger region: A10 9<br />

Avalanche along the entire wire.<br />

W. Riegler/CERN Gas Detectors<br />

6


Wire Chamber: Signals from Electron Avalanches<br />

The electron avalanche happens very close to the wire. First multiplication only<br />

around R =2x wire radius. Electrons are moving to the wire surface very quickly<br />

(


Rossi 1930: Coincidence circuit for n tubes Cosmic ray telescope 1934<br />

Geiger Mode<br />

Position resolution is determined<br />

by the size of the tubes.<br />

Signal was directly fed into an<br />

electronic tube.<br />

Detectors with Electron Multiplication<br />

W. Riegler/CERN Gas Detectors<br />

8


Charpak et. al. 1968, Multi Wire Proportional Chamber<br />

Classic geometry (Crossection) :<br />

One plane of thin sense wires is placed<br />

between two parallel plates.<br />

Typical dimensions:<br />

Wire distance 2-5mm, distance between<br />

cathode planes ~10mm.<br />

Electrons (v5cm/s) are being collectes<br />

within in 100ns. The ion tail can be<br />

eliminated by electroniscs filters pulses<br />

100ns typically can be reached.<br />

For 10% occupancy every s one pulse<br />

1MHz/wire rate capabiliy !<br />

W. Riegler/CERN Gas Detectors<br />

9


Charpak et. al. 1968, Multi Wire Proportional Chamber<br />

In order to eliminate the left/right<br />

ambiguities: Shift two wire chambers by<br />

half the wire pitch.<br />

For second coordinate:<br />

Another Chamber at 90 0 relative rotation<br />

Signal propagation to the two ends of<br />

the tube.<br />

Pulse height measurement on both ends<br />

of the wire. Because of resisitvity of the<br />

wire, both ends see different charge.<br />

Segmenting of the cathode into strips or<br />

pads:<br />

The movement of the charges induces a<br />

signal on the wire AND the cathode. By<br />

segmengting and charge interpolation<br />

resolutions of 50m can be achieved.<br />

W. Riegler/CERN Gas Detectors<br />

10


Multi Wire Proportional Chamber<br />

(a)<br />

1.07 mm<br />

0.25 mm<br />

1.63 mm<br />

(b)<br />

Cathode strip:<br />

Width (1) of the charge<br />

distribution DIstance <br />

‘Center of gravity’ defines the<br />

particle trajectory.<br />

C 1 C 1 C 1 C 1 C 1<br />

C 2<br />

Avalanche<br />

C 2<br />

C 2<br />

C 2<br />

Anode wire<br />

Cathode strips<br />

W. Riegler/CERN Gas Detectors<br />

11<br />

C 1


Drift Chambers 1970:<br />

E<br />

In an alternating sequence of wires with different potentials one finds an electric field<br />

between the ‘sense wires’ and ‘field wires’.<br />

The electrons are moving to the sense wires and produce an avalanche which induces a<br />

signal that is read out by electronics.<br />

The time between the passage of the particle and the arrival of the electrons at the wire is<br />

measured.<br />

The drift time T is a measure of the position of the particle !<br />

Amplifier: t=T<br />

Scintillator: t=0<br />

By measuring the drift time, the wire distance can be reduced (compared to the Multi Wire<br />

Proportional Chamber) save electronics channels !<br />

W. Riegler/CERN Gas Detectors<br />

12


Drift Chambers, typical Geometries<br />

W. Klempt, Detection of Particles with Wire Chambers, Bari 04<br />

Electric Field 1kV/cm<br />

W. Riegler/CERN Gas Detectors<br />

13


The Geiger counter reloaded: Drift Tube<br />

ATLAS MDT R(tube) =15mm Calibrated Radius-Time<br />

correlation<br />

ATLAS Muon Chambers<br />

Primary electrons are drifting to<br />

the wire.<br />

Electron avalanche at the wire.<br />

The measured drift time is<br />

converted to a radius by a<br />

(calibrated) radius-time<br />

correlation.<br />

Many of these circles define the<br />

particle track.<br />

ATLAS MDTs, 80m per tube<br />

W. Riegler/CERN Gas Detectors<br />

14


The Geiger counter reloaded: Drift Tube<br />

Atlas Muon Spectrometer, 44m long, from r=5 to11m.<br />

1200 Chambers<br />

6 layers of 3cm tubes per chamber.<br />

Length of the chambers 1-6m !<br />

Position resolution: 80m/tube,


ATLAS Muon Chamber Front-End Electronics<br />

3.18 x 3.72 mm<br />

Harvard University, Boston University<br />

Single Channel Block Diagram<br />

• 0.5m CMOS technology<br />

– 8 channel ASD + Wilkinson<br />

ADC<br />

– fully differential<br />

– 15ns peaking time<br />

– 32mW/channel<br />

– JATAG programmable<br />

Designed around in 1997, produced in 2000, today – 0.17um process … rapidly changing technologies.<br />

W. Riegler/CERN Gas Detectors<br />

16


Large Drift Chambers: Central Tracking Chamber CDF Experiment<br />

660 drift cells tilted 45 0<br />

with respect to the<br />

particle track.<br />

Drift cell<br />

W. Riegler/CERN Gas Detectors<br />

17


y<br />

Time Projection Chamber (TPC):<br />

Gas volume with parallel E and B Field.<br />

B for momentum measurement. Positive effect:<br />

Diffusion is strongly reduced by E//B (up to a<br />

factor 5).<br />

Drift Fields 100-400V/cm. Drift times 10-100 s.<br />

Distance up to 2.5m !<br />

z<br />

x<br />

B drift<br />

E<br />

charged track<br />

gas volume<br />

wire chamber<br />

to detect<br />

projected tracks<br />

W. Riegler/CERN Gas Detectors<br />

18


• Gas Ne/ CO 2 90/10%<br />

• Field 400V/cm<br />

• Gas gain >10 4<br />

• Position resolution = 0.2mm<br />

• Diffusion: t= 250m cm<br />

• Pads inside: 4x7.5mm<br />

• Pads outside: 6x15mm<br />

• B-field: 0.5T<br />

ALICE TPC: Detector Parameters<br />

W. Riegler/CERN Gas Detectors<br />

19


• Largest TPC:<br />

– Length 5m<br />

– diameter 5m<br />

– Volume 88m 3<br />

– Detector area 32m 2<br />

– Channels ~570 000<br />

• High Voltage:<br />

– Cathode -100kV<br />

• Material X 0<br />

– Cylinder from composit<br />

materias from airplane<br />

industry (X 0= ~3%)<br />

ALICE TPC: Konstruktionsparameter<br />

W. Riegler/CERN Gas Detectors<br />

20


Precision in z: 250m<br />

ALICE TPC: Pictures of the construction<br />

Gas Detectors<br />

End plates 250m<br />

Wire chamber: 40m<br />

W. Riegler/CERN 21


ALICE : Simulation of Particle Tracks<br />

• Simulation of particle tracks for a<br />

Pb Pb collision (dN/dy ~8000)<br />

• Angle: Q=60 to 62º<br />

• If all tracks would be shown the<br />

picture would be entirely yellow !<br />

• TPC is currently under<br />

Commissioning !<br />

W. Riegler/CERN Gas Detectors<br />

22


ALICE TPC<br />

My personal<br />

contribution:<br />

A visit inside the TPC.<br />

W. Riegler/CERN Gas Detectors<br />

23


Detectors based on Ionization<br />

Gas detectors:<br />

• Transport of Electrons and Ions in Gases<br />

• Wire Chambers<br />

• Drift Chambers<br />

• Time Projection Chambers<br />

Solid State Detectors<br />

• Transport of Electrons and Holes in Solids<br />

• Si- Detectors<br />

• Diamond Detectors<br />

W. Riegler/CERN Solid State Detectors<br />

24


Solid State Detectors<br />

Originally:<br />

Solid state ionization chambers in Crystals (Diamond, Ge, CdTe …)<br />

Primary ionization from a charged particle traversing the detector moves<br />

in the applied electric field and induced a signal on the metal electrodes.<br />

Principle difficulty:<br />

Extremely good insulators are needed in order to suppress dark currents<br />

and the related fluctuations (noise) which are hiding the signal.<br />

Advantage to gas detectors:<br />

1000x more charge/cm (density of solids 10 3 times density of gas)<br />

Ionization energy is only a few eV (up to times smaller than gas).<br />

W. Riegler/CERN Solid State Detectors<br />

25


Typical thickness – a few 100μm<br />

Diamond Detector<br />

Velocity:<br />

μ e=1800 cm 2 /Vs, μ h=1600 cm 2 /Vs, 13.1eV per e-h pair.<br />

Velocity = μE, 10kV/cm v=180 μm/ns Very fast signals of only a few ns length !<br />

Charges are trapped along their path. Charge collection efficiency approx 50%.<br />

Diamond is an extremely interesting material. The problem is that large size single crystals cannot be grown<br />

at present. The technique of chemical vapor deposition can be used to grow polycrystalline diamonds only.<br />

The boundaries between crystallites are probably responsible for incomplete charge collection in this<br />

material.<br />

W. Riegler/CERN Solid State Detectors<br />

26


Silicon Detector<br />

Velocity:<br />

μ e=1450 cm 2 /Vs, μ h=505 cm 2 /Vs, 3.63eV per e-h pair.<br />

~11000 e/h pairs in 100μm of silicon.<br />

However: Free charge carriers in Si:<br />

T=300 K: n = 1.45 x 10 10 / cm 3 but only 33000e-/h in 300m produced by a<br />

high energy particle.<br />

Why do we use Si as a solid state detector ???<br />

W. Riegler/CERN Solid State Detectors<br />

27


Silicon Detector used as a Diode !<br />

doping<br />

n-type<br />

p-type<br />

p n<br />

W. Riegler/CERN Solid State Detectors<br />

28


Si-Diode used as a Particle Detector !<br />

At the p-n junction the charges are<br />

depleted and a zone free of charge<br />

carriers is established.<br />

By applying a voltage, the depletion<br />

zone can be extended to the entire<br />

diode highly insulating layer.<br />

If an ionizing particle produced free<br />

charge carriers in the diode they<br />

drift in the electric field an produce<br />

an electric field.<br />

As silicon is the most commonly<br />

used material in the electronics<br />

industry, it has one big advantage<br />

with respect to other<br />

materials, namely highly developed<br />

technology.<br />

W. Riegler/CERN Solid State Detectors<br />

29


Fully depleted zone<br />

Silicon Detector<br />

readout capacitances<br />

N (e-h) = 11 000/100μm<br />

Position Resolution down to ~ 5μm !<br />

ca. 50-150 m<br />

SiO 2<br />

passivation<br />

300m<br />

W. Riegler/CERN Solid State Detectors<br />

30


Silicon Detector<br />

Every electrode is connected to an amplifier <br />

Highly integrated readout electronics.<br />

Two dimensional readout is possible.<br />

W. Riegler/CERN Solid State Detectors<br />

31


Picture of an CMS Si-Tracker Module<br />

Outer Barrel module<br />

W. Riegler/CERN Solid State Detectors<br />

32


2,4<br />

m<br />

Inner Barrel & Disks<br />

–TIB & TID -<br />

CMS Tracker Layout<br />

Outer Barrel --<br />

TOB-<br />

End Caps –TEC<br />

1&2-<br />

Total Area : 200m 2<br />

Channels : 9 300 000<br />

W. Riegler/CERN Solid State Detectors<br />

33


CMS Tracker<br />

W. Riegler/CERN 34


Silicon Drift Detector (like gas TPC !)<br />

drift cathodes<br />

ionizing particle<br />

bias HV divider<br />

Collection<br />

pull-up<br />

cathode<br />

W. Riegler/CERN Solid State Detectors<br />

35


Resolution (m)<br />

Silicon Drift Detector (like gas TPC !)<br />

Anode axis (Z)<br />

Drift time axis (R-F)<br />

Drift distance (mm)<br />

W. Riegler/CERN Solid State Detectors<br />

36


Pixel-Detectors<br />

Problem:<br />

2-dimensional readout of strip detectors results in ‘Ghost Tracks’ at<br />

high particle multiplicities i.e. many particles at the same time.<br />

Solution:<br />

Si detectors with 2 dimensional ‘chessboard’ readout. Typical size 50<br />

x 200 μm.<br />

Problem:<br />

Coupling of readout electronics to the detector.<br />

Solution:<br />

Bump bonding.<br />

W. Riegler/CERN Solid State Detectors<br />

37


Bump Bonding of each Pixel Sensor to the Readout Electronics<br />

ATLAS: 1.4x10 8 pixels<br />

W. Riegler/CERN Solid State Detectors<br />

38


Pixel Detector Application: Hybrid Photon Detector<br />

W. Riegler/CERN Solid State Detectors<br />

39


Elektro-Magnetic Interaction of Charged Particles<br />

with Matter<br />

Classical QM<br />

1) Energy Loss by Excitation and Ionization<br />

2) Energy Loss by Bremsstrahlung<br />

3) Cherekov Radiation and 4) Transition Radiation are only minor<br />

contributions to the energy loss, they are however important effects for<br />

particle identification.<br />

W. Riegler/CERN 40


Bremsstrahlung, semi-classical:<br />

A charged particle of mass M and<br />

charge q=Z 1e is deflected by a<br />

nucleus of Charge Ze.<br />

Because of the acceleration the<br />

particle radiated EM waves <br />

energy loss.<br />

Coulomb-Scattering (Rutherford<br />

Scattering) describes the deflection<br />

of the particle.<br />

Maxwell’s Equations describe the<br />

radiated energy for a given<br />

momentum transfer.<br />

dE/dx<br />

W. Riegler/CERN Solid State Detectors<br />

41


Proportional to Z 2 /A of the Material.<br />

Proportional to Z 1 4 of the incoming<br />

particle.<br />

Proportional zu of the particle.<br />

Proportional 1/M 2 of the incoming<br />

particle.<br />

Proportional to the Energy of the<br />

Incoming particle <br />

E(x)=Exp(-x/X 0) – ‘Radiation Length’<br />

X 0 M 2 A/ ( Z 1 4 Z 2 )<br />

X 0: Distance where the Energy E 0 of<br />

the incoming particle decreases<br />

E 0Exp(-1)=0.37E 0 .<br />

W. Riegler/CERN 42


Critical Energy<br />

Elektron Momentum 5 50 500 MeV/c<br />

Critical Energy: If dE/dx (Ionization) = dE/dx (Bremsstrahlung)<br />

Myon in Copper: p 400GeV<br />

Electron in Copper: p 20MeV<br />

For the muon, the second<br />

lightest particle after the<br />

electron, the critical<br />

energy is at 400GeV.<br />

The EM Bremsstrahlung is<br />

therefore only relevant for<br />

electrons at energies of<br />

past and present<br />

detectors.<br />

W. Riegler/CERN 43


W. Riegler/CERN<br />

For E>>m ec 2 =0.5MeV : = 9/7X 0<br />

Average distance a high energy<br />

photon has to travel before it<br />

converts into an e + e - pair is<br />

equal to 9/7 of the distance that a<br />

high energy electron has to<br />

travel before reducing it’s energy<br />

from E 0 to E 0*Exp(-1) by photon<br />

radiation.<br />

44


W. Riegler/CERN<br />

Electro-Magnetic Shower of High Energy Electrons and Photons<br />

45


W. Riegler/CERN 46


W. Riegler/CERN<br />

47


W. Riegler/CERN<br />

48


W. Riegler/CERN<br />

49


W. Riegler/CERN<br />

50


W. Riegler/CERN<br />

51


W. Riegler/CERN<br />

52


W. Riegler/CERN<br />

53


W. Riegler/CERN<br />

54


W. Riegler/CERN<br />

55


W. Riegler/CERN<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!