22.10.2013 Views

Laboratory Studies on Bio-Enzyme Stabilized Lateritic Soil ... - pmgsy

Laboratory Studies on Bio-Enzyme Stabilized Lateritic Soil ... - pmgsy

Laboratory Studies on Bio-Enzyme Stabilized Lateritic Soil ... - pmgsy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Laboratory</str<strong>on</strong>g> <str<strong>on</strong>g>Studies</str<strong>on</strong>g> <strong>on</strong> <strong>Bio</strong>-<strong>Enzyme</strong> <strong>Bio</strong> <strong>Enzyme</strong> <strong>Stabilized</strong><br />

<strong>Lateritic</strong> <strong>Soil</strong> as a Highway Material<br />

Dr. I.R.Mithanthaya Dr. A.U.Ravishankar<br />

Professor Professor & Head<br />

Dept. of Civil Engineering Dept. of Civil Engineering<br />

NMAMAIT, Nitte . NITK-Surathkal.<br />

Lekha B.M<br />

Research Scholar<br />

Dept. of Civil Engineering<br />

NITK-Surathkal.


C<strong>on</strong>tents<br />

• Introducti<strong>on</strong><br />

• Objectives of the study<br />

• Literature survey<br />

• Experimental Investigati<strong>on</strong>s<br />

• Fatigue Analysis<br />

• Field Study<br />

• C<strong>on</strong>clusi<strong>on</strong>s<br />

• References


STABILIZATION MECHANISMS.<br />

MECHANISMS<br />

• Mechanical stabilizati<strong>on</strong>, whereby the stability<br />

of the soil is increased by blending the<br />

available soil with imported soil or aggregate,<br />

so as to obtain a desired particle-size<br />

distributi<strong>on</strong>,<br />

• Mixing or injecting additives such as lime,<br />

Cement, sodium silicate, calcium chloride,<br />

bituminous materials and resinous materials<br />

with or in the soil can increase stability of the<br />

soil. Chemicals stabilizati<strong>on</strong> is the general term<br />

implying the use of chemicals for bringing<br />

about stabilizati<strong>on</strong>.


CHEMICAL STABILZATION<br />

• Mixing or injecting additives:<br />

• Two types<br />

Standard stabilizers :<br />

lime, Cement, sodium silicate, calcium chloride,<br />

bituminous materials and resinous materials.<br />

N<strong>on</strong> standard stabilizers:<br />

Sulf<strong>on</strong>ated Oils, Amm<strong>on</strong>ium Chloride, <strong>Enzyme</strong>s,<br />

Mineral Pitches and Acrylic Polymers.


Selecti<strong>on</strong> of stabilizer<br />

• Selecting the stabilizer type depends <strong>on</strong><br />

number of factors including:<br />

• 1. gradati<strong>on</strong>,<br />

• 2. plasticity index (PI),<br />

• 3. Availability and cost of the stabilizer and<br />

appropriate c<strong>on</strong>structi<strong>on</strong> equipment<br />

• 4. Its l<strong>on</strong>g term effect <strong>on</strong> strength etc.


C<strong>on</strong>cept of <strong>Enzyme</strong> <strong>Soil</strong> Stabilizati<strong>on</strong><br />

• Dem<strong>on</strong>strated by the termites and white Ants –<br />

Build the shelter by Ant Saliva- which are rock<br />

hard and stand firm despite of heavy rainy<br />

seas<strong>on</strong>s.<br />

• <strong>Enzyme</strong> –Natural , N<strong>on</strong> toxic , n<strong>on</strong> flammable,<br />

N<strong>on</strong> Corrosive liquid enzyme formulati<strong>on</strong><br />

fermented from vegetable extracts that<br />

improves the engineering properties of the soil.


Clay Particle –Water Water Relati<strong>on</strong><br />

• Behavior influenced by ability<br />

to absorb exchangeable cat<br />

i<strong>on</strong>s and the amount of water.<br />

– Negative charge <strong>on</strong> the<br />

surface of clay particles<br />

attracts positive (Hydrogen)<br />

end of water molecule.<br />

– Water molecules are arranged<br />

in a definite pattern-Adsorbed<br />

layer


Removal of absorbed water by enzyme<br />

• Absorbed water in the structure<br />

of soil<br />

• Eliminati<strong>on</strong> of absorbed water<br />

in he soil


Mechanism of <strong>Enzyme</strong> Stabilizati<strong>on</strong><br />

•<strong>Enzyme</strong> catalyze the reacti<strong>on</strong> between the clay and the organic cati<strong>on</strong>s and<br />

accelerate the cat i<strong>on</strong> exchange process to reduce the adsorbed layer<br />

thickness.<br />

<strong>Enzyme</strong> replaces adsorbed water with organic cati<strong>on</strong>s, thus neutralizing<br />

the negative charge <strong>on</strong> a clay particle.


Mechanism of <strong>Enzyme</strong> Stabilizati<strong>on</strong><br />

The organic cati<strong>on</strong>s also reduce the thickness of the<br />

electrical double layer. This allows enzyme treated soils to<br />

be compacted more tightly together.<br />

<strong>Enzyme</strong> promotes the development of cementatious compounds<br />

using the following, general reacti<strong>on</strong>:<br />

H2o + clay <strong>Enzyme</strong> Calcium Silicate Hydrates


Net Effect of <strong>Enzyme</strong><br />

• Film of adsorbed water is greatly reduced.<br />

• The soil particles acquire a tendency to<br />

agglomerate<br />

• As a result of relative movement , the soil<br />

get c<strong>on</strong>densed which in turn reduces the<br />

swelling capacity


Need for present Investigati<strong>on</strong><br />

• Recently developed technique.<br />

• Produced by number of private agencies<br />

• More attenti<strong>on</strong> is given in foreign countries<br />

• Rigorous technical investigati<strong>on</strong> is very<br />

essential<br />

• Unclear how these product will work and<br />

under what c<strong>on</strong>diti<strong>on</strong>.<br />

• To better understand their potential value<br />

for road c<strong>on</strong>structi<strong>on</strong>


Objectives of the Investigati<strong>on</strong><br />

• To study the change of geotechnical properties<br />

of the lateritic soil by stabilizing with enzyme.<br />

• Study of quantitative changes in CBR values of<br />

blended lateritic soil with different dosage of<br />

enzyme.<br />

• Study of fatigue behavior of enzyme stabilized<br />

lateritic soil.


Objectives of the Investigati<strong>on</strong> (C<strong>on</strong>tinued)<br />

(C<strong>on</strong>tinued<br />

• To evaluate the influence of various<br />

parameters such as dosage of enzyme,<br />

curing period, <strong>on</strong> stress level and<br />

frequency of stabilized soil subjected to<br />

repeated loading<br />

• Field experimental investigati<strong>on</strong> to study<br />

the performance of road c<strong>on</strong>structed using<br />

stabilized soil.


Materials Used<br />

• <strong>Lateritic</strong> soil<br />

• And <strong>on</strong>e commercially available enzyme


Lacuoture<br />

et al. 1995<br />

Hitam et al.<br />

1998<br />

Yusof et al.<br />

1998<br />

Brazetti et<br />

al. 2000<br />

Sant<strong>on</strong>i et<br />

al. 2001<br />

Literature Review<br />

Germany The reacti<strong>on</strong>s of the soils<br />

treated with the enzyme<br />

was observed and<br />

recorded and compared to<br />

the untreated samples<br />

Malesiya Road c<strong>on</strong>structed for a length<br />

of 27 Km using enzyme<br />

stabilized soil<br />

Brigham<br />

Young<br />

University<br />

<str<strong>on</strong>g>Laboratory</str<strong>on</strong>g> experiments with<br />

two types of enzymes<br />

Thailand Field experiment with six difft.<br />

Types of soil mixture with<br />

pieces of recycled pavement<br />

USA Lab. experiments <strong>on</strong> two<br />

types of soil with two types of<br />

enzyme<br />

The variati<strong>on</strong> in properties<br />

was observed over a period<br />

six m<strong>on</strong>ths<br />

The secti<strong>on</strong>s were then<br />

m<strong>on</strong>itored for two rainy<br />

seas<strong>on</strong>s for erosi<strong>on</strong> due to<br />

rainwater and wear due to<br />

usage.<br />

Studied for variati<strong>on</strong> in<br />

strength and maintenance cost<br />

The field stretches were<br />

periodically tested with DCP to<br />

evaluate variati<strong>on</strong> in CBR<br />

Variati<strong>on</strong> in Unc<strong>on</strong>fined<br />

compressive strength was<br />

observed


(Andrew et<br />

al. 2002).<br />

(Isaac et al.<br />

2003).<br />

Manoj et al.<br />

2003).<br />

Mihai et al.<br />

2005<br />

Literature Review<br />

USA The objective was to<br />

study the potential<br />

applicability of tested<br />

enzyme for unpaved<br />

road in-situ<br />

stabilizati<strong>on</strong>.<br />

India 3 types of soil with<br />

varying clay c<strong>on</strong>tent<br />

from Kerala were tested<br />

India Six difft. Types of soil<br />

with varying clay c<strong>on</strong>tent<br />

India Practical applicati<strong>on</strong> for<br />

roads<br />

Evaluated <strong>on</strong> the basis of<br />

statistical measurement of<br />

change in CBR strength, soil<br />

stiffness and soil modulus<br />

Significant increase in CBR as<br />

curing period increases<br />

The field stretches were<br />

periodically tested with DCP<br />

(Dynamic C<strong>on</strong>e Penetrometer)<br />

equipment.<br />

Major district roads in Maharashtra<br />

are c<strong>on</strong>structed with enzyme<br />

stabilized soil and are working very<br />

well.


Variati<strong>on</strong> of CBR with time<br />

for soil with very high<br />

Plasticity .<br />

Variati<strong>on</strong> of CBR with time<br />

for soil with medium<br />

Plasticity .<br />

Increase in CBR values is<br />

of the range from 130 to<br />

1800 times of the original<br />

value<br />

(Isaac et al. 2003).<br />

I


Manoj Shukla et.al<br />

2003


• Effect of <strong>Bio</strong>-<strong>Enzyme</strong> use <strong>on</strong> soil<br />

stabilizati<strong>on</strong> was c<strong>on</strong>ducted at <strong>Soil</strong><br />

Mechanics <str<strong>on</strong>g>Laboratory</str<strong>on</strong>g>, Thailand (1996) to<br />

determine the effects <strong>on</strong> CBR<br />

• Increase in CBR is more than 100% as<br />

compared to 28% -Untreated<br />

• Investigators also reported reducti<strong>on</strong> in gravel<br />

loss, road roughness, dust levels <strong>on</strong> the<br />

<strong>Enzyme</strong> treated road secti<strong>on</strong>s.


• <strong>Bio</strong>-Enzymatic soil stabilizati<strong>on</strong> in Road<br />

C<strong>on</strong>structi<strong>on</strong><br />

(Everyman’ Science VOL XLI No.6 March 06<br />

Page No.60-69- Dr. C.Venkatasubramnyam School of Civil<br />

Engineering SASTRA Tanjavur.)<br />

• In this study 5 types of soil (From low to high clay<br />

c<strong>on</strong>tent) are c<strong>on</strong>sidered.<br />

• Based <strong>on</strong> strength variati<strong>on</strong> study has been d<strong>on</strong>e <strong>on</strong><br />

cost saving by the use of enzyme stabilized sub base.<br />

• The overall saving in the total cost of c<strong>on</strong>structi<strong>on</strong> is 30-<br />

40%


• Field study : Prof. Hitam & Yusof-Palm oil research Institute<br />

Malaysia (1998)<br />

– 27 Kms of road was c<strong>on</strong>structed with enzyme treated soil.<br />

– The secti<strong>on</strong> of the road was m<strong>on</strong>itored for four m<strong>on</strong>so<strong>on</strong>s.<br />

– No surface damage was observed


Geotechnical properties<br />

Sl No. Property <strong>Lateritic</strong> <strong>Soil</strong><br />

1 Specific gravity 2.45<br />

2 Grain size distributi<strong>on</strong><br />

a) Gravel, % 19<br />

b) Sand, % 50<br />

c) Silt, % 29<br />

d) Clay,% 2<br />

3 C<strong>on</strong>sistency limits (%)<br />

Liquid limit 35<br />

Plastic limit 25<br />

Plasticity index 10<br />

4 IS <strong>Soil</strong> Classificati<strong>on</strong> SM-GM


Geotechnical properties of <strong>Soil</strong>s<br />

Sl No. Property <strong>Lateritic</strong> <strong>Soil</strong><br />

5 I.S standard Compacti<strong>on</strong><br />

a) Max dry density, γ dmax<br />

(kN/m 3 )<br />

19.32<br />

b) O.M.C 13.5%<br />

I.S modified Compacti<strong>on</strong><br />

a) Max dry density, γ dmax<br />

(kN/m 3 )<br />

19.95<br />

b) O.M.C 11.4%<br />

6 CBR Value (%)<br />

I.S Standard Compacti<strong>on</strong><br />

a) OMC c<strong>on</strong>diti<strong>on</strong> 10.0 %<br />

b) Soaked c<strong>on</strong>diti<strong>on</strong> 4.0 %<br />

I.S Modified Compacti<strong>on</strong><br />

a) OMC c<strong>on</strong>diti<strong>on</strong> 14.0 %<br />

b) Soaked c<strong>on</strong>diti<strong>on</strong> 8.0 %


Geotechnical properties of <strong>Soil</strong>s<br />

Sl No. Property <strong>Lateritic</strong> <strong>Soil</strong><br />

Un c<strong>on</strong>fined compressi<strong>on</strong><br />

7<br />

test<br />

I.S Standard Compacti<strong>on</strong><br />

( kN/m2 )<br />

I.S Modified Compacti<strong>on</strong><br />

(kN/m2 )<br />

8 Co-efficient of<br />

permeability<br />

I.S standard Compacti<strong>on</strong><br />

(cm/sec)<br />

I.S modified Compacti<strong>on</strong><br />

(cm/sec)<br />

108<br />

142<br />

4.78x10 -8<br />

2.87x10 --8


Experiments <strong>on</strong> enzyme treated<br />

soil<br />

• <strong>Enzyme</strong> is used for stabilizati<strong>on</strong>. (Nature Plus-USA).<br />

• Physical/Chemical Characteristics of <strong>Enzyme</strong><br />

• Boiling Point: 212° F<br />

• Specific Gravity (H2O = 1): 1.000 - 1.090<br />

• Vapor Pressure (mmHg): As Water<br />

• Melting Point: Liquid<br />

• Vapor Density (Air = 1): 1<br />

• Evaporati<strong>on</strong> Rate : As Water<br />

• Solubility in Water: Infinite pH: 3.10 - 5.00<br />

• Appearance and Odor: Brown clear liquid


<strong>Enzyme</strong> Dosage<br />

• <strong>Enzyme</strong> is to be added to water before<br />

mixing maintaining the OMC<br />

• It is in terms of ml per m3 of soil<br />

• Four dosages are selected<br />

• The enzyme is to be mixed with<br />

• 200 ml/3.5 m3 to 200 ml/2m3


<strong>Enzyme</strong> dosage for lateritic soil<br />

Dosage Amount of<br />

dosage<br />

Amount required<br />

/Kg of soil<br />

1 200 ml/3.5m 3 0.029 ml<br />

2 200 ml/3m 3 0.0338 ml<br />

3 200 ml/2.5m 3 0.0406 ml<br />

4 200 ml/2m 3 0.050 ml


UNCONFINED COMPRESSION TEST<br />

CP ED1 ED2 ED3 ED4<br />

<strong>Lateritic</strong> <strong>Soil</strong> -142 (kN/m 2 )<br />

(Untreated)<br />

1 205 272 343 447<br />

2 262 324 398<br />

3 330 434 532<br />

4 428 513 607<br />

513<br />

716<br />

782


CP<br />

ED1 ED2 ED3 ED4<br />

CBR values for treated soil<br />

Untreated 08%<br />

1 17 20 21 23<br />

2 20 23 25<br />

3 23 25 27<br />

4 25 27 29<br />

27<br />

29<br />

31


Variati<strong>on</strong> of Coefficient of Permiability<br />

CP ED1 ED2 ED3 ED4<br />

k m/sec (10 -8)<br />

1 2.87 2.87 2.63 2.63<br />

2 2.63 2.39 2.39<br />

3 1.91 1.91 1.91<br />

4 1.91 1.67 1.67<br />

2.39<br />

1.67<br />

1.67


<strong>Soil</strong>sand<br />

(%) CP 1 CP 2 CP 3<br />

CBR Values of blended soil with enzyme<br />

CP 4<br />

100-0 25 29 30 31<br />

90-10 27 30 31<br />

80-20 24 29 30<br />

70-30 22 27 28<br />

60-40 21` 24 27<br />

32<br />

31<br />

30<br />

28


Fatigue Behavior of materials<br />

• Term FATIGUE refers to premature failure<br />

under the acti<strong>on</strong> of repeated loading.<br />

• Push-Pull type (Repeated) of loading<br />

system is adopted in Lab.<br />

• Depends <strong>on</strong> :<br />

• Nature of loading<br />

• Magnitude of max. load<br />

• No. of cycles to failure<br />

• Surface finish of test specimen<br />

• Temperature


Fatigue Analysis<br />

• Fatigue behavior of stabilized soil<br />

under repeated loading.<br />

• Test has been performed using<br />

fatigue testing machine.<br />

• A cylindrical specimen of length to<br />

diameter ratio of 2 is used.<br />

• The Fatigue test equipment that is<br />

capable of applying the repeated<br />

loads at a frequency 0 to 12 Hz is<br />

used in the present investigati<strong>on</strong>.


Effect of <strong>Enzyme</strong> c<strong>on</strong>tent <strong>on</strong> Fatigue life of <strong>Enzyme</strong><br />

treated soil specimens at different stress level<br />

<strong>Lateritic</strong> <strong>Soil</strong>


•<br />

Effect of load repetiti<strong>on</strong>s <strong>on</strong> residual static UCS


Effect of load repetiti<strong>on</strong>s <strong>on</strong> Ultimate UCS strength<br />

(<strong>Lateritic</strong> soil)


Effect of curing period <strong>on</strong> Fatigue life


Effect of loading amplitude <strong>on</strong> fatigue life


Fatigue life Vs UCS<br />

Stress level Correlati<strong>on</strong> equati<strong>on</strong> of <strong>Lateritic</strong> soil for <strong>Enzyme</strong> dosage 2 R² value<br />

30% Fatigue Life=272.2 UCS- 743.7 0.98<br />

40% Fatigue Life =199.6 UCS- 1975 0.98<br />

50% Fatigue Life =161.0 UCS - 5942 0.99<br />

60% Fatigue Life =132.3 UCS- 7916 0.98<br />

80% Fatigue Life =99.68 UCC - 10732 0.98


FIELD EXPERIMENTAL STUDY<br />

• The road selected for the<br />

experimental investigati<strong>on</strong> is<br />

at Nancharu-Kokkarne<br />

Road,Udupi District.<br />

• The c<strong>on</strong>structi<strong>on</strong> of road<br />

segment for a length of 1.35<br />

Km was d<strong>on</strong>e under<br />

“Pradana Manthri Grameena<br />

Sadak Yojana” scheme.


Index properties of the soil at the site before the<br />

applicati<strong>on</strong> of <strong>Enzyme</strong>


Dynamic C<strong>on</strong>e Penetrati<strong>on</strong> Test<br />

(Treated soil)


L<strong>on</strong>g Term Effect of enzyme <strong>on</strong><br />

soil<br />

• Field CBR was c<strong>on</strong>ducted<br />

during the m<strong>on</strong>th of Feb.<br />

2009 after allowing the<br />

road for <strong>on</strong>e rainy<br />

seas<strong>on</strong>.<br />

• The results were shown<br />

that the CBR value is<br />

more than 80%. This<br />

clearly indicates the l<strong>on</strong>g<br />

term durability of enzyme<br />

treated soil.


C<strong>on</strong>clusi<strong>on</strong>s<br />

• <strong>Soil</strong> properties have been improved with<br />

dosage 4.<br />

• CBR value increased by 400%<br />

• UCC value increased by 450%<br />

• Permeability decreased by 42%<br />

• Improvement in soil properties by adding<br />

sand ( 80-20).<br />

• Effect of enzyme is less for cohesi<strong>on</strong> less<br />

soils<br />

• CBR values of enzyme treated soil decreases<br />

with increase in sand c<strong>on</strong>tent


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Fatigue Analysis<br />

– Effect of Dosage :For different stress level (30-80<br />

%) it is observed that the fatigue life of the<br />

stabilized soil increases with increase in dosage<br />

and bey<strong>on</strong>d the dosage 2 the increase is<br />

marginal.<br />

– Effect of Curing Period: Showing c<strong>on</strong>siderable<br />

increase in fatigue life up to 4 to 6 weeks of<br />

curing. Further it is marginal.<br />

– Effect <strong>on</strong> residual UCS strength: Ultimate UCS<br />

strength (after repetiti<strong>on</strong>s) are higher than the<br />

original UCS strength for the specimen cured up<br />

to 4 weeks.


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Fatigue Analysis<br />

– Effect of Dosage :For different stress level (30-80<br />

%) it is observed that the fatigue life of the<br />

stabilized soil increases with increase in dosage<br />

and bey<strong>on</strong>d the dosage 2 the increase is<br />

marginal.<br />

– Effect of Curing Period: Showing c<strong>on</strong>siderable<br />

increase in fatigue life up to 4 to 6 weeks of<br />

curing. Further it is marginal.<br />

– Effect <strong>on</strong> residual UCS strength: Ultimate UCS<br />

strength (after repetiti<strong>on</strong>s) are higher than the<br />

original UCS strength for the specimen cured up<br />

to 4 weeks.


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Experimental field study<br />

– The road c<strong>on</strong>structed with enzyme stabilized<br />

soil has m<strong>on</strong>itored for its performance at<br />

regular interval for 8-10 m<strong>on</strong>ths. The road is<br />

performing well and field CBR test indicates<br />

that stabilized soil can be used as sub base<br />

material very effectively. But prior laboratory<br />

study is necessary to get the good result in<br />

the filed.


C<strong>on</strong>cluding Remark<br />

• Based <strong>on</strong> experimental analysis, study of<br />

fatigue behavior and field study it can be<br />

c<strong>on</strong>cluded that there is improvement in<br />

geotechnical properties of lateritic soil and<br />

can be effectively used in the design of<br />

flexible pavement with the replacement of<br />

WBM layer


References<br />

• Andrew,R., Fadi,S.M., Nicholos, E. and Elahe, M.(2003): “An<br />

Evaluati<strong>on</strong> of Strength change <strong>on</strong> Subgrade soils stabilized with an<br />

<strong>Enzyme</strong> Catalyst soluti<strong>on</strong> using CBR and SSG comparis<strong>on</strong>s”,<br />

Report submitted to University Transportati<strong>on</strong> Cente South Carolina<br />

State University Orangeburg, SC, USA .<br />

• Andromalos, K.B., Hegazy,Y.A. and Jasperse, B. H. (2000):<br />

”Stabilizati<strong>on</strong> of <strong>Soil</strong>s by <strong>Soil</strong> Mixing,” Proceedings, Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Soft Ground Technology, ASCE, Noorwijkerhout,<br />

Netherlands, pp, 194-205.<br />

• Beena, S.(2000): “Suitability of using CBR test to predict Resilient<br />

modulus” paper presented for the federal aviati<strong>on</strong> administrati<strong>on</strong><br />

airport technology transfer c<strong>on</strong>ference Rowan University,201 Mullica<br />

Hill Road, Glassboro, NJ 08028.


• Brazetti, R., and Murphy, S.R.(2000): “General usage of<br />

<strong>Bio</strong>-<strong>Enzyme</strong> stabilizers in Road C<strong>on</strong>structi<strong>on</strong> in Brazil”,<br />

32 nd annual meeting <strong>on</strong> paving, Brazil.<br />

• Boateng P. Y. and Johns<strong>on</strong>, P. T. (1990): “Estimati<strong>on</strong> of<br />

subgrade resilient modulus from standard tests” Journal of<br />

Geotechnical Engineering, Vol. 116, pp.68-78.<br />

• Dhinakaran, C. and Prasanna K.R. (2007): “<strong>Bio</strong>enzyme soil<br />

stabilizati<strong>on</strong> in road c<strong>on</strong>structi<strong>on</strong>”, Everyman’s Science,<br />

Vol.XLI No.6, pp.397-400


• Gidigasu, M.D. (1976): “<strong>Lateritic</strong> <strong>Soil</strong> Engineering<br />

Pedogenesis and Engineering Principles”, Elsevier Scientific<br />

Publishing Company, New York .<br />

• Gireesh, B.G. (2008):“study <strong>on</strong> geotechnical properties of<br />

laterite and black cott<strong>on</strong> soils<br />

with <strong>Bio</strong>enzyme as a stabilizer”, M.Tech. Thesis, Nati<strong>on</strong>al<br />

Institute of Technology, Srinivasanagar, Karantaka , India.<br />

• Ganesh, C. (2008): “ Fatigue Behavior of enzyme stabilised<br />

soil “,M.Tech. Thesis, Nati<strong>on</strong>al Institute of Technology,<br />

Srinivasanagar , Karantaka ,India.<br />

• Hitam, A. and Yusof, A. (1998): “<strong>Soil</strong> stabilizers for plantati<strong>on</strong><br />

road”, Proceedings, Nati<strong>on</strong>al seminar <strong>on</strong> Mechanisati<strong>on</strong> in Oil<br />

Palm Plantati<strong>on</strong>, , Selangor, Malaysia, pp.124-138.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!