23.10.2013 Views

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Adobe</strong> <strong>Illustrator</strong> &<br />

<strong>Indesign</strong> <strong>Tutorial</strong><br />

presented by Robin Cheung<br />

Disclaimer: I’m not an employee of <strong>Adobe</strong> and have not been trained to<br />

provide instruction in these programs


<strong>Adobe</strong> Program Functions<br />

Photoshop photo editing, raster image creation<br />

<strong>Illustrator</strong> vector image creation<br />

InDesign layout


<strong>Adobe</strong> Program Functions<br />

Photoshop photo editing, raster image creation<br />

<strong>Illustrator</strong> vector image creation<br />

InDesign layout


Design Principles<br />

The goal of a scientific poster is to communicate informaton.


Hierarchy<br />

What is the most important thing on the page?<br />

What order do you want your reader to read in?<br />

If your reader spent 1 minute looking at your poster, what<br />

should they get from it? 5 mins? 10 mins?


Design Tools: Proximity<br />

It’s important to group information that is logically<br />

connected. This helps you organize information to<br />

create hierarchy.


Design Tools: Proximity<br />

Example images are from The Non-Designer’s Design Book by Robin Williams


Design Tools: Proximity<br />

Example images are from The Non-Designer’s Design Book by Robin Williams


Design Tools: Proximity


Design Tools: Proximity


Design Tools: Alignment<br />

Nothing should be placed arbitrarily on the page,<br />

everything should be visually connected.


Design Tools: Alignment


Design Tools: Alignment


Design Tools: Alignment


Design Tools: Alignment<br />

Create strong alignments to direct the eye


Design Tools: Repetition<br />

Create a visual system and stick to it.<br />

What do your headlines look like? What size font do<br />

you use for your paragraph text?


Design Tools: Repetition


Design Tools: Repetition


Design Tools: Contrast<br />

Contrast creates visual interest and helps distinguish<br />

different types of information.<br />

If the information you are communicating is similar,<br />

it should look similar. If the information you are<br />

communicating is different, it should look really<br />

different.


Design Tools: Contrast


Design Tools: Contrast


Design Tools: White Space<br />

White space is the empty areas in your layout.<br />

White space gives the eye a break and helps<br />

separate items from each other.<br />

Using white space well makes your information less<br />

overwhelming and confusing.


Design Tools: White Space<br />

Leading = the space between lines of text<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenissequi<br />

eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feugiam<br />

vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alissequis<br />

nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nullamcon<br />

veliquam iliquam volortinis dolutatio<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenissequi<br />

eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feugiam<br />

vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alissequis<br />

nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nullamcon<br />

veliquam iliquam volortinis dolutatio<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenis-<br />

sequi eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feu-<br />

giam vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alis-<br />

sequis nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nul-<br />

lamcon veliquam iliquam volortinis dolutatio


Font Issues<br />

Do not use too many fonts. For most projects, one<br />

font is enough.


Font Issues<br />

For easy communication use appropriate, easy-to-read fonts<br />

not childish ones<br />

not hard to read ones<br />

not scripty ones<br />

not girly ones<br />

not weird ones


Dose Delivered to Patients for Megavoltage Cone-Beam CT Imaging<br />

Olivier Morin1,2, Je Bellerose1, Clayton Akazawa1, Amy Gillis1, Martina Descovich1, Michèle Aubin1, Josephine Chen1, Hong Chen1,<br />

Jean-François Aubry1, Ping Xia1,2 and Jean Pouliot1,2<br />

PURPOSE<br />

<strong>UCSF</strong><br />

University of California San Francisco<br />

1600 Divisadero Street, Suite H1031<br />

San Francisco CA 94143-1708<br />

Email: morin@radonc17.ucsf.edu<br />

WebSite: http://www.ucsf.edu/jpouliot/<br />

AAPM 2006 SU-FF-I-13<br />

1- Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2- <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a at<br />

panel detector to obtain a 3D representation of the<br />

patient in treatment position. MVCBCT has been<br />

used for 2 years in our clinic for anatomy verication<br />

and to improve patient alignment<br />

prior to dose delivery. Depending<br />

on the soft-tissue information<br />

required for setup we are currently<br />

using a total exposure ranging<br />

between 2-10 monitor units (MU).<br />

CT MVCBCT (5MU)<br />

The objectives of this work are:<br />

To evaluate the dose delivered to patients for MVCBCT acquisition.<br />

To develop a simple plan modication receipe to compensate for<br />

the dose received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition:<br />

6 MV beam, 27.4 x 27.4 cm2 eld size, 145 cm source-detector distance, Arc: 270o to 110o Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder<br />

MOSFETS and an<br />

ion chamber<br />

Dose (cGy/MVCBCT MU)<br />

1.12<br />

1.05<br />

-2.1 % 1.7 %<br />

2.3 %<br />

0.95<br />

0.3 %<br />

-1.1 %<br />

1.4 % 0.2 %<br />

0.85<br />

2.8 % 1.4 %<br />

0.75<br />

-0.9 %<br />

2.6 %<br />

16 cm<br />

Percentage dierence<br />

between the dose<br />

calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc<br />

treatment with<br />

MVCBCT setting<br />

Pinnacle can be used to simulate the<br />

MVCBCT dose received by the patients.<br />

Normalized Volume<br />

RESULTS<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

MVCBCT Portal Imaging<br />

or Film<br />

Tx (solid) with Tx+MVCBCT (dashed)<br />

Rectum<br />

Right Femoral<br />

Spinal Cord<br />

Penis Bulb<br />

cGy per MU<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.4<br />

Bladder<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

CONCLUSION<br />

Seminal Vesicles<br />

Prostate<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose (Gy)<br />

MVCBCT dose evaluated in the treatment planning system<br />

Table 1. Dose per fraction delivered to prostate<br />

patients at <strong>UCSF</strong> for daily alignment verication.<br />

MVCBCT (9 MU) and portal imaging (4 x 2 MU = 8 MU).<br />

Simple method to compensate for daily MVCBCT<br />

Prostate (daily 9MU MVCBCT, 40 fractions)<br />

Head and Neck (daily 5 MU MVCBCT, 33 fractions)<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

A compensation factor (CBCF) was introduced<br />

to keep the target mean dose the same.<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

77 Gy<br />

70 Gy<br />

55 Gy<br />

45 Gy<br />

35 Gy<br />

28 Gy<br />

15 Gy<br />

Prostate<br />

Seminal Ves.<br />

Nodes<br />

Rectum<br />

Bladder<br />

Penis Bulb<br />

Small Bowel<br />

Spinal Cord<br />

MVCBCT [cGy] Portal Imaging [cGy]<br />

Min Mean Max Min Mean Max<br />

6.4<br />

6.3<br />

5.2<br />

5.3<br />

6.7<br />

6.5<br />

2.7<br />

0.9<br />

6.9<br />

6.5<br />

6.8<br />

5.9<br />

7.8<br />

6.9<br />

8.3<br />

3.9<br />

Tx (solid) with CBCF. Tx+MVCBCT (dashed)<br />

100<br />

CBCF = 96%<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

7.6<br />

6.8<br />

10.1<br />

6.8<br />

9.5<br />

7.6<br />

11.2<br />

5.2<br />

5.5<br />

5.4<br />

4.4<br />

4.8<br />

5.8<br />

5.8<br />

3.0<br />

0.8<br />

20<br />

Brain<br />

20<br />

10<br />

Right Eye<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose forms<br />

a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU in the pelvis area<br />

delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT remains a small dose addition<br />

compared to treatment dose (


What’s good about it?<br />

Repetition good visual system<br />

Contrast


What needs work?<br />

White space poster is too crowded, overwhelming<br />

Alignment


Dose Delivered to Patients for Megavoltage Cone-Beam CT Imaging<br />

Olivier Morin1,2, Je Bellerose1, Clayton Akazawa1, Amy Gillis1, Martina Descovich1, Michèle Aubin1, Josephine Chen1, Hong Chen1,<br />

Jean-François Aubry1, Ping Xia1,2 and Jean Pouliot1,2<br />

PURPOSE<br />

<strong>UCSF</strong><br />

University of California San Francisco<br />

1600 Divisadero Street, Suite H1031<br />

San Francisco CA 94143-1708<br />

Email: morin@radonc17.ucsf.edu<br />

WebSite: http://www.ucsf.edu/jpouliot/<br />

AAPM 2006 SU-FF-I-13<br />

1- Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2- <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a at<br />

panel detector to obtain a 3D representation of the<br />

patient in treatment position. MVCBCT has been<br />

used for 2 years in our clinic for anatomy verication<br />

and to improve patient alignment<br />

prior to dose delivery. Depending<br />

on the soft-tissue information<br />

required for setup we are currently<br />

using a total exposure ranging<br />

between 2-10 monitor units (MU).<br />

CT MVCBCT (5MU)<br />

The objectives of this work are:<br />

To evaluate the dose delivered to patients for MVCBCT acquisition.<br />

To develop a simple plan modication receipe to compensate for<br />

the dose received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition:<br />

6 MV beam, 27.4 x 27.4 cm2 eld size, 145 cm source-detector distance, Arc: 270o to 110o Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder<br />

MOSFETS and an<br />

ion chamber<br />

Dose (cGy/MVCBCT MU)<br />

1.12<br />

1.05<br />

-2.1 % 1.7 %<br />

2.3 %<br />

0.95<br />

0.3 %<br />

-1.1 %<br />

1.4 % 0.2 %<br />

0.85<br />

2.8 % 1.4 %<br />

0.75<br />

-0.9 %<br />

2.6 %<br />

16 cm<br />

Percentage dierence<br />

between the dose<br />

calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc<br />

treatment with<br />

MVCBCT setting<br />

Pinnacle can be used to simulate the<br />

MVCBCT dose received by the patients.<br />

Normalized Volume<br />

RESULTS<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

MVCBCT Portal Imaging<br />

or Film<br />

Tx (solid) with Tx+MVCBCT (dashed)<br />

Rectum<br />

Right Femoral<br />

Spinal Cord<br />

Penis Bulb<br />

cGy per MU<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.4<br />

Bladder<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

CONCLUSION<br />

Seminal Vesicles<br />

Prostate<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose (Gy)<br />

MVCBCT dose evaluated in the treatment planning system<br />

Table 1. Dose per fraction delivered to prostate<br />

patients at <strong>UCSF</strong> for daily alignment verication.<br />

MVCBCT (9 MU) and portal imaging (4 x 2 MU = 8 MU).<br />

Simple method to compensate for daily MVCBCT<br />

Prostate (daily 9MU MVCBCT, 40 fractions)<br />

Head and Neck (daily 5 MU MVCBCT, 33 fractions)<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

A compensation factor (CBCF) was introduced<br />

to keep the target mean dose the same.<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

77 Gy<br />

70 Gy<br />

55 Gy<br />

45 Gy<br />

35 Gy<br />

28 Gy<br />

15 Gy<br />

Prostate<br />

Seminal Ves.<br />

Nodes<br />

Rectum<br />

Bladder<br />

Penis Bulb<br />

Small Bowel<br />

Spinal Cord<br />

MVCBCT [cGy] Portal Imaging [cGy]<br />

Min Mean Max Min Mean Max<br />

6.4<br />

6.3<br />

5.2<br />

5.3<br />

6.7<br />

6.5<br />

2.7<br />

0.9<br />

6.9<br />

6.5<br />

6.8<br />

5.9<br />

7.8<br />

6.9<br />

8.3<br />

3.9<br />

Tx (solid) with CBCF. Tx+MVCBCT (dashed)<br />

100<br />

CBCF = 96%<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

7.6<br />

6.8<br />

10.1<br />

6.8<br />

9.5<br />

7.6<br />

11.2<br />

5.2<br />

5.5<br />

5.4<br />

4.4<br />

4.8<br />

5.8<br />

5.8<br />

3.0<br />

0.8<br />

20<br />

Brain<br />

20<br />

10<br />

Right Eye<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose forms<br />

a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU in the pelvis area<br />

delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT remains a small dose addition<br />

compared to treatment dose (


DOSE DELIVERED TO PATIENTS FOR MEGAVOLTAGE CONE-BEAM CT IMAGING<br />

Olivier Morin 1,2 , Jeff Bellerose 1 , Clayton Akazawa 1 , Amy Gillis 1 , Martina Descovich 1 , Michèle Aubin 1 , Josephine Chen 1 ,<br />

Hong Chen 1 , Jean-François Aubry 1 , Ping Xia 1,2 and Jean Pouliot 1,2<br />

1 Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2 <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

PURPOSE<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a flat<br />

panel detector to obtain a 3D representation of<br />

the patient in treatment position. MVCBCT has<br />

been used for 2 years in our clinic for anatomy<br />

verification and to improve patient alignment prior<br />

to dose delivery. Depending on the soft-tissue<br />

information required for setup we are currently<br />

using a total exposure ranging between 2-10<br />

monitor units (MU).<br />

The objectives of this work are:<br />

♦ To evaluate the dose delivered to<br />

patients for MVCBCT acquisition.<br />

♦ To develop a simple plan modifi-cation<br />

receipe to compensate for the dose<br />

received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

CT MVCBCT (5MU)<br />

♦ The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition: 6 MV beam, 27.4 x 27.4 cm 2 field size,<br />

145 cm source-detector distance, Arc: 270 o to 110 o<br />

Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder MOSFETS<br />

and an ion chamber<br />

Percentage difference between<br />

the dose calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %*<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc treatment<br />

with MVCBCT setting<br />

Pinnacle can be used to simulate the MVCBCT dose received by the patients.<br />

RESULTS<br />

MVCBCT dose evaluated in the treatment planning system<br />

CONCLUSION<br />

GTV<br />

CTV<br />

M andible<br />

Spinal Cord<br />

Left Parotid<br />

Brain tem s<br />

Skin<br />

Right lens<br />

GTV<br />

CTV<br />

M andible<br />

Spinal Cord<br />

Left Parotid<br />

Brain tem s<br />

Skin<br />

Right lens<br />

MVCBCT [c Gy] CR Film Gy] [c<br />

Min Mean Max Min M ean Max<br />

4.7<br />

2.7<br />

3.5<br />

3.3<br />

2.4<br />

6.5<br />

2.7<br />

0.9<br />

5.2<br />

5.0<br />

5.4<br />

4.2<br />

4.9<br />

6.9<br />

8.3<br />

3.9<br />

5.8<br />

5.8<br />

6.0<br />

4.8<br />

5.3<br />

7.6<br />

11.2<br />

5.2<br />

6.6<br />

3.8<br />

5.5<br />

5.1<br />

4.2<br />

6.6<br />

0.0<br />

5.4<br />

Simple method to compensate for daily MVCBCT<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose<br />

forms a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU<br />

in the pelvis area delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT<br />

remains a small dose addition compared to treatment dose (


Design Tools Summary<br />

Proximity<br />

Alignment<br />

Repetition<br />

Contrast<br />

White space

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!